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Gilor C, Duesberg C, Elliott DA, Feldman EC, Mundinger TO,
Taborsky GJ Jr, Nelson RW, Havel PJ. Co-impairment of auto-
nomic and glucagon responses to insulin-induced hypoglycemia in
dogs with naturally occurring insulin-dependent diabetes mellitus. Am
J Physiol Endocrinol Metab 319: E1074–E1083, 2020. First published
October 12, 2020; doi:10.1152/ajpendo.00379.2020.—This study aimed
to investigate the contributions of two factors potentially impairing glu-
cagon response to insulin-induced hypoglycemia (IIH) in insulin-defi-
cient diabetes: 1) loss of paracrine disinhibition by intra-islet insulin and
2) defects in the activation of the autonomic inputs to the islet. Plasma
glucagon responses during hyperinsulinemic-hypoglycemic clamps (ffi40
mg/dL) were assessed in dogs with spontaneous diabetes (n = 13) and
in healthy nondiabetic dogs (n = 6). Plasma C-peptide responses to in-
travenous glucagon were measured to assess endogenous insulin secre-
tion. Plasma pancreatic polypeptide, epinephrine, and norepinephrine
were measured as indices of parasympathetic and sympathoadrenal auto-
nomic responses to IIH. In 8 of the 13 diabetic dogs, glucagon did not
increase during IIH (diabetic nonresponder [DMN]; Δ = �6 ± 12 pg/
mL). In five other diabetic dogs (diabetic responder [DMR]), glucagon
responses (Δ = +26 ± 12) were within the range of nondiabetic control
dogs (Δ = +27 ± 16 pg/mL). C-peptide responses to intravenous gluca-
gon were absent in diabetic dogs. Activation of all three autonomic
responses were impaired in DMN dogs but remained intact in DMR
dogs. Each of the three autonomic responses to IIH was positively cor-
related with glucagon responses across the three groups. The study con-
clusions are as follows: 1) Impairment of glucagon responses in DMN
dogs is not due to generalized impairment of a-cell function. 2) Loss of
tonic inhibition of glucagon secretion by insulin is not sufficient to pro-
duce loss of the glucagon response; impairment of autonomic activation
is also required. 3) In dogs with major b-cell function loss, activation of
the autonomic inputs is sufficient to mediate an intact glucagon response
to IIH.

NEW & NOTEWORTHY In dogs with naturally occurring, insu-
lin-dependent (C-peptide negative) diabetes mellitus, impairment of
glucagon responses is not due to generalized impairment of a-cell
function. Loss of tonic inhibition of glucagon secretion by insulin
is not sufficient, by itself, to produce loss of the glucagon response.
Rather, impaired activation of the parasympathetic and sympathoa-
drenal autonomic inputs to the pancreas is also required. Activation
of the autonomic inputs to the pancreas is sufficient to mediate an
intact glucagon response to insulin-induced hypoglycemia in dogs
with naturally occurring diabetes mellitus. These results have im-
portant implications that include leading to a greater understanding

and insight into the pathophysiology, prevention, and treatment of
hypoglycemia during insulin treatment of diabetes in companion
dogs and in human patients.

C-peptide; epinephrine; norepinephrine; pancreatic polypeptide;
sympathoadrenal

INTRODUCTION

In nondiabetic animals and humans, the induction of hypogly-
cemia following the administration of exogenous insulin results
in glucagon secretion from pancreatic a-cells, which then has a
primary and critical role in the return of plasma glucose to eugly-
cemia, that is, glucose counterregulation (17). Two major mech-
anisms have been proposed to mediate the increase of glucagon
secretion in response to insulin-induced hypoglycemia (IIH).
The first mechanism is release of the a-cell from the tonic inhibi-
tion by a paracrine effect of endogenous insulin within the islet.
As plasma glucose concentrations fall below basal levels, endog-
enous insulin secretion is rapidly diminished until between �65
and 80 mg/dL it is completely shut off (16), releasing the a-cell
from tonic restraint (3). The mechanism of this restraint was
originally linked to activation of the insulin receptor on a-cells
that is known to inhibit glucagon secretion (35). More recent
studies suggest that the activity of islet b- and d-cells is linked
and that it is islet somatostatin that tonically inhibits glucagon
secretion (54). Mimicking the disinhibition of glucagon secretion
(33) or blocking it (42) can clearly influence glucagon secretion
in nondiabetic animals and humans.
The second mechanism is stimulation of glucagon secretion by

the activation of the autonomic nervous system inputs to the islet
that occurs during hypoglycemia. The autonomic inputs to the is-
let include the parasympathetic nerves innervating the islet, the
sympathetic nerves innervating the islet, and the sympathoadrenal
neurohormone, epinephrine (EPI) (27). In dogs, the sympathetic
neuropeptide galanin (11) may also contribute to the stimulation
of glucagon secretion (9). Parasympathetic nerves release acetyl-
choline, activating the M3 muscarinic receptor subtype on a-cells
to stimulate glucagon release (1). The parasympathetic neuropep-
tide, vasoactive intestinal polypeptide (VIP), also stimulates glu-
cagon secretion, particularly at low glucose concentrations (23,
34). Both the adrenal medulla and sympathetic nerves releaseCorrespondence: P. J. Havel (pjhavel@ucdavis.edu).
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catecholamines that activate the b-2 adrenergic receptor on
a-cells to stimulate glucagon secretion (1). Each of these au-
tonomic inputs becomes activated at different levels of hypo-
glycemia (27, 53), implying that their relative contributions
to the glucagon response vary with the level of hypoglycemia
(53). In addition, each of the three autonomic inputs is capable
of stimulating glucagon secretion (27) and can do so in a redun-
dant manner (24, 26). Surgical ablation or pharmacological
blockade of autonomic signaling of all three autonomic stimuli
markedly reduces the glucagon response to IIH in nondiabetic
animals (including dogs and nonhuman primates) and in humans
(20, 28, 30).
In type 1 diabetes, there is a progressive impairment leading to

a total loss of the glucagon response to IIH (6). Loss of paracrine
disinhibition of the a-cell by intra-islet insulin has been invoked
to explain the impairment of glucagon secretion in diabetes (42).
Likewise, defects in the activation of the autonomic inputs to the
endocrine pancreas have been proposed to contribute to the
impairment of the glucagon response to IIH in type 1 diabetes
(51). Indeed, there is evidence in support of both hypotheses.
Infusing exogenous insulin to replace the endogenous insulin
lost by the destruction of islet b-cells in type 1 diabetes and
then switching it off during hypoglycemia appears to restore
the glucagon response to hypoglycemia in diabetic animals
(56). Furthermore, the impairment of autonomic activation
resulting from prior hypoglycemia known as hypoglycemia-
associated autonomic failure (HAAF) results in impairment
of the glucagon response to subsequent hypoglycemia (32),
and reversing this impairment partially to fully restores the
glucagon response early in type 1 diabetes (8, 14). Therefore,
the goal of this study was to investigate the potential contri-
butions of two factors to the impairment of the glucagon
response to IIH in insulin-deficient diabetes: 1) loss of para-
crine disinhibition by intra-islet insulin and 2) defects in the
activation of the autonomic inputs to the islet.
To investigate these mechanisms in animals with naturally

occurring diabetes, we used client-owned dogs with insulin-de-
pendent diabetes, studied at the University of California Davis,
Veterinary Medical Teaching Hospital (VMTH). We hypothe-
sized that glucagon responses during hypoglycemia would be
impaired in dogs with naturally occurring diabetes and that acti-
vation of the three autonomic inputs would be correlated with
glucagon responses to IIH. Plasma C-peptide responses were
measured to assess residual endogenous insulin secretion, and
pancreatic polypeptide (PP), norepinephrine (NE), and epineph-
rine (EPI) were measured to quantify activation of the auto-
nomic nervous system inputs to the pancreas during IIH. Then,
the C-peptide and autonomic responses were analyzed in rela-
tion to the glucagon responses to IIH. Hyperinsulinemic-hypo-
glycemic clamps (glucose ffi 40 mg/dL) were performed in 13
diabetic dogs and in six healthy nondiabetic control dogs.
Plasma pancreatic polypeptide (PP) responses were measured as
an index of the activation of the parasympathetic nerves inner-
vating the islet, epinephrine (EPI) responses as an index of adre-
nomedullary input to the islet, and norepinephrine (NE) as the
index of the activation of sympathetic nerves. We also measured
plasma cortisol as a nonautonomically mediated counterregula-
tory hormone response to IIH. Finally, we measured the auto-
nomic and glucagon responses to ingestion of a meal to
determine whether any impairments observed during IIH were
specific for the stimulus of hypoglycemia.

MATERIALS AND METHODS

Diabetic and control dogs and hyperinsulinemic-hypoglycemic
clamps. Thirteen client-owned dogs diagnosed with naturally occurring
insulin-dependent diabetes and six healthy nondiabetic control dogs
were studied at the University of California Davis VMTH. The experi-
mental protocol was approved by the UC, Davis Animal Care and Use
Committee, and owners provided consent to have their animals partici-
pate in the study. All diabetic dogs were insulin-dependent since the
time of their diagnosis and still treated with twice-daily insulin injec-
tions (either NPH or Lente) at the time of enrollment into the study. In
the afternoon before hypoglycemic clamp experiments, a double-lumen
sampling catheter was introduced into the right jugular vein using local
lidocaine anesthesia. Dogs were then fasted overnight. The following
morning, insulin was withheld from the diabetic dogs. After collection
of two blood samples for baseline measurements, a continuous infusion
of regular porcine insulin (5 mU/kg/min, Squibb-Novo, Bagsvaerd,
Denmark) was initiated into the distal port of the double-lumen catheter
to lower plasma glucose to euglycemia (100 mg/dL) in the diabetic
dogs. Plasma glucose (PG) concentrations were then subsequently
allowed to decrease to 40–45 mg/dL over �30 min in all dogs. Plasma
glucose was measured every 5–15 min. Small blood samples (<0.5
mL) were collected from the proximal port of the catheter, plasma was
separated within 30 s in a microfuge, and PG was measured with a
Beckman II glucose analyzer (Fullerton, CA). Dextrose (50% solution)
was infused at a variable rate as required to maintain PG as close as
possible to 40 mg/dL. Once PG was stabilized below 50 mg/dL (time =
�30 min from when euglycemia was maintained in all animals), PG
was clamped (at means ± SD = 41.4 ± 3.5 mg/dL) for 60 min with fre-
quent measurements of PG and adjusting the rate of dextrose infusion
as necessary. Samples were collected for hormone measurement at 15-
min intervals. Insulin infusion was discontinued at 90 min; however,
the dextrose infusion was continued as necessary to avoid hypoglyce-
mia below 40 mg/dL. At the time that PG returned to euglycemia
(�100 mg/dL), a meal stimulation test was conducted by feeding a
standardized meal [10 ± 2 g/kg (amount consumed) of Hill’s prescrip-
tion diet W/D] at time zero. Plasma samples for glucose and hormone
concentrations were collected at 2, 5, and 15 min after the initiation of
feeding.

Intravenous glucagon tolerance tests for C-peptide responses.
Intravenous glucagon tolerance tests were performed in a subset of the
dogs (5 of the 6 controls and 10 of the 13 diabetic animals) on a sepa-
rate day from the clamps. Briefly, a baseline blood sample was col-
lected and then glucagon (Eli Lilly, Indianapolis, IN) was administered
intravenously at a dose of 1 mg/dog. Blood samples were collected for
C-peptide measurement every 5 min for 20 min.

Sample collection, handling, and analysis. All blood samples were
collected from the proximal port of the double-lumen catheter, and the
port was flushed with heparinized saline between each sample collec-
tion. Insulin and dextrose were infused only through the distal port.
Blood samples for PG measurements were placed in heparinized tubes.
Samples for plasma PP, glucagon, and C-peptide determinations were
placed into tubes containing EDTA and aprotinin (Sigma). Blood sam-
ples for plasma catecholamine determination were placed into tubes
containing EGTA and glutathione. All samples were kept on ice until
centrifugation (2,500 rpm � 20 min at 4�C). Samples were stored at
�80�C until assayed. All measurements were made in duplicate.

Plasma glucose concentrations were measured by the glucose oxi-
dase method with a Beckman glucose analyzer (Beckman Instruments,
Inc., Fullerton, CA). Plasma PP and glucagon immunoreactivity were
measured by the Radioimmunoassay Core of the Diabetes Center at
Washington University in St. Louis, MO, with specific radioimmunoas-
says with reagents from Linco Research (St. Louis, MO). The antibody
for the plasma glucagon assay has a high specificity for the COOH-ter-
minus of the glucagon molecule and is therefore specific for pancreatic
glucagon (19). However, it also appears to detect a high-molecular-
weight interference factor (likely GI glucagon) that remains constant
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for individual animals and does not increase during hypoglycemia. We
therefore have expressed the glucagon responses to IIH as the incre-
ment above basal (Δ) that effectively eliminates any contribution of this
interference factor to the reported glucagon responses to IIH. The intra-
and interassay coefficients of variation for the plasma glucagon assay
are <10% and <11%, respectively. Plasma NE and EPI concentrations
were measured with a highly sensitive and specific radioenzymatic
assay (13) in Dr. Taborsky’s laboratory (University of Washington,
Seattle). The intra- and interassay coefficients of variation for the
plasma catecholamine assay are <6% and <12%, respectively. Plasma
cortisol was measured in Dr. Feldman’s laboratory (University of
California, Davis, CA) as previously described with intra- and interas-
say coefficients of variation of <7.3% and <10.5%, respectively (15).
Plasma C-peptide concentrations were measured with an assay target-
ing canine C-peptide in the laboratory of Dr. Kenneth Polonsky
(University of Chicago, IL) with intra- and interassay coefficients of
<5% and<6%, respectively (40).

Statistical analysis. Normal distribution of data was assessed by the
Shapiro–Wilk normality test. When the assumption of normality was
rejected, the data were log transformed and then evaluated for normal-
ity again. When appropriate, parametric tests were used for compari-
sons and correlations, and the data are presented as means ± SD. For
data that were not normally distributed, comparisons were performed
with nonparametric tests and presented as median (range).

In control dogs, baseline euglycemia (EuGt1) was defined as the
mean of the �10- and 0-min time points. In diabetic dogs, insulin and
glucose were infused for a variable amount of time until euglycemia
was achieved, and EuGt1 was defined either as the measurement at the
time of euglycemia or the mean of two time points closest to the time
of euglycemia. Because PG at the 90-min time point was more variable
and occasionally exceeded 50 mg/dL, the 90-min sample was excluded
from calculation of hormone responses during IIH. The mean hormone
concentrations within the 45-min time period during IIH (30, 45, 60,
and 75 min) were used to calculate the difference between EuGt1 and
IIH ([IIH] � [EuGt1] = “IIH hormone response”) in each dog. Diabetic
dogs were divided into two groups based on their glucagon responses
to IIH (Fig. 2): diabetic nonresponders (DMN; N = 8) that had glucagon
IIH response below the range of control dogs and diabetic responders
(DMR; N = 5) with glucagon IIH responses within the range or higher
than those of control dogs. Absolute hormone concentrations at EuGt1

and IIH hormone responses were compared between controls, DMN,
and DMR using ANOVA or Kruskal–Wallis test as appropriate. Post
hoc multiple comparisons were performed and adjusted P values are
reported. Pearson’s r (for normally distributed data) or Spearman’s rho
(for data not normally distributed) correlations were calculated for
responses of hormone pairs. Linear regression analysis was used to
evaluate the relationships between changes of plasma PP, EPI, and NE
responses with the change of glucagon responses. For NE and EPI, the
linear regressions were performed after log transformation of the data.

For meal tests, EuGt2 was defined as the average of the last two sam-
ples before the animals were fed. Plasma glucose and hormone
responses to feeding were defined as mean concentrations at 2, 5, and
15 min postfeeding-[EuGt2].

All tests were two-tailed and P< 0.05 was considered significant.

RESULTS

We studied six healthy nondiabetic control dogs and 13 dogs
with naturally occurring, insulin-dependent diabetes. Age, body
weight, diabetes duration, and hemoglobin A1c concentrations
are presented in Table 1 (differing superscripts across a row are
significantly different).

Plasma C-peptide responses. As would be expected, baseline
fasting plasma C-peptide concentrations were lower in the dogs
with insulin-dependent diabetes than in the healthy control dogs
(P < 0.005). All five of the six nondiabetic control dogs in

which C-peptide status was assessed exhibited robust increases
of plasma C-peptide concentrations in response to intravenous
glucagon administration and to feeding. Plasma C-peptide con-
centrations increased from a baseline of 0.216 ± 0.041 pmol/L
to 0.804 ± 0.124 pmol/ L at 10–20 min postinjection (P <
0.0001) with a percent change of +286 ± 19% (P < 0.0001) and
area under the curve (AUC) of 9.276 ± 0.992 pmol/L/min (P <
0.0001). None of the diabetic dogs exhibited an increase of
plasma C-peptide over baseline concentrations in response to in-
travenous glucagon (see Fig. 2). Plasma C-peptide responses to
food ingestion were also measured in a subset of the dogs. In the
nondiabetic control dogs, plasma C-peptide concentrations after
feeding increased similarly to the response to glucagon (+197 ±
42%, P < 0.005), whereas C-peptide responses to feeding were
absent in the diabetic dogs in which C-peptide was assessed
(data not shown).
Plasma glucose and glucagon responses to IIH. To deter-

mine the glucagon response to IIH, a hyperinsulinemic-hypogly-
cemic clamp was performed in all 19 dogs. The clamped glucose
level in the six nondiabetic dogs was not significantly different
from that in the 13 diabetic dogs (39.5 ± 3.3 mg/dL vs. 42.3 ± 3.4
mg/dL, P = 0.1). Baseline plasma glucagon concentrations were
not significantly different between the six nondiabetic dogs (102
± 33 pg/mL) and the 13 diabetic dogs (110 ± 52 pg/mL, P = 0.7).
During IIH, circulating plasma glucagon in the nondiabetic con-
trol dogs increased by +27 ± 16 pg/mL (P = 0.009; see below). In
contrast, there was no significant increase of circulating plasma
glucagon during IIH in the 13 diabetic dogs as a group (+6 ± 20
pg/mL, P = 0.8). Thus, the glucagon response to IIH in all 13 dia-
betic dogs combined was significantly lower than that in the six
nondiabetic control dogs (P = 0.04).
However, closer examination of the glucagon responses in the

13 diabetic dogs revealed a bimodal distribution: eight diabetic
dogs exhibited no discernible increase of glucagon during IIH,
whereas five diabetic dogs had glucagon responses to IIH that
were within the range of the nondiabetic control dogs (Fig. 1A).
Therefore, the 13 diabetic dogs were subcategorized into diabetic
responders (DMR; n = 5) and diabetic nonresponders (DMN; n =
8), based on their glucagon responses to IIH (Fig. 1, A and B).
The average glucagon response to IIH in DMR dogs (+26 ± 12
pg/mL) was very similar to that in nondiabetic control dogs
(+27 ± 16 pg/mL, P = 1.0). In contrast, the glucagon response to
IIH in DMN dogs (�6 ± 12 pg/mL) was substantially and signif-
icantly lower than the glucagon responses to IIH in either non-
diabetic control dogs (P = 0.0008) or DMR dogs (P = 0.0017).

Table 1. Median (range), age (yr), body weight (kg), disease
duration (months prior to the study), and hemoglobin A1c
(%) concentrations in 13 diabetic dogs [5 responders (DMR)
and 8 nonresponders (DMN)] and 6 control dogs (differing
superscripts across a row are significantly different)

Controls (n = 6) DMN (n = 8) DMR (n = 5)

Age, yr 5.3 (2.0–9.5)a 10.0 (5.0–11.0)b 6.5 (5.0–9.5)a,b

Sex FS = 3, MN = 3 FS = 3, MN = 5 FS = 4, MN = 1
BW, kg 33.5 (23.8–39.0) 13.0 (4.5–51.2) 36.8 (22.0–39.5)
DM duration, mo N/A 6.0 (2–34) 8.0 (1–24)
HbA1c, % 3.0 (2.3–3.7)a 6.7 (4.1–7.8)b 5.8 (4.2–9.0)b

DMN, diabetic nonresponders; DMR, diabetic responders; FS, female,
spayed; MN, male, neutered. Values with different superscripts are significantly
different (P < 0.05).
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Fasting glucagon concentrations [at hyperglycemia for dia-
betics, plasma glucose (PG) = 269 ± 146, preclamp] were not sig-
nificantly different in diabetic dogs at euglycemia compared with
nondiabetic control dogs at euglycemia (PG = 128 ± 65 vs. 102 ±
33 pg/mL, respectively, P = 0.4), and there was no difference
between DMN versus DMR (P = 0.3).
Plasma C-peptide and glucose responses in DMN versus

DMR. There was no difference in fasting C-peptide concen-
trations or C-peptide responses to intravenous glucagon
between the DMN and DMR dogs (Fig. 2; AUC = �0.02 ±
0.10 pmol/L/min and +0.04 ± 0.20 pmol/L/min, P = 0.7).
Likewise, there was no significant difference in the degree of
hypoglycemia achieved during IIH between the DMR dogs
(41.5 ± 4.3 mg/dL) and the DMN dogs (42.8 ± 2.9 mg/dL,
P = 0.5; Fig. 3).
Autonomic responses to IIH. To determine whether differen-

ces in the autonomic responses to IIH might be responsible

for the differences in the glucagon responses between DMN
and DMR dogs, we measured the PP, EPI, and NE responses
to IIH.
Plasma pancreatic polypeptide responses to IIH. At base-

line, there were no differences in plasma PP concentrations
among the three groups (P = 0.36). The PP response to IIH in all
diabetic dogs together was not different from that in nondiabetic
control dogs (P = 0.46). However, median PP responses in
DMN [+110 (range +23 to +630) pg/mL] were significantly
lower than in DMR dogs [+1,120 (range +351 to +1,309) pg/
mL, P = 0.002] and tended to be lower than in nondiabetic con-
trol dogs [+482 (range +310 to +841) pg/mL, P = 0.1; Fig. 4A].
Glucagon and PP responses to IIH were significantly correlated

Cont DMN DMR
-40

-30

-20

-10

0

10

20

30

40

50

60

M
ea

n 
IIH

-b
as

el
in

e 
[G

lu
ca

go
n]

 p
g/

m
L P = 0.0008

P = 0.0017

A

0 15 30 45 60 75
-20

0

20

40

60

80

Time (Min)

G
lu

ca
go

n 
ch

an
ge

 p
g/

m
L 

(II
H-

ba
se

lin
e)

Cont
DMN
DMR

B
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responses to insulin-induced hypoglycemia
(IIH) (mean IIH baseline). Horizontal line
within each group represents the median. (B)
time course of Δglucagon (change compared
with concentration at t = 0 min) (means ± SE).
DMN, diabetic nonresponders; DMR, diabetic
responders.

-5 0 5 10 15 20
0.0

0.2

0.4

0.6

0.8

1.0

Time (Min)

c-
pe

pt
id

e 
co

m
ce

nt
ra

tio
ns

 (p
m

ol
/L

) 

Cont
DMN
DMR

Fig. 2. Plasma C-peptide concentrations (mean ± SE) before and following intra-
venous administration of 1 mg of glucagon in nondiabetic. Cont, control dogs ();
DMN, diabetic nonresponders; DMR, diabetic responders.

0 15 30 45 60 75
0

50

100

150

Time (Min)

Pl
as

m
a 

G
lu

co
se

 C
on

ce
nt

ra
tio

ns
 (m

g/
dL

) Cont
DMN
DMR

Fig. 3. Mean (±SE) plasma glucose concentrations in 13 diabetic dogs [five res-
ponders (DMR, broken line, triangles) and eight nonresponders (DMN, dotted
line, squares)] and six nondiabetic control dogs (Cont, solid line, circles). Insulin
was infused at a constant rate until 90 min and dextrose was infused at a variable
rate during the clamps to maintain plasma glucose at �40 mg/dL between 30
and 75 min. DMN, diabetic nonresponders; DMR, diabetic responders.

AUTONOMIC AND GLUCAGON IMPAIRED RESPONSES IN DIABETIC DOGS E1077

AJP-Endocrinol Metab � doi:10.1152/ajpendo.00379.2020 � www.ajpendo.org

http://www.ajpendo.org


(r= +0.53, P = 0.02) across all three groups (Fig. 5A), with
�28% of the change of plasma glucagon concentrations attrib-
utable to the change of PP responses. The correlation between
glucagon and PP responses to IIH was stronger when exam-
ined within the 13 diabetic dogs alone (DMN and DMR com-
bined: r = +0.65, P = 0.016).
Plasma epinephrine and norepinephrine responses to IIH.

Baseline plasma EPI concentration concentrations were not dif-
ferent among the three groups of dogs (P = 0.9). There was no
significant difference in EPI responses to IIH between all dia-
betic and control dogs. However, the median EPI response to
IIH in DMN dogs [+373 (range +80 to +1,095) pg/mL] was
lower than the median EPI response in nondiabetic control dogs
[+922 (range +445 to +6,604) pg/mL, P = 0.046, Fig. 4C]. The

median EPI response in DMR dogs [+1,090 (range +373 to
+3,088)] was not significantly different from that of nondiabetic
control dogs (P = 0.1; Fig. 4C). There was a significant corre-
lation between glucagon responses and LogEPI responses
across all 3 groups (rho = 0.50, P = 0.026; Fig. 5C), with
�16% of the change of glucagon responses attributable to the
change of LogEPI responses.
Median baseline plasma NE concentrations in DMN dogs

[220 (range 130–300) pg/mL] were significantly higher than
in nondiabetic control dogs [85 (range 60–160) pg/mL, P =
0.02] but not different from those in DMR dogs [180 (20–
193) pg/mL, P = 0.99]. However, the median NE response
to IIH (Fig. 4B) was significantly lower in DMN dogs (+108
[range �58 to +215 pg/mL) versus that in nondiabetic
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Fig. 4. Pancreatic polypeptide (A), norepinephrine (B), epinephrine (C), and cortisol (D) responses to insulin-induced hypoglycemia in 13 diabetic dogs [five respond-
ers (DMR, broken line, triangles) and eight nonresponders (DMN, dotted line, squares)] and six nondiabetic control dogs (Cont, solid line, circles). Insulin was
infused at a constant rate until 90 min, and dextrose was infused at a variable rate during that time to maintain plasma glucose at�40 mg/dL between 30 and 75 min.
For each hormone, the changes (means ± SE) compared with concentration at t = 0 min) are presented over time. DMN, diabetic nonresponders; DMR, diabetic res-
ponders; EPI, epinephrine; NE, norepinephrine; PP, pancreatic polypeptide.
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controls [+273 (range +212 to +1,443) pg/mL, P = 0.01] and
in DMR [+322 (range +267 to +672) pg/mL, P = 0.01].
There was a strong correlation between glucagon responses
and LogNE responses to IIH (rho = +0.80, P < 0.0001, Fig.
5B), with �40% of the change of glucagon responses attrib-
utable to the change of LogNE responses.
Plasma cortisol responses to IIH. Plasma cortisol concen-

trations at baseline [diabetes mellitus (DM): 1.9 ± 0.7 μg/dL,
Cont: 1.7 ± 0.7 μg/dL] and cortisol responses to IIH (DM:
+5.4 ± 2.2 μg/dL, Cont: +4.7 ± 3.1 μg/dL) did not differ sig-
nificantly between groups, including between DMN and
DMR (Fig. 4D; Table 2). There was no significant correlation
between cortisol responses to IIH and glucagon responses to
IIH (Fig. 5D).
Glucagon and autonomic responses to feeding. To determine

whether the impairment in the autonomic responses to IIH

observed in DMN dogs was specific for the stimulus of hypogly-
cemia, we measured glucagon and autonomic responses to feed-
ing. Before the meal EuGt2, there were no significant
differences in plasma glucose, glucagon, PP, NE, EPI, or cor-
tisol concentrations between the three groups. In nondiabetic
control dogs, plasma glucose, glucagon, and PP concentra-
tions increased after feeding, whereas plasma NE, EPI, and
cortisol concentrations tended to decrease (see Table 2). As
would be expected, glucose tended to increase more in the di-
abetic dogs than in the nondiabetic control dogs. In contrast
to the impaired PP and glucagon responses to IIH in DMN
dogs, PP and glucagon responses to feeding in DMN dogs
were not significantly lower than those in the nondiabetic
controls dogs (Table 2). Changes of plasma glucagon and
cortisol responses to feeding were not different across the
three groups of dogs.

0 500 1000 1500
-40

-20

0

20

40

60

Mean IIH-baseline [PP] pg/mL

M
ea

n 
IIH

-b
as

el
in

e 
[G

lu
ca

go
n]

 p
g/

m
L 

r = 0.53 (P = 0.02)

A

10 100 1000 10000
-40

-20

0

20

40

60

Mean IIH-baseline [NE] pg/mL

M
ea

n 
IIH

-b
as

el
in

e 
[G

lu
ca

go
n]

 p
g/

m
L 

rho = 0.8 (P < 0.0001)

B

10 100 1000 10000
-40

-20

0

20

40

60

Mean IIH-baseline [EPI] pg/mL

M
ea

n 
IIH

-b
as

el
in

e 
[G

lu
ca

go
n]

 p
g/

m
L rho = 0.5 (P = 0.026)

C

0 5 10 15
-40

-20

0

20

40

60

Mean IIH-baseline [Cortisol] ug/dL

M
ea

n 
IIH

-b
as

el
in

e 
[G

lu
ca

go
n]

 p
g/

m
L r = 0.0 (P = 0.8)

D

Fig. 5. Correlations between pancreatic polypeptide (A), norepinephrine (B), epinephrine (C), and cortisol (D) responses to insulin-induced hypoglycemia (IIH) with
glucagon responses to IIH (Pearson’s r or Spearman’s rho when applicable) in 13 diabetic dogs [five responders (DMR, black triangles) and eight nonresponders
(DMN), black squares] and six control dogs (open circles). Dashed line represents the best-fit regression line. EPI, epinephrine; NE, norepinephrine; PP, pancreatic
polypeptide.
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DISCUSSION

The goal of this study was to gain insight into the contributions
of two potential mechanisms underlying the defective glucagon
response to hypoglycemia that is present in type 1 diabetes: 1) the
loss of intra-islet paracrine disinhibition of glucagon secretion
from a-cells by endogenous insulin, and 2) the impairment of
stimulation by activation of the autonomic inputs to the islets.
Canine diabetes is invariably associated with extreme b-cell defi-
ciency and is generally considered type 1 (39, 50). Still, to evalu-
ate the degree of endogenous insulin secretion remaining in dogs
with naturally occurring, insulin-requiring diabetes, circulating C-
peptide responses to intravenous glucagon administration (a potent
stimulus for insulin and C-peptide secretion from b-cells) was
assessed. We observed that none of the diabetic dogs had a meas-
urable increase of plasma C-peptide in response to intravenous
glucagon. These data indicate that in these animals, no further
decrease of endogenous intra-islet insulin during hypoglycemia
was possible, and therefore, these diabetic dogs had totally lost
the ability for paracrine disinhibition of glucagon secretion dur-
ing hypoglycemia. At first consideration, it might appear that
this loss of disinhibition could likely be responsible for the
observed impairment of glucagon response to IIH in the diabetic
dogs studied. Indeed, in eight of the 13 diabetic dogs with an
inability for disinhibition (i.e., C-peptide negative), there was no
significant increase of glucagon in response to IIH (DMN).
However, five of the 13 diabetic dogs studied exhibited glu-
cagon responses to IIH within the range of the nondiabetic
control dogs, and yet, these five animals were similarly C-
peptide negative. Other investigators have also reported that
there is no correlation between residual C-peptide responses
to a meal and glucagon responses to IIH in patients with type
1 diabetes (49). Together, these data imply that loss of disin-
hibition of the a-cell is not sufficient, by itself, to produce
the loss of the glucagon response to IIH at a glucose concen-
tration of 40 mg/dL. The results therefore implicate other
mechanisms, rather than disinhibition, that are involved in
mediating the normal glucagon response to IIH observed in
the DMR dogs and by extension the lack of a glucagon
response in the DMN dogs.
Potential autonomic mechanisms that can stimulate glucagon

secretion include acetylcholine and VIP released from parasym-
pathetic nerves innervating the islet (23), the catecholamines,
EPI released from the adrenal medulla, and NE and galanin (52)

released from sympathetic nerves directly innervating the islet.
In nondiabetic dogs, each of these autonomic inputs to the islet
is known to be activated by hypoglycemia (27), and each is ca-
pable of stimulating glucagon secretion in vivo (27). Blocking
the actions of all these autonomic agents to prove that the au-
tonomic inputs to the islet mediate the glucagon response to
hypoglycemia is difficult since both classical autonomic and
neuropeptide antagonists would be required in the right com-
binations. However, since all three autonomic pathways (par-
asympathetic nerves, sympathetic nerves, and the adrenal
medulla) involve neurotransmission via nicotinic receptors
on either postganglionic neurons or entrochromaffin cells, the
ganglionic antagonists hexamethonium in rodents (22) and dogs
(30) and trimethaphan in nonhuman primates (28) and humans
(20) have been used to demonstrate a marked reduction in the
glucagon response to hypoglycemia, establishing the autonomic
nervous system as an important mediator of this response.
Because it is not technically feasible to measure acetylcholine

released from islet parasympathetic nerves in vivo, we used the
secretion of pancreatic polypeptide (PP) released from F-cells in
the pancreatic islet, which has been widely used as an alterna-
tive index of the activation of parasympathetic nerves that inner-
vate the islets (46). The PP response to IIH is abolished by
either ganglionic (41) or muscarinic (47) blockade, consistent
with the neurotransmission via cholinergic nicotinic receptors
known to be present in parasympathetic ganglia (27) and activa-
tion of cholinergic muscarinic receptors present on islet F-cells
(27), as well as on islet a-cells (27). Activation of the parasym-
pathetic nerves innervating the pancreas stimulates glucagon
secretion (5) in a glucose-dependent manner such that there is a
larger glucagon response to parasympathetic activation when
circulating glucose concentrations are low. This glucose de-
pendence is clearly illustrated by the glucagon response to the
parasympathetic neuropeptide vasoactive intestinal polypeptide
(23, 29). It is noteworthy then that DMR dogs had substantially
larger PP responses to IIH than DMN dogs, consistent with
greater activation of the parasympathetic nerves innervating the
islet. Thus, it is likely that the greater islet parasympathetic acti-
vation measured during IIH in DMR dogs contributes to their
intact glucagon response to IIH.
Diabetic dogs with normal EPI response to IIH also had a

normal glucagon response to IIH (DMR). Thus, it appears that
the larger EPI response seen in DMR dogs, in addition to being
correlated with the glucagon response to IIH, contributes to the
larger glucagon response measured in DMR dogs. However,
interventional experiments (e.g., administration of adrenergic
receptor antagonists during IIH in dogs with naturally occurring
diabetes) would be required to provide additional support for
this mechanism.
Finally, the plasma NE response to IIH is also larger in the

DMR dogs than in DMN dogs, and the plasma NE response to
IIH is highly correlated with the glucagon response to IIH across
the three groups of dogs in the study. Although the plasma NE
response to IIH is indicative of a greater activation of systemic
sympathetic nerves in the DMR group, these data do not defini-
tively demonstrate a greater activation of the sympathetic nerves
innervating the pancreas per se in DMR versus DMN dogs
because the spillover of NE from the pancreas makes a negligi-
ble contribution to the NE measured in systemic plasma (10).
However, the sympathetic nerves of the pancreas are known
to be activated by neuroglucopenia or hypoglycemia in

Table 2. Changes of plasma glucose, glucagon, PP, NE, EPI,
and cortisol concentrations after feeding (mean [hormone]t2-t15 �
EuGt2) in 6 control dogs and 13 diabetic dogs [5 responders
(DMR) and 8 nonresponders (DMN)]

Controls DMN DMR

Glucose, mg/dL +10 ± 6 +29 ± 19 +23 ± 14

Glucagon, pg/mL +27 ± 25 +25 ± 19 +31 ± 14

PP, pg/mL +349 ± 118a,b +190 ± 118b +611 ± 330a

NE, pg/mL �27 (�115 to +41)b +81 (�17 to +135)a +47 (�73 to +69)a,b

EPI, pg/mL �184 ± 150b �8 ± 68a �89 ± 68a,b

Cortisol, μg/dL �0.4 ± 0.7 0.3 ± 1.3 �1.1 ± 1.2

Normally distributed data are presented as means ± SD. Otherwise, data are
presented as median (range). Values with different superscripts are signifi-
cantly different (P < 0.05). DMN, diabetic nonresponders; DMR, diabetic res-
ponders; EPI, epinephrine; FS, female, spayed; MN, male, neutered; NE,
norepinephrine; PP, pancreatic polypeptide.
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nondiabetic dogs (12, 29). This activation of pancreatic sympa-
thetic nerves is specific for neuroglucopenia, because it does not
occur during other types of physiological stress, that is, hypoten-
sion or hypoxia (29). During IIH, both catecholamines and the
canine sympathetic neurotransmitter galanin (25) are released
from pancreatic sympathetic nerves, and both NE and galanin
stimulate glucagon secretion in dogs (27, 52). Therefore, if the
islet sympathetic nerves are activated in proportion to the
increase of systemic NE, then the DMR dogs are likely to have
experienced a larger degree of sympathetic stimulation of gluca-
gon during IIH than DMN dogs. Alternatively, the low basal C-
peptide levels in both DMN and DMR groups suggest a major
loss of b-cell function in all of the dogs with naturally occurring
diabetes, and this b-cell loss has been shown to be associated
with a marked loss of islet sympathetic nerves in a number of
rodent models of autoimmune diabetes (38), as well as in human
subjects with type 1 diabetes (37). Therefore, if both DMN and
DMR dogs lack stimulation by islet sympathetic nerves during
IIH, then the intact glucagon response seen only in DMR dogs
can be attributed to the preservation, only in this one group, of
the other two autonomic inputs to the islet, that is, the activation
of parasympathetic nerves innervating the islet and circulating
adrenal EPI. In support of this possibility for redundant auto-
nomic activation of the a-cell during IIH, previous studies have
demonstrated redundancy in the autonomic mediation of the
glucagon response to IIH in rats (26) and, importantly, in dogs
(24). Thus, all three branches of the autonomic nervous system
must be blocked before an impaired glucagon response to IIH is
revealed (51).
Autonomic dysfunction of both branches of the ANS is a com-

mon feature of diabetes in both humans and rodent models (53). It
is multifactorial including both classical diabetic neuropathy and
hypoglycemia-associated autonomic failure (HAAF). The dimin-
ished PP, NE, and EPI responses to IIH in DMN dogs suggest a
generalized autonomic impairment in these dogs consistent with
autonomic neuropathy or HAAF instigated by prior episodes of
hypoglycemia in these insulin-treated dogs. Although the diabetic
dogs in this study were not fitted with continuous glucose moni-
tors, it is quite possible that some dogs experienced hypoglycemic
events that were not detected before the study. Hypoglycemia was
documented in the medical records in four of the five DMR and
five of the eight DMN dogs in the days and weeks before enrolling
in the study. Since prior hypoglycemia was documented in dogs
with both intact (DMR) and impaired (DMN) glucagon responses
to IIH, it appears unlikely that HAAF contributed to either the
impairment of autonomic activation or the deficient glucagon
responses to IIH observed in the DMN dogs studied here. In addi-
tion, the intact cortisol response to IIH in DMN dogs argues
against HAAF as the major underlying cause of the autonomic
impairment, since cortisol responses are also at least partially
reduced in HAAF (36, 48). Nonetheless, the significant associa-
tions of all three indices of autonomic inputs with impaired glu-
cagon secretion during IIH are clear and suggest that the
impaired autonomic responses to IIH are highly likely to have
an important contribution to the loss of the glucagon response to
IIH in DMN dogs in this study. Furthermore, the marked PP,
NE, and EPI responses to IIH in DMR dogs, coupled with intact
glucagon responses to IIH, despite absent C-peptide responses,
suggest that loss of disinhibition is insufficient to impair the glu-
cagon response to IIH in dogs with naturally occurring, insulin-
requiring diabetes.

Although the absence of a glucagon response to IIH in patients
with type 1 diabetes could be explained by a combination of loss
of disinhibition and impaired autonomic responses to IIH seen in
this study, it is likely that other factors also contribute to the loss
of the glucagon response to hypoglycemia in type 1 diabetes. For
example, others have demonstrated apparently normal EPI and
PP responses to IIH in patients with type 1 diabetes who have
lost the glucagon response to IIH (2, 55). It is unlikely that a gen-
eralized impairment of the a-cell is involved because previous
studies have demonstrated a normal glucagon response to intra-
venous administration of arginine in patients with long-standing
type 1 diabetes (18). Likewise, we found a normal glucagon
response to meal ingestion in DMN dogs that had lost the gluca-
gon response to IIH. One additional factor may be that with
increased duration of type 1 diabetes, there is an increased sensi-
tivity of the a-cell to the inhibitory effect of exogenous insulin.
Early studies had demonstrated that in patients with long-stand-
ing type 1 diabetes, the glucagon response to arginine is impaired
during a hyperinsulinemic-euglycemic clamp in a dose-depend-
ent fashion (3), supporting the idea that when endogenous insulin
secretion is lost, exogenous insulin may also impair the glucagon
response to hypoglycemia. We believe it is likely that during IIH,
multiple mechanisms are engaged to stimulate glucagon secre-
tion, and these are dependent on the degree/severity of hypogly-
cemia that is being studied. During mild hypoglycemia [PG
�55–65 mg/dL (as in most clinical studies in humans)], disinhi-
bition from the paracrine effects of endogenous insulin is more
likely to be involved. In contrast, when PG falls lower than this
threshold at which endogenous insulin (and C-peptide) secretion
is already absent, then the autonomic mediation of the glucagon
response to IIH becomes predominate and takes over (e.g., when
PG = 40 mg/dL, as in this study). Indeed, in studies in nondia-
betic humans with stepped hypoglycemic clamps, when glu-
cose is lowered to �65–70 mg/dL, there is mild autonomic
activation, as assessed by increases of plasma PP and EPI
responses and a small increase of plasma glucagon. When
glucose is allowed to fall further to 50–55 mg/dL, more
marked PP and EPI responses are observed and plasma gluca-
gon increases further (4, 44, 45). We reported even larger
increases of PP, EPI, NE, and glucagon in humans during IIH
of 45 mg/dL (20) than reported at the less marked levels of
hypoglycemia (50–55 mg/dL). It should be noted that it is the
more severe degrees of hypoglycemia that are most clinically
relevant and lead to increasingly adverse outcomes, including
seizures, accidents, and hospitalizations.
The small number of subjects in subgroups limited our

ability to examine the effect of breed, body weight, and sex
on hormonal responses. Although there is currently no evi-
dence in previous literature that these factors lead to differen-
ces in counterregulation of hypoglycemia dogs, especially in
dogs that are spayed/neutered, this should be examined in
future studies.
In summary, we have previously demonstrated that activation

of islet parasympathetic nerves, the adrenal medulla, and islet
sympathetic nerves all contribute to the glucagon response to IIH
in a number of species, including nondiabetic dogs (30) rhesus
macaques (28), and humans (20). Others have provided evidence
that disinhibition of a-cells by endogenous insulin contributes to
the glucagon response to IIH in nondiabetic animals (33) and
humans (42, 43). We have suggested that each of these factors
can contribute at different levels of hypoglycemia to the
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increasing stimulation of glucagon secretion as blood glucose
levels continue to fall (53). Based on the results of the present
study, we propose that loss of disinhibition and impaired activa-
tion of the autonomic inputs to the islet can both contribute to
the loss of the glucagon response to mild and marked hypoglyce-
mia, respectively, in type 1 diabetes; however, the role of the au-
tonomic impairment is dominant during more clinically
significant degrees of hypoglycemia.

CONCLUSIONS

Glucagon responses to insulin-induced hypoglycemia are
impaired in a subset comprising over half of the dogs with natu-
rally occurring diabetes mellitus that we studied. The animals
with impaired glucagon responses also exhibit impairments of
parasympathetic (PP), adrenal medullary (EPI), and sympathetic
(NE) autonomic responses to IIH. In contrast, glucagon and PP
responses to feeding in the diabetic dogs with impaired gluca-
gon responses to IIH are similar to those in diabetic dogs with a
normal glucagon response to IIH and to those in healthy nondia-
betic dogs, indicating that islet a-cells and F-cells are intact and
capable of secreting glucagon and PP, respectively. Impaired
glucagon responses to IIH are therefore likely a consequence of
impaired activation of the autonomic inputs to the islets. Dogs
with impaired autonomic and consequentially defective glucagon
response to IIH are at increased risk for episodes of severe hypo-
glycemia during insulin treatment. Therefore, new approaches
are needed to prevent or reverse impairments of autonomic acti-
vation to restore the glucagon responses that serve as a first line
of defense in the prevention and recovery from hypoglycemia
during insulin treatment of diabetes in both canine and human
patients.
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