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Abstract 

Molecular and genetic pathways of insulin resistance (IR) connecting colorectal cancer (CRC) 

and obesity factors in postmenopausal women remain inconclusive. We examined the IR 

pathways on both genetic and phenotypic perspectives at the genome-wide level. We further 

constructed CRC risk profiles with the most predictive IR single-nucleotide polymorphisms 

(SNPs) and lifestyle factors. In our earlier genome-wide association gene–environmental 

interaction study, we used data from a large cohort of postmenopausal women in the Women’s 

Health Initiative Database for Genotypes and Phenotypes Study and identified 58 SNPs in 

relation to IR phenotypes. In this study, we evaluated the identified IR SNPs and selected 34 

lifestyles for their association with CRC risk in a total of 11,078 women (including 736 women 

with CRC) using a 2-stage multimodal random survival forest analysis. In overall and subgroup 

(defined via body mass index, exercise, and dietary-fat intake) analyses, we identified 2 SNPs 

(LINC00460 rs1725459 and MTRR rs722025) and lifetime cumulative exposure to estrogen (oral 

contraceptive use) and cigarette smoking as the most common and strongest predictive markers 

for CRC risk across the analyses. The combinations of genetic and lifestyle factors had much 

greater impact on CRC risk than any individual risk factors, and a possible synergism existed to 

increase CRC risk in a gene-behavior dose-dependent manner. Our findings may inform research 

on the role of IR in the etiology of CRC and contribute to more accurate prediction of CRC risk, 

suggesting potential intervention strategies for women with specific genotypes and lifestyles to 

reduce their CRC risk. 
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Introduction 

Colorectal cancer (CRC) ranks third among women for both cancer incidence and 

mortality in the United States and other westernized countries (1,2), and the majority (about 90%) 

of new cases and deaths occur in women ages 50 years and older (3). Of non-modifiable and 

modifiable environmental factors that together account for more than 60% of CRC susceptibility 

(4), obesity (both overall and central obesity) and obesity-related behavioral factors such as 

physical inactivity and unbalanced diet have been considered risk factors (5-7). 

Insulin is a potential mediator underlying the biologic mechanism by explaining 40% of 

the association between obesity and CRC (8). A recent in vivo study (9) reported that the 

elevated circulating levels of insulin and glucose, reflecting insulin resistance (IR), increased 

colorectal epithelial proliferation in a dose-dependent manner, suggesting the molecular IR 

pathways connecting to CRC. Further, obesity and IR, influencing mutually, lead to 

hyperglycemia and compensatory hyperinsulinemia and have been associated with increased risk 

for postmenopausal CRC (10,11). 

Thus, the potential existence of pathways between IR, CRC, and obesity on molecular-

genetic perspectives are convincingly presumed. Particularly, our previous study (12) revealed 

that genetic variants (single-nucleotide polymorphisms [SNPs]) in relation to IR phenotypes 

were associated with greater increases in IR among obese, physically inactive, and high dietary-

fat groups, indicating the role of obesity and obesity-related lifestyle factors as an effect modifier 

in the pathway between IR SNPs and phenotypes (Fig S1). Further, the effect of IR SNPs on 

CRC risk through an IR gene-phenotype pathway can be modified by obesity. Therefore, IR 

(genotype and phenotype) and obesity may conjunctionally influence the risk of CRC (Fig S1, 

yellow lines). 
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Understanding how obesity and related lifestyles interact with IR genes and phenotypes 

and modify the IR pathway, influencing the risk of CRC, is important to develop a gene-lifestyle 

preventive tool in primary cancer prevention. However, no published reports at the genome-wide 

level have examined the IR pathway connecting to CRC risk by incorporating obesity factors. In 

addition, published studies generating risk profiles for CRC with both genetic and lifestyle 

factors are scarce. 

 We hoped to address these gaps in this study. As the first step, by using data from 

postmenopausal women of the Women’s Health Initiative Database for Genotypes and 

Phenotypes (WHI dbGaP) Study, we previously conducted a genome-wide association (GWA) 

gene–environmental (i.e., behavioral) interaction (GE) study. We identified SNPs associated 

with IR phenotypes (homeostatic model assessment–IR [HOMA-IR], hyperglycemia, and 

hyperinsulinemia) by testing for interactions with obesity and obesity-related lifestyles (13). By 

performing a stratification analysis, we identified 58 SNPs that had genome-wide significance in 

women stratified by obesity (4 SNPs), physical activity (36 SNPs), and dietary-fat intake (18 

SNPs). 

  In the present study, as the second step, we evaluated whether those 58 SNPs were 

associated with the risk of CRC in the identically stratified subgroups (i.e., 

obese/exercise/dietary-fat subgroups) in which those SNPs had been found to be associated with 

IR in the earlier GWA GE study (13). This approach would allow us to test our hypothetical 

pathways, in which IR genes and phenotypes identified through interactions with obesity 

pathways are associated with CRC risk (Fig S1), and thus improve our understanding of the 

etiology of CRC. 
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 Moreover, in addition to obesity and related lifestyle factors, we further selected 31 non-

modifiable and modifiable lifestyle factors for use in this study in constructing risk profiles with 

the SNPs and lifestyle factors in relation to CRC by performing 2-stage random survival forest 

(RSF) analyses. The RSF is a machine-learning, nonparametric tree-based ensemble method 

which can deal with the nonlinear effects of variables (that are not handled in a traditional 

regression model) and evaluate high-order interactions among variables; thus the RSF may 

successfully yield accurate CRC-risk profile predictions (14,15). 

By using the most predictive SNPs and lifestyle factors identified via the two-stage RSF, 

we constructed prediction models for CRC risk. We further estimated the combined and joint 

effect of predictive variables on CRC risk by performing a regression analysis. By employing the 

two complementary statistical approaches, we finally tested whether the most-predictive genetic 

and lifestyle factors in combination predict the risk for CRC in a dose-response fashion. 

 

Materials and Methods 

Study population 

We used data from postmenopausal women in the WHI dbGaP, the Harmonized and 

Imputed GWA Studies, under dbGaP study accession phs000200.v11.p3, which came from a 

joint imputation and harmonization effort for the GWA study within the WHI 2 representative 

study arms Clinical Trials and Observational Studies. The detailed studies’ design and rationale 

have been described elsewhere (16,17). Briefly, the WHI is a long-term prospective cohort study 

that has focused on strategies for preventing chronic diseases, including breast cancer and CRC, 

in postmenopausal women. Healthy postmenopausal women had been enrolled in the WHI study 

between 1993 and 1998 from more than 40 clinical centers across the United States; the women 
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were 50-79 years old, expected to live in close proximity to the clinical centers for at least 3 

years after enrollment, and able to provide written consent. Women enrolled in the WHI study 

were eligible for the WHI dbGaP study if they had met eligibility requirements for submission to 

dbGaP and provided DNA samples. The Harmonized and Imputed GWA Studies consist of 6 

sub-studies (MOPMAP[AS264]; GARNET; GECCO-CYTO; GECCO-INIT; HIPFX; and 

WHIMS); in them, we initially identified 16,088 women who reported their race or ethnicity as 

non-Hispanic white (Fig S2). We applied the exclusion criteria to our earlier GWA GE study 

and excluded 1) women (n = 2,714) diagnosed with diabetes at or after enrollment and 2) women 

(n = 1,580) whose genetic data were related to others (kinship estimate > 0.25) and/or outliers 

based on principal components. In the current study, we additionally excluded 716 women with 

less than 1 year follow-up period and/or a diagnosis of any types of cancer at enrollment. Thus, a 

total of 11,078 women (including 736 women with CRC), who had been followed up through 

August 29, 2014, with 16-year median follow-up period, were finally analyzed in this study. The 

institutional review boards of each participating WHI clinical center and the University of 

California, Los Angeles, have approved this study. 

 

Data collection and CRC outcome 

 The coordinating clinical centers had collected data from participants’ self-administered 

questionnaires via a uniform written protocol and performed data quality assurance. Through the 

questionnaires at enrollment, participants provided demographic, socioeconomic, and lifestyle 

factors as well as family, medical, and reproductive histories. In this study, we initially pulled 

out all available variables; on the basis of their association with IR and CRC through the 

literature review (3,18) and the initial analysis process including univariate and stepwise multiple 
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regression analyses and a multicollinearity test, we selected 34 variables to evaluate in this study. 

In detail, we evaluated demographic (age, education, and marital status) and socioeconomic 

factors (family income and employment), family histories of CRC and diabetes, and medical 

(depressive symptoms, hypertension, high cholesterol, and cardiovascular disease) and 

reproductive histories (ages at menarche and menopause, number of pregnancies, months of 

breastfeeding, hysterectomy, one or both ovaries removed, and durations of past oral 

contraceptive [OC], unopposed estrogen [exogenous estrogen (E) only], and opposed estrogen [E 

plus progestin (P)] use). We further examined lifestyle factors including physical activity, 

cigarettes smoked per day, and diet per day (dietary intake of alcohol, fiber, total sugars, fruits, 

and vegetables; and percentage of calories from protein, saturated fatty acids [SFA], 

monounsaturated fatty acids [MFA], and polyunsaturated fatty acids [PFA]). We also included 

anthropometric variables, including height, weight, and waist and hip circumferences, which had 

been assessed by trained staff. 

The CRC outcomes were confirmed by a centralized review of medical charts. Cancer 

sites were coded corresponding to the National Cancer Institute’s Surveillance, Epidemiology, 

and End-Results guidelines (19). The CRC variables were defined as 1) cancer development 

(yes/no) and 2) the time to develop the cancer, estimated as the time in days between enrollment 

and CRC development, censoring, or study end-point, then, computed as years. 

 

Genotyping and laboratory methods 

We obtained the genotyped data from the WHI Harmonized and Imputed GWA Studies. 

The genotype calls were normalized to the reference panel GRCh37, and genotype imputation 

was performed via 1,000 Genomes Project reference panel. SNPs for harmonization were 
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checked for pairwise concordance among all samples across the GWA studies (17). The detailed 

genetic data-quality cleaning (QC) process has been described previously (13). In the initial QC 

process, SNPs with a missing-call rate of < 3% and a Hardy-Weinberg Equilibrium of p ≥ 10
-4

 

were included. We further performed the secondary QC and included SNPs with �̂�2 ≥

0.6 imputation quality (20), but excluded women with a kinship estimate of �̂�2 ≥ 0.25  to 

minimize possible confounding effect from shared environment. 

 We also obtained information from fasting blood samples in the WHI dbGaP Study, 

which had been extracted by trained phlebotomists from each woman at enrollment. The glucose 

serum concentrations were analyzed by the hexokinase method on a Hitachi 747 instrument 

(Boehringer Mannheim Diagnostics, Indianapolis, IN) and the insulin levels by 

radioimmunoassay (Linco Research, Inc., St. Louis, MO), with average coefficients of variation 

of 1.28% and 10.93%, respectively. The HOMA-IR levels were estimated as glucose (unit: mg/dl) 

 insulin (unit: IU/ml) / 405 (21). 

 

Statistical analysis 

 We examined the distributions of participants’ characteristics by CRC status by using 

unpaired 2-sample t tests (for continuous variables) and chi-squared tests (for categorical 

variables). If continuous variables were skewed or had outliers, Wilcoxon’s rank-sum test was 

conducted. In our previous GWA study, we had tested for the gene-environment interaction in 

the strata by body mass index (BMI: cutoff, 30 kg/m
2
), metabolic equivalents 

(METs)·hours/week (cutoff, 10 METs), and percentage of calories from SFA (cutoff, 7%). The 

results (either GE formal test and stratified analysis) from the sub-GWA studies were combined 

in a meta-analysis assuming a fixed–effect model. In the current study, we evaluated the SNPs 
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identified in the particular behavioral setting of obesity/physical activity/dietary fat intake in 

relation to CRC risk in the identical behavioral setting. 

 In this study, we performed the RSF analysis. The RSF first generates bootstrap samples 

using approximately 63% of the original data and then grows a tree from each bootstrap sample 

via a splitting rule, with which a tree node maximizes survival differences across daughter nodes. 

This tree-building process is repeated numerous times (5,000 times in this study) to create 

ultimately a forest of trees (22,23). Next, an ensemble cumulative hazard estimate was calculated 

from each tree and averaged over all trees for each individual; using this ensemble estimate, we 

estimated a predicted cumulative CRC incidence rate. Further, by using this ensemble estimate 

and creating the out-of-bag (OOB) data (on average, the 37% of the original data not used for 

bootstrapping), the OOB ensemble cumulative hazard estimate was calculated to compute the 

prediction parameter (i.e., prediction error interpreted as a misclassification probability). Finally, 

the OOB concordance index (c-index) was estimated from the formula (c-index = 1 – prediction 

error), which is a measure of prediction performance conceptually similar to the area under the 

receiver operating characteristic (AUROC) curve (22,24). 

 The rank of each variable according to its predictability of developing CRC was 

determined by 2 predictive parameters: 1) minimal depth (MD), in which variables having a 

small MD value split the tree close to the root are considered highly predictive and 2) variable 

importance (VIMP), estimated from the difference between the OOB c-indexes from the original 

OOB data and from the permuted OOB data, in which variables having greater VIMP values are 

the more predictive  (14). 

 We performed a 2-stage RSF analysis. In the first stage, we evaluated SNPs using an RSF 

for their association with CRC risk by incorporating obesity (Figs S3.B-F). We also examined 
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the lifestyle factors separately in relation to CRC risk (Fig S3.A). With only the SNPs and 

lifestyle factors that had significantly low MD and high VIMP values, we further conducted the 

second stage of RSF to generate risk profiles for CRC that account for both IR-genetic and 

lifestyle factors. In the stage 2, we took a multimodal approach. In detail, in the overall and 

stratified subgroups (defined by physical activity and SFA intake), we 1) estimated the two MD 

and VIMP parameters and compared the two measures in the plot (Figs 1A, S4.A1.B1, and 

S5.A1.B1); 2) generated the OOB c-index from the nested RSF model (Figs 1B, S4.A2.B2, and 

S5.A2.B2); and 3) estimated the incremental error rate of each variable in the nested sequence of 

RSF models, beginning with the top variable, and calculated a dropping error rate as the 

difference between the error rates from the nested sequence models. The 2-stage RSF and 

multimodal approaches (Fig S6) allowed us to remove the SNPs and lifestyle factors that were 

not significantly associated with CRC risk, leading to greater statistical power with the correct 

type I error rate than the power we obtained with the original RSF-based analysis (23). 

 To obtain the hazard ratios (HRs) and 95% confidence intervals (CIs) for the single and 

combined effects of SNPs and behavioral factors on CRC risk, we performed multiple Cox 

proportional hazards regression while checking assumptions via a Schoenfeld residual plot and 

rho. The regression analyses were adjusted for potential confounding factors listed in Table 1. 

We considered a 2-tailed p value < 0.05 statistically significant. A multiple-comparison 

adjustment by using the Benjamini-Hochberg method (25) was conducted. We used R version 

3.5.1 with several packages, including survival, survivalROC, randomForestSRC, 

ggRandomForests, and gamlss. 

 

Results 
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The allele frequencies of the 58 SNPs identified at genome-wide significance in our 

earlier study are presented in Table S1. The distributions of participants’ baseline characteristics 

by CRC status (Table 1) reflected that CRC patients were relatively younger, more highly 

educated, taller, heavier smokers (≥ 15 cigarettes/day), and more depressed than patients without 

CRC. Women with CRC were also likely to have shorter durations of breastfeeding and past OC 

use before menopause but to have higher frequencies and longer durations of E-only and E+P 

use after menopause. 

 

Two-stage RSF and multimodal approach to determine the most predictive SNPs and 

behavioral factors for CRC risk 

 To identify the most influential variables with the highest predictability and lowest 

prediction errors for CRC risk, we conducted a 2-stage RSF with a multimodal approach using 

the 2 measures MD and VIMP. These 2 methods use different prediction algorithms; thus, 

having variables with somewhat different ranking is expected. In the first-stage RSF, we created 

a plot (Figs S3) to compare the 2 measures for each SNP and behavioral factor. Given that SNPs 

and behavioral variables in agreement with high ranks in both MD and VIMP are the strongest 

predictive markers for CRC risk, we selected 13 of the 34 behavioral factors (Fig S3.A); 18 of 

the 58 SNPs in overall analysis (Fig S3.B); 9 (Fig S3.C) and 11 (Fig S3.D) of the 36 SNPs in 

METs ≥ 10 and < 10, respectively; and 2 (Fig S3.E) and 5 (Fig S3.F) of the 18 SNPs in calories 

from SFA < 7.0% and ≥ 7.0%, respectively. 

 With the 13 behavioral factors and selected SNPs together, in overall- and sub-groups, 

we next performed the second-stage multimodal RSF to construct risk profiles with the most 

predictive factors. In the overall analysis of the total population, we initially computed the 2 
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measures MD and VIMP (Table 2) and plotted them for comparison (Fig 1A); the dashed red 

line reflects where the 2 measures were in agreement. By selecting variables with high ranks in 

both measures, we determined that 2 SNPs (LINC00460 rs17254590 and MTRR rs722025) and 1 

behavioral factor (OC use) were the strongest predictive markers of CRC risk. Second, we 

generated the OOB c-index (conceptually similar to the AUROC) within the nested RSF model 

(Table 2). In the plot (Fig 1B) where variables were arranged by MD (low to high values), we 

identified the same top 3 variables (2 SNPs and 1 behavioral factor) as those identified in Fig 1A. 

These 3 variables improved the OOB c-index, whereas the others did not substantially improve 

the prediction accuracy, suggesting that the OOB c-index has complementary predictive value. 

Last, we computed a dropping error rate for each variable in the nested sequence of RSF models 

(Table 2) and determined that once again the same 3 variables (those identified with the 

aforementioned 2 strategies) contributed the most to decreasing the error rate, thus improving the 

prediction accuracy. 

 For each subgroup analysis, we continuously applied the 3 approaches (agreement 

between MD and VIMP; OOB c-index; and contribution to dropping error rate) and determined 

the most predictive variables as follows: 1) in the active group (≥ 10 METs; Table S2.A and Figs 

S4.A1.A2), 2 SNPs (MTRR rs722025 and MKLN1 rs117911989) and 3 lifestyle factors (OC use, 

age, and cigarette smoking); 2) in the inactive group (< 10 METs; Table S2.B and Figs 

S4.B1.B2), 1 SNP (MTRR rs722025) and 3 lifestyle factors (OC use, cigarette smoking, and E+P 

use); 3) in the low fat-intake group (< 7.0% calories from SFA; Table S3.A and Figs S5.A1.A2), 

1 SNP (LINC00460 rs17254590) and 2 lifestyle factors (OC use and age); and 4) in the high fat-

intake group (≥ 7.0% calories from SFA; Table S3.B and Figs S5.B1.B2), 2 SNPs (LINC00460 

rs17254590 and PABPC1P2 rs10928320) and 1 lifestyle factor (OC use). 
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Combined and joint effects of the most predictive SNPs and behavioral factors on CRC 

risk 

We estimated the cumulative CRC incidence rate for each predictive variable by 

accounting for its nonlinear effect using RSF (Figs 2). The genotypes of SNPs were evaluated as 

continuous variables. On the basis of Figs 2.A-D, we considered PABPC1P2 rs10928320 CC, 

MTRR rs722025 GA+AA, MKLN1 rs117911989 GG, and LINC00460 rs17254590 GG to be risk 

genotypes, targeted for further analysis as categorical variables. In addition, using a cutoff value 

bisecting variables (Figs 2.E-H), we defined the high-risk lifestyle groups as those with < 5 years 

of past OC use, a history of E+P use, smoking ≥ 15 cigarettes/day, and age older than 60 years 

and analyzed them as binary variables. 

 In the overall analysis, with the top 3 most influential variables, we developed a 

multivariate model predicting CRC risk (Table 3), indicating that the individual SNPs had a 

stronger effect than the individual behavioral factors on CRC risk even after adjusting for 

confounding factors. A similar trend was observed in the physical activity- and SFA-subgroup 

multivariate analyses (Tables S4.A.B); in particular, single risk-genotypes had > 5.0 HRs while 

single risk-behavioral factors had ≤ 3 HRs. 

 However, the combinations of SNPs and lifestyle factors yielded different results (Tables 

4, 5, and S5). For example, in the active subgroup (Table 4), 2 SNPs (MTRR rs722025 and 

MKLN1 rs117911989) were combined and stratified by cigarette smoking. Heavier smokers (≥ 

15/day) with the 2 risk genotypes had an almost 10-times higher risk of CRC than less heavy 

smokers (< 15/day) with null-risk genotypes; and their (the heavy smokers with combined risk 

genotypes) risk was much greater than the risk of those with any single risk-genotypes (Table 
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S4.A). Consistently, the high-risk lifestyle group (with 2 lifestyle factors, such as OC use and 

age) of heavier smokers had a 7-times higher risk than the null-risk lifestyle group of less heavy 

smokers; their (the heavy smokers with 2 risk-lifestyle factors) risk was also higher than that of 

those with any single risk-lifestyles (Table S4.A). When the 2 SNPs and the 3 lifestyle factors 

were combined, the high-risk group (with 2 risk genotypes and 3 risk behaviors) had 32 times the 

excess risk for CRC than the low-risk group (with ≤ 1 risk genotype and ≤ 2 risk behaviors), 

suggesting a cumulative effect of genetic and lifestyle factors in an additive interaction model. 

Multiple testing was corrected to control the false-discovery rate. When stratified by smoking, 

heavier smokers with high risk of both genotypes and behavioral factors had a 40-times higher 

risk than less heavy smokers with low risk of both genotypes and behavioral factors (Table 4). 

This suggests a gene-lifestyle dose-response relationship, and further, a potential joint effect of 

smoking with genetic and lifestyle factors on CRC risk in both additive and multiplicative 

models (effect size for GE = 1.00 and p 0.993). The results in Table 4, after being adjusted for 

the years of regular smoking (excluding the time the participants stayed off cigarettes), were 

consistent. The analyses of the inactive group yielded similar results but with a less strong 

impact of gene-lifestyle combinations on CRC risk. 

 Comparable results from the SFA-stratified analyses were observed (Table 5). 

Particularly, in the low-SFA group with 1 SNP (LINC00460 rs17254590) and 2 lifestyle factors 

(OC use and age), the combination effects of the risk genotype and risk lifestyle factors on CRC 

risk were 15 times greater than null-risk or either of the risk genotype and risk lifestyle factors. 

This implies a combined gene-lifestyle effect in both additive and multiplicative interaction 

models (effect size for GE = 9.31 and p 0.006). The Benjamini-Hochberg correction for 

multiple comparisons was conducted. Further, when stratified by the duration of past OC use, 
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women with a history of shorter use (< 5 years) and high risk of both genotype and lifestyle had 

a 29-times greater risk than women with a history of longer OC use (≥ 5 years) and null-risk or 

either of risk genotype and risk lifestyle. Thus the combined risk of the SNP and lifestyle factors 

was much greater than the risk of any single SNP and lifestyle factors (Table S4.B). Further, 

these findings may indicate a possible joint effect of past OC use with the risk factors on CRC 

risk in both additive and multiplicative models (effect size for GE = 2.06 and p 0.140). The 

high-SFA group analyses (Table 5) yielded similar results but with attenuated gene-lifestyle joint 

effect on CRC risk. 

 Using the nested RSF model with the strongest predictive markers (MTRR rs722025, 

LINC00460 rs1725459, cigarette smoking, and OC use), we further constructed contour plots to 

visualize the cumulative CRC incidence rates of individual SNPs with different combinations of 

cigarette smoking and OC use, stratified by physical activity (Fig S7) and by SFA intake (Fig 

S8); the results were consistent with and illustrative of the aforementioned findings. 

 

Discussion 

 Understanding how obesity and obesity-related lifestyle factors interact with IR pathways 

(genes and phenotypes), influencing CRC risk, and further generating CRC risk profiles that 

account for both genetic and lifestyle factors is important for the development of a gene-lifestyle 

combination tool for primary cancer prevention efforts. We performed a 2-stage multimodal RSF 

analysis to identify the most predictive genetic and lifestyle variables overall and in subgroups 

(stratified by well-established risk-effect modifiers including BMI, physical activity, and dietary-

fat intake (3,26)). Two SNPs (LINC00460 rs1725459 and MTRR rs722025) and 2 lifestyle 

factors, including lifetime cumulative exposure to estrogen (past OC use) and cigarette smoking, 
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were the most common and strongest predictive markers for CRC risk across the analyses. With 

those influential variables, we constructed risk profiles for CRC in the overall population and 

within subgroups. It is worthy of note that the combinations of genetic and lifestyle factors had a 

far greater impact on CRC risk than any individual risk factors and had a possible synergism to 

increase CRC risk. 

LINC00460 rs1725459, in our earlier GWA study, was associated with IR phenotypes 

and in this study, by interacting with dietary fat intake, it is associated with increased risk of 

CRC. LINC00460 is a long intergenic noncoding RNA (lncRNA) 460 (27). Many lncRNAs 

regulate oncogenes and tumor-suppressive genes’ expression and thus have been shown to be 

involved in carcinogenesis (28). A recent in vitro study found that lncRNA LINC00460 was 

associated with nasopharyngeal cancer (NPC)(27) and upregulated substantially in NPC tissues, 

suggesting its function as an oncogene. Further, miR-149 represses tumor-suppressive micro-

RNA, resulting in dysregulation of AKT1 cellular pathways (29); through the miR-149 pathway, 

LINC00460 promotes cell proliferation, migration, and invasion (30). Thus, LINC00460 may 

regulate insulin cell-signaling and be involved in tumorigenesis. To the best of our knowledge, 

our study is the first to show the association of the lncRNA with CRC development through IR 

pathways, which is supported for its biologic plausibility by the previous studies (27-30). In 

addition, a previous GWA study (31) found that LINC00460 was associated with subcutaneous 

adipose tissue, supporting our finding that its associations with IR phenotypes and CRC are 

observed in fatty-acid strata. 

One SNP in MTRR, in relation to IR phenotypes by interacting with physical activity, is 

associated with increased CRC risk in this study. This is consistent with previous findings that 

MTRR SNPs were associated with type 2 diabetes in adipose tissue (32). The underlying 
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mechanisms are uncertain, but mutations in MTRR cause hyperhomocysteinemia, leading to 

endoplasmic reticular stress and resulting in inhibited insulin signaling in adiposity. Additionally, 

a couple of previous studies have reported a significant association between MTRR SNPs and 

cancers, particularly in lung and colorectal cancers (33,34). Our finding of the association 

between the MTRR SNP and risk for CRC is consistent with those from the previous studies but 

calls attention to the interactions with obesity factors because the CRC risk of the SNP would be 

missed without incorporation of physical activity. 

 Lifetime cumulative exposure to estrogen may play a key role in colorectal 

carcinogenesis. Particularly, the past use of exogenous estrogen (e.g., OC) has been considered a 

protective factor for postmenopausal CRC risk. Several in vivo and in vitro studies indicated that 

oestrogen upregulates several cell-cycle regulators such as p53, leading to growth-inhibiting 

effects on CRC cells (35) and is involved in the epigenetic pathway of the CpG-island, resulting 

in a hypermethylation phenotype (36). However, epidemiologic evidence for the relationship 

between OC use and CRC is not conclusive: no associations (18,37), reduced risk with increased 

duration of use (38), no clear risk reduction with the duration of use (39,40), reduced risk with 

(39) or without (40) recency of use, and possible increased risk for CRC (41). These mixed 

findings may be in part explained by a lack of consideration of the duration of OC use by 

accounting for its nonlinear effect. Our RSF cumulative CRC incidence rate showed nonlinear 

associations with CRC; the risk increases up to 5 years of OC use, but drops thereafter. 

Few studies have reported that OC use is associated with a reduced risk of CRC in the 

presence of specific molecular features (e.g., estrogen receptor-β (42) and microsatellite 

instability positivity (35)). Because we had no data on the molecular features of the tumors, our 

findings should be revisited with independent samples and data on molecular subtypes. In 
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addition, earlier OC formulations (in pre-1980) had high estrogen levels and the formulations of 

OCs have since been changed (38); thus, different OC preparations could result in different 

effects on cancer risk. Our data did not include the types of OC formulations, so future studies 

are warranted to examine the different effects on CRC risk according to OC preparation. 

In this study, using 5 years of OC use as the cutoff point, we observed a possible joint 

effect of OC use with SNPs and lifestyle factors on CRC risk and this joint effect was attenuated 

in the high dietary-fat subgroup. This may suggest a potential trade-off pathway between female 

hormones and fatty acids, reflecting the minimized effect of estrogen in high fatty-acid levels. 

 Cigarette smoking may contribute to 15%-20% of CRC cases (26,43) with a dose-

response relationship, including daily cigarette consumption, years of smoking (44), and the 

induction period (the time since the onset of smoking) (26). Tobacco-derived carcinogens reach 

the colorectal mucosa through the digestive tract and the circulatory system, which may cause 

the potential carcinogenesis in this target organ (45). Our study population had, on average, a 15-

year induction period, 50% of the 30-year period suggested in previous studies (46,47) between 

smoking onset and cancer formation; however, the combined effect on CRC risk of daily 

consumption of 15 or more cigarettes with selected IR SNPs and lifestyle factors was 

tremendous in our physical-activity strata (i.e., interactions with degree of exercise). This finding 

is supported by those from a previous report (48) of the interaction pathways of smoking, CRC, 

and obesity, and further suggests biologic-mechanism studies such as IR-gene signature and cell 

signaling in relation to CRC cells of postmenopausal women with a history of smoking by 

different levels of obesity and/or exercise. 

 Our findings should not be extrapolated to other populations as our study population was 

limited to non–Hispanic white postmenopausal women. Despite several advantages of the 2-
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stage RSF multimodal approach, it could over-fit the model owing to noisy tasks, especially in 

relatively small subgroups. Our findings need to be replicated in an independent study with large 

samples. 

 Overall, in this study, the IR SNPs identified through the GWA study have a potential 

synergistic effect on CRC risk with lifestyle factors including lifetime exposure to exogenous 

estrogen and cigarette smoking. Our findings may inform future research on the role of IR in the 

etiology of CRC and contribute to greater accuracy in predicting CRC risk, suggesting the 

potential for the development of intervention strategies for women who carry the risk genotypes, 

which may reduce their risk for CRC. 
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Table 1. Characteristics of participants 
Characteristic Participants without CRC 

(n = 10,342) 

 Participants with CRC 

(n = 736) 

 n (%)  n (%) 

Age in years, median (range) 67 (50 – 81)  66 (50 – 79)* 

Education      

≤ High school 3,708 (35.9)  222 (30.2)* 

> High school 6,634 (64.1)  514 (69.8) 

Family income      

< $35,000 4,600 (44.5)  312 (42.4) 

≥ $35,000 5,742 (55.5)  424 (57.6) 

METs·hour·week
-1

, median (range)¶ 7.25 (0.00 – 134.17)  7.79 (0.00 – 79.00) 

METs·hour·week
-1¶      

≥ 10.0 4,322 (41.8)  321 (43.6) 

< 10.0 6,020 (58.2)  415 (56.4) 

How many cigarettes per day     

< 15§ 8,034 (77.7)  548 (74.5)* 

≥ 15 2,308 (22.3)  188 (25.5) 

BMI in kg/m
2
, median (range) 26.94 (15.42 – 58.49)  26.72 (17.33 – 55.62) 

BMI¥      

< 30.0 7,305 (70.6)  538 (73.1) 

≥ 30.0 3,037 (29.4)  198 (26.9) 

Waist-to-hip ratio, median (range) 0.807 (0.444 – 1.282)  0.808 (0.604 – 1.393) 

Height in cm, median (range) 161.8 (146.2 – 177.0)  162.4 (146.2 – 177.0)* 

Depressive symptom†, median (range)      

< 0.06 9,574 (92.6)  665 (90.4)* 

≥ 0.06 768 (7.4)  71 (9.6) 

Cardiovascular disease ever      

No 8,804 (85.1)  608 (82.6) 

Yes 1,538 (14.9)  128 (17.4) 

Hypertension ever      

No 7,167 (69.3)  492 (66.8) 

Yes 3,175 (30.7)  244 (33.2) 

Family history of diabetes      

No 7,467 (72.2)  528 (71.7) 

Yes 2,875 (27.8)  208 (28.3) 

Family history of colorectal cancer      

No 8,704 (84.2)  605 (82.2) 

Yes 1,638 (15.8)  131 (17.8) 

Dietary alcohol in g per day£      

< 6.1 7,218 (69.8)  506 (68.8) 

≥ 6.1 3,124 (30.2)  230 (31.2) 

Daily fruits in med portion, median (range) 1.74 (0.00 – 8.72)  1.91 (0.03 – 7.00) 

Daily vegetables in med portion, median (range) 2.03 (0.03 – 11.71)  2.08 (0.06 – 11.49) 

% calories from SFA, median (range) 11.30 (2.22 – 32.39)  11.38 (2.60 – 26.77) 

% calories from SFA€      

< 7.0 937 (9.1)  72 (9.8) 

≥ 7.0 9,405 (90.9)  664 (90.2) 

% calories from MFA, median (range) 12.79 (2.16 – 27.64)  12.78 (2.82 – 23.04) 

% calories from PFA, median (range) 6.61 (1.19 – 21.77)  6.63 (1.63 – 19.30) 
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Table 1 (Continued) 

Characteristic Participants without CRC 

(n = 10,342) 

 Participants with CRC 

(n = 736) 

 n (%)  n (%) 

% calories from protein, median (range) 16.59 (5.48 – 35.97)  16.42 (7.28 – 26.92) 

Dietary total sugars in g, median (range) 93.15 (4.59 – 525.92)  95.99 (13.75 – 267.06) 

Hysterectomy ever      

No 6,682 (64.6)  456 (62.0) 

Yes 3,660 (35.4)  280 (38.0) 

One or both ovaries removed      

No 7,877 (76.2)  549 (74.6) 

Part of an ovary taken out 87 (0.8)  6 (0.8) 

One taken out 728 (7.0)  57 (7.7) 

Both taken out 1,559 (15.1)  118 (16.0) 

Unknown number taken out 91 (0.9)  6 (0.8) 

Age at menarche in years, median (range) 13 (≤ 9 – ≥ 17)  13 (≤ 9 – ≥ 17) 

Age at menopause in years, median (range) 50 (20 – 63)  50 (22 – 60) 

Total months of breastfeeding£      

≤ 12 8,621 (83.4)  643 (87.4)* 

> 12 1,721 (16.6)  93 (12.6) 

Oral contraceptive duration in years, median (range) 7.6 (0.1 – 47.0)  5.0 (0.1 – 21.0)* 

E-only in years      

Never 7,295 (70.5)  489 (66.4)* 

< 5 1,442 (13.9)  105 (14.3) 

5 to < 10 506 (4.9)  54 (7.3) 

≥ 10 1,099 (10.6)  88 (12.0) 

E+P in years      

Never 8,533 (82.5)  572 (77.7)* 

< 5 992 (9.6)  85 (11.5) 

5 to < 10 428 (4.1)  38 (5.2) 

10 to < 15 243 (2.3)  23 (3.1) 

≥ 15 146 (1.4)  18 (2.4) 

BMI, body mass index; CRC, colorectal cancer; E, exogenous estrogen; E+P, E + progestin; SFA, 

saturated fatty acids; MET, metabolic equivalent; MFA, monounsaturated fatty acids; PFA, 

polyunsaturated fatty acids. 

* p < 0.05, chi-squared or Wilcoxon’s rank-sum test. 

¶ Physical activity was estimated from recreational physical activity combining walking and mild, 

moderate, and strenuous physical activity. Each activity was assigned a MET value corresponding to 

intensity; the total MET·hours·week-1 was calculated by multiplying the MET level for the activity by the 

hours exercised per week and summing the values for all activities. The total MET was stratified using 10 

METs as the cutoff according to current American College of Sports Medicine and American Heart 

Association recommendations (49). 

§ The women with smoking < 15 cigarettes/day included non-smokers. 

¥ BMI variable was categorized using 30 kg/m2, where 30.0 or higher falls within the obese range 

(https://www.cdc.gov/obesity/adult/defining.html). 

† Depression scales were estimated using a short form of the Center for Epidemiologic Studies 

Depression Scale. 

£ Dietary alcohol per day and total months of breastfeeding were stratified using the mean values of 6.1 

g/day and 12 months, respectively, as the cutoff points. 
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€ % calories from SFA was stratified using 7% as the cutoff value, which adheres to the American Heart 

Association/American College of Cardiology dietary guidelines, which are aligned with the 2015–2020 

Dietary Guidelines for Americans to help cardiovascular and metabolic diseases reductions (50). 
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Table 2. Overall analysis: predictive values of variable from the second stage of random survival 

forest analysis 

Variable* 

Minimal 

Depth† VIMP C- index Error¶ 

Drop 

Error§ 

LINC00460 rs17254590 2.0578 0.1518 0.9498 0.0502 0.4498 

Duration of oral contraceptive use 2.4190 0.0338 0.9679 0.0321 0.0181 

MTRR rs722025 2.8214 0.0927 0.9800 0.0200 0.0122 

Age 4.2452 0.0008 0.9813 0.0187 0.0013 

Height 4.5468 0.0001 0.9806 0.0194 -0.0008 

% calories from protein 4.5594 0.0000 0.9814 0.0186 0.0008 

BMI 4.5794 0.0004 0.9806 0.0194 -0.0007 

Age at menopause 4.6370 0.0002 0.9819 0.0181 0.0013 

E+P use 4.7536 0.0007 0.9820 0.0180 0.0001 

Dietary alcohol 4.8406 0.0002 0.9823 0.0177 0.0003 

Total months of breastfeeding 4.9228 0.0000 0.9817 0.0183 -0.0007 

Daily intake of fruits 4.9926 0.0001 0.9819 0.0181 0.0002 

Daily intake of vegetables 5.0544 0.0001 0.9818 0.0182 -0.0001 

Cigarettes per day 5.0838 0.0022 0.9820 0.0180 0.0002 

Age at first period 5.4070 -0.0001 0.9818 0.0182 -0.0002 

MTRR rs1395139 7.1922 0.0051 0.9820 0.0180 0.0002 

MTRR rs6860481 8.1890 0.0023 0.9821 0.0179 0.0001 

MTRR rs17197511 8.2598 0.0015 0.9818 0.0182 -0.0003 

PABPC1P2 rs79084191 8.9278 0.0046 0.9837 0.0163 0.0019 

PABPC1P2 rs78451340 8.9404 0.0047 0.9844 0.0156 0.0007 

PABPC1P2 rs75935470 9.0516 0.0040 0.9843 0.0157 -0.0002 

PABPC1P2 rs12052223 9.2484 0.0044 0.9842 0.0158 -0.0001 

PABPC1P2 rs77164426 9.2824 0.0044 0.9843 0.0157 0.0001 

PABPC1P2 rs10928320 9.2862 0.0039 0.9840 0.0160 -0.0004 

PABPC1P2 rs77772624 9.3394 0.0044 0.9841 0.0159 0.0001 

LOC729506 rs17198862 9.3996 0.0005 0.9845 0.0155 0.0004 

LOC729506 rs13188458 10.9650 0.0006 0.9843 0.0157 -0.0002 

LOC729506 rs34799743 11.2040 0.0006 0.9842 0.0158 -0.0001 

LOC729506 rs13166872 11.2262 0.0007 0.9841 0.0159 -0.0001 

LOC729506 rs10512942 11.3146 0.0008 0.9840 0.0160 -0.0001 

LOC729506 rs13188952 11.4290 0.0006 0.9842 0.0158 0.0002 

BMI, body mass index; C-index, concordance index; E+P, exogenous estrogen + progestin; 

VIMP, variable of importance. Variables in bold face were selected as the most predictive 

markers. 

* Variables are ordered according to minimal depth. 

† Predictive value for each variable was assessed via minimal depth method in the nested 

random survival forest models. A lower value is likely to have a greater influence on prediction. 

¶ The incremental error rate of each variable was estimated in the nested sequence of models 

starting with the top variable, followed by the model with the top 2 variables, then the model 
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with the top 3 variables, and so on. For example, the third error rate was estimated from the third 

nested model (including the first, second, and third variables). 

§ The drop error rate was estimated by the difference between the error rates from the nested 

models with a prior and corresponding variables. For example, the drop error rate of the second 

variable was estimated by the difference between the error rates from the first and second nested 

models. The error rate for the null model is set to 0.5; thus, the drop error rate for the first 

variable was obtained by subtracting the error rate (0.0502) from 0.5. 
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Table 3. Overall analysis: results from multivariate regression predicting CRC risk 

Variable HR† (95% CI) p 

SNP (Ref / Alt)   

LINC00460 rs17254590 (CC + CG / GG) 12.48 (1.76 – 88.77)    0.012 

MTRR rs722025 (GG / GA + AA) 7.54 (3.38 – 16.85) < 0.001 

Behavioral factor   

Duration of oral contraceptive use* 3.12 (2.69 – 3.63) < 0.001 

Alt, alternative allele; CI, confidence interval; CRC, colorectal cancer; HR, hazard ratio; Ref, 

reference allele; SNP, single nucleotide polymorphism. Numbers in bold face are statistically 

significant. 

† Multivariate regression was adjusted by age, smoking, height, body mass index, dietary alcohol, 

daily fruits, daily vegetables, % calories from protein, age at menarche, age at menopause, 

breastfeeding, and exogenous estrogen plus progestin use. 

* Oral contraceptive use was analyzed as a binary variable using 5.1 years as a cutoff value, at 

which CRC risk was diverged into high (< 5.1 years) and low (≥ 5.1 years ) in a cumulative 

graph for the CRC incidence rate.
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Table 4. Physical activity-stratified analysis: combined effect of risk genotypes of MTRR rs722025 

and MKLN1 rs117911989 and behavioral factors on CRC risk 

 Total   Cigarette smoking < 15   Cigarette smoking ≥ 15 

n HR† (95% CI) p*  n HR† (95% CI) p*  n HR† (95% CI) p* 

< Active Group (MET ≥ 10) (n = 4,643) > 

Risk genotype (MTRR rs722025 GA + AA and MKLN1 rs117911989 GG) 

0 reference   328 reference   92 2.10 (0.50 – 8.81) 0.310 

1 0.82 (0.37 – 1.79) 0.616  1,519 0.93 (0.35 – 2.48) 0.892  426 1.30 (0.44 – 3.89) 0.637 

2 7.00 (3.46 – 14.17) < 0.001  1,799 8.39 (3.45 – 20.40) < 0.001  479 9.79 (3.94 – 24.31) < 0.001 

 

Behavioral factors (oral contraceptive use, cigarette smoking, and age at enrollment)¶ 

0 reference   928 reference   300 1.32 (0.78 – 2.23) 0.308 

1 1.55 (1.13 – 2.14) 0.011  2,228 1.12 (0.79 – 1.59) 0.529  578 1.33 (0.85 – 2.07) 0.213 

2 6.75 (4.18 – 10.90) < 0.001  490 4.92 (3.40 – 7.14) < 0.001  119 7.10 (4.39 – 11.49) < 0.001 

 

Risk genotypes combined with behavioral factors§ 

0 reference   1,634 reference   465 0.71 (0.24 – 2.11) 0.543 

1 10.02 (6.87 – 14.62) < 0.001  1,735 8.09 (4.96 – 13.21) < 0.001  466 12.25 (7.21 – 20.83) < 0.001 

2 32.26 (18.21 – 57.15) < 0.001  277 36.29 (21.62 – 60.92) < 0.001  66 39.96 (20.99 – 76.06) < 0.001 

< Inactive Group (MET < 10) (n = 6,435) > 

Risk genotype (MTRR rs722025 GA + AA) 

0 reference   1,885 reference   590 1.30 (0.66 – 2.54) 0.452 

1 6.01 (4.35 – 8.29) < 0.001  3,051 6.34 (4.33 – 9.29) < 0.001  909 6.73 (4.42 – 10.25) < 0.001 

 

Behavioral factors (oral contraceptive use, cigarette smoking, and E+P use)¶ 

0 reference   3,066 reference   825 1.26 (0.91 – 1.74) 0.157 

1 1.57 (1.28 – 1.93) < 0.001  1,702 1.68 (1.33 – 2.12) < 0.001  601 1.64 (1.17 – 2.30) 0.006 

2 2.49 (1.25 – 4.95) 0.012  168 1.94 (1.16 – 3.24) 0.014  73 2.52 (1.27 – 5.01) 0.012 

 

Risk genotypes combined with behavioral factors§ 

0 reference   1,820 reference   570 1.19 (0.57 – 2.44) 0.645 

1 6.25 (4.49 – 8.69) < 0.001  3,013 6.02 (4.08 – 8.89) < 0.001  876 7.19 (4.69 – 11.04) < 0.001 

2 8.43 (3.74 – 19.02) < 0.001  103 10.26 (5.50 – 19.12) < 0.001  53 9.07 (3.92 – 20.99) < 0.001 

CI, confidence interval; CRC, colorectal cancer; E+P, exogenous estrogen + progestin; MET, metabolic 

equivalent; HR, hazard ratio. Numbers in bold face are statistically significant. 

† Multivariate regression for risk genotype analysis was adjusted by age, height, body mass index, dietary 

alcohol, daily fruits, daily vegetables, % calories from protein, age at menarche, age at menopause, 

breastfeeding, duration of oral contraceptive use, E+P use, and smoking (in total analysis); in behavioral 

factor analysis, variables tested for risk factors and joint effect were not included as a covariate in the 

multivariate regression. 

* P values were adjusted to correct for multiple testing via the Benjamini-Hochberg approach. 

¶ The number of behavioral factors was defined as 0 (low risk: null risk behaviors), 1 (moderate risk: 1 or 

2 risk behaviors), and 2 (high risk: 3 risk behaviors). 

§ The combined number of risk genotypes and behavioral factors was based on risk genotypes defined as 

0 (low risk: none or 1 risk allele [active group]; none [inactive group]) and 1 (high risk: 2 risk alleles 

[active]; 1 risk allele [inactive group]) and based on behavioral factors defined as 0 (low risk: ≤ 2 risk 

behaviors) and 1 (high risk: 3 risk behaviors). The ultimate number of risk genotypes combined with 

behavioral factors was defined as 0 (low risk for genotypes and behaviors), 1 (high risk for either 

genotypes or behaviors), and 2 (high risk for both genotypes and behaviors). 
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Table 5. SFA-stratified analysis: combined effect of risk genotypes of LINC00460 rs17254590 

and PABPC1P2 rs10928320 and behavioral factors on CRC risk 

 Total   Oral contraceptive use 

≥ 5 years 

  Oral contraceptive use 

< 5 years 

n HR† (95% CI) p*  n HR† (95% CI) p*  n HR† (95% CI) p* 

< % calories from SFA < 7.0 % (n = 1,009) > 
Risk genotype (LINC00460 rs17254590 GG) 

0 reference   531 reference   169 2.29 (0.85 – 6.17) 0.101 

1 8.42 (4.84 – 14.66) < 0.001  168 5.51 (2.59 – 11.74) < 0.001  141 25.41 (12.80 – 50.45) < 0.001 

 

Behavioral factors (oral contraceptive use and age at enrollment)¶ 

0 reference   78 reference   84 1.74 (0.48 – 6.37) 0.402 

1 5.24 (3.22 – 8.51) < 0.001  621 1.05 (0.35 – 3.15) 0.928  226 5.83 (1.97 – 17.26) 0.002 

 

Risk genotypes combined with behavioral factors§ 

0 reference   556 reference   212 1.80 (0.74 – 4.39) 0.199 

1 15.68 (9.59 – 25.62) < 0.001  143 5.47 (2.58 – 11.58) < 0.001  98 28.76 (14.86 – 55.66) < 0.001 

< % calories from SFA ≥ 7.0 % (n = 10,069) > 
Risk genotype (LINC00460 rs17254590 GG and PABPC1P2 rs10928320 CC)¥ 

0 reference   1,208 reference   628 1.10 (0.44 – 2.76) 0.839 

1 8.68 (5.55 – 13.57) < 0.001  5,816 5.38 (3.08 – 9.40) < 0.001  2,417 16.82 (9.65 – 29.30) < 0.001 

CI, confidence interval; CRC, colorectal cancer; HR, hazard ratio; SFA, saturated fatty acids. 

Numbers in bold face are statistically significant. 

† Multivariate regression for risk genotype analysis was adjusted by age, smoking, height, body 

mass index, dietary alcohol, daily fruits, daily vegetables, % calories from protein, age at 

menarche, age at menopause, breastfeeding, exogenous estrogen plus progestin use, and duration 

of oral contraceptive use (in total analysis); in behavioral factor analysis, variables tested for risk 

factors and joint effect were not included as a covariate in the multivariate regression. 

* P values were adjusted to correct for multiple testing via the Benjamini-Hochberg approach. 

¶ The number of behavioral factors was defined as 0 (low risk: null or 1 risk behavior) and 1 

(high risk: 2 risk behaviors). 

§ The combined number of risk genotypes and behavioral factors was based on risk genotypes 

defined as 0 (low risk: none) and 1 (high risk: 1 risk allele) and based on behavioral factors 

defined as 0 (low risk: null or 1 risk behavior) and 1 (high risk: 2 risk behaviors). The ultimate 

number of risk genotypes combined with behavioral factors was defined as 0 (neither or either of 

high risk for genotypes and behaviors) and 1 (high risk for both genotypes and behaviors). 

¥ The number of risk genotypes was defined as 0 (none or 1 risk allele) and 1 (high risk: 2 risk 

alleles). 
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Figure 1. Overall analysis: the second stage of random survival forest (RSF) with 18 single-

nucleotide polymorphisms and 13 behavioral factors selected from the first stage of RSF analysis 
 

A. Comparing minimal depth and VIMP rankings. (BMI, body mass index; E+P, exogenous estrogen + 

progestin; VIMP, variable of importance. Note: 3 variables within the orange ellipse were identified as 

the most influential predictors) 

B. Out-of-bag concordance index (c-index). (Improvement in out-of-bag c-index was observed when the 

top 3 variables [●] were added to the model, whereas other variables [○] did not further improve the 

accuracy of prediction.) 

 

Figure 2. Cumulative colorectal cancer incidence rate for the 8 most influential variables (4 

SNPs and 4 behavioral factors) based on a random survival forest analysis. (E+P, exogenous 

estrogen + progestin; SNPs, single-nucleotide polymorphisms. Dashed red lines indicate 95% 

confidence intervals.) 
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