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Vitreous is the clear, gel-like substance that �lls the cavity between the lens and retina

in the eye. Treating certain eye abnormalities requires removing this substance using a

minimally-invasive device called a vitreous cutter. Understanding the behavior of this

viscoelastic bio
uid during surgeries is essential to improving the e�ectiveness of the

procedure. In this study, three-dimensional computational models of vitreous cutters are

investigated using an immersed boundary method paired with a viscoelastic constitutive

model. The solver uses a fractional-step method to satisfy continuity and traction

boundary conditions to simulate the applied suction. The current work extends previous

e�orts to accurately model the rheological parameters measured by Sharif-Kashani et

ii



al. using the Giesekus constitutive equation [Retina, 2013]. The simulations were used

to quantify both the average and time-varying 
ow rate through the device. Values

for 
ow rate are compared with experimental results from Hubschman et al. [Retina,

2009]. Flow features associated with the cutting dynamics are of particular interest, as

is the geometry of the cutter itself. These operational and design changes are a target

for improving cutter e�cacy while minimizing potential tissue damage.
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Chapter 1

Introduction

1.1 Background

1.1.1 Eye Anatomy and Physiology

The human eye is a slightly irregular hollow sphere, as shown in the Figure 1.1 cross-

section. Its cavities are �lled with 
uids called humors that, among other things, help

the eye maintain its shape. The lens, the adjustable focusing apparatus of the eye, is

supported vertically within the organ, dividing it into anterior (toward the front of the

body) and posterior (toward the back of the body) cavities.

Filling the posterior cavity between the lens and retina is a clear, gel-like substance

known as vitreous humor, often simply referred to as vitreous. As noted earlier, the

primary function of this 
uid is to maintain the shape of the eye. Speci�cally, this
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Figure 1.1: Illustrated cross section of the eye, highlighting the major internal structures
[1].

means that the vitreous is responsible for supporting the posterior surface of the lens

and holding the retina �rmly against the interior eyeball surface. Light must be allowed

to pass freely between the lens and retina, so the vitreous must also be perfectly clear

while providing this support. The vitreous also contributes to intraocular pressure,

which counteracts the pulling forces of muscles attached to the outer surface of the

eyeball responsible for eye movement [33].

The treatment of certain eye abnormalities necessitates the removal of the vitreous, in a

surgical procedure called a vitrectomy. Generally speaking, a vitrectomy is appropriate

when a procedure requires access to the posterior cavity of the eye or when the vitreous

su�ers a reduction in its ability to permit the passage of light. Common indications

include:
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� Vitreous Hemorrhage

� Retinal Detachment

� Epiretinal Membrane

� Macular Hole

� Proliferative Vitreoretinopathy

� Endophthalmitis

� Intraocular Foreign Body Removal

Performing a successful vitrectomy requires an understanding of the nature of this gel-

like 
uid, which is introduced in the following section.

1.1.2 Vitreous

As noted in Section 1.1.1, the vitreous ful�lls an essential mechanical function in the

physiology of healthy eyes. Its role as a structural support is evident in its gel-like

consistency, which is the result of a macromolecular, hydrated network [48]. Vitreous

is composed almost entirely of water|99% by weight. The remainder is comprised of

salts, heterotypic collagen �brils (type II, V/XI, and IX), and a hyaluronan network

[48]. This complex organization is illustrated in Figure 1.2.

It is the presence of the collagen and hyaluronan molecules that gives vitreous its vis-

coelastic properties and complicates its removal [48]. As a viscoelastic material, vitreous

3



Figure 1.2: Illustration of the macromolecular composition of vitreous [48].

exhibits both an elastic and a viscous response when subjected to stress. More will be

said about this dual-natured behavior in Section 2.3.1. In order to perform a vitrectomy,

the collagen macromolecules must be severed or somehow fragmented, which diminishes

the elastic nature of the vitreous and produces a \chopped" consistency that behaves

more like a liquid. This liquid-like substance can then be smoothly suctioned out of the

eye.

The notion of fragmenting vitreous to aid in its removal has been developed and re-

�ned over the years since the very �rst vitrectomies were performed. The history and

continual re�nement of the procedure will be developed in the following sections.
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1.2 Vitrectomy

1.2.1 Early Development of Tools and Technique

During the late 1960s, Kasner began developing his technique to surgically remove vit-

reous from the eye to treat patients with opaci�cation of the vitreous due to amyloidosis

[26]. Kasner’s so-called \open sky" technique began with a large incision and the folding

back of an anterior section of the cornea. Through this incision, the lens itself could

be extracted, allowing access to the vitreous in the posterior segment of the eye. The

occluded vitreous was drawn out using forceps, which were later replaced with surgi-

cal sponges, and severed from the bulk with scissors. A diagram of Kasner’s open sky

vitrectomy technique is shown in Figure 1.3.

Figure 1.3: Illustration of Kasner’s \open sky" technique for vitrectomy [32].

This technique was not without its shortcomings. Accessing the vitreous in the posterior

5



cavity through the pupil as shown in Figure 1.3 caused considerable irritation of the

surrounding iris, as the pupil was often too small and required incisions to expand the

working area. After observing Kasner’s technique, Machemer began wondering how it

could be improved; speci�cally, if replacing large instruments like the surgical sponge

and scissors with smaller tools could reduce damage to the iris.

Machemer’s �rst idea for such a surgical tool came in 1969, when he envisioned a

spinning drill bit enclosed in a stationary tube such that only the tip of the drill bit was

exposed. He hypothesized that the spinning tip would be su�cient to cut the vitreous,

which would then be transported up through the 
uted shaft. In vitro testing with egg

white showed that, indeed, the drill bit could both cut and draw 
uid up through the

enclosure tube. Construction on a prototype device began shortly after this preliminary

result. The main components of the prototype were a blunted hypodermic needle and

small drill bit. The stationary hypodermic needle enclosed the rotating drill bit, with

only a small portion at the tip left exposed. The drill bit was driven with a small

electric motor housed in the plastic body of the syringe. Testing the vitreous cutter on

rabbit eyes led to further design improvements, such as adding suction on the proximal

(relative to the operator) end to more quickly remove the vitreous and adjusting the

aperture through which the drill bit was exposed to the surrounding 
uid. The various

elements, and the �nal assembly, are shown in Figure 1.4 [32].

For the �rst time, the large sponge and scissors of Kasner’s technique were replaced

with a single tool, allowing the surgeon to simultaneously grab and cut vitreous. In

6



Figure 1.4: (a.) The motor, drill bit, and hypodermic needle of Machemer’s �rst vitreous
cutter (b.) the assembled tool with its plastic syringe housing [32].
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early 1970, Machemer’s tool was ready for human testing. After surgery, the patient’s

eye showed less irritation than similar eyes treated with the open sky technique [32].

At this point, the surgery was still performed by folding back an anterior section of the

cornea, removing the lens, and operating the device through the pupil, being careful

not to unnecessarily irritate the iris. Machemer wondered if it would be possible to

perform the surgery by entering the eye through the pars plana, near the region where

the iris meets the sclera (see Figure 1.1). Having experimented with this approach in

primate models, Machemer was con�dent that vitrectomy could be performed in humans

through a pars plana approach [32].

The �rst pars plana vitrectomy (PPV) was performed in 1970 to clear a vitreous hem-

orrhage from a diabetic patient. The surgery was completed without complication, and

the patient improved his visual acuity from 2/200 to 20/50 [32]. As PPV continued to

mature, the list of patients expanded to include those with problems previously deemed

incurable, such as retinal detachment and so-called \giant" retinal tears [32, 30].

With the PPV technique gaining higher adoption rates, the focus again shifted to im-

proving cutter design. Working with Parel, Machemer replaced the still relatively crude

drill bit and hypodermic needle enclosure with a stationary 17-gauge (1.5 mm) outer

tube and a rotating inner tube. Both tubes included a single lateral ori�ce such that the

rotation of the inner tube caused the aspiration port to slide smoothly between open

and closed states. When the holes were aligned, suction would draw vitreous through

the tube and out of the eye. Further rotation of the inner tube would cause the inner
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and outer wall to shear past each other, producing a scissor-like cutting action. This

improved cutting design is shown in Figure 1.5

Figure 1.5: Illustration of the cutting portion of Machemer and Parel’s improved design
[32].

Recall that the original motivation for the design of a vitreous cutter was to combine the

features of Kasner’s sponge and scissors into a single instrument that could remove and

cut vitreous while simultaneously back�lling the eye with a suitable support 
uid (note

the infusion port in Figure 1.5). However, as surgeons gained experience with PPV,

they found that it was helpful to have a second instrument inside the posterior cavity

to help stabilize and direct movement during surgery. Thus, surgeons turned toward a

two-instrument technique with separate cutting and infusion tools, as depicted in Figure

1.6.

In 1974, O’Malley and Heintz presented their design for a vitreous cutter, which re-

placed what was then the state-of-the-art rotary-shearing action with an up-and-down

reciprocating motion [39]. The new cutting design eliminated the lateral port on the
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