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Abstract

Characterization of Avalanche-Burst Invasion Percolation: A Case Study in

Pseudo-Criticality and Multifracticity

Given the variety and large number of systems displaying scale invariant characteris-

tics, it is becoming increasingly important to understand their fundamental and universal

elements. Much work has attempted to apply second order phase transition mechanics

due to the emergent scale invariance at the critical point. This symmetry produces much

of the fractal characteristics that is shared among these systems. Percolation systems offer

a simple and well developed framework that exhibit all the key features of a second order

phase transition, and has been a fertile framework for exploring generalizing insights. A

close variant is invasion percolation.

Invasion percolation is a model that was originally proposed to describe growing net-

works of fractures. Here, we first describe a loopless algorithm on random lattices, coupled

with an avalanche-based model for bursts. The model reproduces the characteristic b-

value seismicity and spatial distribution of bursts consistent with earthquakes resulting

from hydraulic fracturing (“fracking”). We test models for both site invasion percolation

(SIP) and bond invasion percolation (BIP) and characterize their density, cluster, and

correlation scaling exponents Df , τ , and ν respectively. These models have differences

on the scale of site and bond lengths l, but since the networks are characterized by their

large scale behavior, l� L, we find only small differences between their respective scaling

exponents. Though these differences are likely too small for empirical data to differentiate

between models, they remain significant enough to suggest that both models belong to

different universality classes.

Because we likely cannot empirically distinguish differences associated with their un-

derlying critical characteristics, we next aim to understand the particular manifestation

of criticality in the avalanche invasion percolation (AIP) system. This is a SIP based

model with additional growth mechanics described through distinct, sequentially con-

nected bursts. Instead, we find that it is a hybrid critical system with the presence of

-xiv-



a critical Fisher type distribution, ns(τ, σ), but lacks other essential features such as an

order parameter and to a lesser degree hyperscaling. This suggests that we do not need

a full phase transition description in order to observe scale invariant behavior. This was

a positive result, since for many systems, notions of phases and critical points are both

artificial and cumbersome. AIP also recasts dynamics as a slowly driven non-equilibrium

proccss and provides a pathway for more suitable descriptions.

We extend our previous model, avalanche-burst invasion percolation (AIP) by intro-

ducing long-range correlations between sites described by fractional Brownian statistics.

In our previous models with independent, random site strengths, we reproduced a unique

set of power-laws consistent with some of the b-values observed during induced seismicity.

We expand upon these models to produce a family of critical exponents which would

be characterized by the local long-range correlations inherent to host sediment. Further,

in previous correlated invasion percolation studies, fractal behavior was found in only a

subset of the range of Hurst exponent, H. We find fractal behavior persists for the entire

range of Hurst exponent. Additionally, we show how multiple cluster scaling power laws

result from changing the generalized Hurst parameter controlling long-range site correla-

tions, and give rise to a truly multifractal system. This emergent multifractal behavior

plays a central role in allowing us to extend our model to better account for variations

in the observed Gutenberg-Richter b-values of induced seismicity. Finally this provides

a framework for generating scale invariant statistics without adhering to the scaling hy-

pothesis which underlies the scale invariance of critical systems.

-xv-



Chapter 1

Introduction

Though the field of complexity seemingly evades a formal definition, one might make an

initial attempt to describe complexity through mathematical quantities like Lyapunov

exponents. These exponents characterize the exponential separation associated with the

temporal evolution of nearby phase space trajectories. The trajectories in phase space

describe the system’s temporal evolution, and a system’s Lyapunov exponents do capture

one of the characteristic features of complexity. This feature being: the observation that a

small neighborhood of initial states does not lead to a small neighborhood of final states.

Instead, the exponential amplification of deviations insures final states can grow to be

arbitrarily distant, and in this way complex systems can often times be indistinguishable

from random systems.

Complexity can also arise absent any formal description of differential dynamics gov-

erning the time evolution of the system. One might begin with a rather simple system (for

example, a cellular automata system with a specified rule for nearest neighbor interac-

tions) whose fundamental elements are well known, but their interactions are sufficiently

numerous, that features of complexity become an emergent property of the system.

We also only mention that there exist entire fields characterized by more purposeful

biological agents that have methods unto themselves. Briefly, this motivates the notion

that the landscape of systems that fall underneath the complexity umbrella are both

diverse and numerous. However, the most interesting aspect of this landscape is that

we find the intersection of many seemingly disparate concepts. Illustrative, but non
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exhaustive examples eliciting the different kinds of flavors are: The geometric connection

between the mapping of coastlines and the random stochastic nature of market time series

[1]; attempts to quantify a complexity measures through measures of various entropies and

information [2]; the interesting connection between phase transitions and the statistical

behavior of seismicity [3].

The last example is of particular interest and represents the particular flavor which

defines the majority of the interest in this project. Typically, in the field of complexity,

the phase space is so rich with trajectories that it is very difficult to develop any principles

which might serve to constrain behavior. The goal of such attempts would be to identify

suggestive characterizing and simplifying principles. This has lead some to speculate that

in fact irreducibility is fundamental and must lie at the core of complex systems [4].

However, as is typically the aim of any good physical theory, the goal is to distill

simplicity from complexity, and in fact there are many examples of this in complexity

sciences where recursive feedback mechanisms with underlying simple interactions lead

to the emergent complexity in outcomes. With these examples we find that complexity

emerges from an underlying simple structure. The spirit of our pursuit is to find the

simplifying structure that underlays the complex behavior of seismic systems. Of course,

it could be that some iteration of Maxwell’s demon lurks behind the dynamics, ensuring

the system is described by both many interacting parts with very sophisticated interaction

rules.

For our purposes we will focus one of the key insights which binds seismicity to com-

plexity, and hinges around the presence of a particular kind of symmetry called scale

invariance. This is particularly satisfying, since a physicist’s primary strategy is to utilize

symmetries to effectively constrain and simplify problems. As physicists sought to under-

stand second order phase transitions, they found that many of the systems parameters

naturally became described by many quantities bounded only by the system’s size and

exhibited a symmetry known as scale invariance. This type of transition (an example of

being the Ising second order phase transition described below) was a radical departure

from the dynamics that describe systems in their normal states of matter.
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Similarly, it was shown that seismic systems are also described by quantities which

are scale invariant. Given that scale invariance is the result of no natural length, that

the system can be rescaled arbitrarily and the relations remain the same, suggested that

their existed a common mechanisms between these two systems. The goal of this brief

introduction is to provide the essential concepts that will be utilized to make comparisons

between the two disparate phenomenon of criticality and seismicity.

1.1 Second-Order Phase Transitions

In thermodynamic systems the phases of different substances serve to define various equi-

librium dynamics which can effectively describe much of the observed behavior. This leads

to the powerful result that regular molecular and small-scale (l << Lsys) interactions lead

to stable ensemble averaged macro (l ∼ Lsys) quantities which effectively describe the

state of the system. Phase transitions mark where these typically well-behaved quantities

encounter abrupt non-equilibrium dynamics that alter the underlying interactions. The

result is a system that emerges with different relations between the state variables. One

typically uses a ”state function” to describe the system’s state, and for our purposes we

will use either the Gibbs free energy or Helmholtz free energy state functions,

dF (T, V,N) ≡ −SdT − pdV + µdN (1.1)

where the two are related by Legendre transforms,

G(T, P,N) = F (T, V,N) + PV (1.2)

dG = −SdT + V dP + µdN (1.3)

The choice of thermodynamic potential depends on the constraints of the system.

For example, particles in a box allowed to exchange heat with the environment or are

in contact with a heat bath allows one to externally control the system’s temperature.

Thus, temperature and volume become the natural variables of the system. Alternatively,

if we seek to control the pressure of the system rather than the volume, such that the

volume is the natural variable, then the Gibbs free energy potential is suitable. Transform-
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Figure 1.1. Illustrative PT phase diagram. The sublimation curve and the vapor pressure
curve separate a system’s state into distinct domains: solid, liquid, and gas. While in many
cases the fusion curves continue indefinitely, the vapor pressure curve terminates at a critical
point. [5]

ing between different state functions can be done formally with the respective Legendre

transforms.

Because many of our examples are lattice-type models, it is convenient to instead

encode the state functions, which are macroscopic descriptions, using the Hamiltonian

formulation. Here, we begin by describing the energy of each element and its possible

interactions, and then utilize all the machinery of statistical mechanics to determine the

stable macroscopic quantities. This is a very powerful way of determining the behavior

of ∼ 1016 elements from the simple energy interactions of each element. The Hamiltonian

lattice formulation is given by,

F = − 1

β
logZ (1.4)

where Z is the all important partition function, which is the sum over all system’s energy

microstates, and is given by

Z =
∑
i

exp−βH (1.5)

and β is the standard 1/kBT .

One of the key parameters derived from either thermodynamic potentials or the Hamil-

tonian statistical mechanics is the order parameter. The order parameter can be the den-

sity in liquid systems or the magnetization in magnetic systems, and is given by the first

derivative of the thermodynamic potential. The order parameter undergoes a disconti-
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nuity in a phase change, and is used to distinguish distinct equilibrium states known as

phases from one another. The set of thermodynamic parameters (P,V,T,S,ρ, etc) collec-

tively make a multidimensional phase space, and the selection of two of these variables

makes a surface where we can show distinct domains corresponding to distinct states. The

line in surface where the order parameter is discontinuous, generally represents regions

of a phase change where the system transforms from one phase to the other on opposite

sides of the boundary. An example is shown in Figure 1.1.

Since the order parameter is typically given by the first derivative of the thermody-

namic potential, those transitions whose first derivative of the thermodynamic potential

are discontinuous became known as first order phase transitions. It became apparent that

there also existed cases where the first derivative is continuous but the second derivative

is discontinuous. Because of this Ehrenfest suggested that depending on which derivative

became discontinuous could universally categorize phase transition. This classification

suggests a rather cohesive description between phase transition descriptions, but this clas-

sification perhaps belies the magnitude of difference between the subsequent phenomena

being described.

For critical phenomena, we observe that the order parameter remains continuous, but

the second derivative diverges. Thus, it is for this reason that critical phenomena describe

second order phase transitions where quantities like compressibility and heat-capacity

become discontinuous.

As a representative, concrete example, we first consider the lattice liquid-gas model,

which nicely illustrates how many interesting features can arise from a relatively simple

model. Here, we consider a grid of cells (shown in Figure 1.2) which can either be oc-

cupied or empty. We imagine gas particles moving about on this square grid, where the

grid size roughly corresponds to the particle size. If the particle happens to be at the

center of the cell, then that cell becomes occupied, otherwise the cell is left unoccupied.

This ensures that two particles cannot occupy the same cell. We also allow an energy dif-

ference to distinguish occupied and unoccupied cells, which is controlled by the chemical

potential, µ (though the main insights won’t depend on this interaction). Next, we allow
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Figure 1.2. An example of the lattice gas model. Interaction rules: each dark cell indicates
a particle occupying the center. Nearest neighbor occupied cells interact with energy −j.
Multiple particles cannot occupy the same cell. [5]

interactions between nearest neighbor cells with interaction strength j in order to simu-

late an attractive potential for nearby particles. We forbid particles to occupy the same

site. Except for the nearest neighbor interactions, we have no other kinds of interactions

between the cells. Even given this simple setup, we have implemented a Lennard-Jones

type of potential. The Hamiltonian is written as,

H = −j
∑
l,m

sl · sm − µ
∑
l

sl (1.6)

where sl = 0, 1 if occupied or not. The partition function can subsequently be written as,

Z =
∑
sites

eβj
∑
l,m sl·sm+βµ

∑
l sl (1.7)

If we were proceeding analytically, we would need to sum over all microstates of the system

in hopes of finding a closed form expression for the sum. Onsager [6] famously was the

first to achieve an analytical solution, and whose tremendous effort awarded him a Nobel

prize. Onsager solved a slightly different two-dimensional Ising model with external field

B, but we can still make use of his efforts with a simple transformation.

The Hamiltonian for the 2D Ising model with external field can be written as,

H = −j/4
∑
l,m

σl · σm − µ
∑
l

σl (1.8)

The Hamiltonian of the two models are the same under the transformation,

σl = 2sl − 1 (1.9)

and by substituting magnetic field B with chemical potential µ. Further, we can now

quote the well established Ising model results, beginning first with the order parameter.
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Figure 1.3. Ising Model. Each lattice site contains a spin can be up or down, (-1, 1). Nearest
neighbor spins in the same state interact with energy −J and is denoted by the presence of
a bond. Energetically the spins will prefer to clump since an isolated spin flip must break 4
bonds, however, if the spin is a neighbor than only bonds are broken.

For the case of the liquid-gas transition, the order parameter is some function of the

density. Using the results of the Ising model the order parameter is,

ρ =
1

Nβ

∂logZ

∂µ
=

1

N

(
2

Nc∑
k

〈sk〉 −Nc

)
(1.10)

where here we can see that the density is determined as a function of the average number

of occupied sites per cluster. A closer look shows the order parameter is the difference

between two density terms, which is consistent with liquid-gas transitions where the order

parameter is taken to be the difference between a fluctuating average density and a fixed

density [7].

For most values of temperature, there exists a discontinuous change in the density,

reflecting the different densities of the distinct gas and liquid states. For the Ising sys-

tem, this represents the spontaneous macroscopic magnetization that emerges given any

nonzero external magnetic field. Yet, there does exist a critical temperature, Tc, where

this difference in density continuously goes to zero, and in this region it would suggest

little difference in the density between the two states.

However, even though the order parameter, which is a function of the first derivative

of the free energy, is continuous, higher order derivatives are discontinuous which point
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Figure 1.4. Shown here is one of the first observations of critical phenomena, critical opales-
cence. The liquid is shown at 3 different temperatures with a laser shining through it and
becoming increasingly opaque. There is a critical temperature where the opacity is maximum,
and this corresponds to mixed phase liquid or a super liquid where droplets of different sizes
nucleate to produce the opalescence.

to singular behavior in other important quantities like heat capacity and compressibility,

κT =
1

N

(
∂2F

∂2µ

)
T,N

(1.11)

Cv = − 1

βN

(
∂2F

∂2T

)
V,N

(1.12)

The divergence of compressibility κT is the result of fluctuations in the order parameter

growing far larger then they would when in a particular state where their thermal averages

remain well-behaved. This singular behavior in compressibility as a result of fluctuations

in the density is the explanation for the phenomena of critical opalescence, one of the

earliest known examples of second order phase transitions.

During Einstein’s seminal work on Brownian motion and his studies in statistical

physics, he attributed large fluctuations to be the result of critical opalescence [8]. Figure

1.4 shows the basic phenomena of critical opalescence. One can shine a laser through a

liquid in its regular state with very little diffraction of the laser as it passes through the

liquid. However, there exists a critical temperature, Tc, where as one approaches Tc the

opacity very suddenly starts to change in a small region near Tc. At Tc the fluid becomes

almost entirely opaque to the laser. This process has been traditionally described as the

result of the liquid entering a mixed state where gas and liquid simultaneously exist, and

droplets form over a very large range of sizes. These will act to scatter light strongly as

the associated fluctuations in the scattering index also experience large fluctuations.
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1.2 Thermodynamic Fluctuations and Critical Fluc-

tuations

In order to properly understand critical fluctuations, we first contrast its behavior with

that of fluctuations in the “thermodynamic limit”. The thermodynamic limit is charac-

terized by the stability of average values. This insight comes from an understanding of

how fluctuations scale with system size. The way that this is typically understood is by

looking at the variance of energy, which nicely characterize a systems fluctuations. We

define it in the usual way,

δE2 =
〈
E2
〉
− 〈E〉2 (1.13)

where the average energy can either be determined from a distribution of energies (ex.

Boltzmann) or directly from the partition function (ex. Eq.1.7), which computes the

ensemble average

〈E〉 = − ∂

∂β
logZ (1.14)

Similarly the variance can be conveniently written in terms of average energy,

δE2 = − ∂

∂β
〈E〉 (1.15)

This nicely provides the intuition that fluctuations are determined by how the energy

changes given a change in temperature. This is essentially the definition of the heat

capacity of a substance and heat capacity is known to be an extensive quantity which scales

according to the mass of the substance. Thus, we find energy fluctuations δE2 ∼ C ∼ N .

Similarly, average energy is an extensive quantity leading to 〈E〉 ∼ N . The amplitude of

fluctuations are given by the ratio,

δE

〈E〉
∼ 1√

N
(1.16)

So, as the system size increases or as N increases, the magnitude of fluctuations goes

to zero. This clearly shows that the thermodynamic limit leading to a stability of state

variables does not apply to critical phenomena where the compressibility and heat capacity

diverge.

9



This boundedness of thermodynamic state variables can better be understood by look-

ing at the behavior of the correlation length. Properly defined, the correlation length

characterizes the spatial extent of particle interactions. Typically, this is measured by the

connected correlation function, which for spin systems can be intuitively written as,

C(i, j) = 〈(si − 〈si〉) · (sj − 〈sj〉)〉 (1.17)

where the average is an ensemble average over all spins. This form shows we are interested

in interactions different from average values. This ensures we don’t consider contributions

of external influences that might act to correlate spins beyond their actual interactions

with one another. This would be the case, if for example, the system was put in the

presence of an external magnetic field or the like. Formally, we are interested in charac-

terizing the spatial extent of the random inherent system fluctuations. We can write the

connected correlation function in a more familiar way as,

C(i, j) = 〈sisj〉 − 〈si〉 〈sj〉 (1.18)

Because it will be useful to define a length characterizing the spatial extent of interactions,

we write the correlation function in terms of distance r between sites. Thus, for any

arbitrary spin selected to be at the origin, r = 0(and again, performing an ensemble

average), we can write,

C(r) = 〈(s(r)− 〈s〉) (s(0)− 〈s〉)〉

= 〈s(r) · s(0)〉 − 〈s〉2
(1.19)

In the Ising model, and in most cases the general behavior of the correlation function,

C(r) is characterized by a decaying exponential,

C(r) = C0e
−r/ξ (1.20)

where the correlation length, ξ, is the decay constant. In the case of regular equilibrium

fluctuations, we find ξ � Lsys and the correlation function quickly decays to zero. This

allows energy fluctuations to follow the equilibrium stability and their magnitude decreases

according to N−1/2. However, for what will come to characterize critical fluctuations, we
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will find that ξ ∼ Lsys which consequently means ξ � r and the exponential function

goes to unity. This allows fluctuations to become arbitrarily large up to the scale of the

system.

In fact in conjunction with the correlation length, the correlation function near the

critical point was found to behave according to [7],

C(r) ∼ 1

rd−2+η
(1.21)

where η typically takes on a small value for most systems. This tells us that rather than

exponentially decaying, correlations decay with a polynomial and produce long range

correlations.

The presence of long range correlations directly impacts the macroscopic behavior.

To see this, we show how the system’s susceptibility is determined directly from the

correlation function. In order to give the correlation function a more obvious physically

significant role, we note that we are interested in knowing the average correlation of all

spins with an arbitrary spin in the system, and subsequently average over all spins to

get some measure of average connectivity in the system. This means we would want to

integrate over the entire volume, V and the total average correlation becomes,

C =
1

V

∫
V

d3r C(r) (1.22)

A fundamental relationship between susceptibility and the average correlation gives

[9],

χ ∼ βC (1.23)

This allows us to directly attribute the divergence of the susceptibility as the result of the

divergence of the correlation function, where again the correlation function is the spatial

extent of fluctuations. For the correlation function to diverge means that fluctuations

are allowed to grow arbitrarily large, which again is exactly the point of view argued

previously.

This in large part motivates the Finite Size scaling hypothesis, which posits that

the correlation length divergence is fundamentally the source of all divergences during a
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Figure 1.5. Here we show Monte Carlo simulation of Ising clusters for different T. (Top Left)
T � Tc: Low temperature with spins in nearly the same state. (Top Right) T ∼ Tc Large
clusters only begin to form near the critical temperature, Tc. (Bottom Left) T > Tc: At higher
temperatures the cluster’s sizes decrease in size. (Bottom Right) T � Tc: High temperatures
limit where spin states are independent and random.
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second order phase transition. Moreover, the divergence of the correlation length makes

it more likely for the correlation length to be the only relevant length of the system.

This is a radical departure from equilibrium dynamics which arose from stable states and

their characteristic small-scale interactions, and where previously fluctuation magnitudes

decreased by N−1/2, now the correlation length extends to the size of the system ensuring

that fluctuations can no longer be exponentially suppressed.

That the correlation length of random fluctuations becomes prominent on all scales

of the system ensures that macroscopic properties will likewise become dominated by

random fluctuations. This places the characterization of the correlation length at the

center of any attempt to characterize a system’s critical behavior. However, the finite size

scaling hypothesis is mostly empirically driven as it is on an observational basis that we

justify the functional behavior of the correlation length to be a power-law, characterized

by its proximity to the critical point, Tc

ξ ∼ |T − Tc|−ν (1.24)

where ν is a critical exponent characterizing the divergence of the correlation length.

Because a single length dominates the system, this allows us to write many quantities

in terms of this length. Consequently, these quantities must also follow power-laws, and

therefore, relations between these quantities become relations between their respective

exponents. For example, we can write

γ

ν
= 2− η (1.25)

by recalling that the correlation function is described by C(r) ∼ r−(d−2+η). If ξ is the

only relevant length than we can write r = bξ. We can make use of the fluctuation

dissipation theorem, giving rise to Eq.1.23, to establish relation, χ ∼
∫
ξ
ddξ C(ξ) ∼

ξ−(−2+η)). Using Eq.1.24 we can write χ ∼ |T − Tc|−ν(2−η) = |T − Tc|−γ where the equality

between exponents gives rise to Eq.1.25, and emphasizes that if the correlation function

diverges so too must the susceptibility.

The divergence of the correlation length also brings about another interesting property,

universality. Since the correlation function is a measure of average correlations of random
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Figure 1.6. Coexistence curve of several different fluids [10]. That randomness dominates the
behavior is what gives rise to the concept of universality in critical phenomena. This famous
plot shows the behavior of the order parameter near the critical point for different molecules.
Distinct inter-molecular dynamics of the various plotted fluids result in different equilibrium
relations between their state variables (in this case, ρ and T ) away from the critical point.
When normalized by their respective critical values, we find that all the fluids lie along nearly
the same curve! In fact, the critical exponents of the 2D Ising model and that of the gas-liquid
systems are nearly the same.
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order parameter fluctuations, and because this quantity fundamentally diverges, which

is to say that these critical fluctuations are allowed to grow to dominate the behavior of

the system, we find previously distinct systems with different inter-molecular interactions

collapse to the same behavior near their critical points. This observation made famous

by [10] shows how nitrogen, oxygen, carbon monoxide, and methane follow the same

coexistence curve shown by Figure 1.6, reflecting that they are described by nearly the

same critical exponent, characterizing the order parameter divergence, ρ−ρc ∼ |T −Tc|β.

The Finite Size Scaling Hypothesis elegantly explains why universality is the natural

consequence of the emergent scale invariance, and proposes interesting questions about

the sort of universality classes and what serves to define distinct classes. Here, we have

an elegant example of distilling simplicity from complexity. We will pursue this generality

even further in the next section.

1.3 From Ising to Percolation

The Ising Model can be generalized by considering more spin states available to each spin

located at each lattice vertex. This generalization is characterized by variable s defining

the number of available states. A careful analysis [11] into the various kinds of models

one can map to depending on the value of s has led to very interesting results. For s = 2

we reproduce the well known Ising model. For s = 0, we reproduce the resistor network.

More interestingly, s need not even be an integer as s = 1/2 leads to the dilute spin

glass model. Our interest is in the s = 1 which maps to the percolation system. These

generalizations are all classed under the name of the Potts model, who first described the

critical points of the s = 2, 3, 4 variants.

The Potts model Hamiltonian is very similar to the Ising Hamiltonian and is given by,

Hp = −J
∑
x,y

[δσxσy − 1]− hp
∑
x

[δσx1 − 1] (1.26)

here, kronecker delta, δσxσy is 1 if the spin at lattice positions x, y are in the same state

and is 0 if they are not. The model usually assumes nearest neighbor interactions, so the
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sum is over nearest neighbor pairs, (x, y). As is usual, the partition function is given by,

Z =
∑
{σ}

exp−βHp (1.27)

where the sum is over all spin configurations, σ. While this choice of notation emphasizes

the generality of the Potts Model by writing the same Hamiltonian, the consequence is

that the spin state variable, s, also won’t explicitly appear in the partition function either.

Thus, when we compute the free energy state function in the usual way given by Eq1.4

there isn’t any explicit dependence on s. This is detrimental for our purposes because we

would like to distinguish behavior as a function of s.

In what is now known as the Fortuin-Kasteleyn (FK) representation [12], a far more

powerful framework is established to study the behavior of the Potts model, and succeeds

in characterizing behavior in the limits of different spin states, s. Additionally, emphasis

on s allows in some sense a generalization of the study of phase transitions as it is believed

that high s systems lead to discontinuous phase transitions, while low s models lead to

continuous transitions. For our purposes, one of the key insights comes in rewriting the

partition function such that the dependence of spin states, s, is made more explicit. For

simplicity, we will consider the case in which there is no external field so hp = 0. In this

case the partition function is written as,

ZP =
∑
{σ}

expβJ(
∑
l,m[δσlσm−1]) (1.28)

We note that the sum,
∑

l,m[δσlσm−1], has nonzero terms for nearest neighbors that are in

different states. We could alternatively define a bond to correspond between these nearest

neighbor pairs that are anti-aligned, and perform the sum over the bonds instead. Bonds

are similarly referred to as edges which establish the connection between two sites. It will

be convenient to think about summing over edges rather lattice sites. For convenience we

define another Kronecker delta for each edge connecting two spins, and define a bond to

exist when both spins are in the same state.

δe(σx, σy) =
1

s
[1 + (s− 1)σxσy] (1.29)
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where s is the number states available to each spin. This allows us to write the Potts

partition function, ZP as,

ZP =
∑
{σ}

exp βJ
∑
{nn}

[(δe(σ)− 1)]


=
∑
{σ}

∏
{nn}

exp [βJ(δe(σ)− 1)]

 (1.30)

where the sum in the exponential is over the allowed nearest neighbor interactions. For

example, in the Ising model on a square lattice, there are 4 nn interactions per spin site

σ as shown in Figure 1.3.

As a specific example of the combinitorics of the FK mapping, we consider s = 2,

corresponding to the 2 spin state Ising model: here, δe(σx, σy) = 1
2
[1 + σxσy], where

σi = +1,−1. For every bond the exponential term in Eq 1.30 we will generate either e−βJ

or 1. Thus we can rewrite the exponential using,

eβJ(δe(σ)−1) = 1− p+ pδe(σ) (1.31)

where we define p as,

p = 1− e−βJ (1.32)

Thus far, the notion of a bond serves to define the interaction between two sites in the

same state which effectively lowers the energy of the system. If we were to instead sum

over every potential interaction between sites (edge), and define things such that ω(e) = 1

if a bond exists at edge e and ω(e) = 0 if there is no bond, then we get the following

relation,

1− p+ pδ(σ) =
∑
ω(e)

[(1− p)δω(e),0 + pδω(e),1δe(σ)] (1.33)

We can easily recover the expression on the left of the equality by performing the sum

of ω(e) over values 0 and 1, each contributing the first and second terms respectively.

Additionally, this has the nice interpretation that each edge contributes (1− p) for being

closed (no connecting bond) and p for being open (connecting bond) and a δe(σ) factor
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which depends on values of the spins. We are now in a position to sum over edges, but

rather than just summing over the nearest neighbor, {nn} for each spin, σ, we will some

over the entire set of edges, e.

Plugging in this relation in addition to relation 1.31 into Eq.1.30 gives,

ZP =
∑
{σ}

∏
{nn}

∑
ω(e)

[(1− p)δω(e),0 + pδω(e),1δe(σ)]

 (1.34)

Because of the nature of the delta functions in each term, the
∑

ω(e) and
∏
{nn} are

interchangeable. . Thus, we can write,

ZP =
∑
{σ}

∑
ω(e)

∏
{e}

[(1− p)δω(e),0 + pδω(e),1δe(σ)]


=
∑
{ω}

(1− p)N−nbpnb

∑
{σ}

∏
e

δe(σ)nb


=
∑
{ω}

(1− p)N−nbpnbsm(ω)

(1.35)

where N is the total number of edges. nb is the total number of open bonds and m(w) is

the total number of connected clusters for each edge state ω = 0, 1.

More formally the mapping between the two partition functions ZP and ZRC can be

written as [13],

ZP =
∑
{σ}

∏
{e}

exp [β(δe(σ)− 1)]


=
∑
{ω}

∏
{e}

pω(e)(1− p)1−ω(e)
 sm(ω)

= eβJNZRC

(1.36)

where the exponential factor is the proportionality constant for the interaction energy for

a total of N spins. This mapping can be better understood by the following equivalence

between FK’s random cluster model [12] and the 2D Ising Model: we can start with a

lattice of spins, each of which is already assigned to be in one of two states s = {−1, 1}.

For every spin we check its nearest neighbors, and if a nearest neighbor is in the same state
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Figure 1.7. FK, s = 1, mapping example. (top) We begin by randomly laying down edges
(bonds) connecting two sites with probability p. Clusters are the collection of connected edges
(bonds). (bottom) Alternatively, we start with some random collection of clusters which can
be made to correspond with a probability p to the occupation probability for sites to be in
state s = 1.

we draw a bond with probability p connecting the two sites. A cluster of spins is defined

as a set of spins connected by bonds. Alternatively, we can start with an arrangement of

open and closed edges on the entire lattice. Similarly a cluster is defined as the sequence

of connected open edges. If an edge connects to no other edge than its a cluster of size

1. Finally, for each connected cluster we randomly (uniformly) assign all vertices to be in

one of the two s states.

The random cluster model is essentially a generalized bond percolation model where

connected clusters are distinguished. However, if all connected clusters are identical we

recover the bond percolation model.

The mapping is made concrete by the variable p connecting the two models. Further,

as it was shown by Onsager [6] that the 2D Ising model exhibited critical behavior at
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critical temperature Tc. This suggest that there exists a critical value, pc, corresponding

to the probability of the existence of a bond joining two sites,

pc = 1− e−βcJ (1.37)

Because percolation models are characterized by emergent macroscopic connectivity, it is

intriguing that the critical behavior can be understood more simply by how this connec-

tivity emerges near the critical point.

Again, the advantage of the random cluster model is that its partition function ex-

plicitly depends on the number of spin states, s. This is advantageous since this allows us

to form relevant expressions in terms of derivatives of the partition function just as was

done in section 1.1. For the Potts model, the free energy per spin is given as,

f(β, s) = − 1

Nβ
ln(Z) (1.38)

Using the random cluster partition function ZRC as a substitute, we can compute the

derivative of f(β, s) as,
df

ds
= −Z

−1
RC

Nβ

dZRC
ds

(1.39)

As was mentioned previously, we can recover bond percolation from the Potts model in the

limit s = 1. This is important because we can produce the generating function for bond

percolation by computing df
ds
|s=1. We can now straightforwardly compute the derivative

of ZRC ,

dZRC
ds

∣∣∣
s=1

=
∑
{ω}

m(ω)

∏
{e}

pω(e)(1− p)1−ω(e)


=
∑
{ω=1}

m(ω) pnb (1− p)t

= 〈m〉

(1.40)

where in the second relation we used the fact that because s = 1, then likewise ω = 1,

which reflects the fact that all edges are sampled with a probability p of being open.

Consequently, the product only over the edges contributing p, of which there are nb

instances (number of open edges), leads to the factor pnb for occupied and (1 − p)t for
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unoccupied. When we sum over all realizations of lattices and possible edge configurations,

the result is that the derivative of the free energy in the cluster model describes the average

number of clusters per site containing m sites. This is very similar to the lattice-animal

calculation done by authors [14, 15] which calculates this quantity, and for percolation

this corresponds to the cluster distribution, ns [16]. The FK mapping establishes that

because the generating function acts as the order parameter of the Potts model, one can

similarly construct it for bond percolation [17].

In the previous section we showed how fluctuations in the order parameter coupled to

a diverging correlation length lead to the scale invariant behavior characterizing critical

phenomena. With this mapping to percolation we can see that the essential bits of critical

behavior is reduced to the emergence of long range connectivity. The two point correlation

function of the Potts model gets mapped to a quantity describing two point connectivity.

Formally, these two measures can be related as [13],

τβ,s(x, y) = (1− s−1)φp,s(x↔ y) (1.41)

where τβ,s is the two point correlation function and φp,s is defined as the two point con-

nectivity function describing a path between lattice sites (x, y). That is, it describes the

likelihood of a connected path existing between two sites. That this quantity should

diverge provides us with the key insight: the long range order which emerges near the

critical point of the Potts model corresponds to the existence of an infinite cluster in the

percolation model.

1.4 Fisher Criticality and the Cluster Approach

From the complexity and diversity of generalized second order phase transitions, we have

taken a trajectory which seeks to distill only the essential pieces required to properly de-

scribe critical phenomena. In the previous section, we arrived at the generating function,

which in the s = 1 limit of the random cluster model, describes the average number of

clusters per lattice site. This is precisely the percolation limit. Further, from this quan-

tity we can derive many of the other essential quantities of the respective system (ex.

percolating cluster probability, cluster counts, average cluster size or order parameter,
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heat capacity, and susceptibility respectively). However, in describing the criticality of

percolation, we leave behind much of the generalizing machinery inherent to the Potts

and Random Cluster model. Instead, we follow the nomenclature of [16], but we have the

added intuition that motivates the central importance of the the generating function (or

as is typically more simply referred to as the number distribution ns in percolation) to

this class of critical systems.

From the Random Cluster model we can understand that the critical transition is

described by the emergence of long range connectivity which in percolation takes the

central role as the emergence of a percolating cluster (also referred to as sample spanning

cluster (SSC) or incipient infinite cluster (IIF) in various texts). Though well motivated

thus far, a focus on criticality characterization via a cluster description did not arise

exclusively from percolation. This approach received an impetus by the older problem of

attempting to describe condensation from a gas to a liquid, and is described by classic

nucleation theory which attempted to remedy the shortcomings of the Van der Waals

equation of state. The Van der Waals unfortunately failed to describe the proper behavior

near the critical point (predicting a quadratic dependence for the coexistence curve shown

in Figure 1.6 which exactly fits a cubic function represented as a solid line). Rather than

specifying particle interactions, Nucleation theory attempts to describe the free energy of

droplets and the metastable states where condensation droplets could grow to very large

sizes. In trying to characterize the size distribution of these non-interacting droplets,

Fisher famously showed how one could simply describe the distribution with a form [18],

ns (T ) = s−τf [(T − Tc) sσ] (1.42)

which was to be characterized by 2 critical exponents, τ and σ. It is convention to define

z = (T −Tc)sσ such that at the critical point where z = 0 we get f(0) = 1, leaving behind

power-law behavior s−τ . Away from the critical point and supposing that z � 1 we can

represent f [z] = e−s/sξ(p) where sξ(p) = |p − pc|−1/σ, revealing that sξ behaves as the

characteristic cluster size where clusters larger than s become exponentially suppressed.

Fisher’s scaling form elegantly solves a number of issues as we’ll see when defining the order

parameter, and also, correctly reproduces the analytically derivable scaling of percolation
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Figure 1.8. Percolation clusters near the critical point [19]. The yellow clusters represent
the finite clusters. The blue cluster is the sample spanning or infinite cluster. The green sites
are the unoccupied sites. The white path is the shortest occupied distance between the two
endpoints.

in 1D. Having established that the Ising transition could likewise be understood through

connected clusters, a similar scaling behavior was found for Ising droplet clusters and

by extension percolation clusters. Though we have established direct mapping to bond

percolation it can also be extended to its more famous twin, site percolation, which likewise

captures the essential features of criticality. In site percolation, we define a cluster to be

the sequence of connected nearest neighbor sites. Each site is sampled with occupation

probability p for being occupied or empty. Phases are defined by the existence (or lack)

of a sample spanning cluster which spans the entire lattice from end to end. (In the limit

of an infinite lattice, the sample spanning cluster becomes an the infinite cluster)
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A cluster approach to critical behavior allows one to reproduce the essential features

of critical behavior as is reported in [20]:

(i) the size of the clusters must diverge at the Ising critical points, (ii) the

linear dimension of the clusters must diverge with the same exponent as the

correlation length, and (iii) the mean cluster size must diverge with the same

exponent as the susceptibility.

As we will see, establishing that Eq.1.42 describes the clustering of a system is an

efficient method for establishing the existence of critical behavior, and as such, means that

the starting point is typically an observation that the systems clusters (however they may

be defined) follow Eq.1.42. Therefore much of what follows can be applied to the whatever

elements are doing the clustering with slight minor differences (universality classes etc.)

distinguishing systems. For example, one could derive site and bond percolation from

suitable Random cluster limits, but we will not continue to delve into those subtleties,

though these continue to be intriguing problems.

Having now established the significance and intuition behind the cluster number distri-

bution ns (or generating function), we will now show how percolation’s important quan-

tities can be derived from it. First, we begin with the order parameter, which is the

probability that an arbitrary site belongs to an infinite cluster or SSC. For percolation,

the critical occupation probability, pc, indicates when it is likely to generate an SSC in

the lattice, and the cluster distribution, ns, defines the scaling of all finite clusters. Note

for p < pc, all sites are likely to belong to one of the finite clusters in cluster distribution

ns and consequently p =
∑

s sns. That is, p should reflect the total fraction of occupied

sites. If P represents the probability of an SSC (or the fraction of sites belonging to it)

then a site will either belong with probability p to a finite cluster, or to an infinite cluster.

We can represent P as the difference, p − pc, and also define ε = pc − p. Now summing
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over all sites gives,

P (p) = pc − p =

∫
L

ds [ns(pc)− ns(p)]s

∝
∫
L

ds s1−τ (f [0]− f [εsσ])

∝
∫ ∞
0

(
dz ε−1/σz1/σ−1

)
ε−

(1−τ)
σ z

1−τ
σ (f [0]− f [z])

∝ ε
τ−2
σ

∫ ∞
0

dz z
2−τ
σ
−1 (f [0]− f [z])

∝ ε
τ−2
σ

∫ ∞
0

dz zβ
df

dz

∝ ε
τ−2
σ Γ(β − 1)

∝ ε
τ−2
σ ∝ |pc − p|(τ−2)/σ

= |pc − p|β

(1.43)

where in the third line we used z = εsσ and subsequently make use of ds = ε−1/σ

σ
z1/σ−1dz.

Also, f [z] ∼ e−z and we made use of the fact that Γ(β − 1) is a multiplicative constant.

Care is needed when evaluating the integral for general p. If p < pc as we assumed

here then the integral should evaluate to zero reflecting that it is highly unlikely for a

percolating cluster to exist except near the critical point.

Near the critical point the order parameter remains continuous but still follows a power

law determined by cluster distribution exponents, τ and σ. It is customary to assign the

order parameter its own exponent, β, but Eq.1.43 establishes the relation between β and

the cluster distribution exponents, τ and σ.

β =
τ − 2

σ
(1.44)

The order parameter is responsible for signaling the system change change as it under-

goes a phase transition, therefore we attempt to elicit a slightly more physically significant

description. It is instructive to see how the order parameter, P (p) is related to a more

intuitive and insightful site density parameter. We can begin again with the relation,

P +
∫
ds sns = p, which states that an occupied site is likely to belong either to a finite

cluster belonging to ns or to an infinite cluster with probability P , and p is occupa-

tion probability or since sites are uniformly sampled with probability p it represents the
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fraction of occupied sites. we can rewrite this as,

p =
occupied sites

total sites
∼ LDf

Ld

= LDf−d

= ρL

(1.45)

where we have made use of the percolation canonical mass scaling relation defining fractal

exponent Df by M ∼ LDf . We note that p behaves as the total lattice site density

described by ρL. If we similarly define finite cluster site density with term ρFC =
∫
ds sns,

then at the critical point where P → 0 this means ρFC → ρL. This reflects an essential

feature of droplets or clusters during the critical transition . In particular, at any given

moment the liquid water has density fluctuations which produce holes inside the raindrop

just like holes in Swiss cheese. Only if we average over these holes we get a homogeneous

density, for both raindrops and Swiss cheese.

In the previous sections we sought to describe the onset of a critical transition by

the sudden dominance of unbounded order parameter fluctuations. Here we will see how

order parameter fluctuations are manifest in the cluster approach.

As it began to became clear that large connected clusters were the direct result of

critical transition, early authors attempted to provide rigorous relat. In [21], Coniglio

and Russo rigorously established the general inequality characterizing the connectivity of

what would become the percolation problem,

(1− p)(pij + p∞ij )− p(tij + t∞ij ) ≥ gij (1.46)

where we have the following definition of variables:

p is the occupation probability of each site.

pij is finite connectivity function (〈sisj〉 term in Eq1.18) describing the probability

that two sites, i, j belong to the same finite cluster.

p∞ij is the infinite connectivity function describing the probability two sites belong to

the infinite cluster.

tij(t
∞
ij ) is the perimeter function describing the probability that site i belongs to a

finite (infinite) cluster and j to its perimeter.
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gij is the general pair connectivity defined in by Eq.1.18

The perimeter of a cluster is defined as the set of unoccupied sites surrounding a connected

occupied cluster. Because for large cluster sizes the perimeter scales in proportion to

number of sites it has the same scaling as pij. For this reason, we will work with a simpler

relation that relies only on the occupied sites.

Note that we can break the general connectivity function into two parts,

gij = pij + p∞ij (1.47)

That is for a connected site, either the site will be long to a connected finite cluster or a

connected infinite cluster.

Now what we would like to do is write Eq.1.47 to be explicitly dependent on order

parameter fluctuations, which we can write as follows,

∆P 2
∞ =

∑
i

(p∞ij − P∞)2 =
∑
i

〈
p∞ij
〉
− 〈p∞i 〉

〈
p∞j
〉

=
∑
i

〈
p∞ij
〉
− P 2

∞

(1.48)

Plugging this into Eq.1.47 gives,

pij + p∞ij − P 2
∞ = gij (1.49)

Next summing over i and performing an ensemble average gives,

〈S〉+ ∆P 2
∞ = χ (1.50)

where we have made use of the relation
∑

i pij = 〈S〉 [16] where 〈S〉 is the average finite

cluster size, and
∑

i gij ∼ χ is the dissipation fluctuation relation given by Eq.1.23.

At this point it is worth making a few observations regarding Eq.1.50. First, the

divergence of the susceptibility has two contributions, one from average cluster size and

the other resulting from order parameter fluctuations. For p < pc where P∞ = 0, the

susceptibility is characterized by mean cluster size since its also the case that order pa-

rameter fluctuations are nearly zero, ∆P 2
∞ ∼ 0. However, near the critical point both

terms contribute and are coincidentally of the same order of magnitude so neither dom-

inate. Further, it was shown by [22] that both terms diverge with the same exponent.
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Because of this fact, we can characterize the divergence of the susceptibility by looking

at the divergence of the mean cluster size, 〈S〉, alone.

We can once again rely on the burst size distribution function, ns, to determine the

scaling exponent of the susceptibility. The probability of a cluster of size s is p(s) = sns,

therefore mean cluster size is given as,

〈S(p)〉 =

∫
L
ds s2ns(p)∫
L
sns(p)

∼ |p− pc|−γ
(1.51)

where the denominator we have normalized by total number sites. For p → pc we get

lower power-law relation.

We recognize that the divergence of the susceptibility is determined as a function of the

second moment of the cluster distribution. This is satisfying as usually the second moment

of a distribution characterizes the variance or rather fluctuations of the distribution. We

can perform a calculation similar to that done with the order parameter to determine

the relation between cluster distribution exponents, τ and σ. This leads to the following

relation,

γ =
3− τ
σ

(1.52)

We note that the order parameter, P , is a function of the first moment of the cluster

distribution. This is not merely a coincidence. In fact we can similarly compute the zeroth

moment, which corresponds to the total number of finite clusters, NFC =
∫
ds ns. We

can perform a similar calculation as was done with P (p) to derive a relation between the

first moment, which for its association with its dual Ising quantity (heat capacity) gets

exponent 2−α, in order to derive relation between cluster distribution exponents and the

first moment.

2− α =
τ − 1

σ
(1.53)

The major advantage of cluster approach is that we can characterize many of the

important quantities as moments of the distribution, Mk =
∫
s
skns. That is, by char-

acterizing the cluster size distribution, we can effectively characterize much the critical

behavior.
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1.5 Correlation Length and Hyperscaling

What remains is the characterization of the correlation length, ξ. This is related to the two

point connectivity function presented in the previous section. Recall that the correlation

function generally follows Eq1.20 where ξ is the correlation length defining the spatial

extent of correlations. In percolation, the correlation length defines the spatial extent in

which two occupied sites are likely to belong to the same cluster. In this regard, it is

convenient to introduce the radius of gyration of a cluster, which essentially amounts to

the second moment of the center of mass and is given by,

R2
s =

∫
s

ds
|ri − rcm|2

s
(1.54)

where ri is the position of the i-th site in the cluster, and we normalize by the total

number of sites belonging to th cluster, s. Once can show that the average distance

between two sites is given simply by 2R2
s. Therefore, using the cluster size distribution

we can determine the average distance of two sites belonging to the same cluster as,

ξ2(p) =
2
∫
s
ds R2

ss
2ns(p)

〈S(p)〉
(1.55)

As one might expect and given the finite scaling hypothesis, near the critical point the

correlation length diverges with with exponent, ν,

ξ(p ≈ pc) ∼ |p− pc|−ν (1.56)

and Eq3.9 allows us to work out the relation between cluster distribution exponents and

ν. To this end, we will need to make note of one other relation. Near the critical point,

we find a power-law relation between average radius of gyration, Rs, and cluster size, s.

This relation is similar to the canonical fractal dimension, M ∼ LDf . In percolation as a

result of hyperscaling these two exponents are the same, and this very important property
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will be discussed shortly. Generally, we have s ∼ RDs
s . Plugging this into Eq.3.9, gives,

ξ2(p) =
2
∫
s
ds s2/Dss2ns(p)

〈S(p)〉

=
2
∫
s
ds s2/Ds+2−τf [z]

〈S(p)〉

∝ ε
−2/Ds−3+τ

σ

ε
3−τ
σ

= ε
−2
Dsσ = ε−2ν

(1.57)

where as before we used that integration leads to a constant, and near the critical point

we are interested in the divergence of the correlation length and the associated scaling

exponent. In the last line the power-law behavior characterizing the divergence of the

correlation length is given by ξ ∼ ε−ν . This leads to the following relation,

ν =
1

Dsσ
(1.58)

As expected, because we used the Hausdorff scaling exponent in order to determine ν,

which means in addition to the 2 cluster distribution exponents, we also need Ds which

brings the count to 3 exponents in order to describe the essential elements of the critical

behavior of percolation.

Now that we have developed the essential quantities we can elucidate one of the key

additional features in percolation. To that end, a particularly insightful quantity is the

average number of cluster contained in a correlation volume. We define this quantity as

〈N〉ξ, and use the zeroth moment of the cluster distribution which corresponds to the

number of clusters,

〈N(p)〉ξ = ξd(p)N0(p)

〈N(p ≈ pc)〉ξ ∼ ε−dν+2−α
(1.59)

We find that near the critical point the number of clusters in the correlation volume scales

according to exponent a = −dν+2−α. To see how this exponent behaves, we consider the

2D example where τ = 187/91, σ = 36/91, and Ds = 91/48. Using our scaling relations,

we can deduce ν = 4/3 and α = −2/3, and we find a = −2(4/3) + 6/3 − (−2/3) = 0.

This is an interesting result which suggests near the critical point the number of clusters
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Figure 1.9. Percolation Scale invariance [19]. The only relevant length to the system is the
correlation length, so if we imagine rescaling our system by some factor, so long as that factor
is smaller than the correlation length (suppose we have a lattice of infinite size such that the
correlation length is also infinite in size) then it becomes difficult to know which version is the
scaled version of which. This is equivalent to saying the mass of the clusters follows a power
law with arbitrary length L which will always be preserved if we perform a scaling operation

in a correlation volume remains constant, and its been shown that for d < 6 this result

remains true and leads to the following hyperscaling relation,

dν = 2− α (1.60)

Hyperscaling relations are loosely defined by relations relating other exponents to the

dimension of the system. However, the above relation tells us that as the correlation

length increases the number of clusters will increase so as to keep the number of clusters

in a correlation volume constant. If this were not the case and clusters could outgrow their

volume, then it would suggest that either the correlation length is larger than it should

be or there are multiple correlation lengths competing for dominance in different regimes.

More generally, this hyperscaling relation tells us that the density of spins making up
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large clusters near the critical point should be the same as the density of clusters. This is

why we can determine the Hausdorff dimension from the scaling of the cluster distribution

near the critical point, which (using Eq.1.60) allows us to deduce,

Ds =
d

τ − 1
(1.61)

Note that, here, there is no dependence on the other cluster distribution exponent, σ,

which characterizes the exponential cutoff off cluster sizes. Rather, this tells us about

the clusters very near the critical point and how they assume the density of the sites

corresponding to the entire lattice.

1.6 The Approach

Having laid out the essential framework describing the critical features of percolation. We

are now in a better position to establish the connection between criticality and seismicity.

We interpret the fractal properties of seismic systems as likely the result of some kind of

critical fluctuations. The existence of scale invariant magnitude frequency distributions,

event epicenter distributions, and temporal aftershock statistics strongly suggest this.

However, rather than the full apparatus of second order phase transitions which describe

the transition of states of matter, Fischer showed that much of critical features can be

extracted from a scale invariant burst distribution characterized by two exponents, τ, σ.

This distribution also carries with it the notion of a correlation length defining the cutoff

cluster size, sξ. The existence of these distributions need not be connected to a phase

transition. As an example with the droplet nucleation model, a potentially very long-

lived metastable state characterized by the growth of critical droplets is proposed that

effectively distances the behavior near the critical point from a being temporally bound

to period where the system is transitioning states. Therefore, the existence of a scale

invariant distribution will suffice to extract many of the essential features. The cluster

distribution defines a generating form which we can derive many of the systems fractal

properties.

Though physically, since we aren’t attempting to motivate a phase transition, this

framework lends itself to a statistical description of scale invariant events. In particular,
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rather than looking for a description detailing the transition between two phases, we

instead pursue descriptions of distinct universality classes. Phase transitions seem to be

a subclass of all models capable of forming distinct universality classes. It represents one

where there exists only a single correlation length scale that brings with it additional nice

properties like hyperscaling. Since we intend to map our models onto seismicity which

doesn’t seem to have natural analogues of distinct phases, we propose an avalanche-burst

invasion percolation (AIP) model that lifts some of these restrictions, namely critical order

parameter fluctuations and hyperscaling. However, with a critical Fisher type distribution

it satisfies the broader fractal properties characterstic to many complex systems and

seismicity in particular. Thus, in the class of models consistent with observation, we need

not limit ourselves to those described by second order phase transitions.

With this shift, the task becomes thinking about the underlying nature of fluctuations

and how those scale up to determine the macroscopic properties of the system. With

our AIP model, we model inherent randomness from a uniform distribution, and define a

growth mechanism that allows fluctuations to spread across the lattice following a principle

of least resistance growth algorithm. Further, we implement a definition of distinct bursts

which allows us to produce a burst distribution that is also scale invariant.

The notion of a cutoff clusters size serves to naturally define a correlation length for

clusters, such that clusters larger than the cutoff cluster size will become exponentially

suppressed. The avalanche mechanism ensures that this length diverges according to the

power law near the critical point, and properly becomes scale invariant only near a critical

value. Thus, we still retain some of the criticality features with the existence of a critical

control parameter, and this serves to define critical and subcritical cluster growth regimes.

Finally, we aim to characterize the site density within our burst clusters, and the

density of burst themselves within the lattice. One of the interesting insights is that these

two quantities need not be the same and suggests the existence of multiple correlation

lengths in the problem. Despite this, it still is possible to produce a critical Fisher

distribution, and suggest that multiple correlation lengths can exist without stifling scale

invariance. With the characterization of exponents, τ, σ, ν,Df , and Ds, we can define
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destinct universality class of our model and match them with those observed in seismic

systems.
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Chapter 2

Universality Class for Loopless

Invasion Percolation Models and a

Percolation Avalanche Burst Model

for Hydraulic Fracturing

Summary

Invasion percolation is a model that was originally proposed to describe growing networks

of fractures. Here we describe a loopless algorithm on random lattices, coupled with

an avalanche-based model for bursts. The model reproduces the characteristic b-value

seismicity and spatial distribution of bursts consistent with earthquakes resulting from

hydraulic fracturing (“fracking”). We test models for both site invasion percolation (SIP)

and bond invasion percolation (BIP). These have differences on the scale of site and bond

lengths l. But since the networks are characterized by their large scale behavior, l � L,

we find small differences between scaling exponents: Df , Dmin, and ν. Though data may

not differentiate between models, our results suggest that both models belong to different

universality classes.
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2.1 Introduction

Invasion percolation (“IP”) was proposed by [1] as a model for the displacement of one

fluid in a porous medium by another “invading” fluid. It has since been applied to a variety

of other dynamical processes including drainage [2], magnetic depinning of domain walls

[3], contact line motion [4], and propagation of crack fronts [5].

Though all these examples have radically different small-scale behavior, their large

scale statistics reveal the universality of how the inherent randomness of each system

grows to dominate their respective critical phases. Hydraulic fracturing (HF) is a similar

process. During HF, low-viscosity, high pressure fluid is pumped into porous rock which

produces a network of fractures within the deep, thin reservoirs. Previous studies have

made attempts to characterize this fracture network for purposes of efficient gas extraction

[6, 7].

More recently, studies have shown significant increased seismicity in regions previ-

ously seismically inactive [8, 9]. They attribute HF as the likely culprit. This is not alto-

gether surprising since fracking is somewhat analogous to steam production via geothermal

pumping. Here, steam is generated by injecting fluid into the geothermal fields. In do-

ing so, the fluid injected into basin sediments interacts with the ambient stress fields to

nucleate earthquakes [10] in a similar way.

A key feature of IP is that networks grow according to random percolation (RP) near

the critical point. Critical systems are described by a family of critical exponents which

characterize all aspects of the system. These power-laws arise from a system having no

characteristic length scale and therefore becomes symmetric under scale transformations.

We observe that in classical, tectonic seismicity essentially all of the statistical properties

are described by a power-law: magnitude frequency distribution (G-R magnitude scale)

[11], temporal aftershock clustering (Omori aftershock law) [12], and the two-point cor-

relation distribution [13]. In hydraulic fracturing and geothermal injection, studies show

power-laws describing both the magnitude-frequency distribution and two-point correla-

tion function [14], therefore, we believe much of the observed seismicity is well described

as a system near a critical point.
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Previous authors have noted the self-similar and invariant properties present in rock

fractures [10], and since naturally occurring porous structures are well described by a

lattice of sites connected by bonds [15], we choose to model the pumping of high pressure,

low viscosity fluid into the sediment as a modified invasion percolation (IP) process. Here

single phase liquid invades sediment by propagating through bonds adjoining sites in

a 2D NxN square lattice. The result is a percolation network that is self-similar and

scale invariant. Aki initially proposed using the fractal dimension, Df , of a network to

determine the power-law Gutenber-Richter b parameter that characterizes the associated

seismicity arising from the fracture network. [16]

The observed magnitude-frequency distribution of induced seismic events differs from

those localized in tectonic fault environments having Gutenberg-Richter b-value near 1

[17]. Instead, a range of b-values (1.2-1.5) have been observed [18]. Rather than the tra-

ditional fault slip mechanisms hosted in regions tectonically active, this kind of induced

seismicity can occur in regions absent major fault structures. This suggest different uni-

versality classes describe tectonic and induced seismicity. These differences in part corre-

spond to a different fracture mechanism for induced seismicity which is better described as

the rapid re-opening of the pre-existing fracture network and the disturbance of the local

stress field. [6] If the newly fractured network mostly follows preexisting natural fractures

which themselves were the result of high pressure oil and gas escaping and fracturing

the reservoir, then we hypothesize HF as fundamentally a drainage process. Therefore, a

network grown by IP should be appropriate.

Table 2.1 shows the landscape of percolation models we discuss in this paper and

where our model fits. When percolation was introduced it was intended to simulate

the quasistatic movement of fluid through a porous matrix driven by capillary forces.

Such a model is better suited to describe the static properties of a medium. In our

case, the fluid is driven by large pressure gradients generated by the HF process, and

we therefore advocate going beyond static network measures like the fractal dimension

(and those similar to Aki) and implementing burst dynamics into our IP algorithms

to describe induced microseismicity. In addition hydrodynamic considerations suggest
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Percolation Models

Percolation

RP

Quasi-static network growth ideal for describing medium

properties. Natural clusters. No dynamic burst cluster

growth.

IP

L

Critical single phase injection with no defending fluid (or

highly compressible). Critical burst growth and cluster

formulation for the invading fluid.

NT

Critical nontrapping multiphase fluid propagation with

natural clusters for incompressible defending fluid. No

burst or clustering for invading fluid.

Reg

Critical network growth for multiphase injection with

clustering for compressible defending fluid. No burst or

clustering for invading fluid.

Table 2.1. A comparison of percolation models considered in this paper. Random
percolation (RP) and invasion percolation (IP) are both percolation models which
generate percolating clusters. We consider variants of IP. Loopless (L) invasion perco-
lation model coupled with the avalanche burst mechanics is the model we propose in
this paper. We distinguish it from the regular variant [1] and the nontrapping (NT)
variant [7] since the clusters in those models are clusters of the defending fluid. Our
LIP model considers clusters and bursts of invading fluid. All IP models have bond or
site variants corresponding to whether the random weights are bond strengths or site
sizes.

a loopless network is appropriate. [19] Therefore, we adopt a similar loopless bond IP

network as in [20] (except here we also compare with site IP), but grow the network using

our own avalanche-burst model (discussed in section IV). With these added dynamics to

the percolation network, we are able to produce power-law burst-frequency distributions

which have scaling exponent, τ = 1.53, larger than 1, and falls in the range observed in

induced seismicity.

In percolation models which represent porous sediment by a lattice of sites adjoined

by bonds, the precise interactions at the fluid boundaries is a function of the pore size
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and the capillary throat diameter. We therefore consider 2 loopless invasion percolation

models (LIP) corresponding to the two limits: if the throat sizes are smaller than all the

pores, then the fluid will tend to become trapped in the larger pores. In this limit, the

pore sizes govern the motion of the invading fluid. In our simulations we would need

to assign strengths to pores representing the pore size and such a model would be site

invasion percolation (SIP).

In the other limit where the throat sizes dominates the flow of fluid, (for example

throat sizes are small compared to pore size restricting flow) we would instead assign

strengths to the bonds/throats representing the bond size and such a model would be

bond invasion percolation (BIP). Initially, we imagined fracking as being necessarily a

drainage process since the invader would have most difficulty with the smallest constric-

tions, thereby making BIP the appropriate choice. However since the algorithms are

characterized using their global properties, we may be insensitive to the details down to

the bond site scale.

This then becomes a question of whether SIP and BIP share the same universality

class. The literature seems to conflict on the this point. It was originally argued that

SIP and BIP belong to the same universality class [21] but later it was argued that

important differences arise between the two [19, 22]. Here, we perform a careful study of

the two, illustrating the differences on the small scale, and we find that on the largest of

scales, there remains a significant difference in fractal dimension Df , though other scaling

exponents remain similar. These results suggest the two processes belong to different

universality classes.

Being able to distinguish between these two processes serves to illustrate the kind of

sensitivity we can expect with this approach as each corresponds to different small scale

processes. Ultimately, our choice to model HF as critical phenomena necessarily restricts

the phenomenology we consider. From the theory of critical behavior, the critical point

is a region of phase space where the typical small scale physics which governs much of

the potential behavior becomes dominated by the inherent random fluctuations which are

allowed to grow to all scales of the system. [23] In this paper we investigate which model
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of randomness is appropriate for the inherent randomness of HF, and by which method

the randomness grows to all scales.

To Summarize Our Results: Because the appropriate model for randomness in HF

is unclear, we begin by comparing the simplest motivated models: loopless site invasion

percolation (LSIP) and loopless bond invasion percolation (LBIP). We are interested

in determining if there are significant differences in the critical exponents of these two

models. If differences do exist, then we may be able to gain insight into the details of

fluid displacement on the pore/bond scale since each process has different mechanism

for fluid displacement. We find that on the scale of lattice spacing there are significant

differences in networks between LSIP and LBIP. However, as the scale approaches that

of a very large lattice (104x104 for example), their difference in scaling exponents Df ,

Dmin, and τ is still significant but becomes smaller. Because both models still produce

sufficiently similar networks and our constraining data are limited, neither is preferred

for modeling the fracture networks produced during hydraulic fracturing. Still, the small

differences between the two models are significant enough to suggest they are described by

different universality classes, and a sufficiently careful characterization of observed critical

exponents could shed light into a more appropriate detailed small scale model.

2.2 Simulation Algorithm

The invasion begins at the center with a seed site and grows through the lattice following

a principle of least resistance until reaching the lattice boundary. Since this is not a

multiphase flow problem (we treat the defending gas as highly compressible) we don’t

concern ourselves with complications like trapping. Further, since our model is loopless,

we will never have any trapped regions in the traditional sense. We first describe how we

simulate SIP, which essentially amounts to maintaining two lists: the first is a list of filled

sites, Sf and second is a list of nearest neighbor sites to all filled sites, Snn.

1) The invasion begins at the center of the lattice with a seed site corresponding to

the injection site. 2) The seed site’s 4 nearest neighbors are added to the list of available

sites, Snn. This list will be updated serving as the list of “invadable” sites during each
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Figure 2.1. Bond Invasion Percolation algorithm illustration. a) A seed site is chosen in the
center of the square lattice. The 4 nearest neighbors are added to the percolation front with
random strengths between (0,1) assigned to the bonds adjoining available sites b) The bond
with the smallest value is broken and the adjoining site is filled and added to the cluster. New
values are assigned to the bonds adjoining nearest neighbors to the freshly invaded site c)
Weakest bond again breaks adding the filled site to the cluster and assigning bond strengths
connecting new nearest neighbors d) Loopless condition is enforced by removing all unbroken
bonds joining two filled sites. Bond joining (0,0) and (1,0) is removed in this example.
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iteration. 3) At each iteration, all new elements to Snn are assigned a number from a

random uniform distribution between (0,1) representing the site’s strength. The list of

“invadable” sites along with its strength is called the percolation front. 4) The site with

the lowest strength in the percolation front is invaded and added to the list of filled

sites, Sf . 5) The invaded site is removed from the percolation front ensuring it cannot

be invaded multiple times. 6) The new nearest neighbor sites to the freshly filled site is

added to the list of available sites, Snn. 7) Repeat 3-6 until reaching the lattice boundary

or until reaching the desired number of invaded sites.

Most of the computation time comes in searching the percolation front at each iteration

for the weakest site. Considering that each iteration changes the percolation front at most

by 3 values, as the percolation front grows the amount of change at each iteration is small,

therefore searching the list each iteration becomes highly inefficient. Instead we maintain

an ordered list which is simply updated with the new available sites at each iteration

in their respective order. One then only needs to pick the first element of the list at

each iteration. Even though we are assigning strengths to the sites we can still infer the

path taken from site to site. This inferred network is similar to that created by assigning

strengths to all bonds.

However, there is a key difference. Since this algorithm never advances by going

from an occupied site to another occupied site, the inferred bond network will always be

loopless. This is a desirable feature for us, since pressure gradients drive the fluid from

filled sites to empty sites. If two neighboring sites are filled, no pressure gradient between

them exists, so the bond between the sites should never be allowed to break. The bond

network inferred by SIP naturally implements this physical condition.

Next, in order to simulate BIP we need only make a minor tweak to the SIP algorithm.

Figure 2.1 shows an example of how BIP might proceed. If we instead assign the strengths

to the sites, we see that we can largely preserve a one-to-one correspondence between a

site being invaded and the bond that must have broken. However, if we look at Fig.2.1c),

we see that there should be two bonds which can break and cause site (1,0) to be invaded.

These bonds correspond to bonds (0, 0) → (1, 0) and (1, 1) → (1, 0) with strength 0.53
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and 0.03 respectively. In SIP, since each site is only allowed to have a single value, there

will only ever be one opportunity for site (1,0) to break.

To perform BIP we can still assign values to sites, but sites must be allowed to take

on multiple values. Since the numbers were assigned randomly, we can randomly choose

which bond broke. By doing this we can preserve one-to-one correspondence between a

site being invaded and the associated bond which broke. Further, because the cluster can

only grow by invading an unfilled site, we don’t need to implement additional logic to

ensure loops in the bond network don’t arise. The bond in joining sites (0,0) and (1,0) in

Fig.2.1d) will never be allowed because those sites are already filled.

Fig.2.2 shows clusters generated by the two algorithms (LSIP, LBIP) at different scales.

Because the networks produced are loopless, we can apply to our clusters much of the

rich theory associated with trees. This is also a convenient and insightful way to store

the percolation clusters because it in many ways reflects the self-similar structure of the

percolation cluster. We implement a recursive algorithm to create a tree data structure

that reproduces the connectedness of the sites in our percolation clusters. Not only is this

a natural way to represent our clusters but it allows one to quickly traverse the various

paths through the cluster, which is key since traditional path finding algorithms can be

more computationally expensive than creating the entire cluster. With a tree structure

and a recursive path finding algorithm we can efficiently extract the path characterization

to further characterize the network of our algorithms.

We also utilize the tree structure in defining and characterizing our avalanche burst

model. We discuss this in more detail in section IV, but quickly, our burst model defines

a burst to be all connected sites which sequentially break below some threshold strength.

Since we can produce different burst statistics by changing the threshold while using

the same tree, we can more efficiently characterize the effects of our burst model. By

changing the burst threshold we merely change how the root tree is broken down into sets

of subtrees where each subtree represents a burst. This takes less time than creating a

cluster grown by bursts with a particular threshold each time to generate burst statistics

for a different thresholds.
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Figure 2.2. Examples of LSIP (top) and LBIP (bottom) at different scales. On the left is an
example of a lattice size of ∼ 50x50 and the right is 2000x2000. LBIP seems to be much more
compact on smaller scales, but this difference becomes less noticeable at larger scales.
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2.3 Network Characterization

Following traditional percolation theory we characterize networks through various scaling

relations. Initially, It was argued that the scaling relations would be insensitive to whether

or not one simulated bond or site percolation [15], and thus they would fall under the

same universality class. More recent work has called this into question [19].

In this work, we highlight the difference between BIP and SIP and the changes one

must make to SIP to reproduce BIP. In effect, it supports the more recent work finding

differences in the scaling relations between the two and suggests they should belong to

different universality classes. From Fig.2.2 we can see a clear difference in site occupa-

tion density between LSIP and LBIP. self-similarity and scale-invariance suggests these

difference should exist on all scales (ignoring finite size effects). Still, the significance

of universality classes is somewhat undermined because even if they did belong to the

same universality classes, the universality would be broken depending on whether or not

an IP model is trapping or non-trapping. Much of the literature focuses on two phase

dynamics (the displacement of one fluid by another) which makes the trapping variety

more appropriate. We focus on the invasion of a fluid into an empty lattice, so we opt for

the less common non-trapping variety.

The first and perhaps most important scaling relation is the fractal dimension of the

network. If the number of filled sites represents the mass of a cluster then its mass should

scale according to the following relation:

M (L) ∼ LDf (2.1)

Where Df is called the fractional or fractal dimension. There are multiple techniques

for determining the fractal dimension of the sample spanning cluster (SSC). The standard

approach in the literature relies on counting the number of sites within circles of increasing

radii with a fixed center [24]. Norris et. al. [20] relied on a similar technique, but rather

than randomly choosing the center of the set of circles to be random sites within the SSC,

they chose the injection site to be the center and averaged the counts over many clusters

(1000) with fixed mass (number of sites, m=100 million sites). These results are possibly
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Figure 2.3. The behavior of the local fractal dimension Df (M) as defined by Eq.2.2 for
LSIP (solid) and LBIP (dashdot). We compute an ensemble average < Df (M) > for lattices
in the range [50,104] and fit the results to an exponential function via minimization of least
squares. We determine the asymptote of each curve from the fit and the gray region around
the asymptotes indicates the error in asymptopte fit parameter.

somewhat problematic because they do not properly factor in finite size effects. Moreover,

the fractal dimension should not depend on the choice of the center (which is why [24]

argued for taking an average over many choices). [25, 26] used a similar technique, but

instead defined a local fractal dimension, Df (M) which follows from Eq.4.22

Df (M) ≡ d logM

d logL
(2.2)

and estimate how this function approaches the asymptotic value in the infinite limit.

Since periodic boundary conditions are not implemented, and because both previous

work [20] and our models take the center to be sole injection point, the fractal dimensions

of the clusters are more affected by finite size issues. The effect is especially pronounced

if one percolates the cluster within a lattice of fixed size rather than percolating clusters

up to a set mass.

With these considerations, we used a box counting technique (more commonly used
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Figure 2.4. Dmin and τ characterization for LSIP and LBIP. Plots a) and c) are a log-log
plot of an ensemble average of the path distance between sites, d(l), where the lattice spacing
between sites is l. We averaged over 100 samples for each L in the range [10,2000]. Plots b)
and d) show the burst magnitude-frequency scaling for LSIP and LBIP respectively. For each,
we generated ≈ 120, 000 bursts which ranged from size 1 to ∼ 4× 103. We binned the counts
of each burst size (blue dots) using log sized bins in order to extend the fit data range. The
fits were all done via minimization of least squares.

in fractal dimension studies) to determine the mass scaling, and generated clusters with

fixed mass rather than fixed lattice size. Moreover, rather than a simple linear fit, we

use the approach of [25, 26] to determine how the local fractal dimension approaches its

asymptotic limit. Finite size scaling theory argues that at criticality the correlation length

of the system becomes infinite. This means there is only one fundamental length scale to
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the system. Since the mass scales with L according to some power law, the mass itself

should also follow a power law. This leads to the following assertion:

|D −Df (M) | ≡Mω (2.3)

Where local fractal dimension, Df → Df (M) in the infinite mass limit. If we plug

Eq.4.22 into Eq.2.2 we get the following differential equation (approach asymptotic value

from below):
d logM

d logL
= −CA−ωL−ωDf +Df (2.4)

The solution of which is found to be of the form:

logM =
c0

ωDf
L−ωDf +Df logL+ c1 (2.5)

where c0, c1 are constants. If we perform a log-log plot then the first term is the non-linear

correction. This can be compared to what is done in [25] which writes the scaling along

with the smallest correction term:

logM = logA+Df logL+ log
(
1 + aL−ω

)
≈ logA+Df logL+ aL−ω

(2.6)

Thus, rather than fitting to a line in a log-log plot one fits to Eq.2.5 or Eq.2.6 (gave

comparable results) and simultaneously finds the best Df , ω. We found this technique

to produce marginal success, but still found evidence of finite size effects. Instead, we

chose to directly reproduce Eq.2.3 by extracting the local fractal dimension for lattices

in a range of sizes [50, 104] and fitting the asymptote directly. The results are shown in

Figure 2.3 and Table 2.2.

In order to determine whether SIP and BIP share the same universality class, one

must determine at least two of the scaling parameters. From these, all others can be

determined. A common measure is the percolation backbone which is closely related to

the transport properties of a sample-spanning cluster. The backbone is defined to be

the subset of the cluster which has all dangling ends removed (ends not in contact with

the lattice boundary). It serves as a measure of conductivity, since it is the set of paths
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through the lattice if one begins on one boundary side and ends at another. The backbone

is characterized by the path distance, D, of the connected sites composing the backbone,

and the lattice size L which hosts the cluster according to:

D (L) ∼ LDbb (2.7)

A closely related quantity is how the distance between two arbitrary lattice points scale

in terms of lattice site spacing l. This follows another power law:

M (l) ∼ lDl (2.8)

Where M(l) is the number of sites within lattice spacing l and Dl is the chemical

dimension [27]. With backbone studies one must be more careful with how boundary

conditions are imposed (periodic etc.). Thus it is preferable to use Dl which is largely

independent of such effects. Further, what we are really interested in is characterizing

the compactness of a cluster which describes the types of paths connecting sites. We can

relate the Pythagorean distance r and l as:

l ∼ rDmin (2.9)

Therefore if d is the path distance from the origin to the boundary of lattice size L,

then L = nl and by Eq.2.9 we can write:

d ∼ rDmin (2.10)

Where Dmin is the fractal dimension of the shortest path. A peculiar effect is how

diffusion slows near criticality because the sizes of the holes in the cluster become scale

invariant, thus allowing holes of all sizes to form. The paths are then forced to become

more circuitous. Because the (IP) process is always critical, we expect the path length to

follow Eq.2.10.

To determine the path length described by Eq.2.10, we make use of the loopless con-

dition which allows us to reorganize the cluster of connected sites into a tree. We show

an example of the shortest path for LSIP in Fig.2.5. Since there only exists a single path
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between two points this path trivially represents the shortest path between two points,

we use recursive search routines to find paths between sites much more efficiently. We

create an ensemble of clusters with lattice size L in range [10, 2000] and calculate the

path length from the origin to the boundary. The results are shown in Fig.2.4 where we

find Dmin = 1.215± 0.002 and Dmin = 1.200± 0.002 for LSIP and LBIP respectively.

The loopless condition simplifies the paths within our clusters since there can only

be one. Absent recursive methods, path search algorithms can take more time finding

paths between sites than creating the original cluster. Also, this simplification creates

paths with other applications like the paths which resembles domain walls in the strong

disorder limit of spin glass systems [28]. The paths also resemble Prim’s algorithm for

finding the shortest spanning tree of a weighted random graph. It represents the minimum

energy tree spanning all vertices [29].

2.4 Burst Characterization

Physically, we think of a burst in our model as a rapid accumulation of filled sites which

corresponds to a formation of sub-lattice regions having different permeability or conduc-

tivity from which the sub-lattice originates. In fracking, these would be the regions where

the stress field rapidly changes and hosts the observed microseismicity. Our burst model

must then follow a power law, and we also expect to reproduce similar spatial distribution

of burst centers to the epicenters of earthquakes from fracking.

IP was intended to simulate the quasistatic displacement of one fluid by another

through capillary forces. The networks produced simulate long time expectations of sys-

tems eventually able to achieve equilibrium. Though at each iteration a site is invaded

or a bond breaks, the network characteristics are loosely coupled to these details (as we

see SIP and BIP sharing nearly identical network characteristics). While there doesn’t

seem to be inherent time dynamics in IP models, different attempts have been made to

understand or uncover inherent time dynamics Furuberg et al. [30].

These authors examined the dynamics that arise when a time step corresponds to the

invasion of a single site. They found r ∼ t1/D, which we expect since here t is also the
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Figure 2.5. An example of a typical path (darkened line segment) produced by the LSIP
algorithm. We use a recursive algorithm to find the path from the injection site to the end of
cluster. The end of the cluster is defined to be the site of the lattice boundary.
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Figure 2.6. Critical behavior of LSIP and LBIP. Utilizing our notion of a burst, there exists
a particular threshold where the average size of a burst, < S >, behaves critically for LSIP
and LBIP. This value corresponds to the critical occupation probabilities, pcrit for BIP and
SIP which are known to be 0.5 and ∼ 0.592 respectively. The left plot shows how the number
of bursts decreases to 1 if the threshold, T > pcrit. Similarly, the right plot shows how the
average burst size, < S >, grows to include all sites if the threshold T > pcrit. If the threshold
T ∼ pcrit, then our burst magnitude frequency distribution will follow a power-law with b-value
∼ 1.54.

number of invaded sites or has the equivalent interpretation as being the mass (number of

invaded sites) for a cluster with size r. Here D is the fractal dimension of the SSC and in

the limit where the fractal dimension ∼ 2 (an SSC completely filling all sites of a lattice)

we recover the results of distance traveled in a diffusion process.

If paths can only traverse filled sites, a lower fractal dimension will mean a more

sparsely filled lattice which will limit potential trajectories on the lattice. The result is

that we recover the path length of a random walk on typical percolation cluster. The

authors took this relation to mean that at time t, most of the region within r is likely

already invaded, and it is unlikely to have growth at distances larger than r. Their notion

of a burst was that in time t, growth can be found to be in some distance r. Yet, it seems
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Df Dmin τ

LSIP (This Paper) 1.902± 0.003 1.215± .002 1.524± .009

LBIP (This Paper) 1.945± 0.009 1.200± .002 1.534± .011

RP [25] 91/48 ≈ 1.896 1.13± 0.004 187/91 ≈ 2.05

NTSIP [31] 1.8959± 0.0001 1.1307± 0.0004 -

TBIP (square lattice) [31] 1.822± 0.008 1.214± 0.002 -

DLA [32] 1.69± 0.24 1.0± 0.02 -

Table 2.2. A comparison of scaling exponents for loopless site invasion percolation
(LSIP), loopless bond invasion percolation (LBIP), random percolation (RP), loopless
random percolation (LRP), non-trapping site invasion percolation (NTSIP), trapping
bond invasion percolation (TBIP), and diffusion limited aggregation (DLA)

this is merely restatement of the behavior of a random walk on a percolation cluster and

does not introduce any true burst dynamics.

Much of the dynamics associated with IP has to do with the transport exponents which

are mostly governed by the kinds of paths which can form through the percolating cluster.

However, RP does follow a cluster size scaling law described by the Fisher exponent, τ :

ns (p) = s−τf [(p− pc) sσ] (2.11)

where for (p→ pc), the cluster size,ns(p) ∼ s−τ . So, there is credence to the idea that

a network can grow in bursts if IP grows its SSC by different realizations of these RP

clusters.

The growth algorithm for IP is different from RP since IP will always grow indefinitely,

and further exhibits a kind of self-organized criticality, since the cluster will grow by a

self-organized selection of bonds strengths less than the critical probability. [33] defined

a notion of a burst resulting in a power law similar to that of RP when (p→ pc). The

authors showed that if we consider the sequence of broken bonds to be a signal x(t) (where

x(t) is the bond strength broken at time t ), then over some signal length x(t+ s), there

will be a sequence of bonds broken. For all t′ in range t < t′ < t, the bond strengths

broken, x(t′), will be x(t) < x(t′) < x(t+ s).
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The number of bonds broken in time range (t + s) can be made to follow a power

law if the threshold strength of x(t) is chosen to be near the critical probability as was

also shown by authors in [20]. That is, IP clusters will grow by a self-organized selection

of bonds strengths less than the critical probability, but if the threshold is chosen to be

near the critical probability, the SSC will grow in iterations of clusters similar to those

of RP though with a different value for the Fisher exponent. In particular, from Figure

2.6 we see that if the threshold, T ∼ pcrit, then the average burst size exhibits critical

behavior. Choosing our threshold to be in this range will result in a burst-size frequency

distribution that is scale invariant and reproduces a power-law.

In addition to this choice of burst threshold, we demand that our bursts be spatially

connected in addition to sequentially (previous studies only demanded sequentially con-

nected bonds/sites [20, 33]). Our bursts should only be allowed to grow from the local

percolation front of a burst rather than the global percolation front from the entire clus-

ter. Since our networks are necessarily loopless, we can utilize the tree structure to define

sequentially and spatially connected bursts in a very natural way.

Again, the critical aspect of a burst is that it should fill up a certain portion of a

lattice until it exhausts all the easiest bonds. Once a strong bond is forced to break, a

new region of weak bonds should become available, allowing a quick succession of bonds to

break. The successive breaking of weaker bonds below a threshold defines a burst. Again,

because a percolation cluster has no intrinsic time dynamics, we are free to retroactively

say how the tree grew and that it in fact grew in bursts.

Figure 2.7 shows how a cluster can be divided into different colored subtrees where

each subtree is made to corresponds to a burst. The tree structure advantage is that one

can define a burst to be its own subtree which connects at only 1 point to the original

tree. The process of determining bursts becomes a process of cutting a single tree cluster

into a collection of subtrees, all of which are connected to each other through only 1 node

(i.e., a similar connectedness criteria as before).

To define a burst we then traverse the tree from the origin until we exhaust all bonds

less than the threshold strength; we cut the tree at this point, and define this cut point
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to be the root node of the subsequent tree. The process continues again traversing all the

nodes weaker than the threshold strength. A similar mechanism is used to explain the

opening of bronchial airways in lungs [34]. We note that generalized avalanche models on

trees also follow power-laws [35].

2.5 Results

Detailed studies of fluid injection into a porous medium on the pore scale reveals very

complex behavior. This is largely the result of porous medium morphology being itself

highly disordered and random [36]. Therefore a statistical characterization seems appro-

priate and it is this characterization these (invasion) percolation models aim to reproduce.

Within percolation theory we can model fluid displacement as two different processes. The

process by which a fluid is drawn into a network of pores is imbibition, whereas a non-

wetting fluid forced into porous volume is drainage. We model these as SIP and BIP

respectively, and it is our primary interest to determine if HF is better described by one

of these processes. In doing so, we might gain insight into the appropriate physics at

the individual pore scale. Otherwise, it demonstrates our sensitivity to the dynamics at

different scales.

Since the scaling exponents which characterize the universality class are the same as

those used to constrain our model via observed microseimicity, a closely related question

is whether SIP and BIP share the same universality class. While we find small differences

between the two models which does suggest unique universality classes, the differences are

sufficiently small to suggest that we don’t have sensitivity in data to distinguish between

the two. Table 2.2 shows our values along with their observed error.

There seem to be many conflicting values for the scaling exponents in the literature.

We believe a major reason for this is inadequate treatment of finite size effects. Even large

lattices with large SSC’s with 107 sites can have significant finite size effects (as seen in

Figure 2.3 where a lattice size of 104 has ∼ 107 sites). We find evidence that in the limit

of infinite lattice size, the fractal dimension of SIP approaches the expected value of RP.

For BIP, which seems to be more compact than SIP at all lengths scales approaches
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a value of Df = 1.945 ± .009. This value is different from SIP, which has value Df =

1.902± .003. Figure 2.3 very clearly shows how the “local” fractal dimension can change

as a result of the lattice size.

We find that because LBIP is more compact, there is a small difference in the value of

Dmin as described by Eq.2.10. The fractional dimension Dmin was found to be, Dmin =

1.215 ± .002 and Dmin = 1.200 ± .002 for LSIP and LBIP respectively. Results from

the literature for Dmin are: 1.2138 [20], 1.2± 0.02 [29], 1.22± 0.01 [28], 1.23± 0.02 [37],

and 1.214 ± 0.001 [38]. Regular percolation gives Dmin = 1.13 and a random walk has

D = 1.19.

Using our model of bursts near criticality and our simulated fracture network we can

produce a representation of the expected microseismicity within a region. We compare

to the magnitude-frequency distribution correlated with fracking microseismicity to test

our models. We find that despite small differences in their other scaling exponents, our

models produce the same magnitude-frequency distribution with their respective errors

(τ = 1.5240.009, τ = 1.530.01 for LSIP and LBIP respectively).

However, these values are compatible with those observed during induced seismicity

and are significantly different from the b-value of typical tectonic earthquakes. In order to

account for the variability of b-values associated with induced microseisimicity we find that

for thresholds T < pc, we can produce burst statistics which prefer smaller earthquakes,

suggesting that induced microseismicity may not be characterized by critical phenomena

unlike tectonic seismicity which is known to be critical [17].

In order to maintain generality we emphasized maintaining model simplicity. Further,

because we believe most of the observed HF seismicity is the result of critical phenomena,

only a subset of system behavior becomes relevant. This subset being the nature of

the inherent randomness and how it grows to all scales of the system. Our statistical

approach means we avoided introducing much of the local environment conditions which

have a large affect on individual realizations of induced miscroseismicity. Most notably

the spatial distribution of the epicenters of earthquakes seem to depend on the local

stress field and fracture network. This produces seismicity which uniquely clusters in
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some regions and is rather isotropic in others.

This study shows that this approach can reasonably reproduce HF seismicity’s essential

statistics, and serves to illustrate the sensitivity to small scale physics one can hope for

with such an approach.

Our models produce isotropic spatial distribution of bursts and can therefore only

account for some of the observed features. It is known that pore sizes within rocks are

not independent and random but rather exhibit correlations. Since we are insensitive to

distinctions between pore/bond dynamics, by introducing correlations in pore sizes, we

should be able to more accurately describe fracture networks and better account for the

variations of induced microseismicity. This will be the subject of future work.
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Figure 2.7. Avalanche tree burst example for SIP with a burst threshold set to be T = 0.57
near pc = 0.59. Each burst is shown by a different color, where the injection site is marked
by ’x’ in the red burst and migrated to the yellow, blue, and green. The bond strengths are
shown to illustrate all the sequence of connected bonds with strength less than T belong to
the same burst.
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Figure 2.8. An example of a SSC containing 300,000 bonds broken into its separate bursts
according to the burst threshold. The bursts are shown where each burst is drawn as a circle
with size proportional to the number of broken bonds and the bursts’ locations are determined
by the bursts’ center of masses. The plots (a),(b), and (c) are a comparison of how the burst
size distribution changes as the burst threshold changes (T = [0.45, 0.48, 0.49]) respectively
and approaches the critical probability, pcrit = 0.5. The sizes of the bursts tend to a power
law distribution as the threshold tends to the critical probability. The purple star indicates
the injection site of the entire cluster.
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Chapter 3

Critical Description of the Avalanche

Burst Invasion Percolation Model

Summary

Given the large variety and number of systems displaying scale invariant characteristics,

it is becoming increasingly important to understand their fundamental and universal

elements. Much work has attempted to apply second order phase transition mechanics

due to the emergent scale invariance at the critical point. However, for many systems

notions of phases and critical points are both artificial and cumbersome. We characterize

the critical features of the avalanche burst invasion percolation (AIP) model since it exists

as hybrid critical system (of which many self-organized critical systems may fall under).

We find behavior strongly representative of critical systems, namely, from the presence

of a critical Fisher type distribution, ns(τ, σ), but we find other essential features absent

such as an order parameter and to a lesser degree hyperscaling. This suggests that we do

not need a full phase transition description in order to observe scale invariant behavior,

and provides a pathway for more suitable descriptions.

3.1 Introduction

With the advent of complexity sciences there has been a steady discovery of systems

which display behavior characterized by power-law (fractional) statistics. Such systems

fall broadly under the umbrella of fractal, chaos, and critical theory with many interest-
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ing links spanning these systems. As a cornerstone example, many authors have noted

in classical, tectonic seismicity, essentially all of the statistical properties are described

by a power-law relations: magnitude frequency distribution (G-R magnitude scale) [1],

temporal aftershock clustering (Omori aftershock law) [2], and the two-point correlation

distribution [3]. Similarly, induced seismicity also follows these statistical measures where

in hydraulic fracturing [4] and geothermal injection [5] studies show power-laws describing

both the magnitude-frequency distribution and two-point correlation function. Coupled

with fractal fault and fracture properties, seismicity offers a plethora of tantalizing critical

characteristics.

One of the key insights from the study of critical theory and second order phase tran-

sitions is that systems described by power-laws manifest a particular symmetry known as

scale invariance. Scale invariance suggests that there is no fundamental scale associated

with the system. In many cases, this is observed to correspond to a self-similarity across

many different length scales, and an essential question is how these properties might arise

naturally and in all their varied forms. In second order phase transitions, scale-invariance

emerges when behavior becomes dominated by the inherent random fluctuations which are

allowed to grow to all scales of the system [6]. This boundary between the order, dictated

by the small scale physics governing the properties of distinct phases, and the emergence

of critical fluctuations, is precisely described by critical theory. Fundamentally, this tran-

sition is stated as the finite scaling hypothesis which posits that the divergence of the

systems correlation length is the mechanism by which realizations of critical fluctuations

are allowed to grow to any accessible scale [7].

As a consequence, notions of universality emerged to form distinct universality classes.

Universality classes, which describe power-law statistics shared by many distinct systems,

arise because much of the small-scale physics which dominates behavior leading to the

distinct phases fails to renormalize to all scales, leaving only the scaling of inherent fluctu-

ations to dominate the observable properties. These insights applied to complex systems

nurtured a general approach and led to a tremendous amount of work in the last 50 years.

It is with this perspective we formulate the approach which can address whether
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seismicity, and in particular induced seismicity, is appropriately described as a critical

transition. Because many distinct systems were found to share universality classes, notions

of universality classes and isomorphisms between different critical systems found strong

foundations. In particular, it was found that the thermal second order phase transition

of the 2D Ising model could be mapped to the much simpler percolation problem [8–

11]. Percolation theory, being the simplest example of a fully featured critical theory,

provided the basis for understanding the essential elements which served to define distinct

universality classes. As variations to percolation served to define distinct universality

classes, authors naturally sought to find the corresponding physical systems matching the

behavior.

Perhaps equally important, much of critical behavior can be neatly represented by

the critical clusters describing the system’s emergent connectivity near the critical point.

This can be nicely represented by Fisher’s formulation of cluster size distribution [12]

parameterized by two exponents, σ, τ

ns (T ) = s−τf [(T − Tc) sσ] (3.1)

The existence and characterization of such a quantity is a good starting point in describing

the critical behavior that exists in a system.

Wilkinson proposed IP as a more dynamic variant to RP aimed at describing the

invasion of fluid within a sediment guided by the path corresponding to that of least

resistance through the sediment [13]. This model deviates fundamentally from RP, since

it only describes a growth mechanism that “self-organizes” to produce a scale invariant

cluster. Many aspects of IP have been studied, including various fractal dimensions

[14, 15], its cluster characteristics [16], and the effects of long-range correlations [17], and

its dynamics in correlated porous media [18].

The central aim of this paper is an attempt to understand how critical theory manifests

itself in IP (and since IP is a prime example of self-organized criticality (SOC), perhaps

SOC at large). IP is in most cases naturally taken to be a critical theory, since it produces

an infinite cluster that is fully self-similar and is suitably characterized by an array of

fractal functions. However, without a proper description of a cluster distribution, it
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becomes difficult to rightly place IP with critical system landscape borne from the study

of percolation systems.

Additionally, central to any critical theory must be the study of critical fluctuations

and their scaling behavior. Therefore, in addition to the description of the cluster distri-

bution, one must also define some notion of distinct order parameter fluctuations to IP

and seek to understand their scaling behavior.

In hopes of establishing a natural notion of cluster distribution suitable to IP, authors

have, for example, used the Leath algorithm to simulate independent realizations of SSC

clusters to extract a Fisher like τ exponent for IP [19]. A distribution of independent

cluster realizations provides limited insights into critical behavior of percolation. Briefly,

such descriptions are not properly described by Fisher’s relation, Eq.3.1, since it leads

only to a τ exponent and not a σ as well. Here, we pursue a more interesting notion

presented as an avalanche burst scheme described in a previous paper [20], which we

define as avalanche-burst invasion percolation (AIP).

We introduced the notion of a connected burst defined as the sequential invasion

of sites/bonds below some threshold strength, and found that there existed a critical

threshold value which produced a scale invariant burst distribution leading to a description

of τ . This burst threshold effectively serves as a control parameter which produces scale

invariant bursts near its critical value and sub-critical bursts away from it. As a result,

we observe the existence of a cutoff cluster characterizing the σ dependence.

Thus, the addition of burst dynamics allows one to simulate the burst nature of high

pressure gradients induced seismicity, and provide a cluster distribution consistent with

Fisher’s description given by Eq.3.4. With this approach the key questions then become:

which model of randomness is appropriate for the induced seismicity, and by which method

do the fluctuations grow to all scales? Following the typical procedure of trying to find

an appropriate critical model with similar fractional statistics, we proceed in identifying

the family of power-laws with characteristic critical exponents to which AIP belongs.
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3.2 Boundary Conditions

In a previous study, we characterized some of the essential network properties of our AIP

model [20]. In this study, we utilized free edge boundary (FEB) conditions along both

growth axes, and achieved the infinite lattice limit by extrapolating the finite size scaling

(FSS) of the exponents to the infinite limit. This is important because the exponents

defining particular universality classes are taken to be in the infinite lattice size limit.

Additionally, other authors found that not only did hyperscaling and FSS break down

above the critical dimension but universality did too, and concluded that the finite-size

behavior seemed to depend strongly on boundary conditions. In particular, free bound-

aries appeared to deliver different results from periodic boundaries[21]. Preserving FEB

conditions requires extrapolating to the infinite lattice limit, and becomes cumbersome

to perform for every exponent (and more so for some quantities than for others).

Alternatively, because scale invariance is more manifest with periodic boundary (PBC)

conditions, it reduces finite size corrections required to obtain infinite size limits for many

of the system’s scaling exponents [22]. For this reason and because we sought to charac-

terize many more of the scaling exponents (critical exponents in particular) we chose to

implement periodic boundary conditions similar to [23] in this study.

One of the primary challenges with implementing PBC conditions is coming up with

a suitable stop condition. Most implementations of IP preserve some free edge to trigger

a stop condition and make the others periodic [13, 16, 24, 25], but we chose to implement

fully periodic boundaries following an implementation similar to [26]. Since we do not

have a free edge to serve as a cutoff, we had to determine a suitable stopping condition

otherwise the network would become maximally compact.

The infinite lattice limit is one where the power-law scaling exponent is expected to

hold on all scales of the system, and because IP is isotropic, we expect the network to

be manifestly self-similar. Thus, we manufactured the stop condition towards this end

by tracking cluster growth from the initial central seed towards and around a boundary.

Once the cluster reaches a boundary, we create artificial labels differentiating cluster

growth along opposite boundaries. For example, if the central cluster first reached the
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Figure 3.1. SIP algorithm with periodic boundary conditions (PBC)with four different lattice
sizes corresponding to: a)500x500 b)1000x1000 c)5000x5000 d)10000x10000.
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Figure 3.2. SIP algorithm with periodic boundary conditions (PBC). (Left) We show the
bulk to boundary ratio of the invaded cluster as a function lattice size. This macroscopic
geometric measure quickly approaches its critical value as lattice size increases. (Right) We
compute fractal scaling exponent, Df , using the boxing counting technique for clusters grown
in a 4096x4096 lattice.

left boundary, then it now belongs to the left boundary cluster and is distinguished from

sites growing from the right lattice boundary; these sites belong to the right boundary

cluster. A stop condition is met when opposite boundary clusters share a perimeter

site. The central cluster can belong to multiple boundary clusters and therefore activate

multiple opposite boundary clusters which could trigger the stop condition. This is of

course only possible so long as opposite boundary clusters’ perimeters remain distinct.

This stop condition nicely preserves self-similarity on all scales up to the lattice size. See

Figure 3.1 for cluster examples where the lattice size is very difficult to decipher simply

by inspection.

We can also refer to quantitative measures by observing the existence of scale sym-

metry relation M ∼ LDf where Df is the typical percolation mass scaling exponent,

Df ≈ 1.89. In the right plot of Figure 3.2, we compute Df using the box counting tech-

nique on an ensemble of 100 lattices with size 4096x4096. With this technique, the box

count should scale with L according to C(L) ∼ L−Df . We find Df = 1.897± 0.003 which
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is very close to the expected infinite lattice limit.

In the next section we introduce the notion of the bulk to boundary ratio which is

a geometric property indicative of a critical cluster. We can also compute the bulk to

boundary ratio for clusters grown in different lattice sizes. We find the bulk to boundary

ratio quickly settles down to that which is characteristic of a critical cluster. This is shown

as the left plot of Figure 3.2. This ensures that our PBC implementation does not alter

the geometry of a critical cluster by prematurely stopping cluster growth.

3.3 Critical Threshold

One of the most important features of percolation is its relation to critical phenomena [27].

Before discussing the critical cluster distribution directly, it is first worth discussing the

control parameter and its critical value. In RP the site occupation probability, p, serves

as the control parameter for RP’s second order phase transition. This phase transition

is described by the emergence of global connectedness where the many isolated clusters

existing in regime p < pc conglomerate into a single lattice spanning cluster for p ∼ pc.

To better elicit the connection between RP and IP, it is instructive to understand how

RP’s critical point manifests itself in IP.

We begin by looking at the distribution of site strengths of the invaded cluster. In IP

all lattice sites are randomly assigned values from a uniform distribution in the range [0,1],

but when looking at the distribution of the strengths of invaded sites, we find the selection

of strengths to be a regular subset of assigned strengths. In particular, in the limit where

the number of invaded sites, N , becomes infinite, the invaded strength distribution is

described by a step function:

lim
N→∞

p(r) =

 k 0 ≥ r ≥ rmax

0 r > rmax

where a random strength, r, has constant probability k of being invaded up to some

strength, rmax. These are related according to 1/k = rmax, and its been shown that

rmax = pc where pc is RP’s critical occupation probability [28].

Without a threshold, a cluster grown by IP (random) will grow indefinitely, and repro-
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duce many of the characteristic exponents of RP’s incipient infinite clusters (IIC), which is

why IP is believed to reproduce the emergent incipient infinite cluster which defines RP’s

connected state [29]. A threshold in IP effectively acts in the same way as the occupation

probability for RP. This can be understood heuristically as follows: we assign lattice site

strengths from a uniform distribution in the range [0,1] as is usual, but only invade sites

if its strength is below some predetermined threshold. A cluster will terminate its growth

once it exhausts all perimeter sites with strength less than the threshold. The threshold

serves to separate independent realizations of clusters grown by the IP method, and these

independent realizations will naturally lead to a distribution of cluster sizes. However, if

the threshold is rmax ≥ pc then it becomes possible that a cluster will grow indefinitely.

The statistics of this process near the critical point will yield independent realization of

RP’s emergent IIC with cluster realization existing on all scales.

An alternative notion for a burst could rely instead on a “bulk to boundary” ratio. The

idea is that critical clusters are described by a characteristic ratio where near pc, the ratio

between the perimeter of filled and unfilled sites was one. Using a similar strategy authors

have argued that using a “bulk to boundary” ratio as a generalized way to determine the

critical occupation probability [30], determining the ratio analytically using,

lim
N→∞

N

B(N)
= Tc (3.2)

but this leads to Tc → pc as before. Since both mechanisms share the same critical point,

its likely the cluster statistics are the same.

3.4 Critical Behavior

Since IP is believed to reproduce the critical aspects of RP [28], we would expect the

critical exponents of IP to be the same as those belonging to RP. When IP was initially

proposed [13], the critical behavior was believed to be described by the scaling of the

acceptance profile, B1(n). This quantity, as described in the previous section, is a function

of p(r), the probability of invading a site/bond with strength, r. In the finite number N
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limit the acceptance profile is defined as,

B1(N) =

∫ pc

0

[1− pN(r)]dr (3.3)

where N is the number of invaded sites. Near a strength matching percolation’s critical

value, pc, it was believed that the region deviating from the pN(r) defining B1(N), was

described by a power-law as function of the number of invaded sites, N . That is, near

the critical value B1(N) would scale according to B1(N) ∼ N−1/∆ with the gap exponent

∆ = β+γ, and γ and β are usual exponents from regular percolation. However, exponents

γ and β are determined as functions of the first and second moments of RP’s finite size

cluster size distribution. This is an important observation as Fisher’s critical droplet

model [12] distills criticality from the cluster distribution, and since there does not exist a

cluster distribution native to IP, the source of IP’s criticality becomes an open question.

Perhaps this alone might not bring into question IP’s criticality, if for example, it was

also possible to discuss the characterization from the description of IP’s order parameter,

but as we will see, this too becomes problematic.

The absence of a cluster distribution prohibited the authors of [30] from utilizing

IP to directly obtain something analogous to the Fisher exponent, τ , which in Fisher’s

formulation characterizes the distribution of non-interacting droplets near the critical

point. It is only in trapping variants of IP where the notion of a defending fluid leads in

a natural sense to a distribution of finite sized clusters. Still even in this case, studies of

the scaling of these finite clusters show that they scale differently from RP finite clusters

[13]. There are nonetheless valid reasons to suspect the appropriate relations between

the criticality of RP and IP lies between IP’s invasion cluster and RP’s incipient infinite

cluster [29].

In order to place the discussion of IP’s criticality in a familiar setting we need to

establish the existence of some critical distribution. A full critical description identifies

a distribution of fluctuations that scale up and dominate all scales of the system, and a

characterization of the criticality is born out of the characterization of this distribution

[10]. In the previous section, we established the notion of a control parameter with a

critical value. Because IP only produces a single infinite cluster, we can utilize the critical
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threshold to define the critical distribution of fluctuations. The burst formulation of our

model [20], produces a distribution of critical percolation clusters so long as the threshold,

T = pc. This allows a suitable definition of a Fisher exponent which generally follows the

formulation,

ns (T ) = s−(τ)f [(T − Tc) sσ] (3.4)

with cluster size becoming scale invariant for T → Tc and following power-law ns ∼

s−(τ−1). We note that we follow the conventional definition of ns [31] and as such sns

corresponds to the number of bursts of size s. This being the quantity we directly obtain,

then has the shifted exponent, τ − 1 that we report.

Because we seek to understand IP’s criticality from the perspective of traditional

percolation, we will briefly describe the framework from which we will derive our results. A

particularly useful formalism comes from previous work which shows the mapping between

the Ising thermal second order phase transition to that of the percolation transition [8–

11]. Here one makes use of percolation’s cluster distribution, ns to define an analogous

generating function suitable for percolation from which the order parameter and other

essential quantities may be derived.

Fundamentally, this mapping is possible because the thermal fluctuations of the order

parameter (magnetization) experience long range correlations that allow large, macro-

scopic clusters of similarly oriented spins to emerge. The correlation function describing

the correlation between sites behaves similarly in both systems, and the emergence of

macroscopic magnetization clusters is therefore similar to the emergence of large, con-

nected percolation clusters. This behavior can be neatly summarized by characterizing

the system’s Fisher cluster distribution in addition to the behavior of its correlation length.

In much the same way that the free energy per spin behaves as the generating function

for the Ising thermal critical transition, we define an analogous generating function from

which we can derive RP’s essential quantities. Beginning with the generating function,
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AIP (This Paper) RP[31] MFA[32]

Df 1.902(3) 91/48 ≈ 1.896 2

Ds 1.86(1) 91/48 ≈ 1.896 2

τ 1.594(9) 187/91 ≈ 2.05 3/2

σ 0.41(2) 36/91 ≈ 0.42 1/2

α 0.10(5) −2/3 −1

β N/A 5/36 ≈ .014 1

γ 0.971(5) 43/18 ≈ 2.4 1

ν 1.301(2) 4/3 1/2

Table 3.1. A comparison of critical exponents from the Avalanche Burst Invasion
Percolation (AIP) present in this paper and regular percolation (RP) and mean field
approximation values (MFA).

G(ns, h) =

∫
fc

ds 〈ns〉 e−hs (3.5)

where one introduces a ghost field, h, that allows every site to become connected. For

h = 0 (the limit of the RP problem), the generating function becomes the mean number

of finite sized clusters. A convenient feature of this formalism is that we can easily

derive relations that define the order parameter, P , in terms of the first derivative of the

generating function,

P =
dG(ns, h)

dh

∣∣∣∣
h=0

∝
∫
fc

ds s 〈ns〉 (3.6)

which is proportional to the probability a site belongs to an infinite cluster. The order

parameter is also proportional to the density of sites, thus, fluctuations in the order

parameter may be more intuitively understood as fluctuations in local site density.

Fluctuations in the order parameter can be calculated as the second derivative of the

generating function. This would correspond to the second moment of the average cluster

size distribution, 〈ns〉, and coincidentally corresponds to the average cluster size, 〈s〉, with

s sites.
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〈s〉 =
d2G(ns, h)

dh2

∣∣∣∣
h=0

∝
∫
fc

ds s2 〈ns〉 (3.7)

Next, the correlation length characterizes the spatial extent of system fluctuations. Tra-

ditionally, this is probed by the pair connectivity function,

C(r, p) ∼ 1

rd−2+η
e−r/ξ(p) (3.8)

which describes the likelihood two sites belong to the same cluster. It is dependent on the

correlation length controlling when the sites begin to exhibit long range correlations such

that for p → pc the pair correlation function approaches power-law behavior described

by C(r, pc) ∼ r−(d−2+η). The emergence of long-range connectivity is usually empirically

motivated, and it is understood to be the consequence of the correlation length, ξ, diverg-

ing. The statement can actually be made more strongly and is known as the finite size

scaling hypothesis [7]. The claim is that all singular behavior is a result of a diverging

correlation length. If ξ becomes infinite, then the system lacks any intrinsic length scale

and necessarily becomes scale invariant which is exactly the reason for the proliferation

of power-law behavior describing all relevant variables.

In RP, we can calculate the mean linear dimension of clusters,

〈ξ〉2 =
1

〈s〉

∫
ds 〈Rs〉2 s2 〈ns〉 (3.9)

where 〈Rs〉 is the radius of gyration for a cluster with s sites. This is calculated for each

cluster of size s using,

Rs =

∫
dr(r − rcm)2

s
(3.10)

The average is performed over all clusters with s sites. Similarly, 〈s〉 is the average cluster

size consisting of s sites.

The critical behavior of the system corresponds to when the system is near its critical

threshold, pc. Here, all quantities become scale invariant and in RP are described by the

reduced critical parameter,

77



εp =
p− pc
pc

� 1 (3.11)

Thus, near the critical point we have,

G ∼ ε1−αp (3.12)

P ∼ εβp (3.13)

〈s〉 ∼ ε−γp (3.14)

ξ ∼ ε−νp (3.15)

Having established the basic quantities characterizing critical behavior, we first set

out in determining, G, the zeroth moment of the cluster distribution, ns. The zeroth

moment corresponds to the number of bursts making up the distribution. In practice,

care is needed in determining the scaling of G, since the number of clusters is a function

of the boundary/lattice constraints. In generating the clusters to determine G, one is

naturally led to the relation G ∼ Ns/ 〈S〉 where Ns is the total number of sites grown

in the lattice, and 〈S〉 is the average cluster size. Because we derive the statistics for

different εT keeping Ns fixed, this ultimately means that our measures for G and 〈S〉

would be inversely proportional, leading to faulty measures. We therefore only determine

G by keeping Ns constant but allow Ns to vary when determining 〈S〉. This leads to

scaling of G with exponent 1− α = 0.90± .05.

Following this framework the order parameter for our AIP model should be a function

of the first moment of ns. Formally, the first moment corresponds to total number of

sites making up the cluster distribution, however in RP we subtract the sites belonging to

finite clusters in order to establish the notion of the strength of the “infinite” cluster. This

quantity is also identical to the probability that there exists a percolating or “wrapping”

cluster (a cluster that wraps or percolates across the lattice). Immediately, we encounter

some difficulty here as RP’s order parameter is defined to be the likelihood that a site

will belong to the infinite cluster. Certainly, this does not generalize to our case, as there

is not a notion of wrapping cluster. For T → Tc we are essentially simulating multiple
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realizations of RP’s infinite cluster condition, where in principle one can expect to observe

a infinite cluster. To make this work in our case we reserve an infinite cluster to be the

largest burst in the system, and P∞ is understood to be the fraction of sites belonging

to the largest burst. As was done with RP, we subtract the infinite contribution and

therefore define the cluster distribution ns to be the distribution of finite invaded bursts.

This leads to an order parameter, P ′, defined as,

P ′ =

∫
ds sns − P∞ (3.16)

The results are shown in Figure 3.3 where behavior is similar to a step-function which

quickly goes to zero for T ∼ Tc. This result is similar to RP where P is zero except in

the close vicinity of pc. As with RP, we observe power-law scaling only very near Tc with

P ′ ∼ ε0.66.

Though we salvaged the notion of the infinite cluster, the strength of the infinite

cluster given by P∞ does not scale the same as P ′. Further, as we will show, the scaling

of the order parameter fluctuations does not describe the observed cluster distribution,

ns.

As is shown by Eq.3.7, we can calculate the second moment of ns characterizing the

fluctuations of burst distribution. Typically for critical systems the order parameter

fluctuations dictate the observed clustering, and for RP this works out to a relation with

the mean cluster/burst size. Following in this formalism, we calculate the scaling of the

second moment which is of same form as Eq.3.14 and leads to exponent, β = −1.0. As

was mentioned previously, we computed the mean cluster size while keeping the number

of bursts fixed and allowed the total sum of sites to change.

Finally, we calculate the correlation length according to Eq.3.9. For each burst of size

s we compute Rs and compute the weighted average according to Eq.3.9. This calculation

along with the average burst size is the most straightforward quantity to determine, since

its natural to characterize the spatial extent of bursts in this way. However, as with

all the other exponents we find a scaling exponent, ν = 1.3 which is different from RP

given the statistical error bounds. Table 3.1 shows the values of the critical exponents as

determined above. Next, we need to establish the significance of these critical exponents.
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Figure 3.3. The critical behavior of the order parameter and infinite cluster (left) and the
mean finite cluster size and order parameter fluctuations (right).

3.5 AIP Criticality Results

From relations 3.12-3.15, we can derive the scaling relations between burst distributions

exponents and the characteristic quantities describing the AIP criticality. In addition to

illustrating the central role of the burst distribution, the relations provide a consistency

check for the results of the previous section. In order to establish these important relations

we must first independently determine the two exponents of the cluster distribution,

ns(τ, σ) and the scaling burst size with its radius, Rs.

In our previous study [20] we determined the critical scaling of our burst distribution,

τ , but we find this value to be sensitive to certain boundary and environment constraints.

For example, τ − 1 ≈ 1.52 is found when one grows multiple connected bursts within a

large lattice (104x104 for example) with FE boundaries. If each cluster is grown in isolation

such that it grows until reaching threshold T and repeated to produce a distribution of
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clusters, then one obtains a value τ−1 ≈ 1.0. If instead, we implement periodic boundary

conditions in the lattice we find a value of τ − 1 ≈ 1.585. In higher dimensions one would

expect this value to approach the mean-field limit of τ −1 = 1.5. Variations in the cluster

size distribution as a result of varying environment conditions was also found in [33].

Therefore, before establishing the requisite checks, we must ensure the cluster boundaries

are suitably chosen to yield consistent results. Stated simply, the primary effect of the

cluster boundary is to determine the extent of influence the current burst’s extent has on

future bursts extents since their spatial occupations are mutually exclusive. We find that

if each burst grows without any preexisting burst, the scaling of τ ∼ 1.0, which reflects

boundaries that foster the growth of large bursts. The PBC conditions allows preexisting

bursts to strongly affect the growth of future bursts, and preferentially produces smaller

bursts on average. The FE boundary is in between as is the mean-field limit, although the

mean field limit is appropriate in high-dimensional lattices where sequential burst growth

would not interfere with each other by virtue of high dimensionality keeping growth

degrees of freedom accessible.

As was mentioned in Section 3.2, we explicitly developed PBC condition to develop

relations in the infinite size limit, therefore, we proceed in characterizing the critical

behavior with PBC conditions and use the τ − 1 ≈ 1.59 value. It is interesting that the

FE boundary seems to be similar to the mean-field value and may have some interesting

implications between the two regimes, but here, we chose the boundary that is most

manifestly scale invariant.

Having established the value of τ with PBC conditions, we proceed in fully character-

izing the critical behavior in RP by next determining the burst scaling exponent, σ shown

in eq.3.4. From these, the scaling of the generating function, G, the order parameter,

P , and average cluster size, 〈s〉, are the zeroth, first, and second moments respectively.

Following the characterization of [31], the σ scaling exponent characterizes the behavior

of the cutoff cluster size sξ which itself defines the cutoff burst size such that bursts with

size s > sξ become exponentially suppressed. As is usual, we would like to determine the

scaling of sξ as we approach the critical point. To isolate the σ behavior, we can eliminate
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Figure 3.4. We show the behavior of the characteristic cutoff cluster size, sξ. (Top) The ratio
ns(T )
ns(Tc)

∼ e−s/sξ shows how bursts of size s > sξ become exponentially suppressed for different

thresholds, T . (Bottom) For z ≈ 1, we establish the behavior of sξ = (Tc − T )1/σ. For z � 1,
the exponential term is a constant and corresponds to the regime where s� sξ.
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the τ − 1 dependence by considering the ratio:

ns(T )

ns(Tc)
= exp[−z] (3.17)

where z = (Tc − T )sσ. This leaves behind the exponential behavior of the cluster dis-

tribution. The two limits to consider is for z � 1 where the exponential becomes a

constant, and in the large cluster limit where z � 1. In this limit, we observe the relation

s � (Tc − T )−1/σ. Thus, sξ(T ) = (Tc − T )−1/σ behaves as the exponential cutoff cluster

size for the cluster size distribution. By determining the scaling of sξ(T ) with T we can

determine exponent σ, which for our cluster distribution is found to be σ = 0.41± 0.02.

With sigma, one can work out the how the moments of size distribution ns behave near

the critical point, and derive relationships between the scaling of the generating function,

average cluster size and order parameter in terms of τ and σ. These are:

2− α =
(τ − 1)

σ
(3.18)

β =
(τ − 1)− 1

σ
(3.19)

γ =
2− (τ − 1)

σ
(3.20)

ν =
1

σDs

(3.21)

We shall briefly go through these relations individually and establish the appropriate

conclusions. We begin with the generating function, G. In the previous section we

reported 1 − α ≈ 0.9. The scaling of the zeroth moment for RP is usually used to refer

to the scaling of heat capacity for a typical thermal critical transition where the specific

heat capacity is the second derivative of the free energy. As a result the exponent is

shifted by two such that cv ∼ ∂2Tf ∼ ε−α. For RP this quantity becomes ∂2sG ∼ ε−α.

The situation is a bit further complicated because we work with the burst frequency

distribution rather than the density distribution which normalizes each burst by burst
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Figure 3.5. We show the LLS fit for burst size distribution exponent, σ. We fit f(z) to an
exponential to determine the decay constant, which corresponds to sξ. The log-log behavior
of the cutoff burst size, sξ as a function of ε = (Tc − T ). We find 1/σ ≈ 0.41± .02.

size, s. The consequence is that we shift alpha by 1 rather than 2 in RP. We find α ≈ 0.1

which is somewhat curious. For RP, MF, and typical fluid or magnet thermal transitions

give α = −2/3, α = 0, and α = 0 − 0.2 [6]. There is some discrepancy reported in

the literature with the percolation mean-field limit and the Ising mean-field limit, where

α = −1, 0 respectively, and may result from differences in distributions used to derive

values.

The zeroth moment is also found with the burst distributions exponents as shown in

Eq.3.18 which is the typical relation in RP. However, the situation is different for AIP, and

undermines the relation’s applicability. When analytically solving the moment integrals
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we can represent the integrals as

Mk = ε
1+k−τ
σ

∫ ∞
0

dz zk−τf [z] (3.22)

where we must establish the convergence at the two limits. In the zero limit we can Taylor

expand the integrand near zero which leads to z1+k−τf ′[0]. From this we can determine

that for the integral to converge in the zero limit, we require 1 +k− τ > 0. Since τ ≈ 1.6,

this leads to the condition k > 0.6. Thus, for the zeroth moment the integral fails to

converge at the lower limit. In the upper limit the integrand is exponentially suppressed

by function f [z]. We therefore conclude that the relation 3.18 does not hold for AIP.

However, we can still determine the scaling of α as was done before.

Next, consider one of the most important quantities in characterizing the behavior of

a phase transition, the order parameter. In RP we find that the order parameter is a

function of the first moment and Eq3.19 establishes the relation between its exponents.

We can check that the lower limit of integral converges since k = 1 > 0.6. However, there

exists a problem of a different nature. Namely, in RP we find that the order parameter is

proportional to the site density. Near the critical point we observe that the site density

becomes scale invariant and is described by ρc ∼ Ld−Df . However, for AIP regardless of

the threshold, T we find that the density is always described by ρc. Further, the first

moment corresponds to the sum of all invaded sites. Again, this quantity is determined

exactly by fractal dimension scaling, Df and has no dependence on the control parameter.

This undermines the existence of this type of order parameter.

Despite this we can still attempt to interpret the order parameter to be the fraction

of sites belonging to the largest burst as was done in the previous section. From Figure

3.3 we can see the following relation P ∼ ε0.66T which is only witnessed very close to the

critical point, εT < 10−2. Coincidentally, this fails to match the expected relation given

by Eq.3.19 1.59−1
0.41

≈ 1.46. The reason is that when analyzing Eq3.16, the upper limit

contribution is dominated by P∞ =
∫
dz z1−τf [0] which converges if τ > 2. This is a

condition our τ fails to meet.

These inconsistencies highlight the key differences between RP and AIP models. In

AIP all bursts are stochastic realizations of RP’s incipient infinite cluster. Certainly, if we
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looked at IP without any burst structure, we would only ever have a single infinite cluster

growing indefinitely, so an invaded site has certainty of belonging to the infinite cluster

and the wrapping probability is also unity. Moreover, an order parameter does not seem

appropriate in IP because notions of distinct phases do not seem natural. It is not clear

how one would define distinct phases such that at the critical point, IP is transitioning

from one phase to the other through the critical formulation. Either the order parameter

does not exist without further implementing behaviors to the model, or it is not obvious.

The deficiencies of the previous two quantities do not plague the third, the mean cluster

size 〈S〉. The integral conditions for convergence all exist for the second moment. In the

previous section we found that the mean clusters size scaled according to 〈s〉 ∼ ε−0.998±.001T .

If we refer to Eq3.20 we get 2−1.59
0.41

= 1.0 which is exactly what we expect. However, we

do find γ ∼ 1 to be very different from RP (γRP = 43/18 ≈ 2.39), which indicates that

the burst distributions of RP and the distribution of AIP bursts to be different. Instead,

we find a distribution whose mean cluster size is similar to the mean-field value.

More importantly, to establish the consistency of results we expect the susceptibil-

ity to diverge with the same exponent as the mean cluster size. We can calculate the

susceptibility utilizing the fluctuation dissipation relation given by [7],

χ ∼ β

V

∫
V

ddr C(r) (3.23)

where C(r) is the two-point correlation function as a function of distance between sites,

r. Usually in thermal critical transitions, the susceptibility or the correlation function is

itself a function of the order parameter fluctuations. In RP this also holds true except

there is an additional term corresponding to the mean cluster size. This leads to the

following relation:

χ = 〈S〉+ δP 2 (3.24)

This offers yet another test for the order parameter as its fluctuations should contribute

to the susceptibility divergence. In RP, it turns out that both terms diverge with the same

exponent [34]. However, we find the order parameter fluctuations are only weakly consis-

tent with the susceptibility since δP 2 ∼ ε−0.89±.05T . When we evaluate the divergence of
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Figure 3.6. We show the results of the susceptibility divergence as a function of the pairwise
correlation function. (Top) In the top plot we show the behavior of the pairwise correlation
function C(r, T ) as a function of threshold, T and distance between sites r. We observe the
expected general behavior C(r, T ) ∼ r−ηf [−r/ξ(T )]. (Bottom) We show the LLS fit of χ as a
function of εT and find a scaling consistent with that of the mean burst size.

the susceptibility using Eq.3.23 we get an exponent γ = 1.03± .05 which is consistent with

our mean burst size scaling, but beyond the error bounds of δP 2. The larger magnitude

of the exponent of 〈S〉 as compared to δP 2 means that 〈S〉 will dominate the behavior

near the divergence.

The divergence of the susceptibility resulting from the pair-wise correlation function

nicely leads us into the discussion of the correlation length, ξ, which also happens to be

the final critical exponent relation we aim to discuss from the list, Eq.3.18-21. In some

sense it might be more clear to begin with ξ, since after all, the behavior of the correlation

length is the fundamental ingredient to explaining the emergence of scale invariance as

posited by the finite size scaling hypothesis.

87



Since the characterization of ξ is so important, we will discuss it from two perspectives.

First, we will discuss its natural relation to the correlation function previously discussed.

Then, we will discuss how it relates to the characteristic spatial extent of each burst. Lit-

tered through these discussions will be checks with appropriate exponent scaling relations

in order to ensure the results are consistent.

Again, the correlation function, C(r), describes the probability that two sites separated

some distance, r, are likely to belong to the same burst. To calculate C(r), we first grow

an ensemble of clusters (100) within a lattice of size 4096x4096 with PBC conditions

which is subsequently broken up into bursts as a function of threshold, T . For each burst

we calculate C(r) according to standard counting method [35], and average over all bursts

to generate an average 〈C(r)〉b which is then averaged across the ensemble to produce an

average for a given lattice size, 〈〈C(r)〉〉L. This is repeated for a range thresholds, T , in

order to establish its behavior as we approach the critical value. We find that the behavior

matches the expected behavior in 2D, C(r) ∼ r−ηe−r/ξ(T ) and based on the behavior very

near the critical point we find η = 0.23± .02.

The top plot in Figure 3.6 shows the effect of correlation length, ξ, which characterizes

the length above which the likelihood of two sites to occupy the same burst becomes

exponentially suppressed. As T increases so too does the correlation length such that

near the critical point the length approaches the system size. This motivates the general

relation that near the critical point, the correlation length behaves according to ξ ∼ ε−νT

which we will subsequently discuss, but first we discuss how the susceptibility diverges

with the correlation length. Following the Eq.3.23, we can compute the integral in 2D

using

χ ∼
∫ ξ

0

dr
〈〈C(r)〉〉L

r

= ε
−ν(1−η)
T

(3.25)

In the previous section we found exponent ν = 1.28 using the typical RP definition of ξ

defined by Eq.3.9. From the relation above we can check that γ = 1.28(1− 0.23) = 0.99

and is very near the expected value of 1.

We can also assess the behavior of the correlation length by looking at the number of
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sites contained in the largest burst. Since the density of sites is fixed the largest burst,

s∞, should scale according to the correlation volume, ξ2 = ε−2νT . From LLS fit of s∞ vs

εT we find ξ ∼ ε−1.3±.03T which is within error bounds of our previous determination of ν.

As a final check we can utilize the burst size scaling with radius of gyrations given by

s ∼ RDs
s to check relation 3.21. We find by LLS fit that Ds = 1.859± .002 and as shown

in the previous section σ = 0.41± .02. This gives a value of ν = 1.31 which is consistent

within error bounds of the other results which all yield values in the vicinity of 1.3.

As a brief conclusion to this section, we found extrapolating from RP’s behavior, we

would expect mean square fluctuations in the order parameter coupled with the diver-

gence of the correlation length to give rise to observed cluster structure of the model.

However, we quickly ran into problems with the order parameter both in conceptually

defining the notion of distinct states and formally deriving appropriate consistency rela-

tions between relevant quantities. Therefore, there was no consistent characterization of

the order parameter, but we also found in characterizing the correlation length and mean

cluster size that we were able to account for the critical divergence of susceptibility with

these quantities alone. In RP the emergence of macroscopic connectivity is nicely char-

acterized by the divergence of order parameter fluctuations, and it is a particularly nice

conceptual feature that order parameter fluctuations and random site fluctuations should

scale similarly. However, it does not seem necessary in describing the critical behavior

of AIP (and perhaps more broadly applies to self-organizing critical behavior). What IP

simulates is a growth mechanism, and if we introduce a threshold formulation to define

distinct bursts, we find that we can define regimes of critical growth or subcritical growth

depending on the threshold, T . This characterization better fits within the description of

metastable nucleation of critical droplets.

3.6 Hyperscaling

We continue to delve into the critical behavior of AIP by analyzing whether hyperscaling

is a feature of the model. While not an essential prerequisite for criticality its presence

does highlight the existence of additional relations which simplify the quantities needed to
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explain the observed behavior. Generally, systems with hyperscaling can be characterized

by independently determining only 2 critical exponents. All others can be determined

by the various relations including the additional hyperscaling relations. Still, compared

to other notions we have discussed, the concept of hyperscaling is generally more loosely

defined and essentially amounts to the criteria where their relations between exponents

contain the dimensionality of the system. As an example, we will illustrate some of the

more insightful of these relations and how it manifests itself in the system.

Perhaps the most significant quantity is the correlation length of the system, ξ. With

ξ we can know the likelihood two sites are to be related to one another. In RP one would

expect that this should be related to whether two sites belong to the same cluster, and

in RP this statistically works out to be the case. We can see this with the following

calculation. We consider a box with sides of length ξ. If we count the number of clusters

contained in the box, we get some number that need not be 1. However, as we approach the

critical point and the ξ increases and thereby the size of our correlation box, the clusters

contained should scale proportionally such that number of clusters does not change.

To carry out this calculation, we can make use of G which is the zeroth moment of the

cluster distribution and amounts to the number of clusters per site or the cluster density.

If this quantity is multiplied by ξ2 we should get the number of clusters in a correlation

volume given by

Nξ = G ξ2 ∼ ε2−α−2ν ∼ constant (3.26)

For RP α = −2/3 and ν = −4/3 which when plugged into the above yields an average

cluster count which is constant. This is indeed what one would expect if the correlation

length represented the spatial extent of observed clusters. Note, also that this leads to

the following hyperscaling relation,

2− α = dν (3.27)

Because we can also determine 2 − α from the cluster distribution exponents, this also

means that we can determine the scaling of the correlation length based entirely on the

dimensionality of the system, a very powerful result. Similarly, because of all the other
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relations between exponents, we can generate the complete set from the two exponents τ

and σ.

Much of the same formalism can be applied directly to our AIP model, where we have

characterized our own values for the critical exponents. First, we define the appropriate

critical parameter εT as was shown in Section 4.6,

εT =
T − Tc
Tc

(3.28)

where T is the burst threshold and Tc is the critical burst threshold. The critical values of

the scaling exponents are reported in Table 3.1. However, because ns for us is a frequency

distribution rather than a density distribution, we shift the exponent by 1. If we similarly

calculate the number of bursts in correlation volume,

N ′ξ = Gξ2 ∼ ε−0.6T (3.29)

we find a scaling that diverges with value ≈ −0.6 in contrast with the RP case which

remained constant.

This is another key difference between the apparent criticality present in this AIP

model and RP, which suggests that because the bursts are not realizations of order pa-

rameter fluctuations as in RP, we do not observe similar behavior. Instead, there appears

to be an excess of bursts contained within a correlation volume and scales according to

N ′ξ. This observation introduces a new puzzle, but also establish the lack the hypersaling

in our model, namely Eq.3.27. The absence of hyperscaling in IP models was also found

by [14]. They found that the cluster distribution exponent τ could not be determined by

spatial dimension d according to hyperscaling relation, τ = 1 + d/Df .

Further evidence comes from [36] who also observe the absence of hyperscaling in

the mean-field regime of long-range bond percolation. They observe differences between

scaling exponents, Df and Ds (as defined here) and suggest that there are differences

in cluster density for small versus large clusters. We can add to this line of inquiry by

similarly noting a difference between exponents, Df and Ds. (Though the differences are

small, the differences are outside error bounds. Also, both measures are characterizations
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Figure 3.7. We show the results of the crossover behavior inherent to average burst epicenter
density, 〈ρb〉L as a function of length scale, L. The correlation length defines the scale where
we expect power-law behavior. Here we observer the average number of burst, 〈N(L)〉 in region
size, L2 scales according to the expected mass scaling of individual sites (as is expected from
scale invariance), N(L) ∼ LDf . On larger length scales, the scaling becomes uniform.

of many scales and consequently are rather insensitive measures, so any observed difference

can have quite notable consequences) One possible explanation is that this suggests that

there might be two competing correlation mechanisms. We can think about the density of

sites versus the density of clusters. One correlation mechanism that is inherited from RP

and is present in the IIC of the original IP cluster which would characterize the density

of sites, given by d−Df . The second correlation length comes about when we introduce

the notion of bursts and burst density would therefore be characterized by 2−Ds. That

these two are not the same is to say that site and burst density do not follow the same

scaling.

We briefly provide evidence for this by computing the average density of burst epicen-
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ters as function of length scale, l. For each burst we compute the epicenter as the burst

center of mass. For each length scale, we can easily compute the average density accord-

ing 〈ρb〉l = 〈Nb〉/l2, where Nb is the number of bursts contained in the box element, l2.

We can determine the correlation length by extrapolating where the power-law behavior

intersects the homogeneous scaling regime. We can repeat this process for multiple values

of critical scaling parameter εT to work out the correlation scaling for epicenters, ξb ∼ ε−νbT

where νb defines the burst epicenter scaling. We find νb ≈ 0.5 which is the mean-field

value, and the expected value if burst epicenters were distributed essentially according to

a random walk. For length scales above ξb (nearly flat regions in upper curves of Figure

3.7) we observe scaling given d − D = 0.127, which yields a result consistent with Ds

scaling.

We can also refer to [10] which built upon previous findings to understand a similar

discrepancy when analyzing the behavior mean field clusters in the Potts 2D model.

They found they could account for the excess of clusters in a correlation volume if instead

cluster density was the result of a random walk distribution of clusters, and developed the

notion of “fundamental clusters” which do have the property that their density matches

that of their site density. In their analysis they found that the additional random walk

element would contribute to number scaling by a factor of ε1/2, since the resulting spatial

distribution is Gaussian whose width is given by σ =
√
N where N scales as G ∼ ε1. This

is nearly of the same magnitude needed to account for our own excess.

3.7 Discussion

We find plenty of examples in the literature suggesting a connection between critical

phenomena and seismicity. Naturally, one might ask: must we insist on the presence

of a phase transition in order to describe the underlying mechanisms of seismicity? We

found that our AIP model, a characteristic example of self-organized criticality (SOC),

has many of the essential features of seismicity, except it does not inherit any phase

transition mechanics (namely, no distinct phases and no notion of an order parameter).

In characterizing our model, we found that all we needed is some notion of a critical
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point where the correlation length of bursts diverges. This leads to the conclusion that

in systems which are already described by the absence of a characteristic length scale, we

need not discuss the transition of a state with finite correlation length (which may never

have existed) to a state described by an infinite correlation length.

The absence of a phase transition is further supported because in AIP the site density

remains constant, and is described as a feature of static network properties as shown in

section 3.2. These static features arise independent to the pseudo-critical mechanisms we

define here and in the previous sections, and are therefore, insensitive to the tuning of the

critical parameter, T . This is in contrast to RP, where the phase transition is described

by a mapping between the site density fluctuations and the observed cluster fluctuations,

describing the emergence of global connectivity. This is understood from the observation

that the pair distribution function is isomorphic to the pair connectedness function [10].

Nevertheless, the absence of the order parameter and its critical fluctuations does not

prevent the system from exhibiting scale invariant structure. In fact, during seismicity

where the system seems imbued with an infinite correlation length as is described by

[37], and subsequent behavior exists atop underlying long range correlated behavior. AIP

inherits IP’s stochastic growth mechanism which grows without an intrinsic scale, perhaps

akin to the Mandelbrot set being generated from a simple complex function. Or, it is

perhaps appropriate to describe the system instead as a long-lived metastable state which

we find in nucleation phenomena which also lead to characteristic critical droplets with

the same structure as SOC avalanche models.

Therefore, rather than describing a phase transition we have only a stochastic growth

mechanism with a notion of independent realizations that gives rise to a critical type

burst distribution. The characterization of this distribution and the correlation length is

adequate in defining the universality class of the model’s inherent randomness and the

growth mechanism by which the fluctuations grow to all scales.

Focusing on the growth mechanism, we notice in contrast to the general claim that

SOC does not require a tuning parameter, our AIP is characterized by a critical distri-

bution similar to Fisher’s critical droplet distribution (or that near the Ising mean-field
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spinodal). Thus, in order to produce scale invariant bursts (even atop the underlying

fractal substrate) the control parameter must be near its critical value. However, it is

possible to rescue the idea that AIP does not explicitly need to be fine tuned to be near

its critical and reclaim one of the primary advantages believed to be a general feature of

SOC. As [38] stress, nearly all SOC systems have some notion of a driving parameter,

usually a ratio which characterizes the growth of the system. As was shown in Sec.4.6

Eq.3.2, we can recast the threshold as a bulk-to-boundary ratio which serves as the driv-

ing parameter describing burst growth. A system’s equilibrium growth mechanics might

then tend to the critical ratio.

Continuing in the characterization of the critical distribution, we can categorize the

broader critical features, namely that it is near mean field, with exponents τ − 1 =

1.59 ± .01, σ = 0.41 ± .01, where mean-field is given by 3/2 and 1/2 respectively. This

naturally implies that AIP ought to belong to its own universality class since the expo-

nents are all different from mean field as shown in Table3.1. Not only does the growth

mechanism not belong to the same universality class as RP, but the correlation behavior

is different as well. This is nicely illustrated by the feature that the number of bursts

in a correlation volume, defined from the pairwise site correlation length, fails to remain

constant. This fundamentally leads to absence of hyperscaling, which indicates the exis-

tence of multiple correlation lengths in the system. Stated differently, the density of sites

(which is independent of any pseudo-critical phenomena) is different from the density of

bursts, which near the critical value is consistent with a random walk.

Further, because the density which changed in proportion to the order parameter for

RP does not for AIP, we find no natural notion suitable as the system’s order parameter.

We recall that in RP the order parameter is made to correspond to either the strength of

the infinite cluster or the “wrapping” probability. Certainly, if we looked at IP without

any burst structure, we would only ever have a single infinite cluster growing indefinitely,

so, an invaded site has certainty of belonging to the infinite cluster and the wrapping

probability is also unity.

In conclusion, the AIP model is a hybrid model with a Fisher type burst distribution
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characterized with near mean-field exponents τAIP = 2.59, σAIP = 0.41. Again, the

normalized per site mean-field cluster distribution is characterized with exponents τMF =

5/2 and σMF = 1/2 respectively. This naturally implies that AIP is similar to but distinct

from mean-field and ought to belong to its own universality class, since the exponents are

all different from mean field as shown in Table 3.1. Many of the static features are

inherited from RP’s IIC, and the addition of the avalanche burst mechanism introduces

a correlation length for bursts that is consistent with mean-field, since ν ∼ 1/2. Despite

the presence of multiple correlation lengths, the system maintains its fractal properties

and is largely self-similar on all length scales. While the finite size scaling hypothesis does

lead to manifestly scale invariant systems, in practice it is likely a constraint that need

not be enforced, and instead more investigations should seek to understand how multiple

correlation lengths lead to “effectively” scale invariance which may explain why it is so

prevalent in so many complex systems.

Finally, because we inherit the long-range correlations present during the critical phase

of RP, its fair to wonder how the behavior changes with different underlying correlation

structure. This will be the subject of the next chapter where we consider the presence

of long-range correlations present between sites described by C(r) ∼ r−H , where r is the

distance between sites. This should yield distinct critical distributions, ns(T, σ,H), and

thereby lead to a potential family of distributions with distinct burst scaling behavior.

This is what we will seek to characterize in future work.
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Chapter 4

Correlated Avalanche Burst Invasion

Percolation: Multifractal origins of

self organized critiality

(Summary)

We extend our previous model, avalanche-burst invasion percolation (AIP) by introducing

long-range correlations between sites described by fractional Brownian statistics. In our

previous models with independent, random site strengths, we reproduced a unique set

of power-laws consistent with some of the b-values observed during induced seismicity.

We expand upon these models to produce a family of critical exponents which could be

characterized by the local long-range correlations inherent to host sediment. Further,

in previous correlated invasion percolation studies, fractal behavior was found in only

a subset of the range of Hurst exponent, H. We find fractal behavior persists for the

entire range of Hurst exponent. Additionally, we show how multiple cluster scaling power

laws results from changing the generalized Hurst parameter controlling long-range site

correlations, and gives rise to a truly multifractal system. This emergent multifractal

behavior plays a central role in allowing us to extend our model to better account for

variations in the observed Gutenber-Richter b-values of induced seismicity.
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4.1 Introduction

One of the most interesting insights from random percolation (RP) is the emergence of

long-range correlations from the inherently random process of independently occupying

sites with probability, p on a lattice. As is characteristic with complex phenomena, we

observe the emergence of characteristic features, namely, large scale connectivity that

dominates behavior on all scales. Much of percolation’s value comes from providing an

extremely simple framework from which many puzzling features both can arise and can

be understood.

Given the emergent nature of long-range connectivity, researchers naturally became

curious of the effect of implicit long-range correlations imbedded in the lattice structure

might have on the critical behavior[1–5]. This question is of interest not only from a

formal perspective, but also, because long-range correlations (LRC) are described by

fractal relations. These same fractal properties have been one of the most profound

discoveries in the last few decades because of the explosion in number and diversity of

fractal systems, and highlights the vast pervasiveness of fractal structures in nature. This

was made famous by Mandelbrot[6], and grew into its own paradigm of inquiry.

In our previous paper [7], we characterized the critical behavior of our avalanche-burst

invasion percolation (AIP) model, which produced a critical distribution of bursts, ns(T ),

as a function of strength threshold, T . These bursts existed on top of the random long-

range correlations emergent to percolation near the critical point. We observed a unique

burst distribution characterized by exponents, τ = 1.594 ± .009, σ = 0.41 ± .01. These

exponents are near but distinct from mean-field cluster scaling, τMF = 1.5, σ = 0.5. This

serves to define a distinct universality class of critical behavior, distinct even from RP.

Only a few studies have been done on LRC on IP [8, 9], and these studies only looked

at the static network type scaling (Df , Dmin, Db) properties which do little to provide

insight into how the critical properties change. This is of course largely because the

critical description of IP has been poorly understood, and had not been placed within

the appropriate framework to assign it various critical properties. This was done with

our AIP model, and now we are well positioned to address the topic of LRC’s impact on
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AIP’s critical behavior.

In particular our AIP model lends itself to the description of induced seismicity as

was shown in [10]. Invasion percolation simulates the infiltration of invading fluid into

a defending substrate that is modeled as a lattice of sites with random and isotropic

resistance. An invasion path following a principle of least resistance enforced at each time

step will naturally select the subset of sites which exhibit long-range correlations between

invaded sites. The additional burst mechanism allows us to identify the conditions which

yield scale invariant bursts, and thus, allows us to speculate on the conditions that must

exist to produce the observed scale invariant seismic distributions.

This study can be more accurate because studies of porous media find correlations

between pore size in various sedimentary substrates. These studies indicate porous media

sites are not independent and random, but rather, exhibit long-range correlations. In

particular, fractional-Brownian statistics seem to well describe the porosity logs within

many heterogeneous rock formations at large scales[11]. Similar findings for the perme-

ability distribution have been found for oil reservoirs and aquifers [12]. Therefore, we now

investigate how our AIP algorithms change in the presence of implicitly correlated lattice

sites rather than a lattice of independent, random sites.

4.2 Long Range Correlations

One of the most profound realizations of the latter half of the 20th century is the

widespread fractal nature describing many physical properties [6]. Perhaps the primary

benefit is that these measures applied to a class of structures which were previously

largely uncategorized. Their fractal characterization provided a new lens which allowed

us to recognized commonalities shared among disparate systems.

As an illustrative example, we consider a region with mapped topographical elevation,

h(x,y). Next, we consider height fluctuations as a function of distance, r2 = x2 + y2,

described by ∆h(r). A fractal dependence of the fluctuations is described by,

∆h(r) ∼ rα (4.1)

If the fluctuations are random then α = 1/2, illustrating the random walk nature of
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the fluctuations. Long-range correlations are described by a correlation function, C(r),

that is not exponentially bounded. This translates into Eq.4.1 as an α that will be non-

integer and will also be different from 1/2. If we consider the autocorrelation function

of heights, then the behavior of the integral of the autocorrelation function permits the

understanding of different regimes of α [13]. For α < 0.5 the correlations are antipersistent

(anticorrelated) meaning nearby correlations will tend to be different, while for α > 0.5

the correlation will be persistent meaning nearby values will become increasingly similar.

The literature has many examples of non-gaussian fractional statistics in addition

to the permeability of different sediments previously mentioned. It is found that such

statistics ought to arise whenever the correlation length, ξ becomes infinite. Again, this

illustrates that there is no characteristic length scale to the system. This is the key

property of scale invariant systems whose consequence is the power-law relation Eq.4.1.

Quite naturally it becomes a point of interest to understand how the critical properties

of AIP change under these conditions, primarily because we understand that by virtue

of the correlations power-law behavior must persist on all scales. Naively, one might fail

to properly appreciate the unique impact of long-range correlations on critical behavior

since one might well consider any other kind of change to the site lattice structure and

consider its affects. However, as Harris [14] found in considering the effects of random

defects on the critical temperature of the Ising model, the only defects that can have an

effect are those whose correlation length, ξH is comparable to the correlation length of

the unmodified lattice, ξ. Thus, since near the critical point ξ is described by a power-

law, only those defects whose statistics similarly produce long-range correlations could

have any effect on the critical behavior. Any short-range correlations would fail to meet

this criterion. This reiterates the focal feature of critical behavior, where small scale

interactions can eventually become renormalized, and only those that persist on all scales

can contribute to its behavior.

Harris provided a powerful framework for anticipating the effect that changes in lattice

structure could have on subsequent behavior [14]. Weinrib [1] extended Harris’ formu-

lation specifically to the percolation problem. We will cover the basic elements for the
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framework necessary to understand how long-range correlations ought to affect the be-

havior of percolation systems.

We consider correlations that are sufficiently long-range while also convergent for all

distances, and whose autocorrelation function is given by

C(r) ∼ r−a (4.2)

where r is the distance between sites, and a is less than dimension d. Since this is

the percolation problem, the autocorrelation function describes the correlations in site

occupation, that is, the likelihood that two sites a distance r apart are occuppied. The

long-range correlations are therefore an additional mechanism contributing to the site

occupation probability other than the usual uniform occupation probability, p.

Specifically, we would like to know how distinct regions experience different effective

occupation probabilities, pl. To that end, we break up the lattice whose total linear

dimension is L into regions of size, l. There will be NL = ld such regions in the lattice. We

will consider how the average occupation probability changes as a function of subregions

size given by

〈pl〉L =
1

NL

∑
i∈NL

pi (4.3)

where pi is the occupation probability associated with the i-th lattice site, and the average

is over the entire lattice. To understand how correlations in the fluctuations behave, we

compute the variance in subregion occupation probability, pl given by,

〈δp2l 〉L =
1

N2
L

∑
i,y∈NL

〈pipj〉 (4.4)

The function 〈pipj〉 is exactly the auto-correlation function we seek to implement

given by Eq.4.2, therefore we can integrate the correlation function up to the size of the

correlation length ξ which define the extent of correlations. That is, we assume L ∼ ξ
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which gives the following integral:

〈δp2l 〉L ∼ ξ−d
∫ ξ

0

dr C(r)rd−1

= ξ−d
∫ ξ

0

dr r−a+d−1

∼ ξ−a

(4.5)

If the system is still to have a single uniform critical transition, then it should be

the case that these fluctuations produce a correlation length less than that of unmodified

transition. That is the fluctuations should be less than critical fluctuations leading to the

condition

〈δp2l 〉
(pc − p)2

∼ (pc − p)aν−2

→ 0

(4.6)

where we made use of the relation ξ ∼ (pc − p)−ν to expand the ratio. For the ratio to

go to zero near the critical point we require the exponent to be greater than zero. This

leads to the condition on a for the largest value of long-range correlations such that it will

affect the critical transition while preserving a existence of a uniform transition. This is

given by

aν − 2 > 0 (4.7)

Thus, we can expect changes to the critical behavior if a > 2/ν. For percolation where

ν = 4/3, we should expect that the minimum value requires a > 3/2.

We might naturally next ask, if a meets the minimum threshold, then how should

we expect the behavior to change as function of a? As Weinrib points out [1], we can

effectively understand the situation by considering competing long-range correlation mech-

anism in the correlation function as

C(r) = Ar−a +Br−b (4.8)

To leading order the exponent with smallest magnitude will dominate on the largest scales.

Thus, we would then expect that for a > 3/2 we should observe an effective correlation

length scaling given by νa

νa = 2/a (4.9)
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While percolation with long-range correlations has been studied in the past with inter-

esting changes to network properties [2], and also applied to IP with [8], our AIP model

is sufficiently different such that (with its looplessness and avalanche burst dynamics) it

is necessary to understand how the critical and network aspects of our model change as

a result.

4.3 Fourier Filter Correlation Method

It is common to parameterize such long-range scale invariant correlations using the Hurst

exponent, where the (auto)correlation function, C(r) defined as C(r) = 〈u(r′)u(r + r′)〉

has the following behavior:

C(r) ∝ r2H (4.10)

Here, H is the Hurst exponent and in light of the results of the previous section, we find

the correlations are antipersistent for α = 2H < 1/2 and persistent for 2H > 1/2. For

2H = 1/2, the statistics follow fractional Gaussian noise, being neither persistent nor

antipersistent.

There are a number of techniques for simulating fractional Brownian statistics [15].

We use the Fast Fourier transform (FFT) filter technique because of its computational

efficiency. This technique relies on imprinting the desired correlations in the Fourier

wave vector space, ~k, and then applying an inverse FFT (IFFT) to create a lattice with

correlated sites of form Eq.4.10. Formally, we will be working with 2 dimensional Fourier

transforms, and it is well known that the Fourier transform of the autocorrelation function

gives the Fourier power spectral density. That is, the correlation function, 〈u(~x)u(~x+ r)〉

and the power spectral density S(~k) are related according to:

〈u(~x)u(~x+ r)〉 =

∫
Rn
S(~k)e−i2π

~k·~xd~k (4.11)

We can make use that we are only concerned with the distance between two points. This

leads to a suitable definition of a radial wave vector defined as kr =
√

1 + s2 + t2 and

with a switch of coordinates allows us to write it as a one dimensional Fourier transform:

C(r) =

∫
S(kr)e

−i2πkrr2πkrdkr (4.12)
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To create correlations of the form Eq.(4.10), our power spectral density should be made

to follow the following power-law:

S(kr) ∝
1

kβr
(4.13)

To relate the exponents between Eq.4.10 and Eq.4.13 we can solve Eq.4.11 after substi-

tuting Eq.4.13 which gives the following integral to be solved:

C(r) = 2π

∫
k−β+1
r e−2πikrrdkr (4.14)

To solve the above integral we first make use of the following relation:

1

kβ
=

2πβ/2

Γ(β/2)

∫ ∞
0

λβ−1e−πλ
2k2dλ (4.15)

The right side is easily Fourier transformed and upon switching the order of integration,

we get:

∫
R
e−πλ

2|k|2e−2πikrdk = λ−1e−π|r|
2/λ2 (4.16)

Then taking the 2D Fourier transform of both sides and plugging into Eq.4.15 gives:∫
R
k−β+1e−i2πkrrdkr =

2πβ−1/2

Γ(β − 1/2)

∫ ∞
0

dλλβ−2
[
λe−π|r|

2/λ2
]

=
2πβ−1/2

Γ(β − 1/2)

∫ ∞
0

dλλ(β−2)−1e−π|r|
2/λ2

=
2πβ−1/2

Γ(β − 1/2)

Γ((β − 2)/2)

2π1/2−β+1/2

1

|r|1−β+1

∝ rβ−2

(4.17)

Setting the exponents equal between the final line of Eq.4.17 and Eq.4.10 gives:

2H = β − 2 (4.18)

This gives our final relationship between the Hurst exponent and the appropriate Fourier

power spectrum filter function exponent:

β = 2(H + 1) (4.19)
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Figure 4.1. Sampling of lattices with increasing correlation. We show how the lattice sites
become increasingly correlated as the generalized Hurst exponent increases from -1 to 0. a)
H = −1.0 corresponds to the random case. b) H = −0.67 corresponds to antipersistent
correlations c) H = −0.33 corresponds to persistent correlations d) H = 0.0 corresponds to
increasingly large correlations where clustering of similar strengths is clearly observable.

Because the Hurst parameterization is typically 1D (given by Eq.4.10), but we rely

on a 2D fourier transform parameterized in terms of β, whose value is shifted by 1 in 2D

relative to 1D, we need to shift the value of the exponent of α by 1 as is show in Eq.4.19.

Thus, if α = −1.0 we get no long range correlations, and if α = 0 we get Brownian

long range correlations, whose power spectra behaves like k−2. Since we construct the
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correlated lattice by applying a Fourier filter characterized by β = 2(α + 1), we use α in

range [−1, 0].

More importantly, for these reasons we adopt a modified Hurst parameterization which

shifts its values by −1. This comes at some risk since in much of the literature α = H,

and use the standard range, [0, 1]. We choose our parameterization in order to make

explicit the need for a mapping between 1D and 2D Hurst characterizations. We suspect

that this oversight may in part explain why previous authors report compact clusters for

H > 0.5. Over the shifted range we preserve the fractal structure of our clusters. We find

compact clusters begin forming for H > 0.5 which corresponds to an unshifted value of

3/2. Such a value certainly would drive clusters to become compact. For the generalized

Hurst exponent, we expect antipersistence for H < −1/2 and persistence for H > 1/2.

For H = −1/2 we expect fractional Gaussian statistics.

4.4 Correlation Algorithm

We execute this Fourier filter technique using an FFT on a NxN dimensional array with

complex coefficients [16]. The algorithm is outlined as follows:

1. We generate a NxN array with each value, hnm, assigned a random value from a

Guassian probability distribution.

2. We execute a 2D Fast Fourier Transform (FFT) giving an array of complex coeffi-

cients, Hst.

3. We define radial wave number kr, which is non-zero for s = t = 0, as follows:

kr =
√

1 + s2 + t2 (4.20)

4. Since S(kst) ∝ |Hst|2 we define a new set of complex coefficients, Hst, multiplied by

the appropriate filter function:

H ′st = Hst/k
β/2
r (4.21)

5. Apply an inverse FFT (IFFT) on H ′st to produce a new NxN array with coefficients,

h′st with the desired correlations.
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6. Apply the error function, erf(h′st), to return a uniform correlated distribution with

values in range [0,1].

We illustrate an example of the types of correlations produced by our algorithm in

Figure 4.1.

4.5 Static Network Properties

IP was intended to simulate the quasi-static displacement of one fluid by another through

capillary forces. The networks produced simulate long time expectations of systems even-

tually able to achieve equilibrium. These networks are frequently characterized by uni-

versality classes which in principle reflect symmetries in the lattice itself and are therefore

insensitive to the distinct network growth mechanisms. However, the precise extent to

which static network properties become insensitive to the growth mechanism is still an

area of interest, so here we outline some of the static network properties and how these

change as a result of the input long-range correlations.

In a previous study we characterized some of the essential network properties of our

model [10]. This study utilized free edge boundary (FEB) conditions along both axes

primarily due to ease of implementation. In a subsequent study we implemented periodic

edge boundary (PEB) conditions in order to better establish the universality class of the

exponents characterizing the model. We found PEB conditions reliably yielded the infinite

lattice limit for the scaling exponents. Finally, a growth algorithm with PEB complements

the implementation of site correlations as the Fourier filter technique described before also

enforces periodic conditions in assigning site strengths to the lattice.

The first characteristic exponent is the scaling of occupied cluster sites, M(L), with

lattice size L. This scales with characteristic fractal dimension Df according to:

M(L) = LDf (4.22)

We can easily extract exponent Df using the well-known box counting technique [16] and

perform a linear fit using linear least squares (LLS) on a log-log plot.

Figure 4.2 shows the extracted Df for different H. For the random case, H = −1.0,

we reproduce the fractal dimension consistent with RP, Df = 1.895±0.016. We find that
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Figure 4.2. The fractal dimension, Df for differentH. For the random case, Df = 1.895±0.016
which is similar to the expected value of RP. The values all seem to be consistent with one
another and do not suggest much change as the correlation changes over the range of the study.
For H = 0.0, Df = 1.939±0.028, which is inconsistent at the 1σ from some of the other values.

input site correlations do not significantly affect the fractal dimension measure in the

range of our study. This highlights the macro nature of this measure which is relatively

insensitive to changes.

This is somewhat consistent with [3] which looked at RP with the same long-range

correlations and found no change to Df except for H > −0.3 and where the Df → 1.95

as H → 0. The authors of [4] found similar behavior. Other authors report no detectable

change in Df [2] which considered equivalent H correlation in the range [−1, 0]. That we

observe a change in Df for H > −0.9 illustrates a difference between IP and RP growth

mechanisms.

Perhaps more importantly is that we observe clear evidence that the site correlations

change the density of the invaded sites, since site density is determined by, ρ ∼ Ld−Df . As

observed in the Ising and percolation critical transition, changes in the order parameter
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Figure 4.3. The scaling of distance between sites for different H. For the random case
Dmin u 1.22, this tends to decrease as H tends to 0. The loopless condition will prevent a
cluster from becoming compact and Dmin from becoming 1.

induce changes in the density. In our previous characterization of critical behavior of our

model, we found that because ρ did not change, the notion of an order parameter seemed

superfluous. However, now that this is no longer the case, we should expect the changing

density to influence critical behavior of the model.

Previous studies on the trapping variant of long-range correlated IP in 2D found

cluster behavior becomes non-fractal (compact) for H > 0.5 [17], though in this study

they considered 0 ≥ H ≥ 1. In another study the authors of [9] considered a non trapping

variant similar to ours and found a minima as we did in the range of our study. While

Df for RP seems to remain unchanged at least for H < −0.3, for IP Df decreases to a

minima before likely increasing towards 2 as H increases above zero.

Though the effect of correlations on Df is relatively small, we can better understand

the effect of correlations on the resulting clusters by looking at the minimum distance

between invaded sites. The basic formalism follows that outlined in Section 2.3. Where
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Dmin is the fractal dimension of the shortest path.

We find that as H increases, Dmin tends to decrease. This behavior is reflected in

Figure 4.3. We understand this behavior as follows: for the random case, we expect to

find “holes” (trapped regions in IP cluster with loops) in the cluster which are also scale

invariant. The paths and the distance between sites in the cluster will necessarily become

circuitous. If site strengths are correlated such that similar strengths group together, and

given that IP grows by breaking the weakest sites, the IP algorithm will naturally seek out

connected regions of weaker sites. This means that fewer portions of the lattice will need

to be sampled as the path between two connected sites becomes more direct since it is the

result of correlations to create connected regions of weak site regions. Similarly, there will

be larger regions devoid of any cluster growth as strong sites will likewise preferentially

occupy these regions. This helps us understand the behavior of Df which is related to the

density exponent according to Df −2. The smaller Df corresponds to a less dense cluster

occupying the lattice, although locally in regions around the cluster, the cluster becomes

more dense. This trend starts to reverse for H > −0.1, as the dense local cluster regions

make up more of the lattice than the large voids filled with strong sites. Once again,

the loopless condition will prevent Dmin from becoming 1 because some paths will not be

allowed in order to maintain the existence of only 1 path joining sites in the cluster.

This behavior is similarly summarized by looking at the backbone exponent DBB as the

authors of [2] did with RP. They found that as H increases DBB approaches Df , meaning

that th majority of the cluster exists along the cluster backbone. This qualitatively has

the effect of causing the cluster to become both more dendritic and compact as the Hurst

exponent increases.

4.6 Critical Threshold

One of the most important features of percolation is its relation to critical phenomena [18].

In the previous section we looked at the static network properties of a percolation cluster,

however, criticality is characterized by the structure of fluctuations near the critical point

which grow to dominate all scales of the system. This then becomes much more a question
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Figure 4.4. Comparison of clusters grown with different correlation exponent, H. As H → 0
the clusters becomes more dendritic and compact.
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of how the cluster grew to occupy its final form.

In RP the site occupation probability, p, serves as the control parameter for RP’s sec-

ond order phase transition. This phase transition is described by the emergence of global

connectedness where the many isolated clusters existing in regime p < pc conglomerate

into a single lattice spanning cluster for p ∼ pc. To better elicit the connection between

RP and IP, it is instructive to understand how RP’s critical point manifests itself in IP.

We begin by looking at the distribution of site strengths of the invaded cluster. In IP

all lattice sites are randomly assigned values from a uniform distribution in the range [0,1],

but when looking at the distribution of the strengths of invaded sites, we find the selection

of strengths to be a regular subset of assigned strengths. In particular, in the limit where

the number of invaded sites, N , becomes infinite, the invaded strength distribution is

described by a step function:

lim
N→∞

p(r) =

 k 0 ≥ r ≥ rmax

0 r > rmax

where a random strength, r, has constant probability k, of being invaded up to some

strength, rmax. These are related according to 1/k = rmax, and it has been shown that

rmax = pc where pc is RP’s critical occupation probability [19].

Without a threshold, a cluster grown by IP (random) will grow indefinitely, and repro-

duce many of the characteristic exponents of RP’s incipient infinite clusters (IIC), which is

why IP is believed to reproduce the emergent incipient infinite cluster which defines RP’s

connected state [20]. A threshold in IP effectively acts in the same way as the occupation

probability for RP. This can be understood heuristically as follows: we assign lattice site

strengths from a uniform distribution in the range [0,1] as is usual, but then only invade

sites if its strength is below some predetermined threshold. A cluster will terminate its

growth once it exhausts all perimeter sites with strength less than the threshold. However,

if the threshold is rmax ≥ pc then it becomes possible to grow a cluster infinitely. Thus

growing a cluster with threshold equal to pc will grow an independent realization of RP’s

emergent IIC.

However, to better understand the critical aspects of IP, we need to understand the
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Figure 4.5. The changing distribution of invaded strengths for different correlation Hurst
parameter, H. For the independent random case (H = −1.0) we recover an approximate step
function reflecting constant probability of invading a particular site up to rmax anywhere in
the cluster. As spatial correlations increase it becomes increasingly likely to sample weaker
sites.

structure of fluctuations, and here the threshold seems to control the type of fluctuations

which occur and will be discussed in detail in the next section. (This is the idea behind

the notion of our burst mechanism presented in [10], and indeed we find that at the critical

threshold the cluster size distribution is scale invariant.) Here we aim to understand how

the critical threshold, which is rmax in the random case, changes under the application of

long-range correlations to lattice site strengths.

A flat uniform distribution of invaded sites is evidence that regardless of where in the

lattice the growth takes place, the likelihood of a particular strength to be invaded remains

constant. If instead we could sample weaker sites with more regularity than stronger ones,
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we would no longer observe a flat probability, and subsequently, the threshold would

change depending on the local ratio of weak/strong bonds. This is precisely the scenario

introduced when introducing long-range correlations into the assigned strengths. Fig4.5

shows how the distribution of invaded sites changes as a result of changing correlation

exponent, H.

Previous studies with RP on long-range correlated lattices have shown that the pc

changes depending on the Hurst parameter, H [2]. Other authors have tried to use

p− pc ∼ L−1/ν relationship to determine pc but this becomes problematic as ν changes as

a result of long-range correlations in a non-trivial way [3] and as is shown in Section 4.2.

For our purposes we would like to generalize our AIP model which requires us to

establish a burst threshold which serves to define distinct bursts grown from within a

cluster. An important feature arises with the introduction of long-range correlations:

this feature being that the local strength environments produces sufficiently different

thresholds such that the notion of global lattice threshold breaks down.

Input correlations of type in Eq.4.19 will produce produce mean strength fluctuations

defined as are described by described by:

< u(r′)u(r′ + r) >=
〈
δs2
〉
− 〈δs〉2 (4.23)

where δs = ui − x and ui is strength of the ith site and x is the random non-correlated

component of the strength. We find the mean strength fluctuations are also described by:〈
δs2
〉
− 〈δs〉2 ∼ r−2H (4.24)

which we recognize as also describing the second moment of the strength distribution,

which will have well-defined mean for 2H > 2 and well-defined variance for 2H > 3.

Thus by construction the variance of average strengths is poorly defined since the tail

events are not exponentially bounded. This results in infinite variance. Moreover, even

average values for quantities resulting from averaging over distinct regions will not be well

behaved. Thus, any averaged macroscopic quantity will be poorly behaved.

An alternative notion for a burst could rely instead on a “bulk to boundary” ratio, rBB.

The authors in [2] used a similar argument to determine pc with long-range correlations
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Figure 4.6. Here we show how the “bulk to boundary” ratio changes as a function of Hurst
correlation exponent H. For random case (H = −1.0) we see the ratio approach pc = Tc, but
for H > −0.5 the ratio fails to asymptote to a known value.

where they determined pc by noting which pocc produced a ratio of one between the

perimeter of filled and unfilled sites. Using a similar strategy authors have argued that

using a “bulk to boundary” ratio as a generalized way to determine the critical occupation

probability [21]. However, determining the ratio analytically using:

lim
N→∞

N

B(N)
= Tc (4.25)

leads to slightly different results since Tc → pc in the random case. In Leath’s original

paper [22] the expression for the probability of finite clusters of size n with b empty

perimeter sites assumed sites with independent random probabilities. One must instead

empirically determine the ratio needed to produce scale invariant distribution of bursts.
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We empirically determined the ratio, rBB for our clusters for different H. We found

that the behavior of rBB did not universalize in any way to allow us to preserve the notion

of a collective critical point. Not only do the values of stable ratios change, but we find

that for H > −0.5, rBB fails to asymptote to a fixed value. These results are shown in

Fig4.6.

With random IP we were able to establish the existence of a critical threshold, but

with long-range correlations, these relationships no longer hold. In the next section we

discuss how the phase transition is smoothed such that there is no longer a power-law

divergence with the control parameter as T → Tc. The notion of criticality itself begins to

break down, but its worth asking whether we have the correct notion of the critical control

parameter such that we observe universal critical behavior in the presence of long-range

correlations.

4.7 Correlated Critical Behavior

In this section we explore how the Hurst long-range correlations affect AIP’s growth

mechanism, and in particular, we would like to establish how site correlations impact

the system’s critical behavior. Of course, since criticality is inherently scale free, it is

most sensible to extend AIP’s behavior subject to PBC. In the previous study[7], we

characterized AIP’s critical Fisher type burst distribution, ns(τ, σ), subject to PBC. This

distribution, in conjunction with the correlation length scaling exponent, νI , produces a

distinct universality class, though, only as a pseudo critical system due to the absence

of a natural order parameter (and perhaps suggests the suitable way of categorizing all

SOC systems). AIP’s underlying growth mechanism utilizes the emergent long-range

correlations of RP near the critical occupation probability. This property is derived from

the behavior of fluctuations in average site occupation which scale according to δ〈pocc〉 ∼

L−1/νR (where νR is the RP correlation length scaling exponent). This is the emergent

structure that allows scale invariant connected burst sequences to form. However, this

inherited behavior from RP is altered in AIP because we switch from RP to IP growth

dynamics by instead assigning strengths between [0,1] sampled from a uniform random
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distribution. AIP then follows a simple path of least resistance algorithm to form a

connected self-avoiding sequence of the weakest sites. The set of invaded sites and their

associated strengths will form a subset of strengths in the range [0, Tc] (where Tc = pc)

with characteristic length L−1/νI (νI = 1.3 slightly different from RP’s νR = 4/3). Bursts

grown at Tc reproduce RP’s incipient infinite cluster (IIC), and importantly do so without

producing the adjoining distribution of finite clusters. This is the primary reason the two

models differ. In AIP bursts grown near Tc, we continually sample IICs subject to an

environment of already populated and grown with previous iterations of IICs. If we now

input additional correlations that yield fluctuations in strength according to δ〈h〉 ∼ L−H ,

this alters the mechanism responsible for the emergent structure, and we expect these to

affect the effective correlation length and burst size distribution. If these quantities are

altered then the overall critical behavior of the system must necessarily change.

To that end, we begin with a discussion of the correlation length scaling where we

refer back to the fundamental finite size scaling hypothesis, the bedrock of criticality. We

begin by addressing the question of how site strength correlations affect the correlation

length, ξ.

For lattice systems, the notion of correlation length is generally understood by the

correlation function (pairwise correlation function) which empirically has been established

to behave according to

C(r) ∼ rd−2+ηe−r/ξ (4.26)

Therefore, the correlation length, ξ, characterizes when random correlations become ex-

ponentially suppressed as a function of distance, r. If ξ ∼ Lsys, then the correlations

display long-range behavior described by a power law C(r) ∼ r2−d+η.

As before, the correlation length defines the statistical spatial extent of bursts, that is,

the likelihood two sites a distance r apart are likely to belong to the same burst. Despite

the effect of increasingly dominant Hurst correlations, burst characteristics still greatly

depend on the burst threshold, and thus, we expect the correlation length to similarly

depend on the burst threshold.

Though the characterization of C(r) provides a rather simple, intuitive understanding,
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Figure 4.7. Mean site strength fluctuations. We show the expected scaling of lattice site
strength fluctuations, δ〈h〉L ∼ L−H .

Figure 4.8. Here we show how the correlation function for different Hurst correlation values,
H, changes. We fix the threshold to be T = 0.25 for all H, and we observe how the exponential
decay constant, ξ varies from ∼ 1 in the random case to ∼ L in the maximally correlated case.
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it is seldom used in the literature since the pairwise correlation function is often very cum-

bersome to calculate. Its computations scale according to O(N2) with N sites/particle.

Given an individual cluster ensemble contains 107 sites, of which we use 102− 103 ensem-

ble elements to obtain reliable statistics, acquiring the requisite statistics quickly becomes

computationally prohibitive. Fortunately, we were able to rely on a highly optimized and

parallelized implementation to efficiently compute, C(r) [23] which gave good results.

We find that the effect of long-range correlations on burst formation is to change the

required threshold that is likely to produce an infinite sized burst (when Rgyr ∼ ξ). The

effect of H on correlation function, C(r) is shown in Fig.4.8. In order to isolate the H

dependence, we keep εT fixed for all curves and vary H. In the random case, we observe

the usual ξ(T ) that becomes exponentially suppressed for burst of order 2, but with

correlations we observe the additional H dependence, ξ(T,H) which can greatly extend

the correlation length despite keeping εT fixed. In fact, we can nearly reproduce the C(r)

near the critical value by merely changing H. One can work out that the expected relation

is

ξ(T,H) ∼ ε
1/H
T (4.27)

which agrees with the empirical results of Fig4.8. In our formulation, the random case

corresponds to H = −1.0 which yields a correlation length of order 1/εT , while the

maximally correlated case, H = 0, yields a strongly diverging correlation length and

becomes strongly limited by the system lattice size, Lsys.

This effect shows how Hurst site correlations become increasingly dominant as correla-

tions increase (H → 0). We even find that the correlation length can be more dependent

on Hurst correlations parameter, H, than the burst threshold used to define distinct

bursts. This leads us to consider different regimes where the burst behavior is better

described by Hurst site correlations and those regimes better described by typical criti-

cal parameter. As is common practice, we define a characteristic lengths, ξH and ξI to

correspond to these respective length scales.

For length scales much smaller than the system lattice size, l � Lsys we recover

the typical description of critical behavior characterized by the scaling of the critical
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parameter, and in the random AIP we found suitable scaling behavior for εT = (Tc−T )/Tc.

This characterization describes how the correlation length scales according to ξI ∼ ε−νIT .

This scaling is preserved for all length scales subject to the condition, l < ξI . For larger

length scales we observe crossover phenomena driven by the affects of Hurst correlations

on scales, ξI < l < ξH .

Briefly, we can anticipate this crossover behavior by recalling the arguments of the ex-

tended Harris condition which led to Eq.4.9. These results ought to describe the changes

in correlation scaling under the condition that the global lattice correlation length uni-

formly diverges. As we will show, the divergences become increasingly smeared as Hurst

correlations become increasingly dominant. This follows what was shown in the previous

Section (4.6) which shows the critical point itself being spread out over a range. Also,

Fig.4.10 shows the burst threshold likely to produce scale invariant bursts as a function of

H. Not only does the required threshold drop, suggesting fewer range of strengths need to

be sampled to grow arbitrarily large bursts, but also, the typical characterization relying

on εT breaks down as the critical burst threshold becomes degenerate.

Despite the Hurst correlations becoming dominant on the largest of scales and near

the critical point, we can still see evidence of more traditional critical behavior described

by burst threshold parameter, εT , away from the critical point. By looking at the zeroth

and first moments (number of bursts and average burst size) of the burst distribution, we

can observe qualitative differences associated with changing H. One way to quantify the

onset of crossover behavior is by recognizing that the width of the critical transition region

scale with ξ−HH . That is, the fluctuations become dominated by the Hurst correlations.

However, so long as εT > ξ−HH the scaling should be dominated by the usual scaling

dependent on εT .

We can observe this regime in Fig4.9, where we can see similar behavior of the moments

up until the vicinity of the critical point where the behavior radically departs. This is

evidence for crossover phenomena where for l < ξI we get behavior largely characterized

by εT , and a departure from this behavior for l > ξI . Further, we can notice that the

curves of different H do not lie on top of each other, indicating that the scaling exponents
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Figure 4.9. Here we show how the cluster distribution moments fail to diverge, except for
the random case (H = −1.0). The transition region becomes increasingly broadened as the
Hurst correlation parameter increases. (left) This plot represents the zeroth moment and
corresponds to the number of bursts as a function of threshold, T . (right) The behavior of the
second moment corresponding to the average burst size as function of threshold, T .

ought to be different. In this case, the zeroth and second moments are given by α, γ and

we do find changes with these scaling exponents as H changes.

The essential bit of evidence for critical behavior is the existence of Fisher type burst

distributions, and we observe the existence of scale free burst distributions for all ranges

of H we considered. As we showed previously, we were largely able to define the critical

behavior by characterizing the burst distribution, namely, ns(τ, σ). This strongly suggests

that a similar description should be appropriate here where we begin with the description

of a critical threshold, Tc.

As was suggested by Fig.4.10, there exist distinct critical thresholds which give rise

to distinct cluster/burst distributions for different H. So long as εT > ξ
−1/νH
I , we expect

there to exist a scale invariant distribution of bursts up to some scale ξI . Our task is to

understand precisely how the critical behavior changes with H in this regime. To that

end, we might expect a precise relationship governing τ(H), since from Fig.4.11 we can see

an increasing magnitude of τ as H increases. An increase in the magnitude of τ translates

to the general trend that prefers cluster growth by smaller bursts rather than larger ones.

However, Fig.4.9 shows average burst size decreasing only very near the critical point and
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Figure 4.10. Here we show how the value of thresholds, T , changes with H. It is ξ(T,H) ∼
Lsys that gives rise to scale invariant burst distribution.

126



Figure 4.11. The burst size frequency-magnitude scaling for different Hurst correlations, H.
We observe a spectrum of τ exponents [1.59, 1.90] characterizing the burst size distribution
as H changes. As Hurst correlations increase τ → 2 which indicates a preference for smaller
burst sizes.

above. Below the transition value, the tendency is for cluster growth to occur via larger

average burst sizes as Hurst correlations increase. This is further evidence of a crossover

type of phenomena near the transition regime. Still, we will want to be able to account

for this somewhat contradictory behavior in our description.

Of course, one of the nice features of working with the burst distribution is that we

can directly calculate the expected behavior of the average burst size scaling. This is done
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with the usual moment calculation,

Mk = ε
1+k−τ
σ

T

∫ 1

0

dz zk−τf [z] (4.28)

where here k = 2, z = (Tc − T )sσ, and in the upper limit, we observe the relation

s � (Tc − T )−1/σ. Thus, sξ(T ) = (Tc − T )−1/σ behaves as the exponential cutoff cluster

size for the cluster size distribution. Since the integrand evaluates to a constant, we once

again get the familiar γ exponent relationship

γ =
2− τ
σ

(4.29)

However, we must characterize the burst cutoff size sξ. This is done with the relation

sξ = ξDs from Eq.4.22 and leads to the exponent relation

1

σ
= Dsν (4.30)

There is a slight distinction between Ds ≈ 1.865 and Df ≈ 1.896 in the random case,

which does not significantly affect the critical behavior, and these differences decrease for

increasing Hurst correlations since Ds ∼ DF . As was discussed previously and found in

Section 4.5, these fundamental mass-length scalings change very little for changing Hurst

correlations, therefore, this leads to the important behavior of ν which we introduced in

Section 4.2.

By plugging Eq.4.30 into Eq.4.29 we establish the following relation:

γ = (2− τ)Dsν (4.31)

which will allow us to determine how the average burst size ought to behave as a function

of exponents τ, ν. We expect from the extended Harris criteria that the site strength

correlations become relevant when their associated correlation scaling becomes larger

than that of the random case, νH = 1/H > −4/3. While we do see some minor effects for

H = −0.9 on the correlation length scaling, we generally observe behavior consistent with

the extended Harris criteria, which tells us that for H > −3/4 the correlation exponent

νH is given by

νH = 1/H (4.32)
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Df Ds 1− η

H = −1.0 1.897± 0.003 1.860± .002 1.804± .009

H = −0.9 1.894± 0.003 1.857± .002 1.79± .01

H = −0.7 1.888± 0.003 1.863± 0.002 1.79± .01

H = −0.5 1.880± 0.002 1.867± 0.001 1.794± 0.007

H = −0.3 1.872± 0.002 1.855± 0.002 1.78± 0.01

H = −0.1 1.871± 0.002 1.850± 0.002 1.77± 0.01

Table 4.1. Static scaling exponents.

Tc τ ν γobs γth

H = −1.0 0.5926(5) 1.594(2) 1.301(2) 0.971(5) 0.9825

H = −0.9 0.590(1) 1.597(2) 1.359(2) 1.025(3) 1.017

H = −0.7 0.580(5) 1.635(2) 1.47(2) 1.041(5) 1.00

H = −0.5 0.570(5) 1.711(2) 1.95(2) 1.066(3) 1.052

H = −0.3 0.54(1) 1.810(2) 3.1(1) 1.10(2) 1.09

H = −0.1 0.48(9) 1.90(5) 7.6(5) 1.18(1) 1.4

Table 4.2. Critical scaling exponents. This shows a comparison of scaling exponents
for AIP model with different Hurst correlations H, where H = −1.0 is the random
case (H = 0 in the usual formulation) and Hurst correlations increase with increasing
H. We used a 4096x4096 lattice with PBC to generate statistics. In order to account
for any remaining finite size affects, we set the burst size threshold to be 106. We used
at least 106 − 109 bursts for all statistics, depending on the proximity to the critical
point. The error represented in parenthesis of the final digit is the error in the LLS
fit. We find that critical relations start breaking down as H → 0, indicating critical
processes no longer govern behavior.

We confirm this behavior by calculating ξH in the standard way [7, 24]. The obtained

scaling is reported in Table 4.2.

As we observed previously, it is somewhat unexpected that the average burst size

should increase with decreasing, τ . Eq.4.31 neatly provides an explanation for why the

average burst size increases despite the burst distribution preferring smaller clusters. The
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Figure 4.12. Correlation length comparison for different Hurst correlations, H. This is
generated from the statistics of over 107 bursts grown with PBC on lattice of size 4096x4096.
(left) We plot the correlation ξT vs burst threshold, T . (right) We plot the burst critical scaling
with critical parameter, εT . For the random case with H = −1.0, we get correlation length
scaling exponent, ν = 1.30, which is nearly similar to the RP value. Also, we can confirm that
for H > −3/4 we get correlation length scaling exponent given approximately by νH ∼ 1/H.

necessary condition is for νH to increase more drastically with H than the decrease of τ .

Since νH largely follows the extended Harris relation, we can see that this condition is

satisfied, and the result is increasing magnitude of the γ exponent. We verify Eq.4.31 by

numerical average burst size calculations.

We summarize the behavior of the system for length scales, l < ξb, as being primarily

critical in nature since we observe a correlation length governed by ξl ∼ ε−νHT . This

correlation length scaling forms the basis for a family of interdependent critical exponents

and most importantly the existence of a scale invariant burst distributions characterized

by exponents, τ , σ(ν). Some exponents change very little (Df , Ds, 1 − η), while others

change quite noticeably (τ, ν). These family of exponents potentially give rise to a whole

host of distinct universality classes if these properties are extrapolated to the entirety

of a system, but we are careful to note that these relations only hold up to a certain
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Figure 4.13. Burst scaling for correlated case, H = −0.10. Each curve represents the burst
statistics for different burst thresholds, T . Also shown are the linear fits to each curve repre-
sented by LLS and by MLE methods. The threshold becomes degenerate as a wide range of
thresholds lead to similar burst scaling statistics. We see a family of power-laws for thresholds
in the range [0.329, 0.534] which produce scaling exponents τ in the range [1.88, 1.92]

length scale, namely, for ξ < ξH . In fact, our system more importantly displays crossover

phenomena where the critical point gives way to new behavior governed by the Hurst

correlations.

The reason for crossover phenomena stems from the requirement of the extended Har-

ris criteria which relied on the existence of a global, uniform lattice transition. Should

this condition exist, we would fail to observe crossover phenomena, but this condition

fails precisely because the transition is smeared over a range of thresholds. The effect of
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Hurst correlations is to produce distinct regions of site strengths which alter the threshold

required to grow scale invariant bursts within these pockets. This range of thresholds is

given by ξ
−1/H
H and therefore quickly increase as H → 0. Further, these correlated regions

themselves are scale invariant by construction which is what effectively permits a range

of threshold to produce the same scale invariant bursts. We can see primary evidence

of this for ξ > ξH by looking at the Fisher burst distributions, ns(T ) for different T .

Fig4.13 gives an example of the degeneracy of burst distributions for different thresholds

for H = −0.1. We observe a wide range of thresholds produce nearly the same scaling.

This suggests that the burst distribution scaling is governed primarily by the correlated

scale invariant pockets of site strengths rather than the avalanche burst threshold mecha-

nism. This fundamentally alters the mechanism generating the critical Fisher distribution

from the avalanche burst type to Hurst correlations, and importantly admits mechanisms

that are non critical in origin (at least not governed by ξ ∼ ε−νT ) to produce a scale invari-

ant burst distribution. This last point is particularly important since the presence and

characterization of the Fisher distribution has largely been adequate in motivating and

confirming critical behavior. Here, we have an example of such a distribution absent the

usual mechanisms that drive a critical transition; one where the ε characterization fails to

describe scaling behavior. Still, the correlation length of the system is a power law, but

it does not diverge as a function of the proximity to the critical point, and therefore fails

to satisfy the requirements of second order phase transition mechanics.

For behavior with length scales, l > ξI we observe crossover behavior where the domi-

nant length scale becomes the Hurst correlation length scale, ξH . On this length scale we

expect fluctuations to be governed by ξ
−1/H
H and general property scaling of a function to

be given by f(l, ξ) = ξaHf(l/ξH).

We can find an interesting way this crossover behavior manifests itself within the

general framework characterizing our system. Returning to the correlation function, if

ξ(T,H)→∞, then we get power-law scaling of the correlation function given by C(r) ∼

r2−η since the exponential term goes to one. Of course, since we simulate finite sized

clusters, the condition of an infinite correlation length is when ξ > Lsys. This insures that
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there is very little deviation from power-law over the calculable range of r. In practice,

this is done by choosing a burst threshold suitably large (T > Tc) so as to observe power-

law behavior for r up to Lsys. In this limit we find very little difference between the η

exponent for different H and it remains very near the random uncorrelated case.

A complementary technique for calculating the average burst size comes from the fun-

damental, fluctuation dissipation theorem [25] which relates the susceptibility to average

site strength correlations. In the language of percolation this becomes a relation between

the pairwise correlation function mentioned previously, C(r), and the average burst size,

〈s〉 [24, 26]. The relationship is given by

〈s〉 = 1/V

∫
dV C(r) (4.33)

where V is typically taken to be the correlation volume given by, ξd. Again, we compute

C(r) using [23] with good results. With C(r) given by Eq.4.26 we can rewrite Eq.4.33 as

〈s〉 = ξ−2
∫
dr r2−η exp−r/ξ

= ξ−2ξ3−η
∫ ∞
0

dz z3−η exp−z

∼ ξ1−η

∼ ε
ν(1−η)
T

(4.34)

where z = r/ξ and the integrand yields a constant. The last line also makes use of the

usual critical scaling relation ξ ∼ ε−νT which we know is valid on smaller length scales.

This gives another relation,

1− η = (2− τ)Ds (4.35)

by plugging into Eq.4.31. Since 1 − η and Ds are nearly constant for changing H, we

would similarly expect τ to be nearly constant, but this of course is not true as is shown

in Fig4.11. Solving the above equation for τ gives a value near 1.59, which is the burst

distribution scaling for the random case and for γ ∼ 1.

This contradictory result indicates the dominant fluctuations and average cluster size

no longer scale in the same way. Knowing that there exist multiple correlation lengths

in the system, it is problematic to integrate over all length scales without distinguishing
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Figure 4.14. We show the crossover behavior inherent to AIP subject to different H. We find

that average burst epicenter density follows correlation length determined by ξI ∼ ε
−1/2
T for

small scales and ξ−HH at the crossover.

length regimes. If we consider the scaling of larger bursts, then we find an average burst

size that scales according (1− η)/H, where this relation predicts a much more dramatic

increase in cluster sizes as H increases. For example, for H = −0.3 we expect γ ∼ 2.5,

in contrast to the 1.1 we observe for scales up to ξI . The failure of the fluctuation

dissipation theorem as originally defined provides further evidence that behavior departs

from the usual critical fluctuation scaling dominating percolation transitions, which is

entirely interrupted by Hurst correlation effects.

Finally, in our previous work [7], we found the burst epicenter scaling differed from
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the general site mass scaling. This result is significant because it suggests the existence

of multiple correlation lengths. One correlation length is associated with the likelihood

of sites to occupy different burst clusters, and the other correlation length is associated

with the likely distance between burst centers. By looking at the scaling of average burst

epicenters density, 〈ρb〉 as a function of length scale, we found the expected crossover

behavior where for lengths less than ξI we get scale invariant 〈ρb〉 and nearly homogenous

〈ρb〉 for length scales greater. The scaling of ξI as function of burst threshold also was

found to behave with mean-field correlation exponent, ξI ∼ ε
−1/2
T , suggesting that burst

epicenters were distributed as a random walk about the lattice.

With the addition of Hurst correlations, there is yet another correlation length to

factor, and we find scale invariant 〈ρb〉 on smaller length scales, but the crossover length

scales for different H follow ξ−HH dependence. However, the threshold dependence still

follows a random walk characterization. Fig4.14 shows how the crossover length of 〈ρb〉

changes for different H. Namely, we can see that this length follows ξ−HH as it gets shorter

as H → 0.

The behavior of 〈ρb〉 provides an instructive way to understand why the generalized

burst scaling breaks down. The crossover length above which 〈ρb〉 becomes uniform,

indicates that burst with characteristic length above this must uniformly spaced. A burst

with a much larger characteristic length would necessarily cause a great void, and thus

because burst centers are distributed according a random walk, this will necessarily limit

the maximum size a burst can grow. Since this happens at a smaller length scale for

larger correlations, we expect to see a preference for smaller bursts which is what we find

since τ → 2 for H → 0.

4.8 Discussion

In our previous study [27], we found that the AIP model was not the usual critical

system. Rather, it was built upon the inherent scale invariance of RP and AIP’s growth

mechanism, which largely preserved scale invariance while altering the generalized critical

scaling behavior in non-trivial ways. Absent an order parameter, it is not appropriately
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described as the transition of the system from one phase to another, rather, it seems to

describe the growth mechanism of the meta-stable spinodal state, since it still produced

a characteristic critical Fisher type distribution. In this study, we include the addition

of long-range order input from site-strength Hurst correlations. The result is that the

clustering behavior of sites into bursts is changed, and therefore alters the resulting critical

Fisher distribution. Up to length scale, l < ξI , we get descriptions of different classes of

meta-stable spinodal type growth governed by H, but more importantly, we find that

the existence of ns(τ, σ) is preserved even when the underlying burst mechanism was

not critical in nature (ie is not governed by critical parameter, εT ). In this regime, the

long-range order of the background correlated lattice of site strengths could preserve scale

invariant bursts over a wide range of length scales regardless of burst threshold.

With these additions, we have been able to distance the behavior of correlated AIP

from traditional critical mechanisms. This offers some interesting possibilities. First,

because the existence of critical systems required the system to be at a rather finely

tuned point between small scale order and large scale disorder, namely near the critical

point, it is fair to wonder whether traditional critical theory can appropriately describe all

forms of emergent long-range order (a potentially rare event, since we would necessarily

have to rely on a single point in all of phase space). SOC systems offered the advantage

in that they do not require systems to be finely tuned to a particular value of phase

space, rather, a small external driving mechanism allowed the system to form meta-stable

growth dynamics which results in the system innately growing in the critical regime. In

many ways SOC growth dynamics seem to describe the potentially long-lived meta-stable

states describing droplet nucleation and spinodal states. Authors have noted the similarity

between SOC variants of tradition critical systems. For example, [28] shows how in SOC

singularities arise not from order parameters but instead from control parameters which

have a critical value. Also, [29] argues for the existence of characteristic ratio driving the

behavior of SOC systems.

While our findings support these claims, here we also show how scale invariant behavior

resulting from the competition of correlation mechanisms allows us to consider an even
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wider range of possibilities. Ever since Fisher showed that much of critical behavior could

be characterized from characterization of a critical distribution, ns(τ, σ) [30], it has been

widely assumed that the existence of Fisher type of distribution demonstrated critical

behavior. In this study, we find this not to be true. We find a Fisher distribution even

when the driving mechanism is not near its critical value. That is, the Fisher distribution

exists largely independent of its proximity to the critical value (in our case the critical

value is the burst threshold). Thus, not only do we escape needing to apply artificial phase

transition mechanics, but also the need to argue for a self-organization about some general

critical point. Thus, in systems with implicit long-range correlations, the correlation

length of the dynamics is strongly determined by the long-range correlations, and done in

such a way that preserves dynamic scale invariant properties (ie burst/cluster formation).

The generality of this result applies directly to broad extremal SOC type systems

(of which AIP and CAIP belong), and can naturally be applied to stochastic energy

minimization systems like interface motion in disordered media leading to domain walls

[31], minimum spanning trees describing strongly disordered spin-glass models [32], abrupt

species morphology changes through gradual changes in biologic fitness [33], and optimal

neural topologies [34].

However, as much of our work is focused on the feature of the IP process which is best

known as a drainage process of fluid infiltration [35–38], we focus on CAIP’s application

to fracture mechanics and induced seismicity[10, 27, 39, 40].

In [41], the authors argued for SOC description of tectonic seismicity producing rupture

events with b ∼ 0.4. This follows the work of [42, 43] among others that comparison of

model event scalings should be made independent of the 3/2 energy scaling factor implicit

in G-R scaling values. Tectonic seimicity is described by b ∼ 2/3, which is closer to

many mean-field models b = 1/2 and our random AIP model, b ∼ 0.6. However, with

correlations, we can obtain b-values in the range [0.6, 1.0] depending on the H. This can

in part account for the larger b-values associated with induced seismicity, [0.8, 1.3].

However, given the wide range of observed induced seimic event scalings, it is likely

necessary to account for the inherently 3D injection activity that only in some cases can
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be constrained to be 2D. [44] shows how even within the same shale, the dimension of the

injection activity can greatly differ. A previous study[45] attempted to parameterize 1D

and 2D growth through an anisotropic preference for growth along one of the axes. In the

limit where growth was strongly directed and along one axis, the burst scaling changed

from τ(2D) = 1.52 → τ(1D) = 1.45. This represents a change far too small to account

for the diversity of b-values associated with induced seismicity if only the dimension is

allowed to change. An instructive way to understand why increasing the dimension only

has a small effect on burst scaling is to understand that all burst sizes are nearly equally

likely to increase in size as a result of a new degree of freedom. Further, above the critical

dimension (D=6) we expect all scaling to be mean field making this notion exact.

This problem is potentially side-stepped if we extend Hurst site correlations to 3D as

well. We find burst epicenters to exhibit interesting behavior, being primarily distributed

according to typical percolation process on small length scales, but exhibits crossover

behavior for length scales greater than ξb where the burst centers are distributed according

to a random walk. This means that clusters larger than ξb will not follow percolation type

scaling, but tend to uniform density. This necessarily limits the probability of larger

clusters.

In 2D we have already found that larger Hurst correlations prefer growth by smaller

bursts, and when we allow this preference to be amplified by an additional degree of

freedom, its likely that we will observe an even more dramatic change in burst scaling.

We know that the random walk nature of bursting behavior is essentially preserved with

the introduction of H, and permits a higher density of bursts then would be allowed if

it were entirely a percolation system. This can account for event densities which are

essentially uniform on large scales, and have mass scaling that is given by the usual non-

fractal dimension scaling, d. Thus, by extending our model along with Hurst correlations

into 3D we expect to reproduce a greater range of b-values.

Finally, the primary feature inherited by traditional critical (second order phase tran-

sition) phenomena is a single correlation length diverging with power-law behavior. In

many real physical complex system, there may exist multiple correlation lengths domi-
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nating behavior within their respective regimes. We have shown that depending on the

growth dynamics long-range order can subsequently be modified through the competition

of correlation mechanisms and alter the scale invariant behavior in non-trivial ways. Con-

trary to criticality requirements, we find the existence of multiple correlation lengths to be

consistent with power-law behavior and indicative of SOC type processes where the crit-

ical nature is fundamentally changed. We still preserve many essential features, namely,

the ability of a stochastic process to manifest itself across a wide range of scales, but the

interference of competing correlation mechanisms alters the resulting behavior. Under-

stood across all length scales, the correct approach is perhaps a multifractal one where

the characteristic distributions behave with moment description, Mk(L) ∼ Ly(k), with the

key additional understanding that for many of the scales of interest scale invariance is

essentially preserved.

The multifractal framework [46] understood through the lens of the hierarchy of cor-

relation lengths would have a set of fractal scalings describing the dominant singular

behavior associated with each length scale. Briefly, in the case of a single length scale,

which in addition give rise to hyperscaling, yields moment distributions in terms of cor-

relation lengths according to

Mk(l, ξ) ∼ ξd−kDff(l/ξ) (4.36)

where k represents the k-th moment, Df the characteristic mass scaling, and f(l/ξ)→ 1

for l � ξ. The essential behavior is that exponents of successive moments are equally

spaced according kDf , since k is an integer. Should we have ξ1 > ξ2 where ξ1, ξ2 are the

respective characteristic length scaling regimes, with scaling exponents, D1, D2 then we

would expect, for lengths l > ξ1 to behave according to ξd−kD2
2 ∼ (ld−kD1)d−kD2f(l/ξ2)

Then we expect moment dependence to have quadratic dependence on k rather than

linearly, and thus for its successive moments to depend on y(k2). The inherently multi-

fractal behavior of our model provides an excellent case study for developing and better

understanding current multifractal analysis techniques.
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Chapter 5

Conclusion

While the study of complex systems has seemingly progressed at a modest pace, some

of the major insights have been to reveal the shortcomings of traditional analytical ap-

proaches. In particular, the Lorenz system, a characteristic example of chaos, revealed a

class of phenomena which despite being entirely deterministic, becomes analytically in-

tractable due to the system’s non-linearities [1]. Computational approaches have shown

that the system is reproducible only with exact knowledge of the initial conditions and

with the ability to compute solutions to arbitrary precision [2] . More importantly, the

limits of computer precision lead to the conclusion that phase space trajectories are not re-

producible even when accounting for the errors associated with precision. This frustrates

traditional approaches which rely on the tremendously successful strategy of finding per-

turbative approaches to capture the essential features and leaves complications as higher

order corrections to the underlying phenomena. This potentially leads to the conclusion

that the failure to find useful analytical solutions does not represent a lack of wit or clev-

erness, but rather a far larger shortcoming that invalidates linear approaches altogether.

That these strategies are not universal in scope, is one of the most important insights to

emerge from the study of complex systems.

This is echoed in early studies with cellular automata that showed very simple systems

could create chaotic, unpredictable behavior [3]. One might think that these are special,

pathological examples of nature, but the innate fractal structure of cellular automata and

the fractal structure of the Lorenz phase space are evidence that where there are fractal
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characteristics there is likely to exist these pathologies. Further, we have found that

nature seems to be imbued with many examples of fractal and repeating structures which

strongly indicate that the non-linearities present in these systems are much more the norm

rather than the exception [4]. Thus, the development for entirely new approaches to these

disparate classes of problems has come to describe the amalgamation which is the study

of complex systems as a formal field. Computational and information theoretic models

have made good progress in recent years. The approach outlined here follows in these

steps where the goal is the development of computational models that capture the fractal

characteristics that have come to define distinct complex systems. Since the governing

differential equations are frequently too difficult to solve, their insights become limited,

and it becomes more sensible to merely have an algorithm or set of rules to generate the

system, and to rely on a statistical approach to characterize its fractal properties.

The study of critical phenomena parallels these developments where intrinsically ran-

dom models coupled with scale invariant correlation lengths lead to fractal descriptions.

Formally, critical systems describe a phase change in a substance where small scale inter-

actions with a small correlation length define the stable equilibrium phase. During the

phase change, the stable equilibrium state gives way to the system’s intrinsic fluctuations

with infinite correlation length and leads to the observed critical properties. This appar-

ent dichotomy between finite/infinite correlation lengths seems to nicely capture when

fractal characteristics are likely to proliferate. However, if we follow this model explicitly,

we would expect some notion of a stable equilibrium state with finite correlation length

to give way to fractal behavior and for many examples, this does not seem to be the case.

For example, deposition is not described by the existence of stable equilibrium states with

a finite correlation length that then gives way to scale invariant behavior. Therefore, it

is incumbent to study alternative descriptions. As IP is a variant to RP, we propose a

variant description where fluctuations and an infinite correlation lengths do not emerge

during a transition of phase. Rather, the fractal characteristics are emergent results of

slowly driven non-equilibrium dynamics. It is still the case that we aim to characterize

distinct fractal systems with their appropriate universality class, but as we have loosened
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the constraint of requiring the notion of distinct phases, we can explore a broader set of

universality classes. With this approach, we seek to find mappings between universality

classes and the fractal statistics of natural phenomena. A particularly effective method

is to utilize the prominence of Fisher type distributions and their utility in characterizing

distinct universality classes.

With these generalizations, we explore a broader framework of models that produce

fractal statistics. For example, the scaling hypothesis suggests that a single scale invariant

correlation length leads to fractal statistics, but with our AIP model, we show that we

can relax this constraint and produce “effective” scale invariance which preserves scale

invariance over greater than 4 scales. Further, our AIP model preserves the existence of a

critical Fisher distribution that defines the associated universality class. Not only can we

do away with phase transition mechanics by not needing to define distinct phases, but we

also do not need to enforce a single scale invariant correlation length. This leaves hyper-

scaling as the only essential property which emerges from second order phase transitions.

Should natural systems have fractal statistics consistent with hyperscaling relations, then

it’s likely that some underlying phase transition mechanics are applicable. However, as

we have shown fractal statistics emerge in all manner of cases and without any explicit

notion of phases.

As our primary aim is to find a suitable universality class for induced seismicity,

and because our AIP model produced a critical Fisher distribution (despite its two scale

invariant correlation lengths), it however, failed to produce the desired magnitude scaling

of events. While AIP more aptly described the behavior of slowly driven non-equilibrium

systems, it produced only a single magnitude scaling (near but distinct from mean-field

scaling), while induced seismicity is consistent with a range of magnitude scalings.

By incorporating inherent long-range correlations between sites into AIP, we produce

a range of magnitude scalings, some of which are consistent with induced seismicity.

Additionally, the long-range correlations introduce yet another scale invariant correlation

length into the system and rather than eliminating scale invariant behavior, we find that

it persists. Not only do we preserve a critical Fisher distribution, but we also eliminate
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the need for the system to be near a critical value in order to produce it. Thus, not

only do we eliminate the need for distinct equilibrium states, but we also eliminate the

need for the system to self organize around a special value. This introduces a multifractal

description where different scale invariant phenomena emerges depending on the dominant

correlation length. “Effective” scale invariance can persist across many length scales,

but can experience crossover phenomena described by different scalings when another

correlation length becomes dominant. Alternative, some scale invariant features can be

unaffected by other correlation mechanisms. We find this to be the case with the Fisher

distribution, which persists without any observable crossover behavior.

This introduces a new paradigm for understanding the emergent fractal properties.

This strategy seeks to identify the multiple correlation lengths that govern the dynamics.

The realization of multifractal analysis seeks both to identify and disentangle how the

distinct scale invariant correlation lengths interact to produce observed fractal properties.

These models also provide an excellent framework for formulating approaches that map

a multifractal spectrum to the underlying correlation mechanisms.

The introduction of multiple scale invariant correlation lengths resolves another prob-

lem inherent to percolation type models. We approximate the fracture network of induced

seismicity by a 2D network. This is partly justified by the observation that in fracking,

the fluid is injected into tight shales which are well described as being planar with a non

zero thickness. Given the perils of simplifying assumptions, it is necessary to understand

the full 3D description with restricted growth along one axis. For percolation models

as the dimension increases, it is known that models approach a mean-field description.

Applied to the results of our AIP model, it would make the magnitude scaling even less

compatible with observation. However, for AIP with long-range correlations, this need

not be the case. Full 3D correlation with growth restricted along one axis will likely

favor growth by smaller scaling events. This allows us to explain why induced seismicity

has a characteristically small magnitude scaling (b = −2 where for tectonic b = −1 and

2D mean-field would produce b = 0.75). Thus, extension to a 3D description becomes a

promising next stage of study.
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