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ABSTRACT OF THE DISSERTATION

Macdonald Polynomials and Graded Characters of Generalized Demazure Modules of
509, ]

by
Maranda N. Smith

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2022
Dr. Vyjayanthi Chari, Chairperson

In recent work published by Biswal, Chari, Shereen, and Wand [I] the authors defined a
family of symmetric polynomials indexed by pairs of dominant integral weights, G\, \(2,q)
where z = (21, .zp41) € C"™!, and determined that Go (z,q) is the graded character of
a level two Demazure module for sl,,11[t]. The aim of this thesis is to construct analogues
of these polynomials for the generalized Demazure modules for sog,[t] as they are presented
by Chari, Davis, and Moruzzi [3]. We do this by constructing modules which interpolate
from the presentation provided in [3] and local Weyl modules. We then create short ex-
act sequences between them to relate their graded characters. This allows us to identify

coeflicients in the corresponding graded characters with the coeflicients in G x(z, q).
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Chapter 1

Introduction

For a simple Lie algebra g, the associated current algebra, g ® C[t] = gl[t], is a
maximal parabolic subalgebra of the affine lie algebra, g. Therefore it is of interest to study
representations of g[t], as these correspond to representations of g. Note that since we can
grade the complex polynomial ring by degree, g[t] inherits this grading. It is then sensible
to consider graded modules of g[t], and seek their graded character formulae.

Of particular interest are level £ Demazure modules, as these are highest weight
modules of g[t]. It was shown in [4][§][I0] that a level one Demazure module is isomorphic to
a local Weyl modules, as introduced in [6]. It was also shown in [IT][I5] that for g[t] which are
simply laced (i.e. types A, D, E) that the graded characters of level one Demazure modules
are precisely Macdonald Polynomials. It was also shown in [I] that the graded characters
of a level 2 Demazure modules is a linear combination of Macdonald Polynomials, but this
only applies to the type A case. It is not clear that this will also be the case for type D.

We look to generalized Demazure modules, which are fusion products of level £



Demazure modules, introduced in [12]-[I4]. These modules have begun appearing recently
in various parts of the literature, and have been connected to graded limits of minimal
affinizations [13][14] and to the graded limits prime modules over § in [2](type A) and
B](type D). Particularly, we will focus on the family of generalized Demazure modules
presented in [3], which are fusion products of two level 1 modules. In [3], a graded character
for these modules is given in terms of graded characters of level 2 Demazure modules.
Similar work has been done in [9] for types-B, C, indicating a process similar to that of this
thesis can be undertaken for these types as well.

In this thesis, we use methods inspired by [16] and [1] to construct a closed form
for the graded characters of the modules from [3], proving that these graded characters are
sums of Macdonald Polynomials with Z[q] coefficients.

We may also be able to combine this result with the character formula provided

in [3] to find an explicit graded character for the level 2 Demazure modules of type D.



Chapter 2

Algebras and Modules of Interest

This chapter is designed to introduce the reader to the notation, algebras, and
modules discussed throughout this thesis.

Let C denote the complex numbers and Z the integers in the usual fashion. Take
Z4 to be the nonnegative integers. Also, take [i,j] = {i,i + 1,---,j} for i < j € Z. Also,
given two vector spaces, V and W, denote their tensor over C as V ® W, and define V' to
be Z-graded if V' can be written as the direct sum V' = @V[r], where V[r] = {v € V

reZ
such that the grade of v = r}. We define a Z-grading similarly.

In this thesis, we take g to be a simple Lie algebra of type D,,, and we denote the
universal enveloping algebra U(g). The Cartan subalgebra is denoted by b, and we denote
the set of roots of g with respect to h as R. Fixing a basis of R to be our simple roots,
A ={a; |i € [1,n]}, and (+,-) : h* x h* — C to be the symmetric bilinear form induced by
the killing form of g, we define a set of fundamental weights {w; € h* | (w;, ;) = J; ;}

with wp = wn41 = 0 for convenience later.



In the usual fashion, let Q@ and Q% be the Z-span of A and the Z,-span of A
n n

respectively. Take the height of a some v = Zciai to be ht, v = Zci, and with that we
i=1 i=1

label the highest root §. We define the positive roots to be R™ = R Q™". Note that for

type D,,, R™ is described explicitly as

J n—2
Qg =Y tin=0 ap)tom Bij=cin1+taj,, i<jeln-1]
k=i k=i

For convenience later on, we take aj; = 0 for i < j. We take {xX,h; : a € RT, i € [1,n]}
to be a Chevalley basis of g, and will denote 333:” = xlij for convenience. We take g =
nt @ h®n~ to be the triangular decomposition, where n* = {zX | a € R*}.
We also take P and P to be the Z-span of fundamental weights (integral
weights) and the Z-span of the fundamental weights (dominant integral weights)
n n
respectively. We define the height of an integral weight A = Zciwi to be ht A = Zci, and
i=1 i=1
define a partial order on PT, u < X if and only if A — 1 € Q*. We can extend this partial

order to Pt x PT,
Ny < (W Nifv+ A=V =N e\ {0}orifv+ X -1 — N =0 withv — 1/ € P,

Further, we set PT(1) = {\ € P* | (\,a;) < 1; i € [1,n]}, and note that for any weight
A € Pt there exists a \g € PT and \; € P (1) such that A = 2X\g + A1.
There are a few interesting types of pairs of weights for this simple Lie algebra,

namely those that are compatible and interlacing. A pair (v, \) € P x PT is compatible

if

.)\1

Il
o



e A\ #0, vp = w; for i € [0,n], maxyv; < min A, and if ¢ # 0, ¢ < min(A\;) — 1 with
vi(h;) = v1(hiy1) = 0.
Also a pair (v1,v2) € PT(1) x PT(1) is interlacing if vy + v5 € PT(1) and
o v.(h;)) =1=wr(h;) = vp(hs) =1 for some s € [i +1,j — 1]
o vy +va(hp1+hy) #0 = vp(hp_1+hy) =0

for some r € {1,2}, p # r € {1,2}. Note that for any v € P*(1), there exists an interlacing
pair (1, C2,) such that v = ¢y, + (2. Therefore, for any weight A € PT, A =2 g+ A\ =
2X0 + €1 + Ca,n where ({1, C2,0) s the interlacing pair corresponding to Ay € PT(1). This
fact will also be used throughout this thesis.

Now that we have defined dominant integral weights, we can define the finite
irreducible g-modules. For a given A € PT, the finite dimensional irreducible g-module

of weight A\, V()), is generated by an element vy with the following defining relations:

z vy =0, hjvy = A(hi)va, (mf)’\(hi)ﬂv,\ =0, i€[l,n].

()

These are very important to our understanding of representations, since any finite dimen-

sional g-module can be decomposed into a direct sum of irreducible modules.

2.1 g, g[t], and their Graded modules

In this section we introduce the extensions of our Lie algebra that we are interested
in. Let ¢t be an indeterminate, C[t] the complex polynomials, and C[t*] be the Laurent

polynomials. First, the affine Lie algebra of g, g, is given by

g=(geCtt) @ Cco Cd



where c is a central element and d is the derivation defined by [d,z ® t"] = r(z @ t") for all

x € g and r € Z. The bracket of this algebra is given as
@ty @t = ([o,y] © ") + tr(ay)c

where [+, ] is the Lie bracket of g. The Cartan subalgebra of g is given by h=ChaCecdCd
and we describe AT = (g ® tC[t]) & nt and b = At & b.

As the algebra quickly becomes too cumbersome to work with practically, we move
to a maximal subalgebra in b, the current algebra. The current algebra of g is defined to

be g[t] = g ® C[t] with the following Lie bracket,

[z ® f(t),y@gt)] = [z,ylg ® f(H)g(t).

Note that the current algebra inherits a ZT-grading by degree, namely

olt) = D g @ (I,

reZ.
where (C[t])[r] = {f(t) |deg f(t) = r}. This grading also extends to U(gl[t]) by assigning
the word (z1 @ t") (22 ® t™2) - - (x; ® t'7) the grade E{Zl ;.

As the current algebra is Z,-graded, we can consider Z,-graded modules of g[t].
We say V is a graded g[t]-module if it is Z,-graded as a vector space and g[t] acts on V

in the following way

(g@Ct")V[s] C V[r+s].

In this thesis, it becomes necessary to shift the grade of V[r], and to this end, we take 7} to
be the grade shift operator so that 7V is the g[t]-module V' with each grade space shifted

up uniformly s, but action of g[t] remains the same.



There are two lemmas that will help us a great deal in Chapter 4. Both can be

found in [8] as Lemma 1.6 and Lemma 2.3 respectively
Lemma 2.1.1 Let V be a g[t]-module with v € V' such that
(x; @t )v=0
for alli € [1,n] and some s; € ZT. Set X\ =3, s;w;. For all « € RT, we have

(xy @) =0, s = Zsi.

i

Lemma 2.1.2 (Garland’s Formula) Givenn € N, r € Z", and o € R then
(zF @)% (x, @ 1)*T" — (=1)°x; (r,s) € U(g[thn™ @ U~ [t] @ b[t] 4 )b[t]+-
Here, h[t]+ denotes the elements of h with positive powers of ¢, and

va(rs) = Y (g ®t") - (z, @),

nl+44nr=s
2.2 Characters and Graded Characters

To discuss characters, it is important to define weight spaces of a given represen-

tation. Given a g-module V', the \ weight space of V is defined to be
Vi={v eV |hv=Ah;)v, forallie[l,n]},

with wt V' = {A € h* | V) # 0}. For a finite dimensional g-module, we can look at the

weight space decomposition of V,

V=P W

AepPT+



We can take Z[P] to be the polynomial ring whose indeterminates come for a basis
of elements of the form e* for A € P. Then the character of a finite dimensional g-module
Vis

chV => dimVye* €Z[P).
AeP

We can incorporate the notion of grading into our character by splitting each
weight space into its graded components and using an indeterminate q to keep track of the
grade. Doing so gives us the graded character of a Z*-graded finite-dimensional g-module
v,

chg, V = Z Z ¢"e* dim Vi[r] € Z[P][q).
r€LtT AeP

2.3 Fusion Products

There is a product of graded g[t]-modules that we will need for the proof of our
results, the fusion product. First it is necessary to describe what the associated graded
space of a g[t]-module V, gr V. The 7" filtration of V/,

F'v= & Vs

s<reZt

,and the graded space associated to V is

oV = FV/F'v

rezt

with F~1V being taken to be 0. Note that each F"V/F"~! is a g-module, and so grV is as

well. We can describe gr V' as a graded g[t]-module whose acts as follows

(r@t™)v = (x@t™)v



where v € V and v € F"V/F"~1V for some r € Z*. If V was cyclically generated by an
element v € V, then grV = V as g-modules and gr V' is generated by w.
The following is a lemma will be useful to us in Chapter 4. It is given as Lemma

4 and proven in [16].

Lemma 2.3.1 Let V be a cyclic g[t]-module generated by v € V.. Then for allu € V, z € g,

r€Zv, and ay,--- ,a, € C we have

(z@tHhu= (xRt )u

where u is the image of u in grV.

We can now define the fusion product. Taking Vi,---,V,, all to be cyclic g[t]-
modules generated by v1,- -+ , v, respectively and a set of distinct parameters z1,- - , 2, in

C, we twist the action of g[t] each V; by z;. This precisely looks like

(z@t"v, = (z® (t+ 2z)")v;.

The new twisted module we will denote as V;*, and define our fusion product to be the

associated graded space of

Wente -eVm oV

and we denote it as

Zm—
Vit s Vs Vot s V2,

In practice, we will often write this fusion product omitting the parameters fro a less cum-

bersome notation. For example the above would be written as Vi % Vo -« % Vi, 1 % V.



With respect to characters, the fusion product is useful because

dimVi*Vox-- - xV,,_1 %V, = HdimVi.
i=1

This means we can utilize dimension arguments when working with fusion products, even

though we don’t have defining relations for these products in general.

2.4 Local Weyl, Demazure, and Kirillov-Reshetikin

Modules

In this section we will introduce some modules that are relevant to our results,
namely we will focus on the g[t]-modules. Given a weight A € PT, the local Weyl module

of weight lambda is denoted Wi, (\) and is generated by w) subject to the following relations

(zf @ Clthwr =0, (b @t wy = do,Ahi)wy, (z7 @ 1Ny =0

(2

for each i € [1,n] and r € Z. These relations result in wt Wiec(A) C A—Q%, dim Wipe(N)y =
1, and Wi, (0) = C as a g[t]-module.

There are many quotients of a local Weyl module, and here we define the level ¢
Demazure module, D(¢,\) using Theorem 2 of [§]. This means the for all « € RT we

add the relations

(x5 @t°)wy =0, (z; @tSo"HMeFlyy =0 if my < dol

where s,, m, € N are defined to by A(hy) = dol(sq—1)+mq with m,, € [1,£] and d,, = (a2a)

is the root length. For simply-laced cases, each root is of the same length, so d, = 1 for all

alpha. In these cases, the relations for D(1, A) are the result of the relations of Wis.(A), so

10



these modules are isomorphic as proven in [4], [§], [10], and [12]. It was also shown in [2]
that in the type A case, the second relation is a result of the first. This can be generalized
to all simply-laced cases.

The next family of g[t]-modules that we will be introducing are the generalized
Demazure modules as defined in [3]. These modules are very important to the study of
classical limits of quantum affine representations and so were initially introduced by [13]
and [14] as modules for g, but we will only present the construction for g[t]. We take a
sequence of A1, A2, -, A\, € P and #1,--- ,4.,51,---,5. € N and define the generalized

Demazure module

DM, Ao, M) = Uglt]) (wa, @ wa, @ -~ @ wy,) C (R 75D (L, Ai).
=1

These representations are largely unstudied, but some work has been done to begin to
understand them. In this thesis, we primarily focus on a particular family of generalized

Demazure modules,
D(v,A\) = U(g[t])(w, @ wy) C D(1,v) @ D(1,\).

Particularly, we are interested in the family [3] provides a presentation for, D(Xg+ (i x, Ao+
¢2,1). The presentation that is provided is as a quotient of Wj,.(v + A) with the added

relation

(.’I]; ® t(}\o,Oé)+max((C1,A7a)7(<2,/\7O‘))wu+)\ = O

The last family of g[t]-modules that we will need are the Kirillov-Reshetikin
modules as defined in [5]. The module KR(mwj) is generated by v, with the following
relations

(2} @) vjm =0, (Rt )vjm = 6romw;(h)vjm,

11



(a7 ® 1)mwj(hi)+1vj,m —0, (a7 ® twj(hi))vj7m =0.

By observing the relations, we see that KR(wj) = Wis.. A result of [10], KR(2w;) =
D(2,2w;). Lastly, we define a fusion product of modules, K, identically to [8]. The

module K ,, is described as follows:

—ai(hj)—1

J las(hj)<0 k=0

mm;i?ﬁ; — kl Jw;).

Note that for type D, the only value for o;(h;) < 0is —1, so the above definition simplifies

to

Kim= & KR(mw)).
J lai(hy)=-1

We define K/, to be K;,;, but replacing the tensor product with fusion product. This

product will be useful to have defined for Chapter 4.

2.5 Prime Representations

In this section we introduce the family of prime representations of Ug,(g). A
representation is said to be prime if it can not be expressed as the tensor of two non-trivial
representations. We take Uy(g) to be the quantized enveloping algebra of §. Let P, to be the
free abelian monoid generated {w; 4 | 1 <7 <n, r € Z}, and let wt : P* — P* be defined

as wtm = wt([T7q Wi ri(q)) = Doty (deg mi)w;. We define P (1) the same way as [3], as the

TG (q

subset of 73% containing the identity and elements Hle wi; q; Where 1 <iyp <.+ <ip <n

and a; € ¢% such that
4 gEl=i+2) > 9
aj+1
e gEln—i+2) 4+t _ g2t vy <k — 3
Gj+1 aj+2 N

12



The last requirement will also apply to j = k — 2 if (ix_1,ix) # (n—1,n), but if (ix_1,ix) =
(n — 1,n) we require a;, = ag_1. For any element w € Pt we can define an irreducible

finite dimensional U,(g) representation, [m].
Lemma 2.5.1 (from [3]) The module [w] is prime for all @ € P*(1).

We can consider these representations for g[t], and by taking a pull-back of this representa-
tion via the map taking (z®t") — (z® (t —1)") € Aut(g[t]), we get a representation [m¢].

The following is Theorem 3.3 of [3] which we will need in Chapter 4
Theorem 2.5.1 For w € Pt (1), there exsists an isomorphism of g[t]-modules
[me] = D(Cury Com)
where wt ™ = (1 » + Co.r and (C1x,C2,x) 15 an interlacing pair.
We define a height function, & : {1,--- ,n} — Z where
§(i) =&+ 1) £1, £() = £(i+2), &(n—1) =¢&(n),

and we define

Pl = {Wia; - wja; € P (1) | ax = ¢ PFif (k) = £(k — 1) £ 1}

Therefore if we take w; qw;pw € 775“ with ¢ < j < minw, j # n— 2, and are able prove that

(Wil ® [wjpw]

[wi.aw; 4] 2 [Wi-10)WitLe0)w),

then we would have shown that

dim[w; o] dim[w; pw] > dim[w; qw;pw] + dim[w; 1 ¢ W t1.605)w]- (2.5.1)

13



The proof of this containment is done through argument of g-characters for these quantum

affine modules. Namely, the observation is made that [wi_lvg(i)wjﬂ,g(j)w] is an irreducible

quotient of [w; ] ® [w;pw] but not of [w; ,w;pw]. The details shall be omitted here.
When j = n, we use j — 1 in place of j + 1, and if j = n — 2 this statement changes

slightly to

(Wil ® [wjpw]

wiawypw] | = WiLEO@IHLED @n e W)

leading to

dim[w; o] dim[w; pw] > dim[w; qw;pw] + dim[w; 1 ¢ Wjt1.6()Wn ()W) (2.5.2)

14



Chapter 3

Main Results

In this chapter, we will discuss the main results of this thesis. Our goal is to
construct a graded character for our generalized Demazure modules in terms of level 1 De-
mazure modules. To do this we will be constructing interpolating polynomials and modules.
We will prove that for compatible pairs (v, \) there exists short exact sequences between
our modules, and use those sequences to manipulate coefficients of the graded characters
and identify them with coefficients of our polynomials. This work is inspired by the recent

results of [I] for level 2 Demazure modules in type A, and will follow a very similar pattern.

3.1 Macdonald Polynomials and G, (2, q)

Let 2 = (21, ,2n41) and ¢ be indeterminates, for weight A\ € PT, and let
Py(z,q,0) be the Macdonald polynomial associated to A specialized to t = 0. The Macdon-
ald polynomials are orthogonal and so form a basis for the ring of symmetric polynomials in

C[q][z]. Further, it has been proven in [15] for type A and in [I1] for the rest of the simply

15



laced cases chgy Wige(A) = chgr D(1,A) = Py(2,¢,0), a fact we will use freely.
Given A, u € PT we define p as in [I]:

g OtmA=) [T (A=) + (o) ey peQr
u(q) _ =1 (A - M:wj) q

25\

0 else
and notice that py(q) = 1, and just as in [I], if A — p € QF then (A + 1, A — p) =
(A=, A=) +2(p — po, A — p) € 2Z, meaning that py € Z*[q]. For convenience of future
statements, it will be helpful to extend our definition by setting py = 0 if A or p are in

P\ P+,

Next, we will define G5(z, q) € C[g][z] recursively as follows:
Gwi(z7q) = Pwi<z7 q, 0)7 i c {07 lan - 17”}7

PA(2,¢,0) =Gz )+ > Ph(@)Gu(z,q).

H=AEPT

Since the {P\ | A € Pt} is a linearly independent set, an induction on A shows that
{Gx(2,q) | A € PT} is as well, and so forms another basis of the symmetric polynomials

in C[g,z]. Hence there exists polynomials ai‘L(q) € Clg] with a}(q) = 1, and df = 0 if

A — ¢ Q7T such that

Gi(z,q) = Z aX(q)Pyu(z,q,0) and,

pepP+t

> akph =0, = piak

veP veP

Finally, given a pair of weights v, A € PT, we set

Gu,)\(za Q) = Z qA—‘rV_'u’Val)‘\LiV(q)PM(Z, q, 0)
nepP+t

where ah ™" = 0 if 4 — v ¢ PT and note that

GV,O = Pu(zvqa 0) and GO,)\(z7Q) = G)\(Zv Q)

16



3.2 Modules M(v,\) and their properties

In this section, we define the family of modules M (v, \). To do so, recall that
for any A € P, there exists A\g € P and an interlacing pair ({1,x,(2,2) such that A\ =
2X0 + 10 + C2x. For any v, A € P, define M (v, \) be the g[t]-module generated by some

element w, 4 with the following relations:
(27 @D)w,yn =0, (W&t )w,qx = SorAv)(R)wypy, (z; 1)Ly =0 (3.2.1)

(2 ® t(V—&-)\o,a)-I—maX(Cl,A704)7(42,»0&)))wU_M =0, (3.2.2)

for all 7 € [n],h € h and @ € RT. Since the defining relations of M (v, \) are graded by their
power of t, M (v, ) is a Z-graded g[t]-module, setting the grade of w, ) to be zero.

The inspiration for this construction comes from [16], and forces M (v, 0) = Wi (v)
and that M (0,A) = D(Ag+ 11, A1+ (2,)) as presented in [3]. Further, from [6] it is known
that local Weyl modules are finite-dimensional, and since M (v, A) is a quotient of Wi, (v+X),
M (v, \) must also be finite-dimensional.

Notice that upon inspection, these relations give
M(v + wi, 2X0) gg[t} M(v,2X0 + w;) for i € [1,n]. (3.2.3)

Also note, that because when A\ = w, + wy,—1 the pair (¢1,(2) = (wn + wp—1,0), an

inspection of relations also provides
M(v+ wp + wn—1,2X0) = M (v, 2o + Wy + wp—1)- (3.2.4)

We make the following observations about M (v, \) and their graded characters.
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Lemma 3.2.1 For any v, \ € P,
dim Homg(V (), M(v,A)) #0 = v+ A —pue Q.

Moreover,

dim Homg(V (v + X)), M(v,\)) =1

Proof. Any non-zero element in M (v, ) is of the form ww, ) with v € U(g[t]). Since
M (v, ) is a quotient of Wi,.(v 4+ A) and all words in U(g[t]) can be expressed in increasing
order, we can assume that v € U(n™[t]), and so wtu = Z — cqo where ¢, € N.

aERT
If there exists a homomorphism ¢ : V(u) — M (v, A) taking w, to uw,.y, then for

any h € b
pu(h)p(wy) = p(hwy)
= (h ® 1)uwy, 1
=v+A- Z ca)(h)uw, 4
a€ERT
= (A=Y caa)()d(wy).
a€RT
Thus p=v+ A — Z cqo, forcing v+ X — p = Z ca € Q7.
acRt a€RT

Further, the only weight p such that v + A — u = 0 is v + A itself. Thus
dim Homg(V (v + A), M(v,\)) < 1. Notice that the map ¢ : V(v + ) = M(v,\) which
sends v, 4\ — Wypn, T — (v ® 1), and sends hy — (hq ® 1) is a well defined homomor-
phism by the defining relations of M (v + X). Thus the dim Homg(V (v + ), M (v, \)) = 1.
]

The above lemma shows that the highest weight spaces of the modules M (v, \)

are one dimensional. Thus the set {chg, M (u,0) : pp € Pt} (resp. the set {chg M (0, p) :
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p € P1}) is linearly independent. We have also shown that the Z[q, ¢~ 1]-span of this set
contains chg, V(N), A € PT.
And so, chg V(A) is a linear combination of chgy M (1,0) (resp. chg M (1, 0)),

meaning that polynomials ¢/’ (resp. h ,) exist in C[q] such that:

cher M(v, ) = > gh(q) chge M(,0) = > 1L (q) chye M(0, ). (3.2.5)

neP+ pePt

with ¢/$* =1 =h"1" and ¢, =0 =1n!, if \+ v —p ¢ QT. For future convenience, we
will take gfi s = 0 if any of p, v, or A are not dominant integral weights. As the graded

characters are linearly independent, it is implied that for all v, A\ € PT,

= > dh g = Y hiogh. (3.2.6)

wept wepPt
3.3 Main Theorem and key Proposition

The following is the primary result with relation to the polynomials G, (%, q).

Theorem 3.3.1 If (v,\) € PT x PT is compatible, then G, is a sum of Macdonald

polynomials P,(z,q,0) such that the coefficients are polynomials with positive coefficients in

Z[q).

Note that because chgy M (v,0) = P,(2,q,0), (3.2.5)) implies that

3" B o(q) chyg M(0, ) = chyr M(1,0) = Po(2,4,0) = > piGu(z,q).
M€P+ MEP_‘—

Leading us to desire this proposition:
Proposition 3.3.1 For p,v, A € PT with (v,\) a compatible pair,

(V+)‘7/J7V) H—v
Jox »

95,,\ =4q h/zf,o = pl,.

19



We prove this proposition in Chapter 5, and with this result have the following:
Corollary 3.3.1 For A € Pt

Chgr M(O) )‘) = G)x (Zv Q)

Taking this corollary, we have that

Z g(’iy(q)Pﬂ(z,q,O) = chgy M(0,v) = Gy(2,9) = Z atP,(z,q,0),
nepPt+ pnepPt+

which implies that a‘)f = gg y- This directly implies the following, which is the primary

representation theoretic result of this thesis.
Theorem 3.3.2 For a compatible pair (v,\) € Pt x PT,
chgr M(v,\) = Gy (2,q).
Moreover, we obtain the following isomorphism
M(v,\) =2 M(v,0) « M(0,\).

We then build a closed form of gﬁ , and find it is an element of Z[g], so we also
achieve Theorem [3.3.7]

The first step towards proving Proposition is to find ways to find ways to
manipulate these coefficients. In this thesis we do this by relating the graded characters of

several M (v, \)’s using a collection of short exact sequences.

Proposition 3.3.2 Let \,v € PT and A\ = 2 o + \1 = 2X\o + (1.\ + (2 as previously

described.
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i) Let (v,\) € PT x PT be a compatible pair.

a) If v(h;) > 2 for some 1 < j < n,then there exists an exact sequence of g[t]—

modules,
- +
0— T;VJF/\O,aj)_lM(V —aj,\) T M(v,\) Lo M(v — 2wi, A+ 2w;) — 0.

b) If v € PT(1) with maxy < minA\; =m <n—1, 0 < p = min(\; — wy,), there

exists an exact sequence of g[t]-modules,

*
0— 7—()\07am,p)+1M(l/ 4+ W1, A — Omp — Wm—l)

® ot
— M+ wm, A — wm) — M(v,A) =0

ii) If A € PT(1) with m < min X with m ¢ {n — 1,n}, there exists an exact sequence of

g[t]-modules,
- +
0= 7 M (W1, A+ Wimy1) 2= M (W, A+ wim) 2= M0, 4 2w,,) — 0
If m € {n —1,n}, there exists an exact sequence of g[t]-modules,

- +
0 = 77 M(wn_2,A) L= M (W, A + win) —— M(0, X + 2w,,) — 0

The goal of the rest of this thesis will be proving Proposition [3.3.2] and Proposi-

tion B.3.11
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Chapter 4

Proof of Proposition

First, in this chapter we focus on proving that ¢ is a well-defined surjection and
that ¢~ is well-defined for each sequence in Proposition [3.3.2, For this we will focus on each

sequence separately. Then we shall utilize some dimension arguments to prove injectivity

of all of the ¢~ maps simultaneously.

4.1 Sequence ia)

Here we focus on proving the right exactness of Proposition ia).

Lemma 4.1.1 Let (v,\) € P x P be compatible with v(h;) > 2 for some 1 < j < n.

Then the map

3.3.2

ot M(v,\) = M(v — 2wj, A + 2w;)

which sends w4 to wl':r)\ is a well-defined surjection. Moreover, ker(p™) is generated by

(z; @t TR0 =),y
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Proof. For ¢* to be well-defined, it must first be shown that w:;)\ satisfies the relation

(3.2.2)) for M (v, \).This translates to showing that

(2 ® t(V-i-)\o,a)+max((C1,A701)7(C2,A7a)))w;_)\ =0 (4.1.1)
Note that for all @ € R, w;(hq) > 0, so

(v + Ao — wj, @) + maz((Cir, @), (Con, @) < (v + Ao, @) + max((C1,x, @), (C2n, @))-

Hence w " 1 satisfies the relation , and so T is proved to be well-defined.
It remains to show that ker(p™) is generated by (z; ® tr+20,05)=1)p, . Observe

that as ¢ T is a well-defined homomorphism,

0= (;L»j_ ® t(”+/\0_wj»aj)+maX(C1,A(hj)7C2,>\(hj)))wl‘;r)\

= (a7 @t (w4
=l @ 170 ),

and so (z; ® tH200)= 1y, o\ € ker(pt). Further, for any o such that wj(ha) # 0,

(x5 ® trHAomwja)tmax((Cre).(Cxe)) )y, € ker(pT). Also, wj(hy) # 0 implies that

)
aip  1<i<j<k<n

=48 1<i<j<k<n-—1

Bi k 1<i<k<j.

In each case, & = oj + 1 + 2 + 3 where v; € RT |J{0} and commute (for a more detailed

explanation, please see Appendix |A.1]). Hence

w

H x ® (Ao —w; i) +max((Cix i), (Ce, Am))))(xj— ® t(u+>\o,aj)71)wy+)\

=1

:(:L'; ® t(V"’_AO_wj7O‘)+max(C1,Ava)7(C2,)\7a))wy+)\.
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Hence all elements of ker(¢™) can be generated from (z; ® t+20.05) =1, . m

Lemma 4.1.2 Let (v,\) € Pt x PT be such that v(hj) > 2 for some 1 < j < n. Then the

map

L TFV+/\o,aj)—1M(V — Gy, A) = M(v, \)
which sends Wy—a;+x 1O (:c; ® t(u+/\o,aj)—1)wy+>\ is well defined.

Proof. First it must be shown that (iL‘j_ @t +20.25) =1y oy is a highest weight vector. This

can be sufficiently shown by proving that
(2] @ 1)(z; @t o)y, \ =0.
for i € [1,n]. For all i € [1,n], there exists a ¢ € C such that

(z] ® D(z; @ (i) FAoag) =1y,

= i je(hy @ VTR0 4 (27 @t 0T (i @ 1w, p = 0

since wy 4 is highest weight. Thus this map sends highest weight vectors to highest weight
vectors.
Now, it remains to be shown that the relations of M (v — «;, A) are satisfied by

this mapping. This means verifying that

(z, ® t(l/*aj+>\0,a)+max((C1,A:a)v(CQ,Ava)))(xj— ® t(V+>\0,04j)*1)wy+)\ =0, (4.1.2)

for all @« € RT. To do this we examine the cases: «j(hq) =0, aj(ha) = —1, aj(ha) = 2,
and a;(hq) = 1.

In the case that aj(ha) =0, [z4,2;] =0 and

(V — O + >\07 Oé) + max((Cl,)n Oé), (CZ,A? Oé)) = (l/ + )‘07 Oé) + maX((Cl,)\a Oé), (CQ,)\? Oé))
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so commutation of the terms kills w,, .

When o;(hy) = -1, a+aj =o' € R, and
r= (v —a;+ Ao, @) + max((C1,x, @), (C2x, @) = (v + Ao, @) + max((C1x, @), (G2, @) + 1.
Therefore

s= v+ Ao, ') + max(Ga(har), ox(hat)) =7+ (V + Aoy ) — 1)

and so utilizing the properties of the bracket on g[t] and Lemma [2.1.1] commutation of our
terms again kills w4 .

In the case that a;(he) = 2, @ = ¢, and

(v — aj + Ao, @) + max(((1.x, @), (G20, ) = (Ao, @).

Since the only n + ny = 2(Ag, ;) — 1 such that n; < (v + Ao, ;) are n; = (Ao, ;) and

ng = (Ao, ;) — 1 or vice versa, Garland’s Lemma tells us this product of terms kills

Wy \-
Finally for the case a;j(ha) = 1, we have again that [z, 2] = 0, but we also have that
a = o + v for some v € R™ with aj(h,) = —1. This means that now

s = (V —a; + Aos 7) + max(gl,/\(hW)7 CQ,/\(h’Y)) - (V + A()?’Y) + ma‘X(Cl,)\(h’Y)v C2,)\(h"/>) +1

and 7 = (v — a; + Ao, @) + max(((1x, @), (G20, @) = s+ (¥ + Ao, ;) — 1. Thus utilizng the
bracket of g[t], and prior cases, we can commute these terms and kill w, .

We include the computation of these commutations in Appendix With these
completed, we have proven for all cases, and so ¢~ is well-defined. =

Together these lemmas show Sequence ia) is right-exact.
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4.2 Sequence ib)

Here we focus on proving the right exactness of Proposition ib).

Lemma 4.2.1 Let (v,\) € PT x Pt with maxv < minA\; =m <n—1 and p=min \; —
wpm > 0. Then the map

ot M (v + wm, A — wm) — M(v,\)
which sends w4 to w;r)\ is a well-defined surjection. Moreover, ker(o™) is generated by

(T p ® tRo.emp) gy

Proof. As in the prior proof, our first step is to show that w:Zr)\ satisfies (3.2.2)) for
M (v + wm, A — wp,). We will assign our interlacing pair such that ¢ x(hm) =1 = (G a(hyp),

and note we want to show

(x5 ® t(V+wm+)\070<)+maX((C1,)\—wmya)a(CZ,)ua)))wl‘/"+>\ =0 (4.2.1)
Note that for all « € RT, wy,(hy) > 0, so

(v + Ao, @) + max(Cix, C2.0) < (V + wm + Ao, @) + max(Cr \ — wWm, @), (C2.0, @)).

Hence w;’ o satisfies (4.2.1)), and so ¢ is well-defined.
It remains to show that ker(¢") is generated by (z,,, ® t(0eme) 1)y, . Since

T is a well-defined homomorphism,

A(hm,p)
0 :(x;%p ® t’/(hm,p)‘*‘[ 5 —| LTSN

=@y @O0
=@y ® 000 ) (1)

m7p

:<P+(($;z,p ® t(/\o’am’P)H)wuH),
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and so (z, ,@tA0em2) )y, \ € ker(pT). For any o such that wp, (ha) # 0 and wp(ha) # 0,

Alha)

(x, ® t”(h”‘)Jr[ 2 ])wl,Jr)\ € ker(¢™). Also, wy(ha) # 0 and wy(hq) # 0 implies that
Qi k; 1<i<m<p<k<n
Bik 1<i<m<p<k<n-1

Bi.k 1<i<m<k<p

\

In each case, @ = amp + 71 + 72 + 73 where v; € RT |J{0} and commute (again, for a more

detailed explanation, please see Appendix [A.2). Hence

3
( H(:E';z ® t(VJr/\O:7i)+max((C1,A77i):(C?,A:’Yi))) (x;n,p ® t(Ao,am,p)+1)wy+)\
=1

:(x; ® t(V+A07a)+maX(Cl,>\7a)7(c2,kza)))wy+>\_

Hence, ker(¢h) is in fact generated by (z,, ® tP0eme) )y, \  m

Lemma 4.2.2 Let (v,\) € Pt x P™ be such that maxy < minA\; = m < n — 1 and

p=min A\ — wy, > 0. Then the map

SO : TEK)\O’am,p)‘i’lM(y + wm_17 )\ - amap - wm_1> — M(V + wm; )‘ - wm)
which sends Wy 4r—a,,, 10 (Th, ® tQoemp)t )y is well-defined.

Proof. We will assign the interlacing pair associated to A\; so that (1 x(hm) =1 = (21 (hp)
as we did in the last proof. First we must show that (z,, , ® to.emp)+1yqy y is a highest

weight vector. Specifically that

(@] ®1) (2, @t ),y =0
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for ¢ € [1,n]. For all ¢ € [1,n], there exists a ¢ € C such that

(& ® 1)(am, @ 100 P

= 61 ()€l Ri @ OO0 P Y,y (2 @t P (2 @ 1w, 4y = 0.

Thus this map sends highest weight vectors to highest weight vectors.

It remains to show that the relations of M (v+wyp—1, A— oy p —wm—1) are satisfied,

which means showing that

(25 @t Tem-rtloa)tmax((Ga—wm)(a—wptep o)) (g @iRoemP) Ty, =0, (4.2.2)
for all « € RT. To do this we split into cases, just as in the proof of Lemma

amp(ha) =0, amp(ha) = =1, amp(ha) =2, and oy p(ha) = 1.

In the case that amp(ha) =0, [75,7;,,] =0, and

(v + wm—1 + Ao, @) + max((C1,x — Wm, @), (C2,x — Wp + Wpt1 + Opn—own, @)

= (7/ + wm + )\0, OZ) + maX((Cl,)\ — Wm, a)v (<2,>\7 a)))

so commutation kills w4 .

When ayp(he) = =1, a + amyp =’ € RT and

7= (V+wmn-1+ Ao, @) + max(((1,x — Wm, @), (C\ — Wp + Wpt1 + Opn—2wn, @)

> (V4w + Ao, @) + max((C1.x — W, ), (2.0, ).

Therefore

s = (V4 wm_1+ Ao, ) + max((¢1,x — wm, @), ((on — wp + wWpt1 + Fpn—swn, ) + 1

> (V + wm + AOy O/) + max((CL)\ — Wm, Ck/), (CZ,/M O/>)7
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and so utilizing the bracket on g[t] and Lemma commutation of our terms kills w,, y.

In the case that o, p(ha) =2, @ = quyp, and
(V + wm—1 + Ao, @) + max((C1,n — wWm, ), (Cn — wWp + Wpi 11 + dpn—2wn, @) = (Ao, @).

Since the only n1+na = 2(Ag, um p) +1 such that n; < (v+ o, A p) are ny = (V4 Ao, i p)
and no = (v + Ag, amyp) + 1 or vice versa, Garland’s Lemma tells us this product of
terms kills w4 .

Lastly, if a is such that am,,(he) = 1, then either o = amyp + v OF Ay = o+ . If

Q= Q. p + 7 then ap () = —1,
r = (V+ wm—1+ Ao, @) + max(((1,x — wWm, @), (C2x — Wp + Wpt1 + Op n—2wn, )
> (V4 wm + Ao, @) + max(((1 x — Wm, @), (Gr—, ) — 1,
and
s = (V+ wm—1+ Xo,7) + max((C1.n — wWm,7), (C2x — Wp + Wpt1 + Opn—2wn,7))

> (V4 wm + Ao, y) + max((C1,x — wims 7)), (G20, 7))

Again by using the g[t] bracket and our prior cases, we can commute our terms to kill w,, 4 ».

If o p = a4 v then we have
r=(V+wn-1+ Ao, @) + max((Ci,x — wm, @), (2x — Wp + Wpt1, Q)

= (V +wm + Ao, o) + max((¢1,n — Wm, @), (G2 x, ) — 1,

and
5= (V4 Wm—1+ Ao,7) + max((Crx — wm, ), (G — wp + Wpi1,7))
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= (VU + wm + A0, 7) + max((G1n — wm, ), (C20,7)) — L.

Here using our bracket and Garland’s Lemma [2.1.2] we can again commute our terms and
kill Wy+\-

We include the computations for these commutations in Appendix We have

now proven (4.2.2)), so ¢~ is well-defined. m

Together these lemmas show that Sequence ib) is right-exact.

4.3 Sequence 1)

In this Section we focus on proving the right exactness of Proposition mm ).
Lemma 4.3.1 If A\ € P*(1) with m < min A, then the mapping
@ ¢ M (W, A+ wi) = M0, X+ 2wp,)

which sends w42, to w:\:_me is surjective. Further ker(p™) is generated by
Proof. For sake of notation, we will assume that min(; x < min(y ). First it must be

shown that wj\rH w,, Satisfies (3.2.2)) for M (wy,, A + wy, ). This means showing

(z;, ® t(wm7a)+max(41,>\,a):(C2,A+wm,Of))w;\‘+2wm =0. (4.3.1)

Notice that for all « € RT, (wp,,a) > 0, so
(V + Wm + )\07 a) + maX(Cl,)\a Oé), (CQ,)\, Oé)) S (V + Wm + >\07 Oé) + maX(Cl,)\v a)v (CQ,)\ + Wm, Oé))

Hence by (3.2.2) for M (0, A + 2wy,), (4.3.1) is satisfied by wRL+2 w,. - Therefore o is well-

defined.
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It remains to show that ker(¢™) is generated by (x;, ® t)wxia,, . Observe that
since ™ is well-defined
0= (2, ® t(wm’a))wj\rﬂwm
= (aj’;l ® t)so—i_ (w>\+2wm)
o (o
= ((xm ® t)w)\+2wm)>

80 (2, ® t)Wxt2w,, is in the kernel. Note that for all o such that (wp,,a) # 0,

(z; @ tlwm@)tmax(Cre), (@), o, € ker(p), and that if (wp, ) # 0, then

Qg k 1<i<m<k<n

Bi k 1<i<m<k<n-—1

Bi,k 1<i<k <m.
Identically to the proof of Lemma [4.1.1], each case is such that o — oy, = 9 + 71 + 72 where
v € RT|J{0} and commute (using the same details Appendix simply replacing j with

m). Hence
2
(H(I; ® t(LUm7’Yi)+maX(<1,>\"Yi)v(CZ,)\"Yi)))) (2 @ )wrgou
1=0

:([L'; ® t(wm7a)+max(<1,Ava)v(CZ,kva))w)\+2w .

Hence ker(¢™T) is generated by (z;, ® t)wxiaw,, as claimed. m

Lemma 4.3.2 If A € PT(1) with m < min XA and m ¢ {n — 1,n}, then the mapping

0 T M (W1, A + Wi 1) = M (Winy A+ win)
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which sends Wi, +wmi1 10 (Tr, @ t)Wrtow,, is well-defined.

Proof. Again, for notation, we assume min¢; y» < min¢ ). First, we must show that

T, Qt)wiro, 1S a highest weight vector. This can be sufficiently shown by proving that
m +2wm

§ ®©1)(z, @ w1 = 0.

(z;

for i € [1,n]. For all i € [1,n], there exists a ¢ € C such that

(zF @ 1)(z;, @ )wy4a

= 8imC(hin ® Ywygx + (37, @ t)(z] ® Dwyqn =0

since w4 is highest weight. Thus this map sends highest weight vectors to highest weight
vectors.
It remains to show that the relation (3.2.2) of M (wp—1, A+ wmy1) are satisfied by

(z,, ® t)Wrt2w,,. If A(hms1) = 0, this means showing
(25 ® tm=1,004max(G 20 (Gatwm 1)) (2 @ t)wy 9., =0, (4.3.2)
and if A(hp,+1) = 1, this means showing
(2 @ tem-1+emin)tmax((Ga—om1,00(Gx)) (37 @ t)wyyg0, = 0. (4.3.3)
To do this, we’ll examine the cases
o win(ha) = wm-1(ha) = w(ha)
o wn(ha) =wm—1(ha) = wmti(ha) — 1 or wm(he) = wmt1(ha) = wm—1(ha) — 1

b Wm<ha) 1= Wm—l(ha) = wm-l—l(ha) =0

32



o wn(ha) =wm—1(ha) = wmti(ha) + 1 0or wy(he) = wmt1(ha) = wm—1(ha) + 1
If Wm(ha) = wm—l(ha) = W(ha), then
(Wi, @) + max((C1.x, @), (C2.x + W, @)

(Wm—1, @) + max((Cin, @), (G2 ) + Win+1, @) A(hm+1) =0

(Wm—1 + W1, @) + max((Crx — Wmt1, @), (G2, @) Ahmg1) =1

, and if & + o, = @/ € RT, then
(wm,@') +max((¢1,x, @), (G2 x + wm, @)

(Wm—1,a") + max((Cin, '), () + Wimt1,¢)) + 1 A(hp—1) =0

(Win—1 + wmt1, ') + max((Grn — wmt1, @), (G @) +1 Alhn-1) =1,
Hence (taking z, to be 0 if @ + a;, ¢ RT) we can use the bracket of g[t] allows us to
commute our terms and kill wyya,,,, .

Next, if W (ha) = Wm—1(ha) = wm+1(ha) — 1 or Wy (ha) = Wmt1(ha) = wm—1(ha) — 1, then

(Wi, &) + max((Cin, @), (Con + Wi, @)

(Wm—1, ) + max((¢in, @), (G2 ) + W1, @) APmg1) =0

IN
<
I

(Wm—1 + W1, @) + max((C1x — W1, @), (Gr, @) A(hmyr) =1

,and if o + o, = @/ € RT, then
(wm70/) + max(((l,)\, O/)a (CQ,)\ + Wm,s O/)

(Wm—1, ) + max((Cin, @), (20 + Wimg1, @) +1 A(hn-1) =0

IN
»
Il

(Wm—1 + W1, @) + max((G1n — Wint1, ), ((2n,0')) + 1 Ahp—1) =1,
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so again taking z. to be 0 if o + a;, ¢ R, we can use the bracket of g[t] allows us to
commute our terms and kill wya,,,.

When wy,(he) — 1 = wim—1(ha) = Wmt1(ha) = 0, then o = ayy, and
0= (wma a)+ma‘x((C1,)\7 a)7 (C2,)\ + Wm, a)) -2
(Wm—1, ) + max((Cix, ), (G + wWimnt1,®) A Amy1) =0

(wm—l + Wm+1, OC) + maX((Cl,)n a)? (CZ,A? Oé)) )\(hm—i-l) =L

Since the only nq1 + ng = 1 are ny = 0 and ne = 1 or vice versa, we can use Garland’s
Lemma to see that this product kills wyay,, -
Lastly, when wy,(ha) = wm—1(ha) = Wmt1(ha) +1 or Wy (ha) = Wt (ha) = wm-1(ha) + 1,

we have that for some v € RT, a = a, + v with
(wmaa) + max((CI,)\v a)v (CQ,)\ + Wm, Ck)

(wm_l, Oé) + max(({l,,\, Cl)7 (CZ,A + Wm+1» Oé)) )\(hn—l) =0

IA
-
Il

(Wmfl + wWm+t, 04) + maX((Cl,)\ — Wm+1, Oé), (CQ,)\’ Oé)) )‘(hnfl) =1,

and
(Wm, ) +max((C1x,7), (Con + Winy 7))

(Win—1, ) +max((Cix,7)s (C2n + Wimt1,7)) A(hm+1) =0

INA
®
Il

(wmfl + Wm+1, 7) + max((gl,)\ — Wm+1, 7)7 (<2,)\a 7)) )‘(herl) =L

Therefore using the g[t] bracket and our prior cases, we can commute our terms and kill

WA+2w, -

As with the prior sections, we inculde the full commutations in Appendix [A-3] and

thus (4.3.2) and (4.3.3)) are satisfied, and ¢~ is well-defined. m
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Lemma 4.3.3 If A € PT(1) with m < min X\ and m € {n — 1,n}, then the mapping
o 1 M(wp—2,\) = M (wm, A+ wp,)
which sends Wiy, , to (T, @ t)wrtow,, is well defined.

Proof. For ease of notation, we will take (1 x, (2, +wm) to be the interlacing pair associated
to A+ wy,. First, we must show that (z,, ® t)wxyo.,, is a highest weight vector. The proof
is identical to the previous lemma, the mapping sending highest weight vectors to highest

weight vectors.
It remains to show that the relation (3.2.2)) of M (w,—2,A) are satisfied by (z,, ®

t)Wr42w,,. This means showing that
(z2 ® t(wn—Z7a)+maX((<1,A,Oé)y(C2,>\,Oé)))(x;hb ® t)Wx 12w, = 0. (4.3.4)

To do this we examine the cases a,,(hy) = 0,—1,2, and 1.

If o (he) =0, [z, 2,,] =0, and
7= (Wn-2, @) + max((C1, @), (C2n, @) = (Wm, @) + max((C1x, @), (21 + Wi, @),

so we can commute our terms and kill wy4a,,, -

Next, if aun(ha) = —1, then a + a;, = o/ € RT and
r = (wp—2,a) + max((Ci,x, @), (G2, @) = (Wm, @) + max((Cix, @), (G2x + wm, @) + 1,
S0
s = (Wn—2,) + max((¢1x, @), (G20, @) + 1 = (Wi, ) + max((C1,x, @), (C2r + Wi, @)).

Using the bracket of g[t] and Lemma the commutation of our terms kills w2y, -
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If ap(ha) = 2, then o = . In this case

r= (wn*2’ a) + max((cl)\v a)v (CQJ\? a)) = (WWH a) + maX((Cl,)\a O‘)’ (CQ,)\ + W, a)) -2,

so by using Garland’s Lemma we see that this product will kill wyyay,,,-
Lastly, if oy, (ha) = 1, then a = ayy, + @ n—2 and
r= (wn72a Oé) + maX((Cl,)\? a)a (CQ,)\? a)) = (wm7 Oé) + maX((Cl,)\a O[)’ (CQ,)\ + Wim, Oé)) - 1;
with
s = (Wn—2, ¥ n—2) + max((¢i,n, @in—2), ((2.0 Xin—2))
= (W @ip—2) + max((Cix, ®in—2), (G2 ) + Wi, i p—2)) — L.

Using the bracket of g[t] and prior cases, we can commute our terms to kill wy o, -
We provide the full commutations in Appendix again, and thus (4.3.4) is
satisfied for all « € R and ¢~ is well-defined. m

Together these lemmas prove the Sequences in Proposition i) are right-exact.

4.4 Dimension Arguments

In this section, we will prove 2 propositions regarding the dimensions of certain
M (v, A) in order to prove that the sequences in Proposition are exact. In order to

prove these two propositions, we will need the following lemma.
Lemma 4.4.1 For A € P,

dim M (0, ) = dim D(2,2\o) dim M (0, Ay).
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Proof. Firstly note that if Aj(h,—1+h,) =1 or if A = w;—1 +w; + §; n— 1wy, by Proposition
1.10 of [3], M(0,\) = D(2, ), and from [7] and a second application of Proposition 1.10
that

M(0,) = D(2,2X) * D(2, M) 2 D(2,2)0) * M (0, \).

If AMi(hp—1+ hyn) € {0, 2} and A\; # wi—1 + w; + 0; n—1wn, then we must begin by
defining By,. Take p < n — 2 to be maximal such that A(h,y1) =1, and 1 < p’ < p to
be maximal such that (¢1x — (2,0)(hyp) = 0. Then we set B\, = By p+1. By Lemma 1.11
of [3] there exists a 4 € P such that A\; — B8\, —2p € P*(1). This in turn means that
A= Bx =2(Mo+ ) + (A1 — By, — 2p). From this point we will use 5y = ), for notational
ease.

Next we define a sequence of weights recursively, beginning with
M= A =X =50, - X=X 5.0
We take s to be minimal such that Sys = 0, and we define

e = (AG, Bar) + max((Cf,\,ﬁ,\k), (C;»ﬁv))

where (Cf/\,g ,) is the interlacing pair corresponding to A¥. Note that from the above
discussion, there exists a u* € P* such that A+t = 2\ + %) + (\F — B, — 2pF). We can
therefore describe A1 = 2(\g + S°F  1f) 4+ (A — (0, B + 20)).

Therefore the graded character formula given in Section 1.15 of [3] translates to

dim M(0,A) =) ¢"* dim D(2, A¥)
k=0

S k—1 k—1
= ¢ dimD(2,2(0 + Y ) + (M — O B +21)))
k=0 =0 i=0
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Through application of [7] and the formula once again.

kol
—_

dim M (0, A) =dim D(2,2X0) > _ ¢"* dim D(2,2(
k=0

k—1
i)+ O = (X By + 2u1)))
1=0

-
Il
o

=dim D(2,2\o) dim M (0, A1)

Proposition 4.4.1 For all weights satisfying the given conditions:
i) v1,v2 € PT where v = vy + vy, then dim M (v,0) = dim M (11, 0) dim M (v2, 0).
ii) A\, € Pt, where \g — p € Pt, then dim M (0, \) = dim M (0, A — 2u) dim M (0, 24)
iii) \,v € PT, then dim M (v, \) > dim M (v, 0) dim M (0, \)

iv) A € PY(1), m < min\ = p, then dim M (wp,,\) = dim M (wy,,0)dim M (0,\) and

there exists a short exact sequence

0= 77 M(Wm—1, A — Qmp + Wi — wWim—1) = M(wp, A\) = M(0,\+wp,) =0

Proof. Firstly, the proof of i) is in [10], however the authors use the notation W(v) in
place of M(v,0). For the proof of ii), note the by Lemma and [7] for a u € P such

that \g —pu € P
dim M (0, \) = dim D(2,2)¢) dim M (0, A1) = dim D(2, 2u) dim D(2,2(Ag — ) dim M (0, A1)

= dim M (0, 2p) dim M (0, A — 2p)

Next, for i), we will take 21, zo to be the parameters of our the fusion product
M(v,0) * M(0,\), and examine the map ¢ : M(v,\) — M(v,0) * M(0,\) which sends
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Wyyx — wy * wy. To show that this map is a well-defined surjection we need to show

that w, * w) satisfies the relations (3.2.1)) and (3.2.2)) for M (v, ). Note that because both

M(v,0) and M(0,)\) are quotients of Wi,e(v) and Wie(A) respectively, (3.2.1) is clearly
satisfied. To show that (3.2.2) is satisfied, take (v + Ao, @) + max((¢iz, ), (G2n, @) = T,

and note that for any r; 4+ ro = r, by Lemma

(o @ (t+21)" (t+ 22)") (w, @ wy)

=(Ta ®t")(wy ® wy) =0,

since r > (v, ) and 7 > (Ao, ) + max((C1 )z, @), (C2,0, ). Hence 9 is a well defined surjec-
tion, and dim M (v, A) > dim M (v, 0) dim M (0, A).

Lastly, for ), we will induct on m. Note that for m = 0, dim M(wp,0) =
dim M (0,0) = dim C = 1 so our claim is obvious. For m > 0, it is worth noting that
gives us that dim M (wp,0) = dim M (0,wy,). Specifically for m = 1, Proposition [3.3.2}ib)
and Proposition z') gives us

dim M (w1, 0) dim M (0, ) < dim M (0, A + wy) + dim M (0, A — a1 + w1).
Note that because Theorem and A € PT(1), M(0,\) = [Ac] and the above becomes

dim[wlya] dlm[)\] > dim[wLa + )\] + dim[wpﬂ,gp + 94 n—2Wnp + )\l]

where wt X' = X\ — wy, which is precisely (2.5.1)) and (2.5.2). Assuming our hypothesis

for M < m, we again use Proposition [3.3.2ib), Proposition 4.4.1{i7), and our inductive

hypothesis to arrive at
dim M (wyy,, 0) dim M (0, A)

<dim M (0, A + wy,) + dim M (wy,—1,0) dim M (0, A — am p + Wi — Wim—1),
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which is shown to be an equality by (2.5.1) and (2.5.2)). Hence our claim hold for m, and

the induction complete. =
Proposition 4.4.2 Let (v, \) be a compatible pair.
i) For all (v,\), dim M (v, A) = dim M (v, 0) dim M (0, \)
i) if v(hj) =2, dim M (v, \) = dim M (v — 2wj, A + 2w;) + dim M (v — i, )
iii) if v € PT(1), m = maxv < min \; = p,
dim M (v, \) = dim M (v — wy,, A wp,) +dim M (v — wi, +Win—1, A — Qi p + Wi — Win—1)
i) if A € P*(1), with m < min A\ with m ¢ {n —1,n},
dim M (W, A + wpy) = dim M (wp,, 0) dim M (0, A + wyy)
=dim M (0, A + 2wy,) + dim M (wy—1, A + wint1)
v) if X € P*(1), with m < min X\ with m € {n —1,n},
dim M (Wi, A + wyy) = dim M (wy,, 0) dim M (0, A + wy,)

=dim M (0, A 4 2wyy,) + dim M (w,—2, A)

Proof. We prove i)-iii) by inducting on compatible pairs. Observe this is true for (0,w;)’s
by (3.2.3). Assume this is true for all (/,\') < (v, \).
If v(h;) = 2, Proposition |3.3.2fia), Proposition [4.4.1fi)-#4), and our inductive hy-
pothesis achieve
dim M (v, 0) dim M (0, \)

<(dim M (0, 2w;) + dim M (2w; — «;,0)) dim M (v — 2w, 0) dim M (0, \).
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Note that dim M (2w;,0) = dim M (wj,0)dim M (w;j,0) = (dim M (w;,0))? by and
Proposition [£.4.1}, dim M (0, 2w;) = dim D(2,2w;) by Proposition and dim M (2w; —
a;,0) = Haj(hk):_l dim M (0, wy,) again by and Proposition . Observe that here
KR(w;) = M(w;,0), KR(2w;) = M (0, 2w;), and dim K7, = dim M (2w; —a;,0). Therefore

by Theorem 4 of [§],
dim M (2w; — a;,0) + dim M (0, 2w;) = dim M (2w, 0).
Hence, using the above along with Proposition ) we have

dim M (v,0) dim M (0, A\) <dim M (2w;,0) dim M (v — 2w;,0) dim M (0, A)

=dim M (v,0) dim M (0, ).

If v € PY(1) with maxv = m and A\; = 0, then using (3.2.3), the inductive

hypothesis, and Proposition ),
dim M (v, A) = dim M (v — wp, A + wp) = dim M (v — wyy, 0) dim M (0, A + wyy,)
= dim M (v — wy,, 0) dim M (wy,, 0) dim M (0, A)
= dim M (v,0) dim M (0, )

If v € P*(1), such that m = maxv < min\; = p, then by Proposition [3.3.2}ib),

Proposition and our inductive hypothesis

dim M (v, 0) dim M (0, \)
<dim M (v — wpm, A+ wpy) + dim M (v — wey, + W1, A — Qi p + Wiy, — Win—1)

=dim M (v,0dim M (0, \).
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We prove iv) and v) using a downward induction on m. If m =n, A = 0, so using
(3.2.3)), Proposition [3.3.2}ii), and Proposition 4.4.2ii) we see
dim M (wy,, 0) dim M (0, wy,) = dim M (2w, 0) < dim M (wy,—2,0) + dim M (0, 2wy,

= dim M (wp—2,0) + (dim M (2wy,0) — dim M (wy—2,0)) = dim M (2wy,, 0).

When m =n —1, A € {0, w,}, so using either (3.2.3) or (3.2.4]), Proposition |3.3.24ii), and

Proposition ),

dim M (wp—1,0) dim M (0, A + wp—1) = dim M (2wy,—1, \)
<dim M (wp—2, A) + dim M (0, A + 2wy, —1)
= dim M (wp—2,A) + (dim M(2wp—1,A) — dim M (w2, )\))

= dim M (2wp—1, A).

Now, for our induction, assume our claim holds for M > m and take min A = p.

We can use Proposition 4.4.1}i), Proposition i), and Proposition )-iii) to see

dim M (wy,, 0) dim M (0, A + wy,)
<(dim M (wp—1 + W1, A) — dim M (Wpm—1 + Wiy A = Qmg1p + W1 — Win))
+ (dim M (2wp, A) — dim M (wm—1 + W41, A))
= dim M (wyn, 0) ( dim M (wpy, A) — dim M (wp—1, A — Gmp + Win — Win—1))

=dim M (wy,, 0) dim M (0, A + w,y,)

since Qupm41,p — W41 + Wm = Qmp — Wiy + Wi—1. This completes our induction. ®
Proposition [4.4.24i7)-v) prove exactness of all sequences of Proposition so we

complete this chapter.
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Chapter 5

Proof of Proposition 3.3.1

In this chapter, we will be creating a closed form of ¢"',(¢) and proving that
h’;o = pi,. To do this, we prove some properties of gl’f’)\ to use in our construction of its
closed form, take note of some recursions of p,/, and then prove some properties of hfj 5 and

their relationship to gﬁ , and show that these produce recursions identical to those of ph.

5.1 Properties of g},

Proposition 5.1.1 Assume (v,\) € PT x PT is a compatible pair, then for b € {g, h}
ia) If v(h;) > 2 for 1 < j <n then

(v+Xo,a5) =1yt

oo g
bl/,/\ - bl/—2wj,)\+2wj +4q v—aj,\

ib) If v € PT(1) with maxv <minA\y =m <n—1,0<p=min A\ — wy,, then

— bﬁ)\ _|__ q(A07am,p)+1b/'L

Vtwm A—wm VA+wm—1,A—Qm,p—Wm—1
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ii) If X € PT(1) with m < min X\ with m ¢ {n —1,n},

I _ i I
bwm,)\+wm - bO,)\+2wm + qbwm_l,)\+wm+17

and if m € {n —1,n},

o __ M o
bwm,)\+wm - bO,/\+2wm + qbwn_g,)\

Proof. Given the the exact sequences of Proposition then these equalities come form
identifying elements and equating their coefficients in the graded character formulas. For

an example of the first item, see Appendix [

Lemma 5.1.1 For all compatible pairs (v,\) and dominant integral weights p, gl’jA =

q(y"’_)‘_//“vl/) gg;;,/ R

Proof. This proof will be done by induction on the height of A;. We will assume throughout
that (v, \) is a compatible pair.

First, we examine the base case of ht A = 0. If ht A = 0, then A = 0 and

woo_ _ v
9vo0 = Ovpu = 90,0 -

Thus we assume inductively ¢~ ,, = N =) gh/ for ht N < ht X and move to cases of
A # 0. For brevity, the full computations have been moved to Appendix
When ht A\ = 0, then A = 2)\g and A(h;) # 0 for some 1 < j < n. Since

V+2wi, A\ — 2w;) and (¥ — a; + 2wm, A — 2w;) are also a compatible pairs with ht A >
J J J J
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ht(X — 2w;), we can use Proposition [5.1.1fia) and the inductive hypothesis to compute

(v+Xotw;)(h;)—

no _ 1 p
gy,)\ - gu+2wj,)\—2wj q gl/+2wj—o¢j,)\—2wj

= (V+)\—M7V)( (VA =p,2w5) PV =205 (Aosa)+(vHA—p,2w; —ay) “+O‘J'_”_2“’J')
q q 0,A—2w; q 0,A—2w;

v

u+)\7u,u)gg; )

_

Next we explore the case ht Ay = 1. Thus A\ = w,, for some 1 < m < n and
A = 2)\g + wr,. Then by (3.2.3)) and the fact that (v 4 wm,,2X0) is a compatible pair with

ht A > ht(2)g) out inductive hypothesis provides

n _ At v—wm (v A=) v
9u220+wm — 4 02z  — 4 9o,

) )

Then we move to the case of ht Ay > 2. Here, Ai(hy,p) =2 for 1 <m < p < n.
Note that the case when ht \; = 2 with m = n — 1 is immediate from and the
inductive hypothesis. For all other instances, since (v + wp, A — wy,) and (Vv + wp—1, A —
Qmp — Wm—1) are compatible pairs with ht A > ht(A — wy,) = ht(A — . p — wWim—1), We can

use Proposition b) and the inductive hypothesis to compute

M — oM — ()‘Oyam, )+1 M
gu,)\ - gu+wm,)\—wm q v gy+wm717A_anL’p_Wm71
— gWHA—py VA+A—p,w H—V—Wm A0,0m,p)+1+(V+A—p—om pwm—1) MV —Wm—1
= q( )(q( m)go)\iwm — q( m.p) ( ™m,p )gU,)\fam,pfwm_l)
— (V+)‘_H7V) H—V
=dq Yo -

Hence our induction is complete. m

Once we have this proposition and lemma, we can prove even more properties of
o
gl/,)x'
Proposition 5.1.2 For A € Pt with A\ = 2X\g + A1, m = min()\;), and p = min(\ — w,y,);
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1

a) Y ep¥gh =0

b) g&)\ # 0 implies (N — p,ws) < (A, ) for alll < s <m.
c¢) When \p=0,m<n—1,p#0

I _ H—Wm—1
g gO/\ wm ng)\ Qm,p—Wm—1

d) When Ao = w; with j+1<m
p—2w;+aoy

poo_ 2w
9ox = 9o, x—2w; ~ 990, 1—2w,

Proof. From the proof of Lemma we know that for compatible pairs (v, ) we have

gg’)\ — q()\—l’qwm)gﬂ)\wzm (]_ — 6p’0)q(>\07am,p)+1+()\_#—am,p,wmfl)g&;f”;;ﬂ!lp_wm_l (511)
_ . —2w; . — v P +ai—2w;
gg))\ — q(A H‘72wﬂ)gg7>\_u;-;] — q(A07a])+()\ 14 aj72CU] aj) gj)\féijj <51.2)

and so we can prove each piece of Proposition with an induction on ht A. As with our

other proofs, we give the steps of our proof, and list the full computations in Appendix|B.J]

For a), if A = 0, then Zq%(“’“)g(ﬁio = 0. We will suppose that Zq%(“’“)g{)‘)\ =0
nepr neP
for ht A < M. Taking A € P*(1) with ht A\ = M, there exists m = min(\), so

1 1
2 2 A— m —Wm
Do argh =3 qp (O remghien
pnepP nerP
_ (1_5p70)q(>\o,am,p)+1+(>\7u—am,p,wm 1) H—Wm—1 —0

gO A—Qm,p—Wm—1

by (5.1.1) and the inductive hypothesis. Taking A ¢ P (1) with ht \ = M. Then there

46



exists a j such that Ao(ha,) > 0 the

1
= ) ’LL
ZQQ(##)gO,)\
pneP
L (p—2w;,u—2w, A 2w;)  H—2w; X0, )+ (A—aj 2w —ay) Moy —2w;
:qu(/‘ 5o J)(q( ])90,)\—2Z;Jj _q( 0,05)+( JreWj 3)907/\_12wj =0
ner

by and the inductive hypothesis. Thus for all ht A = M a) holds.

For b) if A = 0, then ggjy = do,u, 50 g o 7 0 unless 1 = 0, and (0 —0,ws) = (0, ).
Assume for ht \ < M that g(’i/\ # 0 implies that (A — p,ws) < (A, ) for all 1 < s < m.
Taking a A € PT(1) with ht \ = M, then there exists m = min A and p = min(A — wy,).

Firstly if p = 0, then (3.2.3)) and the inductive hypothesis give
0% ghp = ¢ #m) g™ and (Wi — 1, ws) < (0,04) =0

for all s € [1,m]. If p # 0, then and the inductive hypothesis give us that

0 # gg”)\ — q(A_“’wm)g'u’iw"n — q()\O7C¥m,p)+1+()\_ﬂ_am,p7wmfl) H—Wm—1 SO

7>\_wm 907)‘_am,p_wm—1’

(A= Amp — Wm—1 — (1 —wm-1),ws) <A —wm — (1 — wm),ws)

S ()\ _wmyas) S (A7as)

for all s € [1,m]. Taking a A ¢ P* (1), then \g(hq,) > 0 for some j € [1,7], and (5.1.2)) and

the inductive hypothesis lead to

b (A—p,2w;) B 2w 20,05)FA—p—aj 2w —ay) Mty —2w;
0 75 907)\ — q( © ])gO,)\—ij _ q( 0,0 )+ (A—p—ay,2w; J)go,)\_ij , SO

(A —aj = pws) < (A= 2wj — (1 — 2wj), ws)

< (A= 2wj, ) < (A ay)
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for all s € [1,m]. Thus, b) holds for all ht A\ > M.

For ¢) take \g = 0 and m < n — 1 with p # 0, notice that using b), we have that
A=, wm) = (A —amp — p,wm—1) = 0, and applying this to we achieve our desired
result.

Finally for d) take A\g = w; with j + 1 < m, using b), we have that (A — p,w;) =
(A — p— aj,w;) =0, and applying this to (5.1.2)) we achieve the desired result. m

There is one final lemma we need to construct the closed form of g/, A

Lemma 5.1.2 Form € [1,n] and A € PT(1) with m < p = minA we have

*(1*6m,n)wm—1*(sm,nwn72 _ ()\+2wm7u,wm)

" _ I H—wm
JeomMbwm = I0A+20m T 990N+ (1=8m 101 )11 =4 90, A +wnm*

Proof. To prove the first equality, note that from Proposition [5.1.1fii), we have for m ¢
{n—1,n} gzm,kﬂum = gg,A+2wm + qggm_1,>\+wm+1‘ By Lemma the compatibility of the
pair (wm—1, A + wWm+1), and Proposition [5.1.2), (A + w41 + Wm—1 — iy wm—1) = 0 and

1% _ M H—=Wm—1
gwm,/\erm - gO,/\JrZwm + ng,)\+wm+1 :

Similarly, if m € {n — 1,n}, Proposition [5.1.111) gives us 9o rwors = J0rt2wy, T
qgﬁni2 - Again using Lemma the fact that the pair (w,—2,\) is compatible, and
Proposition [5.1.2b) implying that (A 4+ wp—2 — p,wp—2) = 0, we see that

1% _ M H—Wn—2
anu)\‘H’JnL - gO,)\—‘ranL + qgovA :

Hence the first equality holds.
To prove the second equality, we shall employ a downward induction on m. If
m =n, then A =0, so

H—Wn __ H—Wn—-2 __
gO,wn - 5I~L_wn7wn7 90,() - 5,u,—wn,2,0
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therefore the equality holds for m = n if 6,20, = 9§ ;9. T @Ouw,_»- This is precisely the

application of (5.1.2)) to A = 2w,,.

If m=mn—1, then A € {0,w,}. If A =0, we follow the same steps discuss when
m = n. If A = wy, note that using (5.1.2))

(Wn+2wn—1—p,2wWn—1) H—2Wn—1 —Wnp—2

H _ H
gov2wn—1+wn - q goywn B qgo7wn

Note that by Proposition b) g(‘igiw"’l #0 = (wn+2wp-1— p,wn—1) < (W, Wp—1) =

0, so when we apply Lemma [5.1.1f and (3.2.3) we see that

H _ (wnt2wn_1—pwn_1) pm2wn-1 _ _ p—wn_2
gO,an,1+wn =4 " " " gO,wn qg()#)n
— M~ Wn—1 __ H—Wn—2 _ H—Wp-—1 . H—Wn—2
- gwnflytwn ng,wn - gO,wn-i-wn_l qg07wn

so our equality holds.

For the next step of this induction, when m < n — 1 and p # n, we apply Propo-

o . . . . 'u,—wm ,U‘_wmfl
sition [5.1.2}c) or inductive hypothesis to 90 Ao and g et and have
p—wm  _ p—2wm H—Wm —Wm —1 H—Wm—1 _ _p—2wmtam H—Wm—1—Wm
gO,)\—i-wm - gO,)\ ng,A—wp—i-prrl g(],)\+wm+1 - gO,)\ ng,)\—wp—i-prrl :

Using Proposition [5.1.2}b), we have that if gg;fm’l_wm # then (A 42wy, — oy p — ph,wm) =0

Wp—Wp+1

and if gl ;2‘”’” then (A + 2wy, — i, wr,) = 0. This means what we are attempting to show is

)% _(AF2wm —pwm) [ 2Wm H—Wm—Wm—1Y B—=2Wmtam P—Wm—1— W,
Jort 2w, =4 T (gh Q90,7 tany) — 4(To.0 Q90 7t ips)
— (A 2wm —pywm ) H—2wm _ p—2wmtomy (A2wm—ph,wm) _ H—Wm—1—Wm
=(g T g0 a9, ) = alg T — Q) g\
_ p—2w HU—2wm+a
=% — 4%

When p = n, we get an identical statement using identical steps, with p— 1 in place of p+ 1.

To prove this simplified statement, we split into three cases: p > m+ 1, A = wy,11, and
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p =m+ 1 with min(A —w,) = r > 0. Firstly, if p > m + 1, then (2w, A) is a compatible

pair, so our expression is exactly the result of (5.1.2). If A\ = wy,41 then by (3.2.3)) in

combination with Proposition b) to rewrite the desired statement as

w—2wm p—2wm+am
g07>‘ _go,wm+l+2wm + ng,)\
_( H—Wm+1 H—Wm+1 )+ B—2wWm+0om
=926,,,0 4920 —am,0) T 990 A )

which is true if 6, 2w, wmni1 = Op—wmi1,2wm — TOp—wmi1,2wm—cm T AOp—2wm+am wm4 1> and this
is clear.

If p=m+1and r = min(A —w,) > 0, we can use the fact that (wp41, A —
Win+1)s (2w, A — wWim1), and (2w, A — W41 — wy +wyp41) are all compatible pairs, (5.1.1)),

Lemma and (5.1.2)) establish that,

B—2wm __ ¢ H—Wmi1 H—Wm 41 o H—wm, H—Wm,
gO,/\ _( 0, A—wm+4+14+2wm + qg2wmfozm,)\7wm+1) q(go,)\fam+1,r+wm + ngmfam,)\fozm_Hmfwm)
_( P Wmt1 L M—Wwm H—2Wm41—Wm—1 _  f—Wm41—Wm—1—Wm
_(gov)\_wm+1+2wm qgoy)\_am+l,r+wm) + q(goy)\_wm+1 qg(),)\_aerl,r_wm )

H—Wm+1—Wm—1

M
=907 +2wm T 9901

Hence, we complete our induction and the second equality is true. m

5.2 Closed from of g, ,

In this section, we will build a closed form for g y- Thus far we have a recursive

definition of gj , using (5.1.1), (5.1.2), beginning with gj, = d,,0. To create a closed form,

we need to take p = Z w; and note that for n = Z ciog € QT we set ¥V = Z CiW;-
i€[1,n] i€[1,n] i€[1,n]
Observe that when A # 0 and ht A\; = 0, (5.1.2)) leads us to understand

200 —p,2w;) B2 (Ro,aj)+(2Xo—p—aj 2w —ay) Aty —2w;

% _ H
90,200 = ¢ 90,2000-w;) — 4 90,2(x0-w;)
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So long as A\g — w; # 0, allowing s; = (Ao, ), this iterates to

S35
.1 . . Ss _ S dev s
iz _ 11,5 (2X0—p,2 00— (14 1) o+ (i4+2)wj) | 27 p—2sjwjtia;
90,270 = Z Lg> ’ ’ i 90,2(A0—sjw;) °
q

1=0

—2sjw;+n

n—2sjw;+n
2(Xo—sj ) 7& 0

Notice that at this point, all terms are gg 0,2(\o—s;)
) ) J

where n € Z,aj, and g
implies (2X\g — 1 — 7, w;) < (2(Ao — sjw;), ;) = 0. Hence, only one term will be non-zero,
namely for (2A\g — p,w;) =m,

B qms(2ho—p2h0—(mt1)ag+(mA2)w;)) [ ST p—2sjwjtma;
90,20 q

m qgoﬁ(Ao—Sng') )
We can further iterate, utilizing the same process for any k # j such that (Ao — sjwj, ai) =

sk > 0, until we have exhausted A\g. Note that the only term that remains non-zero by the

p—2X0+(2 o —p) _

end of this process is g, = 1. Hence we arrive at the equation
1 - (Mo, i)
Lo 1= mp) 3 (20—t (200 — )Y +p) [ 05 QY ]
g =_1 q2 | | . 5.2.1

Now we increase the height of A\;. When ht A\; = 1, then Ai(h,,) = 1 for some
1 <m < n, so by gg,)\ = ggy;i‘l. Together with (5.2.1)), we have a closed form.
Moving to ht Ay > 2 becomes significantly more complicated.

To begin working with these weights, we need to introduce some new sets. We
will define $5(\) for A € PT(1) recursively. Firstly, Z5(\) = 29\ UXZL(N), BY(A) = {A},
and $3(\) = 0. For our fundamental weights, 3!(w,) = 3% (w,,) = 0 for all m € [0,n] and
s> 0. Also, X (wp + wn_1) = 2wy +wp_1) = 0 for all s > 0 For ht A > 2 and s > 0,

where m = min A\ and p = min(A — wy,),
E(s)(/\) = {wn} + Zs(A — wny)

If A(hpt1) =0, for s > 0,
Z(0) = 201X — amp)-
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If )\l(hp—l—l) =1, for s > 0,

S = {A = amp}
2N = {2wp 41 + 29 (A - 2Wp41 — Qnyp) } U{2Wp+1 — Qpt1 + 29X - 2wp41 — Q) }
when p # n — 2 or A(hy, + hp—1) # 2, and
YO = {2wn—1 + 2wn + B2 (N — 2w, 1 — 2wWn — Amn—2)}
U{2wn_1 + 2w — Qp—1 + 22_2()\ — 2wp—1 — 2wy, — Amp—2)}

when p =n — 2 and A(hy, + hyp—1) = 2.

We recall that if X7 (\) = () then set addition means {v}+X%(\) = (. Examples for the type
A weights can be found in [I], but we will also provide a few more for the type D weights in
Appendix [B:4] We introduce these sets to provide conditions for p that force the following

properties:

Lemma 5.2.1 Take A € PT(1) and p € 35(X\) for s > 0. Then

p(hg) =0 Vk <min(\) — 1, (hmin(y—1) < 1 and A — p € Z Ly v,
k>min(\)—1

Moreover, X(\) and X7,(N\) are disjoint if (s,r) # (s',1").

Proof. We prove the above using an induction on the height of A\, beginning with the

ht A = 0. In this case,
£5(0) = 2(0) | J=5(0) = 0,

so our statements are vacuously true.
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Observing the case of ht A = 1, A\ = wy, for some m € [1,n]. Here

Wi, s=0
Eg(wm) U 2; (wm) =

0 else.
Here, p(hy) = 0 for all k <m —1, A\ —p =0 = 3;-,0a; when s = 0, and S{(\) = 0
otherwise, so clearly these sets are disjoint.

Examining the case of ht A = 2, A = w,, + w), so

{wm +wp} s=0
S8 (wm +wp) 5 @m +wp) = § (A = ap,p) s=1,m#n—1
0 else

In all of the above cases, pu(hy) = 0 for all & < m — 1, p(hm—1) < 1, A —p = ds1(1 —
Omn—1)Qm.p for p € 37, and X%(X) = 0 expect for (s,r) € {(0,0), (1,1)}, which are disjoint.
Therefore all claims of our lemma are satisfied.

For sake of our induction, we shall assume that all claims hold for ht A < M.

Taking ht A\ = M with min(A) = m and min(A — w,,) = p,

YN UE ) = {wm + B (h —wm) T,

Depending on A, Zi (M) is defined one of three ways as described previously. We will observe
that in all three of these cases, our claims will still hold true.

Beginning with the case when A(hy,41) =0,
E;()\) = 22_1()\ — O, P) = Wm—1 + Ls—1(A — amp — Wm—1), SO

2s()\) = {wm + ES(A - Wm)} U{wmfl + Esfl(A — Qm,p — Wmfl)}-
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Hence for all € Xg(N), either u = wy,+p' where 1/ € Xg(A—wp,) or pp = wyp—1+4”
where p” € ¥5_1 (A — @mp —wm—1). Note both ht(\ — wy,) and ht (A — ap — wm—1) are less
than M with m < min(A — wy,) < min(A — oy p — wm—1), so inductive hypothesis provides
that wy, + p' and w,,_1 + p” satisfy all of the claims of our lemma, forcing u to as well.

Next we examine the case when A(h,11) =1 with p # n — 2, here when s =1
S = {A = amp}

which makes
S1(0) = fwm + S0 — @) HUO = amp},
so for all pp € ¥1(N), p(hg) = 0 for all K < m —1, p(hg) < 1, and X\ — pp = 0y 104y, for
€ X5(A). When s > 1 however,
S ={2wpr1 4+ 201 (A = 2041 — amp) HU{2wpi1 — a1 + 200 (A = 2041 — ) }
={2wp+1 + Wm—1 + Ls—1(A = 2wp 41 — mp — Win—1)}

U{2wp+1 — Qpt1 +Wm—1+ E572()\ - 2Werl —Qmp — wmfl)}-

Hence any p € ¥4(\) is of one of three forms:

W + 1 e g\ — wm)
K= Wm—1 + 2Wp—i—l + ,UI ,UI € Es—l()\ - 2Wp—i—l — Qmp — Wm—l)
Win—1 + 2wpy1 — apy1 + 1 e X oA —2wWpt1 — Qmp — Win—1).

Note that ht(A — wy,) and ht(A — 2wp41 — Qo p — wWim—1) are both less than M, and m <
min(A —wy,) < min(A —2wp41 — @mp —wm—1). Thus the inductive hypothesis provides that

each form of u satisfies the claims of our lemma.
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Lastly, we examine the case when A(hp41) = 1 with p =n — 2. Here when s =1
1) = A — ampn}-
This makes
21(A) = {wm + Z1(A = wm) A = @mn-1},
so for all u € X1(A), p(hg) =0 for all k <m — 1, p(hm—1) <1, and A — p = 0y 1y n—1 for
€ X7(N). When s > 1 however,
Z‘;(A) ={2wp—1 + 2w, + 22_1()\ — 2wp—1 — 2wy, — Qg p—1)}
U{wn_Q + 2w + 20 5 (A = 2wn1 — 2wn — A1)}
={2wn—1 + 2wy, + wWm—1 + Vs—1(A — 2wWp—1 — 2wy, — A1 — Wm—1)}
U{wn,g + 2wy, + Wim—1 + 22_2()\ — 2wWp—1 — 2wy, — Q-1 — Wm—1) }-

Hence any p € ¥5(A) is of one of three forms:

wWm + 1’ e s\ — wm)
H= Wm—1 + 2wp—1 + 2w, + /L, ,U// € 28—1(>\ — 2wp—1 — 2w, — Omn—1 — wm—l)
Wm—1 + wWp—2 + 2wy, + ,U/ ,U/ c z:s—Z(A — 2wp_1 — 2wy, — Amn—1 — wm—l)-

Note that ht(A —wy,) and ht(A — 2w, -1 — 2wy, — Ay p—1 — Wm—1) are both less than M, and
m < min(A —wy,) < min(A —2wy,—1 — 2wy, — Q-1 —wWm—1). Thus the inductive hypothesis
provides that each form of p satisfies the claims of our lemma. m

Having the properties of these sets better understood, we make a few observations.

Firstly, that for ht \; <2, g/, can be rewritten using (5.1.1), and the result is equal to

Y gy ST (glen O gy )
ZIEE()()\l) VGEl()\l)
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Working with our exponent on ¢,
1 1
Aoy i —v)+A=—p— (A —v),v)= 5()\,)\1) + 5(2)\0 —2u+v,v),
and so we arrive at the understanding that

1 1 — v,V -
gop= a2 Y (=1 Y qE@emimgr s (5.2.2)
s>0 vy (A1)

where the second sum is taken to be 0 if X4(A\;) = 0. With (5.2.1)), this gives the closed
form.

For ht A\; > 2, we utilize an induction. Assuming that (5.2.2)) holds for ht \; < M,

we apply (5.1.1) to ht Ay = M:

—wm _ (A0,@m,p) F1HA—p—am p,wm—1) 4 Wm-1

I (A= wm) oK
gO,)\—wm q gO,)\—am,p—wm_1

Jor — 4

Note that ht(A\ —wp,) = ht(A; — @ p — wm—1) = M — 1. Therefore, we apply the inductive
hypothesis to each term and the exponents of our ¢’s can be simplified in the following

ways:

1 1
(A= pywm) + 5()\ — Wy A1 — W) + 5(2)\0 —2u+v,v)

1 1
25()\,)\1) + 5(2)\0 —2u4 v+ wn, v+ wn)

()\0; am,p) + 1 + ()‘ — M= am,pawm—l)
1 1
+§()\ — Qmp — Win—1,A1 — Qmp — Wm—1) + 5(2)\0 —2u+v,v)

1 1
25()\7 A1) + 5(2)\0 =24V + W1,V + Wn—1)-

56



Hence our equation simplifies to

1 1o -
g&/\ = Z(—l)s(qzo‘)‘l)[ Z q2(2>\0 2#+V+wmvl’+wm)go 2)’\/0 w
5>0 vEXs(A1—wm)

1
_ s (2A0—2pt+vHwm—1,V+wm—1) H—V—Wm—1
> a2 " " 90,25 ].

vEX s (M —0m,p—wWm—1)

Using the definitions of our X7 () sets, this equation is equivalent to

l
Ghn =z D) DT gl
$>0 VEZS(/\l)

This concludes our induction, and we combine with (5.2.1] - ) to arrive at a closed form

for g .

5.3 Properties of h,, and p/

In this section, we discuss some recursions of p), and h! ). First we shall refresh
K

that so long as v — pu € Q™

p;lj(q) _ qz(l/-Hu,l/ ) H |: V_/L7wj) + (/LO’O‘J'):| )
q

-1 1
We also remind the reader that [m] = [m ] 4+ qm " [m J Together these mean
n n n—
q q

that

if I/(hj) > 2, pht = q(“’j”’_“)py w] + q(z/ L0 ) — lp/;_oéj
yand if pi(h) =0, phior = q@mrHpl.

Our aim is to show that k!, adheres to the same recursions, identifying A/, , and

pl. To do this we must first discuss some properties of h’,io
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Lemma 5.3.1 Let v € P™ and 0 < r < n be the index of the fundamental weight such that
v—w, €QF. Then

1
Wk = q2tervmeng, o 0<k<n.

Proof. We will prove the above lemma inductively, progressing v upward through the
partial order on PT. Firstly, if v = w, for some 0 < 7 < n, then w, —wy, € QT only if r = k,
SO h‘,j% = O

Let us assume our claim for w, < v/ < v with htv > 2. Recall that 6,,., =

Z ggjl,h;‘jf“o and from Proposition [5.1.2 a), we see that,
peP+

q%(zl—&—wr,z/—wr) + Z q%(H+WT,#—WT)96‘L’V —0= h;j,% + 5k,7" Z q%(l/“r(U'ryl/—W'r)gg"V
pu<v p=<v

1
hence h‘:’% = qﬁ(V‘FWryV*Wr)(sT’k‘ u

Lemma 5.3.2 If (v,\) € Pt are compatible or (v, \) = (W, A) with min A\ = m, then

B Mv—p'v) W —vyp
hy, \ = E : q' g )90,/\ h;u,o-
wep+t

Proof. Recall (3.2.5) and note that if we use (3.2.5)) to substitute for chg, M (p,0) and use

Lemma [B.1.1] we have

chgy M (v,\) = Z q(’\+"*“/’”)gg,/\_yhg,70 chgy M (0, p2).
. EPF

Taking this summation along with the second sum of (3.2.5)) we see that

D7 Blychg M0 p) = Y qMTIG R, | chg M(0, 1)
peEPT pop! €PT

so the claim is achieved by identifying the coefficients of chg, M (0, 1) in both sums. =
Before stating the next lemma, recall Proposition It provides us with many

equations for hZ , dependant upon the form of a compatible pair (v, ).
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Lemma 5.3.3 For (v,\) € PT x P™ which are compatible, 1 < k < n,

p2wk (A —pwr)
v, 2wy q v\

hence when v(h;) > 2 for 1 < j <n,

b (Mv—pwj) g b 2w (r+Ao,05)=1pn
hl/,/\ =9 ! hl/72wj,)\ +q ! hufaj,)\'

Proof. We will prove this lemma using an induction on the partial order on compatible

pairs, beginning with the minimal elements (0, w;).

Bt 2wk

0,w;+2wp — 6M+2wk,wi+20% - 5%%‘ = hO,wi =q h

0,w; "

Assuming our inductive hypothesis for all (¢/, ) < (v, \), we must examine each possible
form of the pair (v, A).
Firstly, is v(h;) > 2, we utilize the first equation of Proposition and our

inductive hypothesis to see

+ q(u+)\0,a]’)flhu 7(/\+V7M,wk)hu+2wk

[ N 0 _
hV,)\ =h v—a, A T q VA 2wy

v—2w;, A +2w;

In a similar fashion, we will utilize the second equation of Proposition [5.1.1| and

the inductive hypothesis when v € PT(1), m = maxv < min A = p. Here

(Ao,am,p)+1p 1 (O v—pwp) 7 2wy
+t4q hu—wm+wm,1,)\—wp+wp+1 =4 hu,)\+2wk'

hﬁ’/\ =nt

V—Wm ,A+wm

The second claim of this lemma can be seen by applying the first claim to the first

term in the equation for v(h;) > 2 like so

(v4Xo,5)—1p 1
! hl/—Oéj,)x'

+ q(lj+)\0,aj)71 h,U«

v—aj,

B pk _ A Fr—pw;) pp—2w;
h’y,)\ - hV—QWj,)\—i—ij =4q ! h’V—Qqu,)\ +4q
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Lemma 5.3.4 Take A = 2)\g+ X1 € PT and m < min \; if \g # 0 or m < min A\ if \g = 0.

Then hy, =0 for u € P™ with p(hy) € 2Z+ + 1 and A + wy, # 1.

w

Proof. In the case that m < minA; = p, we can examine the contrapositive of this
statement, namely that if b | # 0 then u(hy,) € 2Z4 or A\ +wy, = p. It can be shown

that a stronger statement is true,
hi:m,,\ #0 = u(hs) €2Z4 forallm < s<p, or A\ +wy,, = p

We will prove this statement by inducting on m.
When m = 0, observe that hg , = d,,x, hence when hf y # 0, A = p. Now moving

to 1 < m < n — 2, we assume our statement inductively for all s < m, and we know from
Proposition that

% (>\+Wm ,Oém,p) h;u'

1 _ M
hwm,)\ - hO,wm+/\ + q Wi —1,A—Wp+wp41’

so hy,  # 0 implies that either wy, +A = por A, #0. If b

m717>\_w;p+wp+1 mflak_wp‘f'prrl ?é 07

our inductive hypothesis gives that either A + wy, — amp = p or p(hs) € 2Z,4 for all
m—1<s <p+1. Note that as (A +wm — tmp)(hm) € 2Z, we have achieved the desired
result.

We still must consider when m = min Ay with Ay = 0. We again work inductively

to prove our lemma, increasing on m. Here we use Proposition to see that

hu

W, A

= h&/\_i_wm + qhu

wm—17>\_wm+wm+1 ’

and so hf, | # 0 implies that A + wy, = p or that hf) # 0. Our induction

m—1 :)‘_Wm +wWm+1

shows that if h" # 0 then A\ — ay + wiy, = por pu(hs) € 2Z4 for allm —1 <

m—1 7)\_wm +wm+l

s <m+ 1. Note that (A — au, + W) (hy) = 0, so our statement and lemma are proven. m
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5.4 Identifying h’ vo and pl

In this section we will prove that for all v,y € P, huo = pl, by comparing the
recursive properties discussed in the last section. Firstly, note that if v — u ¢ QV, then
hyo = 0 = pi by definition. From this point, » — u € Q* and we will induct on the
ht, (v — p).

If ht,(v — p) = 0, then v = p, so by definition h},; = 1 = py,. For sake of our

induction, we assume that our statement holds for all ht, (v — p) < N.

To examine the case when ht, (v — u) = N, we will induct on ht(x). Note that if

ht(p) < 1, Lemma|5.3.1| states that hﬁ,o = q%(’“r“’”_“)éu w. = pb. We assume our statement

Phads

holds for 1 < htu < s — 1, and examine ht = s. Here our proof splits into different cases
based on the form of v.
First, if v(h;) > 2 for some j, then we utilize Lemma and both induction

assumptions to see that

h/[j’o _ q(uﬁu,w])h# 2w; 0t a (v,05)— lhu 0= q(zz ,u,w])pui w] + q(uaj) 1p;;_aj :pff-

v—2wj, v—aj,

Next, if v € P*(1), we take m = min v and examine the parity of ju(hy,). If u(hy,) € 224 +1,

then by Lemma and Lemma [5.3.2] we can re-index to the sum,

_gu _ § : (v—p —wm,wm) 4 j
0= hwm,u wm q gO,ufwmhMUrwm,O'

W <v—wm

When 1/ < v — wp, ht (1 + wy — p) < ht.(v — p), so our inductive hypothesis implies

’ —_ . . o1
hZ om0 = = qlwmp'—pt Wm)hl’j, o™ Thus we can rewrite the prior sum and utilize (3.2.6) on

the pair (v — wpm, it —wm) to see that 0 = 0y—w,, p—wn, = Z# rept 90 e wmhz,’gum, S0

(v—p,wm) Iy Hn— Wm _ V— [L,w. HU—Wm
q " gO,Vfw h hl/O +q m) gOI/ wmh,u’o :
wepPt W<LU—wm
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Thus

B (e pwm) p R Wm (V= pwm ) g Wm
hz/,O =49 )hV—wm,O =9 )pufwm =Dy

Lastly, we consider if u(h,,) € 2Z,. Since we know that (v + wy,)(hy) = 2, we can

utilize our work in that case. Namely we see hﬁiﬁ‘j:;o = pfjim = qW=rwm)pl - Also, since

o+ Wi (hm) € 2Z4 + 1, we can follow the same steps as the prior case to arrive at

oy = WL = g

Hence our inductions conclude, and hl, , = pi/.
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Appendix A

Sequence Computations

A.1 Proposition |3.3.2ta)

For Lemma we need to show that a = a; +v1 + 72 +v3 where v, € R [ J{0}

and commute for all &« € R of the form:
4

QG I1<i<j<k<n

Bik 1<i<j<k<n-1

Bi k 1<i<k<j
If o = o, 75 = 0 and we are done. For the other cases:
o Ifa=oa;p thena—aj =a; ;1 +ap1rif j #n—2or k #n. In the case of j = n—2

and k = n, then this is instead oo — av—2 = @ p—3 + .
e fa=p3wherel <i<j<k<n-—1landk#j+1,then a —a; = a;j_1+ Bjt1k-
When k=7+1, a— aj =51+ Bj+1,j+2 + aj41 instead.
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o Ifa=p; wherel <i<j=Fkand j#n—1, then a —a; = B j41 € RT. In the

case j=n—1, a—aj=a,, € R".

e Lastly, if o = f8;;, where 1 <7 <k <jand j #n—1, then a —a; = B 41 + g j—1.

When j =n —1, then o — o = aj 2 + o -

In all of the above cases, we see that [x;l, x_,] = 0, and so the elements commute with each

Y )

other.
For Lemma we need the show (4.1.2) is satisfied by (z @t Hro.ei) =1y, o,
We include computations for each case of o € R here for the reader’s convenience. For

a;j(hq) = 0, the commutation behaves as follows:

(x5 ® t(V—aj-i-)\o,a)-&-maX(Cl,A,a),(C2,>\70<)))(xf ® t(”+>\07aj)_1)w o=
J 1%

(:U]_ ® t(V'i‘/\Oaaj)_l)(x; Q t(V—i-/\o,a)+maX(C1,A70¢),(C2,,\7a)))wy+/\ —0.

For aj(hy) = —1, the commutation behaves like this for some ¢ € C:

(wy @ 17)(a; @t A0 "y,

= C($;, ® ts)wu+>\+

A(hs)

(2 ® 10+ 552 1 (0 @ ), 4 = 0,
For aj(hy) = 2, using Garland’s Lemma we see that

(z; @) (27 @t A0 ")y,

1
=5 (z; @ ") (z; @ 1" w4

n1+n2=2()\0,a)—1

1 _
=57 (2,2(Xo, @) — L)wy4x = 0.
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For aj(hq) = 1, the commutation behaves like this for some ¢ € C:
c(wg @)@y @0,y

= (z; @ tPo%)) (2 @ £°)(z; @t N,y

_ (I; ® ts)(l’j_ Q t()xo,aj))(mj— Q t()\o,aj)fl)wy_i_)\ —0.

A.2 Proposition [3.3.2/ib)

For Lemma, we need to show that & = au, p+71+72+73 where v, € R J{0}

and commute for all @ € RT of the form:

Q; k 1<i<m<p<k<n
Bik 1<i<m<p<k<n-1

Bik 1<i<m<k<p

Bi,k: 1<i<k<m.

\

Similar to the previous sequence, if o = ap, p, then v; = 0 and we are done. For the rest of

the cases:

o lfa=q;, withi<m<p<k,p#En—2ork#nthen a—amp=im-1~+ psi k-

When p =n — 2 and k = n, the above is instead o — -2 = Qi m—1 + .

elfa=p3,withl <i<m<p<k<n-1withk # p+1, then a — app =

Wim—1+ Bpt1k- When k=p+1, & — amp = Qim—1 + Bpt1,p+2 + Op41.

elfa=43withl<i<m<k<p#n-—1,then o —apmp = ®im—1+ Brpt1- If
o= PBin—1and p=n—1, then @ — apypn—1 = ¥im—1+ .
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e Lastly, if a = 8;, with 1 <i <k <m and p # n, then o — aypy p = X -1 + Qg 2 +
Bp+1mn—1. When p = n, this changes slightly to o — ann = ®im—1 + Qg p—1.

,x_,] = 0, and so the elements commute with each

In all of these cases, we see that [z, N

other.
For Lemma we need the show (4.2.2) is satisfied by (z,, , ® o5+ yey
We include computations for each case of & € R here for the reader’s convenience. For

amp(ha) = 0, the commutation behaves as follows:

(.’IJ; ® t(V+wm+)\07a)+maX((<l,A_mea)»(CQ,A704)))(1-_ R t()\070¢m7P)+1)

m,p Wy+\ =

- ® t(>\07amyp)+1)(mg ® t(V+wm+>\0704)+max((41,>ﬁwm,a)’(Cz)\,a)))

(T wy4+x = 0.

For ay p(ha) = —1, the commutation behaves like this for some ¢ € C:
(wa © ) (@my @ €00 P ) =
(s, @ L)Wy + (T, @ LA (@0 @ 17wy 4 5 = 0.
For ay, p(ha) = 2, using Garland’s Lemma we see that
(@) (a7, © 100 Y
=5 Y @@, @

ni1+ne :2()\0,a)+1

1 _
:§azm’p(2, 2(Xo, @) + Dw, 4 = 0.

For ay p(ha) = 1 with o = ayy, p + 7, the commutation behaves like this for some ¢ € C:

c(wy 1)y, @ PO Y,

= (T, ® tPOOm2)) (27 @ 1°) (27, ® tOOOm2) T Yy,

— (@5 @) (2, @ tO0m)) (a7, @ (A0 T g,y = 0.

m?p
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For o p(ha) =1 with a4, p = a + 7, the commutation behaves like this for some ¢ € C:
(25 ® ") (@0 m2) gy
1
= 5 ((zg @) (g, ® (OO w3+ (a7, @ (000D (@7 @ £ )wy 1)

1
=5z @ )2 (@ @t wygn + (25 @) (2, @ 17) w,40) = 0.

A.3 Proposition [3.3.2(%)

For Lemma and Lemma we need the show (4.3.2)), , and (4.3.4))

are satisfied by (z,, ® t)w,; . We include computations for each case of « € R here for
the reader’s convenience.
First, if m ¢ {n — 1,n} the cases are as follows: If wy,(ha) = wm—1(ha) = w(ha),
there exists a ¢ € C so that we commute as follows
(2o @) (T, @ Wrt20, =
(T @) Wrt20, + (T @ ) (24 @t )Wrt20,, =0.
If wn(ha) = wm—1(ha) = Wm+1(ha) — 1 or Wy (he) = Wmti(ha) = Wm—1(ha) — 1, the
commutation behaves like this for some ¢ € C
(T @) (T, ® ) Wrt20,,
:c(a:;, & ts)’w)\Jrme + (1’;1 & t) (x; X tr)wA+2wm =0.

If wy(ha) — 1 =wm-1(ha) = wm+1(ha) = 0, using Garland’s Lemma we see that

_ _ 1 B
(2 @ V(@ Drs, = 5 Y (om @) (2 @ )wirsau,

ni+no=1

1 _
= §xm(2, Dwyt2w, = 0.
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If win(ha) = wm—1(ha) = Wmti(ha) + 1 or wp(ha) = Wmt1(ha) = Wm—1(ha) + 1, the

commutation behaves like this for some ¢ € C

(g @) (Tn @ Wiy,

= @ (2 @ %) (25, ® Dwrtow, — (25 @) (2, @ 1)(2, © HHwryaw, = 0.

If m € {n — 1,n} the cases are as follows: For a;,(hs) = 0, the commutation

behaves as follows:
(25 @) (@ © ins2 = (2 @ 1) (7 & 1) 0ps0 = 0.
For a;,(ha) = —1, the commutation behaves like this for some ¢ € C:

(o @) (20 @ Hwryau,,

:C(LU;/ & ts)w)\+2wm + (ijn & t) (1‘; ® tT)w)\_;,_gwm =0.
For auy,(he) = 2, using Garland’s Lemma we see that

_ _ 1 _ _
(0 @) (0 @ OWN 20,0 =5 D (0 D) (1 @ )20,
ni+ns=2r+1

1 _
zixm(2,r + Dwyyow,, =0.

For aj(ha) = 1, the commutation behaves like this for some ¢ € C:

(T @) (20 @ wrrow,

= (2, @ V(21,5 ©°) (2, @ 0r 120, — (X7, _5 © 1°) (2, @ 1) (2, ® D)w0rt 20, = 0
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Appendix B

Polynomial Computations

B.1 Proposition 5.1.1

An example of v(h;) > 2 for j € [1,n], bﬁ,)\ = bﬁ_ij7>\+2wj + q(”+A°’a~7)_1b5_aj7A.
From Proposition ia), M(v,\) =g M (v — 2wj, A + 2w;) & T€V+/\O7aj)_1M(V —aj, A).
Therefore chg M(v,\) = chg M(v — 2w;, A + 2w;) + ¢ H20) =1 chyy M(v — a;, ), and
since chgy M(v,A) = 3 g, \M(u,0) = >°hi,, M (0, u), we can identify the coefficients of

M (1,0)(resp. M(0,u)) on either side of this equality. Doing so, we see that

+ q(l/+)\0,aj)flb5_aj7>\

(A Y
bl/,)\ - blI—ij,)\-i-Qw]’

where b € {g, h}. The proof of the other three equalities is identical.

B.2 Lemma 5.1.1]

For Proposition we need to show that g/, = q(”“‘*“’”)gg;” for compatible

pairs (v, \), and we are doing this by inducting on the height of A\;. We include the full
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computations here for the reader.
When ht \; = 0, we can use Proposition [5.1.1}ia) and the inductive hypothesis to

see

(v+Xo+w;)(h;)—

no _ 1 p
gy,)\ - gu+2wj,)\—2wj q gl/+2wj—aj,)\—2wj

_ (A 2w)) BTV =2w5 (v Xg,ap) (v A—p—a v 2w —ay) | Ko — v —20w;
=49 90,3 —2w; q 90,3 —2w;

_ (vt r—pv VA= 1,2w,) V=205 0,0 )+ (VA —p,2w; —ar)  Htog —v—2w;
— q( )(q( ) 0A—20, _ q( )+ ( j J)g(],)\—ij )

— g A—pv) p—v (Aoseyy) v
=4 (92wj,)\—2wj q ! gij—aj,A—ij)
— WHA—p) ( p—v _(2wj4Ao,a4)—1, p—v
=49 (QZWj,/\waj - ! 20.)j7dj,)\72w]')
_ (v A—p) p—v
g I )90,\ )

)

When ht A\; = 1, then A\ = 2\g + w,,, for some m € [1,n], so by (3.2.3) M (v,2X0 +

W) = MV 4 wm,2X0), (V + wm, 2X0) is a compatible pair, and ht A > ht(2)¢) so

n—v
90,1

)

H — M — (V+)\7,u,u+wm) H—V—Wm __ (V+)‘7:u71/) H—V - (V+)‘7,U'7V)
gu,2)\o+wm - gu+wm,2>\o =4q gO,2>\o =4 gwm,Q)\o =4

using the inductive hypothesis.

When ht \; = 2, then A\j(hp,p) =2 for 1 < m < p < n. The case when ht A\; = 2
with m = n — 1 is immediate from and the inductive hypothesis, so we show the
computation for the other instances. In these instances, (v +wpm, A—wp,) and (V+wpm—1, A —

Qmp — Wm—1) are compatible pairs with ht A > ht(A — wy,) = ht(A — apmp — wm—1), so we
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can use Proposition [5.1.1ib) and the inductive hypothesis to see that

B _ (Qoamp)+l p
gl/,)\ - gu+wm,)\—wm q v gu—&—wmfl,)\—am,p—wm,l

(WAA=pvtwm) g =m0 (A0,0m,p)+ 14V HA—p—Cm,p v twm 1) gh =V~ Wm -1

=4q gO,)\fwm 0,A\—tm p—wm—1
_ (A=) (VA= pwm) BV —w A0,0m,p)H1+H(V+A—p—am p.wm—1) AV Wm—1
— WHA—p) (v (X0sm,p)+1 p—v
=49 (gwmv)\_wm q ! gwm 1,A— Am,p—Wm— 1)
— (V+>\_“7V) Il

q Yo -

B.3 Proposition [5.1.2

We need to compute the steps of our induction for each piece of Proposition [5.1.2

For part a), we suppose that Zq2 Hobt) g = 0 for ht \ < M. Taking A € P*(1) with
pneP
ht A\ = M,
ZqQ(uu qu(uu (A— uwm)go
Ao,
nepr nepr

Ao, +14+(A—p—am,p,wm—1) ,H—Wm—1
_(1_5p,0)q( 0,0m,p) (A—p—am,p 1)90)\ ooy —om 1

1
— g 7(/1/_“} H—w )+()\,UJ ) H—=Wm
— q2 m m 'mgo)\_wm
pnepP
1
5 (p—wm—1,0—wm—1)+(X0,¥m,p)+1+(A—0tm p,wm — H—Wm—1 _
— (1 = §p0)qz Hwm=tr=wm=1)+(A0,0mp)+1+( mpml)QOA Ol s =0

by (5.1.1)) and the inductive hypothesis. Taking A ¢ PT(1) with ht \ = M,

l l . —2w; . —U—s o +a;—2w;
§ /.L,I.L ,u E p,p, )\ 2w 2 j A0,05)+(A—p—a,2wi—a My j
q2 ) q2 ) ])g ,)\ 5 ; — q( 0 J) ( J J J) 0’)\ 5 ; )

neP neP

Lu—2w;j, u—2w; \2w;)  H—2w; X0,05)F (A=, 2wj—a;) , Hta;—2w;
= Z qz(l‘ Wik J)(q( ])90,)\—211]- _ q( 0,05)+( VR J)gO,)\—]Qw]- 7T =0
pneP

by (5.1.2)) and the inductive hypothesis.
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For part ¢) we are attempting to simplify (5.1.1)), so we make note that by using
part b),
gg,;fzm 7& 0 = (/\ - /'Lawm) S ()‘ — Wm, am) - O,

H—Wm—1
gov)‘*am,p*a}m— 1

#0 = A —amp — twm-1) <A —amp — wWm—1, @m—1) = 0.

, and so (5.1.1]) simplifies to

gll)\ — q()\fu,wm)gll_wm _ qlJr()\fufam,p,wm_l) H—Wm—1

A=W go)\—am’p—wm,1

_ p—Wm p—Wm1
_QO,A—wm ng,)\—oam,p—wm_1 .

Similarly for part d) we are attempting to simplify (5.1.2)), so we make note that

by using b),

— 2w
gg’/\:;i)j #0 - ()\_'U”w]) < ()‘_2("}])04]) :()7

Tort, | #0 = (A= p—aj,w) < (A= 2wj,05) =0.

we have that (A — p,wj) = (A —p — aj,w;) =0

B.4 Examples of X ()\) for type-D weights

Here we provide a few type-D examples of our sets X% (\). Take A = wy,—1 + wp,

then

{wn—14+wn} ;7r=0,s=0
Yo(wn—1+wp) =

0 ; else.
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If A\ =w, +wp_1+ wy, then

Y wm + w1 4+ wp) = {wm +wp_1 Fwn} ;5=0

/

{Wm—1+2w,} ;s=1
E; (Wm + wn—1 +wp) =

{Wmfl + wan} ;8 =2

0 ; else

If A\ =wpm +wp +wp—1 + wy, then

,

{wm +wp +wp—1+wp} ;5=0

{wm‘kwpfl +2Wn} ;s =1
Z(g)(‘*}m + Wp + wp—1 + Wn) =

{wm + wp—1 +wnp—2} s =2

0 ;else

;

{wm-1+wpr1 twn1+wp} 5s=1p#n-—2

{wm—1+ 2wn—1 + 2wy } is=1p=n—2
S (Wm + wp + wn1 +wn) = {wm-1+ wp + 2wy } 18 =2

{wm—1 4+ wp +wp—2} s =3, pFn—2

0 ; else
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Lastly, if A = wy, 4+ wp + wp + wp—1 + wy,, then
Y9 (W + wp + Wy + wp—1 + wy)

{wm +wp +we + wp—1 +wn} ;5=0

{Wm+wp+wf—1+2wnawm+wp71+wé+1 + wp—1 +wn} 38 = 1767&”_2

{wm + wp + we—1 + 2w, W + wWp—1 + 2wp—1 + 2wy } is=1,4=n—2
{wm + wp + we—1 + wp—2,wWm + wp—1 + we + 2wy } 15 =2

{wm + wp—1 +w¢ + wn—2} is=30#n—2
0 ;else

2 (Wi + wp + wp + Wn—1 + wn)

{wm—1 + wpy1 +we +wp—1 +wn} ;=1

{wm—1 4+ wpt1 + we—1 + 2wy, is=20F#p+1,L#n—2
Win—1 + Wp + Wet1 + Wn—1 + wn}

{wm—1 4+ wpt1 +we—1 + 2wy, is=20#p+1,L=n—2

= Wm—1 + Wp + 2wp—1 + 2wp }

{wm—1 4 2wpr1 — apy1 + w1 +wp} is=2/0=p+1

{wm—1 +wpt1 +wee1 +wWp—2,Wm—1 +wp +wr + 2wy} ;5=3

{wm—1 + wp + we + wn_2} js=40L#Fp+1,0#n—2

0 ; else
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