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Abstract

The damming of rivers represents one of the major anthropogenic disturbances of the 

natural cycles of water and nutrient elements on the continents. Currently, more than 

50% of the world's stream and river flow crosses one or more dams before reaching the 

oceans. This fraction could climb up to 90% by 2030. The associated modifications of 

both the absolute and relative riverine fluxes of nutrients have far-reaching 

ecohydrological implications, from individual ecosystems to the global biogeosphere. 

While dam reservoirs usually act as sinks of macronutrients along the river continuum, 

their effects on riverine fluxes and chemical speciation differ markedly from one nutrient 

element to another. Dams can thus fundamentally alter nutrient limitation patterns and 

water quality in river-floodplain systems and receiving water bodies, including lakes and 

coastal marine areas. Here, we briefly review recent research addressing the impact of 

dams on riverine nutrient fluxes and stoichiometry, and identify some of the research 

challenges ahead.
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1. Introduction

Rivers and their associated riparian areas, reservoirs and floodplains sustain a plethora 

of ecological functions and essential ecosystem services. Rivers and streams supply 

water for drinking, sanitation, irrigation and industrial usage. They support inland 
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fisheries and aquaculture, and account for a substantial fraction of the world's electricity 

production. Biogeochemical processes in streams and floodplains contribute to water 

purification, nutrient cycling and waste assimilation. Historically, trade and human 

settlement often followed the course of rivers, while floodplains yielded fertile lands for 

agriculture.

River systems are not only central to humanity's water and food security, they also 

harbor a wide diversity of natural habitats and biological species. 

The biodiversity and ecosystem functions of river systems are, in turn, closely linked to 

the flow regime, which regulates the timing and intensity of exchanges of water and 

materials between river channel, adjacent floodplains and connected aquifers (Sparks, 

1995). Dissolved and suspended materials carried by rivers are ultimately delivered to 

lakes and sea. The outflow of rivers therefore contributes to maintaining the biological 

productivity and ecological integrity of inland and coastal marine environments.

Rivers are the great integrators of the freshwater cycle. The flow regime and chemical 

composition of river water inform us about hydrological connectivity and storage, 

terrestrial–aquatic interactions, and landscape disturbances in watersheds. Rivers and 

streams record changes in regional climate, land and water use, and pollutant loadings. 

Modifications of the natural flow regime and increased inputs of nutrients are among the

most significant human drivers of change of riverine ecosystems and connected water 

bodies (Harrison et al., 2005).

Humans have been building dams for at least 7000 years. The systematic damming of 

rivers, however, began in earnest after the 1930s. By the end of the 20th century, more 

than half of the world's surface water was passing through dams prior to reaching the 

oceans (Vörösmarty et al., 1997). Since then, a new wave of dam construction has 

started, with the number of large hydroelectric dams projected to nearly double by 2030 

(Zarfl et al., 2015). Within the next decades, dams will moderately to severely impact 

flow conditions in almost all major rivers on earth (Grill et al., 2015). The global scale 

effects of river damming, however, have received relatively little attention compared to 

those of other drivers of environmental change, such as energy use, agricultural 

intensification and urbanization.

River damming generates both risks and opportunities for integrated watershed 

management. In many of the major grain producing areas of the world, the water 

storagecapacity created by the construction of dams has enabled spectacular advances

in food production, while the ability to control flow conditions in river systems may help 

to reduce the societal costs of droughts and catastrophic flooding events. The disruption

of the natural flow regime by dams, however, has been linked to the decline in 
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biodiversity of river systems (Poff et al., 2007). Furthermore, the construction of dams 

not only changes the flow of water, but also the associated material flows, in particular 

those of nutrients. Nutrient fluxes directly affect the trophic state and water quality of 

rivers and their receiving water bodies.

Understanding how the construction of dams modifies the environmental flows of 

nutrients within river basins should be taken into consideration in the design and 

implementation of long-term, ecohydrological strategies aimed at the sustainable 

utilization of water resources(Zalewski, 2000, Donald et al., 2015). Unfortunately, much 

of the data needed to address the impacts of dams on riverine nutrient fluxes are either 

nonexistent or not available in the public domain. In this paper, we review recent 

research on river damming and its effects on the transport of macronutrients 

(phosphorus, nitrogen, silicon) along the river continuum. In particular, we address the 

question of how to scale up the limited number of available elemental budgets for 

individual reservoirs in order to estimate the regional, and ultimately global, effects of 

dams on riverine nutrient fluxes. We further highlight that, in addition to modifying the 

absolute fluxes of nutrients, dams may significantly alter riverine nutrient ratios. The 

latter finding is important because changes in both the absolute and relative delivery of 

nutrients by rivers affect the ecological health of receiving lakes and coastal seas.

2. Riverine nutrients

Rising inputs of nutrients are causing long-term shifts in the trophic state and ecosystem

functioning of river systems (Garnier and Billen, 2007). For example, over the course of 

the second half of the 20th century, CO2 saturation levels in the lower reaches of the 

Yangtze River (Changjiang) have systematically decreased, a trend that reflects a 

gradual transition from heterotrophic to autotrophic conditions (Duan et al., 2007). This 

transition is most likely driven by the increasing supply of anthropogenic nutrients, which

stimulates in-stream primary production and, consequently, changes the balance 

between primary production and respiration. Large shifts in trophic state further imply an

evolving role of river-floodplain ecosystems in the global carbon cycle and climate 

system (Raymond et al., 2013).

Much attention has been devoted to anthropogenic enrichments of rivers by nitrogen (N)

and phosphorus (P). A comprehensive assessment of anthropogenic effects on riverine 

nutrient fluxes, however, needs to take into consideration other essential nutrient 

elements, such as silicon (Si), sulphur (S) and iron (Fe). Changes in 

nutrient stoichiometry may lead to changes in nutrient limitation patterns, foodweb 

structure and trophic status of aquatic environments. The competition 
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between siliceous and non-siliceous algae, for instance, depends on the availability of 

Si, relative to P and N (Garnier et al., 2010). Because human activities have perturbed 

loadings of P and N to a greater extent than Si, riverine Si:P and Si:N nutrient ratios 

may serve as indicators of anthropogenic pressures at the catchment scale.

Time series water quality data for the Yangtze River compiled by Duan et al. 

(2007) provide a textbook example of historical changes in nutrient stoichiometry within 

a major river system. From 1960 to 1985, the average molar ratios of 

dissolved silicate to dissolved inorganic N in the middle and lower reaches of the river 

dropped from values around 13 to values below 2, primarily as a result of rising 

concentrations of inorganic N. In contrast, over the same time period, changes in the 

Si:N ratio within the upper reaches of the river were far less pronounced, due to fewer 

anthropogenic N sources. Similar trends are observed for the Si:P ratios. The existing 

data indicate that declining riverine Si:P and Si:N nutrient ratios are a general, 

worldwide phenomenon, and may be one of the reasons behind the increased incidence

of non-siliceous algal blooms in lakes and coastal marine areas (Billen et al., 

1991, Humborg et al., 2006, Garnier et al., 2010).

3. Nutrients and river damming

In addition to changes in nutrient loadings (Ver et al., 1999), humans are modifying 

riverine fluxes of nutrients by building dams. Dam closure turns the upstream stretch of 

a river channel into a reservoir. The longer hydraulic residence time and the 

accompanying lowering of flow velocity and turbidity promote primary 

productivity and nutrient cycling within the reservoir (Fig. 1). Through sediment 

accumulation, and for N also denitrification, reservoirs usually remove nutrients from 

the streamflow (Kõiv et al., 2011). Building a dam may thus 

alleviate eutrophication pressure on downstream ecosystems by reducing the riverine 

supply of nutrients. However, biogeochemical processes in the reservoir also alter 

nutrient speciation and stoichiometry, while flow regulation by the dam changes the 

timing of downstream nutrient delivery by the river. Damming may thus affect watershed

nutrient cycles in multiple and complex ways.
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1. Download full-size image

Fig. 1. Schematic representation of in-reservoir processes controlling the cycling and 
retention of nutrients in a dam reservoir.

Nutrient retention (or elimination) by a dam is defined as the relative difference between 

the dam outflow flux of a given nutrient element, or a given chemical form of that 

element, and the combined inputs to the reservoir via river inflow, groundwater 

discharge, runoff and atmospheric deposition. In what follows, we first review some 

recent work addressing nutrient retention in a single reservoir, followed by a 

presentation of our ongoing efforts to produce global scale estimates of nutrient 

elimination from river flows due to damming.

3.1. Lake Diefenbaker: a case study

Lake Diefenbaker, a 400 km2 reservoir on the South Saskatchewan River in Canada, 

was completed in 1967. The reservoir is an essential regional source of water for 

irrigation and domestic use. The main dam also provides flood and ice control to 
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downstream communities. Nutrient budgets for Lake Diefenbaker were derived from 

nutrient concentrations measured in river inflow, dam outflow and the reservoir's water 

column, as well as data obtained from sediment cores (Maavara et al., 2015a, North et 

al., 2015).

Lake Diefenbaker efficiently traps P: the annual retention of reactive soluble P is on the 

order of 60% (North et al., 2015, Donald et al., 2015). In comparison, the reservoir 

retains only about 30% of dissolved Si on a yearly basis (Maavara et al., 2015a). The 

annual retention of N varies widely, with up to 40% dissolved inorganic N (DIN) retention

in some years, and net export in others (R. North, University of Saskatchewan, pers. 

comm.; Donald et al., 2015). In 2013–2014, retention of dissolved Si peaked in June 

with 85% less dissolved Si leaving the reservoir than entering, while in December the 

outflow of dissolved Si was 344% higher than the inflow (Maavara et al., 2015a). The 

observed seasonal pattern is explained by diatom production in the reservoir during the 

summer months, which removes dissolved Si, and net dissolution of 

diatom frustules following the growth season, which releases dissolved Si. The data 

collected in Lake Diefenbaker therefore highlight (1) the large differences in retention 

efficiencies of different nutrient elements, and (2) the large seasonal variability in 

nutrient retention efficiencies.

Biogeochemical cycling in Lake Diefenbaker decouples the riverine fluxes of nutrient 

elements and imparts large differences between the N:P:Si ratios of water flowing in and

out of the reservoir. This case study thus illustrates how the construction of even a 

single dam may profoundly change nutrient flows within a river system. While damming 

generally homogenizes the flow regime of rivers (Poff et al., 2007), it may introduce 

new temporal variability in riverine nutrient fluxes and stoichiometry. In our opinion, a 

predictive understanding of the decoupling of nutrient fluxes by dams should be a 

research priority in watershed ecohydrology, in particular given the current global 

damming boom (Zarfl et al., 2015), and the mounting evidence that changes in the 

relative and absolute delivery of macronutrients by rivers severely impacts 

the ecology and water quality of receiving water bodies (Humborg et al., 2006, Garnier 

et al., 2010).

3.2. Global nutrient retention by dams

Over 75,000 dam reservoirs larger than 0.1 km2 already exist worldwide, and their 

number will continue to rise within the foreseeable future. This contrasts sharply with the

limited number of published papers assessing the fate and transport of nutrients in 

reservoirs. For example, an extensive literature search only yielded 17 studies from 
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which the retention of Si by dams could be estimated (Maavara et al., 2014). A similar 

search for P produced 149 studies with whole-reservoir P budgets, which still represents

less than 0.2% of the global inventory of reservoirs (Fig. 2; Maavara et al., 2015b). It is 

highly unlikely that the data extracted from these small numbers of reservoirs are 

statistically representative of worldwide nutrient retention by dams.

1. Download full-size image

Fig. 2. World map showing the locations of the reservoirs included in the GRanD 
database, as well as the locations of the 149 reservoirs with published phosphorus 
budgets from which phosphorus retention efficiencies can be derived.

Most global estimations of the effect of dams on riverine nutrient fluxes have relied on 

very simple approximations. These include accounting for retention by dams by applying

a correction factor to nutrient loads (Seitzinger et al., 2005, Laruelle et al., 2009), or 

extrapolating empirical relationships obtained from the limited available data on 

reservoirs to the global scale (Harrison et al., 2012). Maavara et al. (2014) proposed an 

alternative approach to estimate global nutrient retention by dams. It combines 

observed retentions for individual reservoirs with a mechanistic modeling of 

biogeochemical nutrient cycling in surface water bodies. Compared to previous 

approaches, the method builds on a knowledge-based understanding of the processes 

that regulate the in-reservoir redistribution of a nutrient element over its various 

chemical forms. The method is summarized in Fig. 3. It was first used to estimate the 
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global scale retention of nutrient Si by dams (Maavara et al., 2014) and, since then also 

applied to P (Maavara et al., 2015b), with ongoing work focusing on N and carbon.

1. Download full-size image

Fig. 3. Flow chart of the method used for global-scale estimations of nutrient retention 
by dams. See text for details.

Among the macronutrient elements, modeling the biogeochemical cycling of Si in 

reservoirs is the most straightforward. In a first approximation, only two reactive Si pools

are represented: dissolved silicate and reactive particulate Si. The latter is largely 

comprised of biogenic silica, but may also include other amorphous and sorbed forms of

Si (Saccone et al., 2007). The principal processes controlling the redistribution of 

nutrient Si are biological fixation by siliceous algae and macrophytes and dissolution of 

reactive particulate Si. Burial of a fraction of the reactive particulate Si entering the 
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reservoir or produced in the reservoir then results in Si retention. Incorporation of these 

various processes in a mass balance model yields a number of adjustable parameters 

for which plausible value ranges can be established. A Monte Carlo simulation approach

is then used to account for all possible parameter combinations and generate global 

relationships for the retention of the two reactive Si pools as a function of the hydraulic 

residence time of the reservoir (Maavara et al., 2014).

The final steps in the methodology outlined in Fig. 3 consist in (1) using the Global-

NEWS-DSi model (Beusen et al., 2009) to predict reactive Si loadings to the reservoirs 

listed in the Global Reservoirs and Dams (GRanD) database (Fig. 2; Lehner et al., 

2011), and (2) applying the global retention relationships for dissolved Si and reactive 

particulate Si to calculate, for each reservoir, how much reactive Si is buried in the 

sediments. With their approach, Maavara et al. (2014) estimate that dams currently trap 

5.3% of the global total reactive Si loading to rivers. The calculated retention of 

dissolved Si is even lower (2.6%). The difference reflects the fact that, globally, large 

reservoirs with long hydraulic residence times accumulate most nutrient Si. These 

reservoirs efficiently trap particulate matter and, hence, are characterized by greater 

retentions of reactive particulate Si than dissolved Si.

A similar, knowledge-based scaling up of P retention by river damming shows that 

globally reservoirs are significantly more efficient at retaining P than Si (Maavara et al., 

2015b). This raises the question as to whether the ongoing dam construction may offset

the projected increase in anthropogenic P loading to watersheds in the foreseeable 

future. Our model calculations suggest that this may be the case for the global riverine 

flux of total P. In other words, the building of new dams over the next two decades may 

– quite inadvertently – dampen the delivery of anthropogenic P to lakes and coastal 

areas. The modeling results, however, also show large regional differences in the 

projected trajectories of anthropogenic P loading to watersheds and the retention of P 

by reservoirs (Maavara et al., 2015b). In addition, the global analyses only yield 

annually averaged estimates and, hence, cannot resolve the significant seasonal 

variations in reservoir P retention (see above Lake Diefenbaker: A case study). Thus, 

one cannot simply downscale the results of global analyses to individual watersheds.

3.3. Dams and integrated water resources management

An important task of sustainable watershed management is to avoid eutrophication of 

surface water bodies by controlling the flows of nutrients along the aquatic continuum. 

Much research has been devoted to the management of in-reservoir eutrophication 

(Cooke et al., 2005). Artificial aeration techniques have been used to counteract the 
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development of anoxia in reservoirs and consequently reduce the internal loading of P 

from sediments (Beutel and Horne, 1999). Other approaches include manipulating the 

operation of the dam to generate artificial turbulence that promotes the shift 

in phytoplankton communities from cyanobacteria to green algae and diatoms (Visser et

al., 2015). Ultimately, however, the success of these interventions in reservoir systems 

with high anthropogenic nutrient loadings, depend on the up-stream reduction of 

nutrient sources (Gächter, 1986).

Despite the considerable research into reducing in-reservoir eutrophication, little 

attention has been given to the potential of using reservoir management as a means to 

mitigate eutrophication in waterways and water bodies downstream of dams. For 

instance, targeted manipulation of the flow regime could increase the reservoir retention

efficiency of P, in order to reduce its downstream transfer. Similarly, shortening the water

residence time during the growth period of diatoms may simultaneously alleviate in-

reservoir eutrophication and Si limitation of diatom communities in downstream lakes 

and coastal marine areas (Garnier et al., 2010, Humborg et al., 2000, Humborg et al., 

2006). Such reservoir management strategies could be combined with changes in 

agricultural fertilizer management practices that lower the application of P and increase 

that of Si. The use of Si amended fertilizers has been shown to increase crop yields at 

little added cost (Bocharnikova et al., 2010). Overall, we believe there is significant 

scope for exploring new reservoir management strategies that minimize the trade-offs 

between societal benefits and ecological impacts of dam construction.

4. Concluding remarks

Dams and reservoirs are an integral component of today's watersheds. They have 

profoundly changed the flow regimes of many rivers and streams. In addition, there is 

an increasing realization that the construction of dams alters the absolute and relative 

riverine fluxes of macronutrient elements. A holistic analysis of 

watershed ecohydrology must thus include a quantitative understanding of the effects of

dams on the retention, speciation and stoichiometry of nutrients. Such an understanding

is part of the scientific basis that should inform the design and implementation of 

sustainable management strategies for watersheds, lakes and near-shore marine 

environments.

Regional to global scale assessments of the impacts of river damming are currently 

hampered by the limited availability of data on nutrient budgets for reservoirs. The way 

forward will depend not only on the acquisition of more complete time-series data, but 

also on improved modeling of the processes that regulate the transformation and 
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cycling of nutrients in reservoirs. These efforts will help resolve to what extent damming 

interacts with nutrient enrichment and other anthropogenic pressures on river systems, 

and, hence, may reduce or promote eutrophication in receiving water bodies. This 

question is all the timelier given the ongoing resurgence in dam construction, especially 

concentrated in South America, central Asia, Africa and Southeast Asia.
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