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T. Fuchs25, T. K. Gaisser34, J. Gallagher38, L. Gerhardt24,16, K. Ghorbani6, W. Giang39, L. Gladstone6, T. Glauch13,
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44Université de Mons, B-7000 Mons, Belgium
45Dept. of Physics, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
46Dept. of Physics, University of Wisconsin, River Falls, WI 54022, USA
47Dept. of Physics, Yale University, New Haven, CT 06520, USA
48Dept. of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA
49Dept. of Physics and Astronomy, University of Alaska Anchorage, 3211 Providence Dr., Anchorage, AK 99508, USA
50Dept. of Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP, UK
51School of Physics and Center for Relativistic Astrophysics, Georgia Institute of Technology, Atlanta, GA 30332, USA
52Physikalisches Institut, Universität Bonn, Nussallee 12, D-53115 Bonn, Germany
53Earthquake Research Institute, University of Tokyo, Bunkyo, Tokyo 113-0032, Japan

ABSTRACT

Since the recent detection of an astrophysical flux of high-energy neutrinos, the question of its origin

has not yet fully been answered. Much of what is known about this flux comes from a small event

sample of high neutrino purity, good energy resolution, but large angular uncertainties. In searches

for point-like sources, on the other hand, the best performance is given by using large statistics and
good angular reconstructions. Track-like muon events produced in neutrino interactions satisfy these

requirements. We present here the results of searches for point-like sources with neutrinos using data

acquired by the IceCube detector over 7 yr from 2008 to 2015. The discovery potential of the analysis

in the northern sky is now significantly below E2
νdφ/dEν = 10−12TeV cm−2 s−1, on average 38% lower

than the sensitivity of the previously published analysis of 4 yr exposure. No significant clustering

of neutrinos above background expectation was observed, and implications for prominent neutrino

source candidates are discussed.
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1. INTRODUCTION

One outstanding question in astroparticle physics

is the origin of ultra-high-energy cosmic rays (UHE-

CRs). In the paradigm of multi-messenger astronomy,

both photons and neutrinos can help resolve the
sources of UHECRs (Beatty & Westerhoff 2009;

Kotera & Olinto 2011). Photons and neutrinos are

believed to be produced in the astrophysical beam

dump of cosmic-ray particles interacting with matter

at the source location. Due to lack of electric charge,
they point back to their origin, whereas cosmic rays

are deflected by tangled magnetic fields in the uni-

verse. Sources of high-energy γ-rays in our Galaxy

and extragalactic objects are detected over a wide
range of energies (Hinton & Hofmann 2009), but both

hadronic and leptonic processes can produce γ-rays.

Neutrinos, on the other hand, trace hadronic inter-

actions and therefore are a smoking-gun signature of

cosmic-ray acceleration (Learned & Mannheim 2000;
Halzen & Hooper 2002; Anchordoqui & Montaruli

2010; Anchordoqui et al. 2014). Other possible types

of sources could be hidden in γ-rays and only identified

using neutrinos (Murase et al. 2016; Senno et al. 2016).
IceCube recently reported the first observation of

high-energy astrophysical neutrinos with more than 5σ

significance (Aartsen et al. 2013a, 2014c). Neutrinos

with energies up to and exceeding 1 PeV are observed

in events starting inside the detector. Since then, this
result is confirmed in other detection channels of inter-

actions of νµ + ν̄µ in the northern sky (Aartsen et al.

2015c, 2016b). The overall flux observed is consistent so

far with an isotropic emission over the full sky and all
neutrino flavors (Aartsen et al. 2015d,a)

This paper presents the most recent results of searches

for point-like steady emission of neutrinos using track-

like events traversing the IceCube detector. The statis-

tics are increased by adding 3 yr of exposure to the pre-
vious analyses (Abbasi et al. 2011; Aartsen et al. 2013c,

2014e). A sample of 712, 830 events is obtained during

7 yr of data recording through 2015 June. In addition,

starting tracks are used in a separate sample to help ac-
cess lower energies in the southern sky (Aartsen et al.

2016a).

In Section 2, the IceCube Neutrino Observatory is

introduced and the two samples of through-going and

starting tracks are characterized. In Section 3, the
statistical method of unbinned likelihood maximization

for clustering searches is discussed. Section 4 presents

the results and their implications regarding neutrino

sources, and in Section 5 conclusions are drawn.

2. THE ICECUBE NEUTRINO OBSERVATORY

Interactions of neutrinos in IceCube are detected us-

ing Cerenkov light emitted by relativistic charged sec-

ondary particles. To serve this purpose, one cubic kilo-

meter of Antarctic ice was instrumented at the South
Pole (Achterberg et al. 2006). A total of 5160 digital op-

tical modules (DOMs) detect light emission in the ice at

a depth ranging from 1450 to 2450m. The DOMs consist

of a photomultiplier tube, electronics for digitization,

and LEDs for detector calibration (Abbasi et al. 2009,
2010). DOMs are attached to 86 cables (called strings)

in groups of 60 with vertical spacing of 17 m; the mean

distance between neighboring strings is ∼ 125 m. The

eight innermost strings form a denser sub-array called
DeepCore which targets lower energies (Abbasi et al.

2012). The South Pole IceCube Neutrino Observatory

includes the surface array called IceTop (Abbasi et al.

2013) that detects and reconstructs air showers above

300 TeV using 82 ice tanks. In the analysis presented
here, IceTop’s capabilities are used to veto cosmic-ray-

induced backgrounds.

2.1. Neutrino detection channels

Three event topologies are taken into account when
considering neutrino interactions in IceCube. Tracks

are induced by muons traversing the detector. Below

700 GeV, muons lose energy mainly due to ionization;

above 700 GeV, stochastic energy losses due to radia-
tive emission become the dominant component. At TeV

energies, muons travel long distances, larger than sev-

eral kilometers in the Antarctic ice (Chirkin & Rhode

2004). Light is constantly emitted along the track. The

resulting long lever arm gives a good reconstruction per-
formance with median angular resolution ∆Ψ < 1◦i.1

Moreover, the event rate greatly increases because neu-

trinos can interact far outside the detector prior to

the detection of the secondary muon with IceCube.
Charged-current interactions of electron or tau neu-

trinos, as well as neutral current interactions of any

neutrino type, produce shower - or cascade-like events.

These types of interactions produce almost spherically

symmetric light emission, giving a median angular res-
olution of ∼10◦. Another topology is induced by very

high energy charged-current ντ+ν̄τ interactions with the

tau lepton decaying to hadrons after traveling a distance

∼ 50mPeV−1×Eτ , resulting in two cascades separated

1 Evaluated using dedicated Monte Carlo simulation, veri-
fied using experimental data of cosmic-ray shadowing of the
Moon (Aartsen et al. 2014d).
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distinctly. Such a double-bang has not been observed so

far (Aartsen et al. 2016c).

Track-like events are more suited than cascades to

search for very localized (point-like), faint sources us-
ing high statistics and good angular resolution. Such

events originate primarily in neutrino charged-current

interactions of muon (anti)neutrinos with nucleons, but

also in similar interactions of tau neutrinos with the tau

lepton decaying to muons and neutrinos, or interactions
of electron antineutrinos with electrons by resonant s–

channel W− exchange (Glashow Resonance; Glashow

1960). The energy of a muon track is restricted to

the fraction of the track visible in the detector, limit-
ing the energy estimation to the deposited energy in the

detector or the muon energy upon entering the detec-

tor. Independent of the details of neutrino production,

the incident flux of astrophysical neutrinos at Earth

will consist of an approximately equally shared flavor
ratio for all neutrinos due to very long baseline neu-

trino oscillations (Athar et al. 2006). In the following,

only the component of tracks created in muon neutrino

interactions is taken into account as the signal of as-
trophysical neutrinos, likewise to Aartsen et al. (2014e)

and Adrian-Martinez et al. (2014). The impact of track

events originating from other neutrino interactions is

discussed in Section 3.5.

Construction of IceCube finished in December 2010
after 6 yr of deployment. During construction, partial

configurations of the detector were successfully taking

data, commonly indicated by ICXY , with XY denoting

the number of active strings. The first three years of
the event sample are in partial detector configurations

IC40, IC59, and IC79. The previously published analy-

sis (Aartsen et al. 2014e) included the first year of data-

taking with the completed detector IC86 and 3 yr in

partial configuration (Abbasi et al. 2011; Aartsen et al.
2013c). These samples focus on through-going track-

like events, yielding high statistics over broad energy

ranges. In the southern sky, an additional selection of

starting tracks, which has a greatly reduced background
rate, is performed access lower energies (Aartsen et al.

2016a). This uses completely independent events to the

ones selected in the aforementioned through-going track

channel.

Table 1. IceCube samples used in this analysis. For each sam-

ple, characteristic features are quoted, separated in the two halves

of the sky. Previously published results used four years of data:

IC40 (Abbasi et al. 2011), IC59+IC79 (Aartsen et al. 2013c), and

the first year of IC86 (Aartsen et al. 2014e). Data taken in the

seasons from 2012 to 2015 are added in this paper. The separation

in the two regions is done at a declination of δ = −5◦. In addi-

tion, starting tracks are used in a separate sample (Aartsen et al.

2016a) with two additional years of available data.

Sample Livetime atm. ν Up-going Down-going

(days) (day−1) events events

IC40 376 40 16323 20577

IC59 348 120 48105 58906

IC79 316 180 54823 38310

IC86 333 210 67938 68302

2012-2015 1058 220 235602 102983

Σ 2431 · · · 422791 289078

starting
tracks

1715 < 0.03 0 961

The details of all samples are listed in Tab. 1, includ-

ing the exposure time and sample size. In this work,
the detector livetime is increased by adding data from

June 2012 to June 2015 to the analysis, thus increasing

the livetime by 1058 days, to a total of 2431 days. The

sample of starting tracks (Aartsen et al. 2016a) has an
increased livetime of 2 yr to a total of 1715 days that

coincide with the five most recent years of the through-

going track event sample, starting with IC79.

In the following, the modeling of signal and back-

ground for both the through-going and starting track
samples is described. The event selection is briefly

discussed and the performance of the event sam-

ple highlighted. For more detailed information, re-

fer to Abbasi et al. (2011), Aartsen et al. (2013c), and
Aartsen et al. (2014e) for through-going muons and

Aartsen et al. (2016a) for starting tracks.

In this work, muon tracks induced by astrophysical

neutrino interactions are the main signal category in

the search for point-like sources of neutrinos. Detailed
Monte Carlo simulation is used to evaluate the response

of IceCube to such events and distinguish them from at-

mospheric backgrounds. The median angular resolution

∆Ψ and the event rate expectation

Ṅν =

∫

dΩ

∫ ∞

0

dE Aeff (E,Ω)× Fν (Eν ,Ω) (1)

given by the detector effective area Aeff and the incident
neutrino flux Fν can be derived from the simulation (for

more information about the details of the Monte Carlo
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Figure 1. IceCube effective area as defined in Eq. 1 ver-
sus neutrino energy for a flux of νµ + ν̄µ calculated using
simulation of neutrino events for the selection of IC86 (sea-
sons 2012-2015) described in Section 2.2. The effective area
for through-going muons is averaged over the solid angle in
the declination range (δ) indicated in the legend. Addition-
ally, the effective area for starting tracks in the southern sky
(δ < −5◦) is shown in black (cf. Section 2.3).

simulation used here, see Aartsen et al. (2016b)).

2.2. Through-going tracks

The main background regarding neutrino searches in
IceCube consists of atmospheric muons that are created

in extensive air showers and reach IceCube at a depth

of ∼ 2 km. Almost all events triggering the detector at

a rate of ∼ 2.8 kHz belong to this component. Similar

to Aartsen et al. (2014e), the selection is split into two
regions divided at the horizon (declination δ = −5◦) due

to different background characteristics, as explained in

the following.

In the northern sky (up-going region, δ ≥ −5◦), the
main background consists of atmospheric muon events

that are mis-reconstructed as up-going; truly up-going

muons can only originate from prior neutrino interac-

tions, since all other muons are shielded by the Earth.

Hence, the atmospheric muon background is rejected
by identifying poorly reconstructed events. In order to

achieve this, multivariate selection techniques (boosted

decision tree, BDT) are used to discriminate well-

reconstructed tracks from neutrino interactions against
mis-reconstructed background. The variables used in

the BDT are connected to the event quality and a clear

track-like topology. Similar to Aartsen et al. (2014e),

BDTs are trained for two signal energy spectra of E−2

and E−2.7 and the cut on the linear combination of BDT
scores is optimized to yield the best sensitivity and dis-

covery potential over a wide range of energies with the

final cut on BDT output. These spectra are chosen to

be sensitive to both hard energy spectra as well as soft
or cutoff spectra. A neutrino-dominated sample is ob-

tained in the northern sky. The remaining background

10−1 100 101 102 103 104 105 106

Eν [TeV]

0.0

0.5

1.0

1.5

2.0

∆
Ψ

[1
◦
]

Through-going µ
Starting µ

Kinematic angle

Figure 2. IceCube median angular resolution versus neu-
trino energy for νµ+ ν̄µ calculated from Monte Carlo simula-
tion for the IC86 sample described in Section 2.2. Through-
going tracks (solid black) are shown together with starting
tracks (dashed black; see Section 2.3). Moreover, the me-
dian kinematic angle of the secondary muon in CC neutrino
interactions is shown (dotted black line).

consists of atmospheric neutrinos produced in the north-

ern sky. These neutrinos are an irreducible background,

but follow a softer energy spectrum (∼ E−3.7–E−4.0 or

∼ E−2.7–E−3.0 for conventional or prompt neutrinos, re-
spectively) than the expected signal (∼ E−2 consistent

with diffuse muon neutrino signal at 250TeV and above;

see Aartsen et al. (2016b)). Figure 1 shows the effec-

tive area calculated using muon neutrino Monte Carlo

simulation of the final event sample for different decli-
nation regions. In the northern sky (red, blue), a low

energy threshold is achieved, while for near-vertically

up-going events absorption becomes an important ef-

fect above 100 TeV. Figure 2 shows the median angu-
lar resolution of the track reconstruction (solid) with

respect to the primary neutrino direction against neu-

trino energy. Above TeV energies, the kinematic angle

(dotted) of muon and parent neutrino becomes negli-

gible and the angular resolution is below 1◦. The en-
ergy resolution of the track’s energy proxy is ∼ 30% in

log10 E (Aartsen et al. 2014a). This is only a lower limit

on the energy of a muon that enters the detector from

outside and loses energy prior to detection, as well as on
energy of the primary neutrino that produced the muon

in an interaction with a nucleus. For more information

about the neutrino and muon energy estimation, refer

to Aartsen et al. (2015c, 2016b).

In the southern sky (down-going, δ < −5◦), the
picture changes because of large backgrounds of well-

reconstructed down-going atmospheric muons. More-

over, muons are produced at high multiplicity in cosmic-

ray showers, resulting in bundles of muons; such bundles
produce large amounts of light in the detector, thus im-

itating the signature of a single muon of much higher
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energy. Similar to the northern sky, BDTs are used to

select only the best-reconstructed events at the highest

energies. Following the development of Aartsen et al.

(2014e), in addition to event quality and track topol-
ogy parameters, four variables are used to further dis-

criminate atmospheric muon bundles from single muons.

These variables use the deposited energy along the track,

as well as the light-arrival time of photons at the DOMs.

The Cerenkov light yield for high-energy muons is dom-
inated by stochastic cascades from energy losses along

the track superimposed to the Cerenkov cone of the

muon track. Bundles of muons at lower energies show

less frequent losses by stochastic cascades. The re-
sult is a smoother light yield along the track. Fur-

thermore, muon bundles consist of a superposition of

many Cherenkov-cones, resulting in many photons ar-

riving earlier than under the assumption of one single

Cherenkov cone. For a signal-spectrum E−2, a BDT
is trained for final selection of events. The large back-

grounds require harsh cuts to reduce their rate signif-

icantly, resulting in an effective selection of only very

high energy events, as shown in Fig. 1 (yellow and pur-
ple). It is evident that the energy threshold in the down-

going region increases to ∼ 100 TeV and even further

for more vertically down-going events. The IceTop sur-

face array is used as an active veto against coincident

air-shower events for vertically down-going events. For
high energies, this vetoes 90% of the events for ver-

tically down-going events and less for inclined events,

with random coincidences in less than 0.1% of the cases

(Aartsen et al. 2013c); compare Fig. 3. The final event
rate in the southern sky is optimized to yield the best

sensitivity and discovery potential for an E−2 spectrum.

The distribution of the cosine zenith cos θ (equivalent

to the negative sine of declination − sin δ in equatorial

coordinates) is shown in Fig. 3. The event rate for ex-
perimental data of all 3 yr is compared to the expec-

tations of muon neutrinos and atmospheric mouns es-

timated from Monte Carlo simulation. In the northern

sky (θ > 85◦), the sample is dominated by atmospheric
neutrinos produced in the decays of kaons and pions in

cosmic-ray air showers (Honda et al. 2007) and is well

described by Monte Carlo simulation. In the southern

sky, the neutrino event rate reduces drastically due to

the higher energy threshold mentioned before. Instead,
atmospheric muons are the dominant component. As-

trophysical neutrinos with hard energy spectra (as, e.g.

shown with E−2) do not suffer a rate loss as severe as

for the soft energy spectrum of atmospheric neutrinos.
For very vertically down-going events, the IceTop sur-

face array vetoes atmospheric muon and neutrino events

because of their coincident air shower. In this region, the

observed event rate is kept constant with the rest of the

southern sky using looser cuts on the BDT score, which
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Figure 3. Zenith (cos θ) or declination (− sin δ) distribu-
tion of the through-going track sample after event selection
(2012–2015 data). Values of −1 correspond to vertically
up-going events. Shown is the experimental data (black),
compared to the atmospheric νµ + ν̄µ expectation of conven-
tional atmospheric (solid gray) and astrophysical neutrinos
(dashed gray), and atmospheric muons (dotted gray) from
Monte Carlo simulation. For simulated atmospheric muons,
the plot shows the distribution without the IceTop veto ap-
plied.

allows more neutrinos to be detected especially at the

lower energy end. Hence, the corresponding event rate

in Fig. 3 does not decrease above cos θ > 0.7.

2.3. Starting tracks

In the southern sky, the large background of atmo-

spheric muons reduces the efficiency to select through-
going tracks induced by neutrinos below the PeV regime.

A very large fraction of the aforementioned background

can be rejected by imposing an active veto at the de-

tector boundary, as, for example, used in Aartsen et al.
(2013a). This reduces the detector volume to a smaller

fraction of the instrumented volume sacrificing statis-

tics for signal purity. Furthermore, the more clearly

an event is identified as a starting track, the more

probable it is to be an astrophysical rather than at-
mospheric background. Down-going atmospheric neu-

trino events at high energy are likely to be accompa-

nied by muons produced in the same cosmic-ray shower

that triggers the veto and reduces the atmospheric neu-
trino background (Schönert et al. 2009; Gaisser et al.

2014). In analyses using veto techniques (Aartsen et al.

2013a, 2015b), the selection is usually more efficient

for cascade-like events than tracks, and high astrophys-

ical neutrino purity demands neglecting energies be-
low 60 TeV where backgrounds are more abundant. In

searches for point-like sources of astrophysical neutri-

nos, track-like events are of great importance given their

good angular resolution compared to cascade-like events.
Furthermore, the purity demands are lower since the

signal of a point-like source is restricted to a small por-
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Figure 4. Probability distribution of starting distance versus
energy proxy (logarithmic, in arbitrary units, a.u.) for both
atmospheric background (blue) and neutrinos (red) with E−2

spectrum. Different contours depict regions of 20% coverage
each. The gray shaded areas shows a region of no coverage
resulting from a cut in the selection of Aartsen et al. (2016a).

tion of the sky, hence reducing the background sig-

nificantly. Consequently, the minimum required total

charge deposited in the PMTs of the IceCube detec-

tor by an event is lowered to 1500 p.e. compared to
6000p.e. (Aartsen et al. 2013a), resulting in a higher sig-

nal efficiency at lower energies. In addition, only down-

going tracks are used, and cuts are imposed that se-

lect well-reconstructed track-like events (Aartsen et al.

2016a). For νµ + ν̄µ events at energies smaller than
200TeV, the effective area of the analysis is bigger than

for vertically through-going tracks (δ < −30◦; Fig. 1).

For energies up to 1 PeV, the effective area is smaller,

but a higher purity is achieved. The angular resolution
for starting tracks is shown in Fig. 2 (dashed) and is

∼ 1◦ in the interesting energy region; the reconstruction

is worse than for through-going events (solid), due to a

smaller lever arm for tracks starting within the fiducial

volume of the detector.
In 5 yr, 961 events were recorded in the southern sky

starting track sample. The overlap of events in the

starting track sample and the through-going events is

very small, and overlapping events are removed from the
through-going sample because of its higher background

rate.

3. METHODS

In order to look for clustering in the sky, the analysis
uses an unbinned likelihood maximization, similar to the

previous analyses (Aartsen et al. 2014e). The unbinned

likelihood is defined as

L (nS , γ) =
∏

i

(nS

N
S (|xS − xi| , Ei; γ)

+
(

1− nS

N

)

B (sin δi, Ei)
)

(2)

using multiple observables that are introduced in the fol-

lowing. The signal hypothesis used in this work assumes

time-integrated emission of neutrinos. Hence, the signa-

ture reduces to spatial clustering modeled with a two

dimensional Gaussian exp
(

− |xS − xi|2 /2σ2
i

)

/
(

2πσ2
i

)

using the reconstruction uncertainty σi estimated on
an event-by-event basis (Neunhöffer 2006; Abbasi et al.

2011). The probability distribution function for the spa-

tial distribution of background is estimated using experi-

mental data and depends only on the event’s declination
δi, the probability in right ascension is distributed uni-

formly 1/2π. This yields PB (sin δi) /2π for the spatial

probability of background.

In addition, energy information is used to distin-

guish background with soft spectra (E−3.7) from sig-
nal with harder spectra of typically E−2. Hence, for

each event, probability distributions ES/B (Ei) for signal

and background are evaluated using the event’s energy

proxy Ei. For signal, an unbroken power-law with vari-
able index γ, dφ/dEν ∝ E−γ is used, the background

is estimated from experimental data. The estimation

is done declination-dependent, because of the energy-

dependence of the effective area (Figure 1). This yields

the final modeling of probabilities for signal and back-
ground

S =
1

2πσ2
i

e
−

|xS−xi|
2

2σ2
i × ES (Ei, sin δi; γ)

B =
PB (sin δi)

2π
× EB (Ei, sin δi)

(3)

entering the unbinned likelihood calculation in Eq. 2.
Two parameters are fit in the likelihood, the number

of source events nS ≥ 0 and the source spectral index

γ ∈ [1, 4].

In contrast to through-going tracks (Section 2.2), no

declination dependence of the energy distribution is ob-
served for starting tracks (Section 2.3). This is due to

two reasons: the sample only uses down-going events so

Earth absorption does not occur, and a uniform charge

threshold over all declinations is applied, yielding a uni-
form effective area (Aartsen et al. 2016a). Meanwhile,

starting tracks carry more information than direction

and energy; for starting tracks, the vertex of a neutrino

interaction can be reconstructed from the first visible

light. A background of atmospheric muons can sneak
past the veto by not emitting enough light prior to

detection. Nevertheless, the higher the energy of the

reconstructed track gets, the more likely it is for the

vertex to be reconstructed close to the detector bound-
ary due to constant light emission along the track, as

shown in Fig. 4. A clear anti-correlation of event en-
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Figure 5. Discovery potential (5σ) for this analysis in dif-
ferent bins of neutrino energy Eν with half-decade width.
Within this energy range, an E−2

ν spectrum is used. Three
different declinations are shown: Up-going (red, δ = 60◦),
horizontal (blue, δ = 0◦), and down-going (yellow, δ = −60◦)
events. For down-going events, the dashed line shows the
discovery potential not using the starting track sample de-
scribed in Section 2.3.

ergy and starting distance2 is observed for background
events (blue). Truly starting signal neutrinos (red) do

not show this correlation because the entering neutrino

does not emit light. Consequently, the starting distance

di can be used in addition to the event energy, to dis-
entangle signal and background, modifying the energy

likelihood E (Ei) → E (Ei, di), resulting in an additional

discrimination power at lower energies.

As in the previous analysis (Aartsen et al. 2014e), the

different samples listed in Tab. 1 consist of different de-
tector configurations including partial detector config-

urations, plus samples using only starting tracks. The

total likelihood of all combined samples is the product of

all individual likelihoods, or the sum of the logarithms,

logL (nS , γ) =
∑

j logL
(

nj
S , γ

)

for all samples j. In

the scenario of steady emission, the total number of sig-
nal events nS is split proportionally among the samples

given their exposure time and expected signal statistics

derived from the effective area (Figure 1 and Eq. 1) and

the value of the spectral index fitting parameter γ:

nj
S = nS ×

∞
∫

0

dE Aj
eff (E, sin δ) E−γ

∑

i

∞
∫

0

dE Ai
eff (E, sin δ) E−γ

(4)

Thus, the unbinned likelihood in Eq. 2 is maximized

using two parameters only for all samples, that is the

number of signal-like events nS and the spectral in-

2 Distance along the track pointed back from the reconstructed
vertex to the entry point in the detector, see Aartsen et al. (2016a)
for more information.

dex γ. The null hypothesis is the observation of no

signal-like events nS = 0 and defines the test statistic

of best-fitting hypothesis (n̂S , γ̂) over null hypothesis,

T S = 2 log (L (n̂S , γ̂) /L (nS = 0)). In the maximiza-
tion of the test statistic, only over-fluctuations nS ≥ 0

are taken into account; negative nS are not part of the

physics scenario of neutrino sources (Braun et al. 2008)

and not considered here. Thus, the test-statistic of the

null hypothesis is expected to split in two fractions, one
bound at nS = 0 and over-fluctuations nS > 0. The

latter are distributed according to χ2
ndof

-statistics with

ndof ∼ 1.5, less than the number of free parameters (2).

This is due to nS and γ being partly degenerate; more-
over γ is only defined for nS > 0 as can be seen in

Eq. 2. The fraction η of over-fluctuations ranges from

50% to 30% in the northern and southern sky, respec-

tively. From the estimation of the test statistic distribu-

tion, the p-value p = η ×
∫∞

T S dX χ2 (X |ndof ) of an ob-
servation being consistent with background can be cal-

culated. The p-value will mostly be quoted as − log10 p

in the following.

3.1. Neutrino point source sensitivity

Figure 5 shows the 5σ discovery-potential of the un-

binned likelihood analysis versus neutrino energy for

point sources at various declinations.3 A νµ + ν̄µ neu-

trino signal with half-decade width is used for signal in-
jection, using an E−2 spectrum within the energy range

indicated by the step function. The discovery potential

shows a strong variation with declination. In the up-

going region (δ ≥ −5◦), atmospheric muon background
is efficiently removed and a large effective area with good

angular resolution is achieved above TeV energies, com-

pare Fig. 1 and Fig. 2. This yields a discovery poten-

tial reaching from TeV to EeV energies at the horizon

(δ = 0◦, blue). For vertically up-going events (δ = 60◦,
red), neutrinos at energies above 100 TeV begin to be

absorbed in the Earth, hence reducing the discovery po-

tential compared to the horizon.

In the down-going region (southern sky, δ < −5◦),
large backgrounds of atmospheric muons result in a

higher energy threshold of ∼ 100 TeV. Moreover, muon

bundles imitate single muons at very high energies re-

sulting in a high energy background. This diminishes

the performance compared to the northern sky. At
δ = −60◦ (yellow), the discovery potential is most ef-

fective above energies of 100 TeV; in fact, in between

100 TeV and PeV energies, starting tracks described

in Section 2.3 dominate the sensitivity compared with

3 The discovery potential is defined as a false-positive rate of
5σ or 2.87 × 10−7 with false-negative of 50%. The sensitivity is
defined as a false-positive rate of 50% with false-negative of 10%.
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through-going muons (Section 2.2). Even though the

effective area is of the same order in this energy regime,

starting tracks have significantly less background and

thus a ∼ 170× higher purity (0.09 d−1 sr−1 background
events for starting tracks compared to 15.5 d−1 sr−1 for

through-going tracks). Including starting tracks gives

a factor of ∼ 8 improvement in discovery potential at

100 TeV compared to only using through-going events

(dashed yellow in Fig. 5). In the southern sky, simi-
lar searches of Adrian-Martinez et al. (2014) test much

lower energies, resulting in complementary results com-

bined in Adrian-Martinez et al. (2015).

3.2. Full-sky search

To find the most significant clustering in the sky, the

unbinned likelihood maximization is performed on the

entire sky. This is done iteratively using a grid with

isotropically spaced points (Gorski et al. 2005) finer
than the typical event reconstruction uncertainty that

enters the likelihood description in Eq. 3.

Thus, for any point in the sky, the best fitting n̂S ,

γ̂ and the test statistic T S are obtained. The direc-

tion with the smallest p-value defines a hot-spot show-
ing the biggest deviation from background expectation.

This is done for northern and southern sky separately,

as they differ in atmospheric backgrounds and energy

reach. Thus, two positions in the sky will be reported in
the full-sky scan. The significance is trial corrected ac-

counting for the chance of background fluctuations ocur-

ring at any position in the sky. The probability to ob-

serve no pre-trial log10 p that is smaller than the one at

the hot-spot for N independent trials is given by

dP = N (1− p)N−1 dp . (5)

For both northern and southern sky, the effective num-

ber of independent trials N in the sky is fitted to

∼ 190, 000 by repeating the analysis on scrambled data

maps. Regions close to the poles (5◦) are excluded from
the scan because no large off-source regions are available

for scrambling. Accounting for the trial factor a pre-trial

significance of 5.67σ (p-value 7.13× 10−9) is needed for

a hot-spot to be detected at 3σ significance in the scan

of the full sky.

3.3. Hotspot population analysis

The large trial factor of the full-sky scan requires very

strong sources that overcome the trial factor. Thus, in

addition to looking at only the most significant spot in
the sky, the entire sky can be tested for an accumula-

tion of multiple spots at intermediate significance that

exceeds the number expected by background.

From the scan of the full sky, the positions of all
the local maxima exceeding − log10 p ≥ 3 are se-

lected. The number of spots observed above a thresh-

old of − log10 pmin is compared to background expec-

tation from repeating the analysis on scrambled data

maps. The threshold value is optimized to give the

most significant excess over mean background expecta-
tion λ (− log10 pmin) with Poisson statistics. The p-value

of the observation of at least n spots, given this expec-

tation, is

P = e−λ
∞
∑

m=n

λm

m!
(6)

and defines the test statistic of this test. Due to the op-

timization of the threshold − log10 pmin to minimize P ,

the final result is trial corrected using scrambled exper-
imental data. This is done separately for northern and

southern sky. In addition, parts of the sky coinciding

with the Galactic plane ±15◦ are analyzed as well for a

Galactic contribution.

3.4. Source list searches

In addition to the previously explained searches that

did not make any prior assumptions regarding direc-

tions in the sky, sources of high-energy γ-rays can be
used to search for neutrino emission. Thus, the trial

factor of the unbiased full-sky scan can be effectively

reduced by probing 74 promising sources selected a-

priori. The sources are collected in two lists as used
in Aartsen et al. (2014e) and Adrian-Martinez et al.

(2014); Aartsen et al. (2016a), respectively. The first

one (44 sources) probes mainly the northern sky (34

candidates) and the largest fraction of sources are extra-

galactic objects. The list can be found in Tab. 2. The
second list (Table 3) of 30 candidates focuses on the

southern sky, especially Galactic sources.

The most significant source in each list will be trial

corrected given the number of sources. For the first list,
this procedure will be done separately for northern and

southern sky. Hence, three post-trial p-values are re-

ported.

3.5. Systematic uncertainties

All analyses described in the previous sections are

robust against systematic uncertainties. Background

is estimated using experimental data that is scram-
bled in right ascension and does not require dedicated

Monte Carlo simulation. For the calculation of neutrino

fluxes however, Monte Carlo simulation is needed to in-

sert neutrino sources into background maps. The re-

sulting neutrino fluxes are affected by systematic un-
certainties. Especially, the evaluation of the effective

area and reconstruction performance is affected by sys-

tematic effects in Monte Carlo, and thus the sensi-

tivity to neutrino fluxes (Equation 1). Main system-
atic uncertainties include the optical properties (scat-

tering, absorption) of the South Pole ice (Aartsen et al.
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2013b), the optical efficiency of Cherenkov light pro-

duction yield and detection in the DOMs (Abbasi et al.

2010), and different photo-nuclear interaction mod-

els (Bugaev & Shlepin 2003a,b; Abramowicz et al. 1991;
Abramowicz & Levy 1997). All systematic effects are

propagated through the entire likelihood analysis de-

scribed in Section 3 to obtain the uncertainties on the

fluxes using dφ/dEν ∝ E−2 spectra. The biggest impact

on the fluxes comes from varying the optical efficiency by
±10%, resulting in a flux uncertainty of 7.5%. Increas-

ing the absorption or scattering of photons in ice by 10%

affects the flux by 5.6%. Uncertainties in the photo-

nuclear cross-sections (Bugaev & Shlepin 2003a,b) re-
sult in an flux uncertainty of similar size with 5.9%.

Adding these values in quadrature yields a total sys-

tematic uncertainty of 11% on νµ + ν̄µ fluxes quoted in

the following.

For all locations tested, only the maximal likelihood
values of n̂S and γ̂ are reported. Because of small event

statistics at the position of the likelihood maximization

and limited energy resolution of the neutrino energy

(compare Section 2.2), uncertainties on the spectral in-
dex are of the order ±1 and reduce to ±0.5 for values of

nS of ∼ 15 and ∼ 50, respectively (Braun et al. 2008).

Hence, the impact of systematic uncertainties in the en-

ergy reconstruction is small compared to the statistical

limitations.
Albeit not a systematic uncertainty per se, so far

only fluxes of νµ + ν̄µ were considered. This is a con-

servative estimate, because track-like events can also

originate in other cases that are discussed in the fol-
lowing. Firstly, tau-leptons created in charged-current

ντ + ν̄τ interactions decay into muons with 17% branch-

ing ratio (Jeong & Reno 2010; Olive et al. 2014), re-

sulting in a muon track with lower energy due to the

three-body decay τ → µνµντ . This decay is impor-
tant for up-going events, because secondary neutrinos

are produced in τ -neutrino regeneration during prop-

agation. Secondly, interactions of ν̄e + e− → W− at

the Glashow-resonance (Glashow 1960) at 6.3 PeV pro-
duce tracks (ν̄e + e− → ν̄µ + µ−) at 10.6% branching

ratio (Olive et al. 2014). Lastly, at the highest ener-

gies above PeV, τ -neutrino induced double bangs are

well-reconstructable and further increase the number of

τ -flavored events in the sample. Accounting for these
fluxes assuming an equal flavor ratio at Earth reduces

the per-flavor flux necessary for detection by 5% assum-

ing an unbroken E−2 spectrum. For harder spectra, the

sensitivity gain due to regeneration effects in the north-
ern sky becomes stronger. For example, a spectrum of

dφ/dEν ∝ E−1 has an 30% improved sensitivity com-

pared to only considering muon neutrinos. This greatly

increases the sensitivity with respect to models that pre-

dict very hard neutrino energy spectra peaking above
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Figure 6. All-sky result of the unbinned likelihood maxi-
mization shown in equatorial coordinates (J2000). Shown is
the negative logarithm of the pre-trial p-value, − log10 p, as-
suming no clustering as null-hypothesis. The Galactic Plane
is shown as black line.

PeV energies (Petropoulou et al. 2015; Reimer 2015).

4. RESULTS AND IMPLICATIONS

In the unbinned likelihood analysis using seven years
of IceCube livetime, no significant excess of astrophys-

ical neutrino sources was found. In the following, the

results of the three tests introduced in the previous sec-

tions are discussed and 90% upper-limits on neutrino
source fluxes are calculated. Finally, implications with

respect to neutrino models of γ-ray sources and the ob-

served diffuse neutrino flux are presented.

4.1. All sky scan

Figure 6 depicts the pre-trial p-value − log10 p of all

points in the sky in equatorial coordinates (J2000) with
respect to the null-hypothesis of no observed clustering.

In the northern sky, the most significant position was

at α = 32.2◦, δ = 62.1◦ at an accuracy of 0.35◦ (0.5◦)

for 1σ (90%) contours using Wilks’ theorem with two

degrees of freedom. The best fit parameters at the lo-
cation are n̂S = 32.6 and γ̂ = 2.8, yielding a pre-trial

p-value of 1.82 × 10−6. Looking at each of the com-

bined seasons individually reveals that for each season

clustering is observed, providing no indication of time-
dependence that could suggest additional evidence for

an astrophysical origin.

In the southern sky, the most significant point is at

α = 174.6◦, δ = −39.3◦. The best fit point is at n̂S =

15.4, with spectral index γ̂ = 2.9. The uncertainty of
the location amounts to 0.22◦ (0.32◦) for 1σ (90%). The

pre-trial p-value is 0.93× 10−6; most of the significance

at this location is shared by the newly added data of

through-going and starting tracks. Indeed, one starting
track is within 0.9◦ distance to the location which is

wihtin 1σ of its reconstruction uncertainty.
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Figure 7. Trial correction of the most significant spots in the
sky that were observed in the seven year search. Solid verti-
cal lines indicate the pre-trial p-value of the most significant
spots in each half of the sky; crosses show the distribution
of spots similarly obtained in scrambled data trials. The tri-
als are modeled by an analytic parameterization of the trial
correction (Equation 5, black dashed line) that corresponds
to 1.9× 105 independent trials per half of the sky.

Due to the large number of tested locations in the sky,

the two most significant locations in the sky have to be

trial corrected with the trial correction in Eq. 5 that
is estimated by repeating the full-sky scan on scram-

bled data trials, as shown in Fig. 7. This yields post-

trial p-values of 29%, 17% for northern and southern

sky, respectively. Hence, the full-sky results are in

agreement with a pure background assumption, and
no significant clustering is observed. For an unbro-

ken E−2 power-law spectrum, the 90% upper-limits of

the two most significant positions are E2
νdφ/dEν =

4.49 × 10−12 TeV cm−2 s−1 in the northern sky, and
E2

νdφ/dEν = 2.92 × 10−11 TeV cm−2 s−1 in the south-

ern sky. For softer spectra of E−3, the 90% upper-

limits yield E3dφ/dEν = 5.08 × 10−11 TeV2 cm−2 s−1

and E3dφ/dEν = 1.29 × 10−8 TeV2 cm−2 s−1 for the

northern and southern spot, respectively. In Fig. 8, the
solid blue line indicates the 90% upper-limit established

by the hottest spot results. A neutrino source at any

declination δ that would emit a steady flux higher than

this curve, would be detected 90% of the time as having
a greater significance than that actually observed for the

hottest spots found in the analysis (whose 90% upper-

limits are highlighted as stars on the blue line).

Besides the results of the full-sky scan, there are two

neutrino events detected with IceCube that are worth
commenting on here. The first one is the highest en-

ergetic neutrino event detected (4.5 ± 1.2 PeV) so far

with IceCube (Schoenen & Rädel 2015; Aartsen et al.

2016b), a neutrino-induced up-going muon track with
very precise angular resolution. This neutrino event is

part of the through-going track sample (Section 2.2). At
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Figure 8. Discovery potential (5σ, solid red) and sensitiv-
ity (dashed red) for a νµ + ν̄µ unbroken E2

νdφ/dEν flux
shown against declination δ. The gray line shows the re-
sults of (Adrian-Martinez et al. 2014) in the south. Upper
limits of source candidates in Tab. 2 and Tab. 3 are depicted
by red crosses. The blue line represents the upper limit for
the observed most significant spots in each half of the sky for
all declinations, the actual declination position of the spots
is indicated by a star.

its position (α = 110◦, δ = 11.5◦), no significant cluster-

ing is observed (pre-trial 5.2%). A slight excess is indeed
observed, but originates from the PeV event alone. The

second interesting event is a straight down-going start-

ing track at 430 TeV deposited energy (Aartsen et al.

2015f). Not only does it start inside of the IceCube de-

tector, but the reconstructed track points back to the
IceTop surface detector and no atmospheric shower is

observed in coincidence with the event. This event is

part of the starting track sample (Section 2.3), but no

clustering of events apart from the track itself is ob-
served at the location in the sky (α = 218◦, δ = −86◦)

and the pre-trial p-value is 0.6%.

4.2. Hotspot population

The search for populations of weak sources in the
full-sky in Fig. 6 did not reveal any significant outcome

above background expectation. In Fig. 9, the number

of spots versus pre-trial p-value − log10 pmin threshold is

shown for northern (left) and southern sky (right). The
observed number of spots is shown versus background

expectation with shaded areas indicating 1σ, 2σ, and

3σ intervals. This is then converted to a local p-value P
according to Eq. 6.

In the northern sky, the most significant excess is ob-
served above a threshold of − log10 pmin ≥ 3.35 with

72 spots above a scrambled data expectation of 56.7.

The local p-value of such an excess is P = 2.8% and

increases to 25% after trial correction. For the south-
ern sky, 7 spots above an expectation of 2.1 spots at

− log10 pmin ≥ 4.66 are reported. The probability of this



12 M. G. Aartsen et al.

100

101

102

#
P
o
in
ts

North

3σ
2σ
1σ

Data Expectation

3.0 3.5 4.0 4.5 5.0 5.5
− log10 pmin

10−3

10−2

10−1

100

P 2σ

100

101

102

#
P
o
in
ts

South

3σ
2σ
1σ

Data Expectation

3.0 3.5 4.0 4.5 5.0 5.5
− log10 pmin

10−3

10−2

10−1

100

P 2σ

Figure 9. Number of associated spots observed with a minimum pre-trial p-value of − log10 pmin of the unbinned likelihood fit
in the northern (left) and southern sky (right), respectively. The top plots show the number of spots (solid black) in comparison
to background expectation (dashed black) with confidence intervals of one, two, and three standard deviations shown as shaded
blue areas. The points on the far right end of the x-axis correspond to the hottest spots observed in the northern and southern
sky. The bottom plots show the local p-value P (Equation 6) of observing X events given the background mean expectation of
Y using Poissonian statistics.
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Figure 10. Discovery potential (5σ, solid thin line), sensitivity (dashed line), and 90% upper-limit (solid thick line) for an
unbroken E−2 spectrum in the population analysis for northern (left) and southern (right) sky, respectively. The flux is shown
per source for increasing number of sources distributed uniformly on half of the sky. The black dashed line shows the IceCube-
measured astrophysical neutrino flux per source if it was distributed homogeneously among NSources sources in this half of the
sky.

happening by fluctuations of background is 0.62%. Af-
ter correcting this for trials by scanning in − log10 pmin

for the biggest excess, the p-value increases to 8.2%.

Restricting the analysis only to regions within ±15◦

of the Galactic Plane the biggest excess is observed
at − log10 pmin ≥ 5.68, corresponding to a single spot,

which is also the same spot that was most significant in

the northern hemisphere full sky scan. The background

expectation is 0.04 giving a local p-value of 3.8% that

increases to 26% after trial correction.
Consequently, in both hemispheres and the Galactic

Plane, no significant population of sources over back-

ground expectation was found. Fig. 10 shows the sensi-

tivity, 5σ discovery potential, and 90% upper-limit for
northern (left) and southern sky (right). This is shown

against an increasing number of sources, where each

source is assumed to be of equal luminosity with an

unbroken E−2 spectrum. The flux value is averaged
over all declinations of the corresponding half of the

sky. By comparing this to a scenario where all of the ob-

served diffuse astrophysical neutrino flux (Aartsen et al.

2014c) E2
νdφ/dEν ∼ 10−11 TeV cm−2 s−1 sr−1 is shared

equally among NSources in the sky, in the northern sky,

the analysis result excludes populations of 1000 or fewer

equal-strength sources, whereas in the south, the result

only excludes populations of 40 or fewer equal-strength

sources of the astrophysical flux.

4.3. Source list candidates

In Tab. 2 and Tab. 3, the fit results of the two source

lists are quoted. For each source, the fit parameters n̂S

and γ̂ are quoted. Furthermore, the pre-trial p-value

and the mean number of background events B1◦ within
a one-degree circle around the source is listed. For each

source, 90% upper-limits are calculated using an unbro-
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ken E−2 spectrum. The upper-limits are shown as red

crosses in Fig. 8 at the corresponding declination of the

source.

In the first source list, the sources most significant
are the blazar 1ES 1959+650 and flat spectrum ra-

dio quasar PKS 1406-076 in the northern, southern

sky, respectively. At the position of 1ES 1959+650

the pre-trial p-value is 1.8% with best fit-parameters

n̂S = 15.4 and γ̂ = 3.1. The resulting 90% upper-limit
for an unbroken E−2 νµ + ν̄µ flux of the observed p-

value at declination δ = 65.15◦ of 1ES 1959+650 yields

E2
νdφ/dEν = 2.36×10−12TeV cm−2 s−1. For PKS 1406-

076 at δ = −7.87◦, the pre-trial p-value of 5.3% with
n̂S = 7.3 and γ̂ = 2.6 results in an 90% upper-limit of

E2
νdφ/dEν = 1.65× 10−12 TeV cm−2 s−1. For trial cor-

rection, the source list is split in a northern and southern

part, with the division at δ = −5◦. The size of the source

lists is then 34 (10) and yields a trial corrected p-value of
54% (37%) for the northern sky (southern sky). Hence,

the results of the first source list are in agreement with

background expectation.

In the second source list, the most significant source is
HESS J1616-508. The fit values n̂S = 2.4 and γ̂ = 4.0 re-

sult in a pre-trial p-value of 0.22%. The 90% upper-limit

is E2
νdφ/dEν = 1.94 × 10−11 TeV cm−2 s−1. Trial cor-

rection with all 30 sources of the list yields a post-trial

p-value of 9.3%. Most of the significance at the position
of HESS J1616-508 comes from one starting track only

0.34◦ away, while no significant clustering of high-energy

events is observed in the through-going event samples.

Starting tracks access lower energies in the southern sky
(cf. Fig. 1, Fig. 5). As explained in Eq. 4, the number

of source-like neutrinos nS is distributed among the dif-

ferent samples according to their signal expectation for a

spectral index γ. Consequently, if the clustering is only

observed in starting tracks, soft spectral indices at the
boundary γ̂ = 4 are preferred as they give more weight

to the starting track sample that is most efficient for soft

spectra compared to through-going track samples in the

southern sky.
In conclusion, both of the two source lists show no

significant evidence for clustering of astrophysical neu-

trinos, and all results are consistent with background.

4.4. Multi-wavelength model constraints

Above, upper limits on neutrino emission from sources

were made using unbroken dφ/dEν ∝ E−2 fluxes as

benchmark. However, more specific estimates for neu-
trino fluxes can be made using multi-wavelength data of

γ-ray sources. In decays of pions, both γ-rays as well as

neutrinos are produced (Anchordoqui et al. 2014). Due

to long-baseline oscillations, any flavor composition at
the source will result in a sizable fraction of muon neu-

trinos at Earth (Athar et al. 2006). Due to no significant
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Figure 11. Differential νµ + ν̄µ energy spectra versus neu-
trino energy for the Crab nebula. The figure shows the con-
version of the observed gamma-ray flux of the Crab nebula
to neutrinos (Kappes et al. 2007) (blue), and a simulation
of inelastic p-p scattering at the source (Amato et al. 2003)
(red). Thick lines correspond to the 90% upper-limit of this
search, thin lines are represent the model. The sensitivity of
this analysis is shown as dashed line. 90% upper-limit and
sensitivity are shown for the energy interval, where 90% of
the events originate that are most signal-like, cf. Fig. 5.

observation of clustering, upper-limits on specific mod-

els are set by injecting signal events at the correspond-

ing source declination according to the energy spectrum
E2

νdφ/dEν given by the model.

The first source considered is the Crab Nebula, a pul-

sar wind nebula, and the strongest steady TeV γ-ray

source in the sky. At a declination of δ = 22◦, it is in the
region where IceCube covers a wide range of energies effi-

ciently, compare Fig. 5. Two scenarios of neutrino emis-

sion from this source are considered. Figure 11 shows

the neutrino emission (thin line) with respect to the

90% upper-limit (thick line) of IceCube. At the position
of the Crab Nebula, an over-fluctuation with p-value

34% is observed which results in an upper-limit higher

than IceCube’s potential sensitivity (dashed). By convo-

luting the differential discovery potential (Figure 5) at
the source position and the model neutrino spectrum,

the energy-region, where 90% of the constraining power

of IceCube originates, for a specific model is calculated.

This is indicated by the energy region where the lim-

its and sensitivities are drawn in Fig. 11 for each of the
following models.

Regarding the Crab Nebula, the first model taken into

account (red in Fig. 11) is by Amato et al. (2003) and

uses inelastic p-p scattering at the source to model the
neutrino emission where 60% of the wind luminosity Ltot

is carried by protons. The model shown is for a Lorentz

factor of the wind of Γ = 107 where the energy density

peaks at the ∼ 500TeV and assumes a target density of

nt = 10µ
(

MN⊙/R
3
pc

)

cm−3 (7)

with µ = 20 (shown in Fig. 11) as defined in Eq. 9 in
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solid lines, respectively) for the proton wind luminosity
Lp and target density in Eq. 7 of the Crab Nebula in
Amato et al. (2003) for different Lorentz factors Γ. Values of
µ = 20 and µ = 5 (Lp = 60%Ltot) are indicated as horizon-
tal lines that correspond to upper limits of the target density
and a uniform mass distribution in the nebula, respectively.
The dotted line indicates upper-limits from gamma-ray ob-
servations compared to π0 → γγ decays (Amato et al. 2003;
de Jager et al. 1996; Aharonian et al. 2000).

Amato et al. (2003). MN⊙ and Rpc are the mass of

the supernova ejecta contained in filamentary structures
within the nebula and its radius, respectively. With

the increased statistics compared to the previous analy-

sis (Aartsen et al. 2014e), the 90% upper-limit now sur-

passes the prediction of µ = 20, hence, constraining the

target density µ90% < 12. Upper limits on µ and the
proton wind luminosity Lp in units of the total wind

luminosity Ltot for lower values of the Lorentz wind Γ

are shown in Fig. 12. Lower values of Γ shift the neu-

trino energy spectrum to lower energies into the TeV
region where IceCube is most sensitive in the Northern

hemisphere. Hence, target densities µ < 20 as men-

tioned in Atoyan & Aharonian (1996) are partially con-

strained by IceCube for a proton luminosity fraction of

60%. For Γ = 105, the sensitivity is at the level of
µ = 5 corresponding to a uniform mass distribution in

the nebula as pointed out by Amato et al. (2003). For

Lorentz wind factors Γ < 106, the strongest constraint

on the proton luminosity is given by gamma-ray obser-
vations via neutral pion decay π0 → γγ (Amato et al.

2003; de Jager et al. 1996; Aharonian et al. 2000). For

Γ ≥ 106, neutrino observations give additional infor-

mation and large values of Γ = 107 are exclusively

observable by neutrinos due to the high energy spec-
trum. Di Palma et al. (2016) revise the predictions for

PWNe given new TeV γ-ray observations (Aliu et al.

2008, 2013), predicting ∼ 13.09 neutrino events from

the Crab nebula per year in the energy range from 1 to
100 TeV. IceCube’s 90% upper-limit at the position of

the Crab nebula (see Tab. 2) constrains the number of
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Figure 13. Same as Fig. 11 for blazars of type BL Lac mod-
eled in Petropoulou et al. (2015).

neutrinos from the source to not more than 7.0 or 21.2

for an unbroken spectrum of E−2 and E−3 respectively

from a total of seven years of data-taking. This is much

lower than the predicted number of neutrino events dur-
ing the same time range.

The second neutrino spectrum tested for the Crab

Nebula is the one by (Kappes et al. 2007) (blue).

The neutrino spectrum is connected to γ-rays assum-

ing that both spectra originate from the same pion-
component. Thus, the resulting neutrino spectrum is

fitted to an exponentially cut-off power-law dφ/dEν ∝
E−2.15 exp

(

−
√

Eν/1.72 TeV
)

. Due to the observed

over-fluctuation at the position of the Crab Nebula, the
90% upper-limit regarding this model exceeds the bench-

mark model of 100% pion contribution by a factor of 1.18

and is thus not constraining the amount of hadronic

acceleration. Nevertheless, IceCube’s sensitivity (blue
dashed line in Fig. 11) is 15% below the model. Hence,

with seven years exposure, IceCube is now also sensitive

to neutrino fluxes comparable to that of the Crab neb-

ula in gamma-rays, i.e. bright but falling off at relatively

low energies of a few TeV.
Another promising category of neutrino emit-

ters are active galactic nuclei (AGN), especially

blazars of type BL Lac, as for example highlighted

in (Padovani & Resconi 2014). In Glüsenkamp (2015),
an analysis of IceCube neutrino events searched for cor-

relations with blazars detected by Fermi-LAT to probe

their possible connection to the observed diffuse astro-

physical neutrino signal. It was found that such AGN

cannot be the dominant contribution to the diffuse neu-
trino flux over the entire probed energy range, but

BL Lacs could possibly explain the high-energy part of

the flux (Padovani et al. 2015). In Petropoulou et al.

(2015), BL Lacs that were found to be in spatial and
energetic agreement with IceCube high-energy start-

ing events were modeled using lepto-hadronic fitting
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Figure 14. Same as Fig. 11 for blazars modeled in Reimer
(2015).

of multi-wavelength data. Of the six modeled blazars,

three are far from being constrained by IceCube due

to neutrino absorption in the Earth (1ES 1011+496) or

large atmospheric background deep in the southern sky

(H2356-309, 1RXS J05435-5532). Figure 13 shows the
expected neutrino energy spectra for the three remain-

ing BL Lacs. The 90% upper-limit for 1H1914-194, also

in the southern sky, is a factor 3.9 above the prediction.

For PG1553+113, the contribution of proton-pion inter-
actions in the model is small (total neutrino flux relative

to TeV γ-ray flux Yνγ = 0.1, Eq. 13 in Petropoulou et al.

(2015)) resulting in a lower neutrino luminosity and a

90% upper-limit of a factor of three above the predic-

tion.
The third model source considered here is Mrk 421

(blue) and shows a different picture. Mrk 421 is one

of the closest blazars with redshift z ∼ 0.03 and

with δ = 38.2◦, it is located in the up-going re-
gion where IceCube is most sensitive. Moreover, in

Petropoulou et al. (2015), the multi-wavelength data

observed can be explained with a very high hadronic

component (Yνγ = 0.7), thus, realizing a high neutrino

luminosity. For such a model, the 90% upper-limit ob-
tained by IceCube is 2/3 of the predicted neutrino flux.

Hence, using the results at the position of Mrk 421, the

hadronic acceleration cannot be bigger than Yνγ ≤ 0.47

assuming a steady emission over the seven years of ana-
lyzed data, and thus constrains proton luminosity of the

source for steady emission or emission taking into ac-

count variability of the source (Petropoulou et al. 2015,

2016).

Other models for active galactic nuclei of type flat
spectrum radio quasar or BL Lac were modeled in

Reimer (2015). In Fig. 14, 90% upper-limits for 3C273

(red), 3C279 (blue), and 3C454.3 (yellow) are shown.

The models in this reference are very characteristic due
to their hard spectra extending beyond 10 PeV before

cutting off. Hence, IceCube cannot constrain the predic-
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Figure 15. Time evolution in discovery potential (5σ) with
increasing detector exposure. Different declinations are
shown in different colors. The current status of this anal-
ysis corresponds to seven years or the year 2015 (indicated
by vertical black line). Dashed lines indicate the sensitivity

growth assuming a dependence with 1/
√
T , dotted with 1/T .

tion for FSRQ 3C454.3 (δ = 16.1◦) because most of the

flux is absorbed in the Earth and the 90% upper-limit is

a factor of five higher than the prediction. The two other

FSRQ on the other hand are close to the horizon where
no absorption is present. Therefore, the 90% upper-limit

placed by IceCube is lower than the prediction, that is,

13% and 40% for 3C273 and 3C279, respectively. Simi-

lar to Mrk 421 in the previous paragraph, assuming that

the emission is constant over the livetime of IceCube,
this results constrains the amount of hadronic acceler-

ation possible due to a non-observation of neutrinos by

IceCube with respect to the model prediction. The other

AGN modeled in Reimer (2015) are in the northern sky
and due to absorption, the 90% upper-limit by IceCube

is at least a factor of 60 above the predicition.

Other models that were tested include galactic source

like supernovae remnants (Mandelartz & Becker Tjus

2015) and unidentified TeV sources in the
galaxy (Fox et al. 2013) that are mainly in the

southern sky which coincides with most of the

Galactic Plane. There, IceCube has to cope with

large atmospheric muon backgrounds and has re-
duced sensitivity with high energy-thresholds, com-

pare Fig. 5 and Fig. 8. Consequently, the current

90% upper-limits are at least a factor of five (G40.5-05,

Mandelartz & Becker Tjus (2015)) up to more than

a hundred (Vela X, Kappes et al. (2007)) above the
prediction. At these energies in the southern sky region,

neutrino telescopes located in the northern hemisphere

can place stronger constraints (Adrian-Martinez et al.

2015; Trovato 2016).

5. CONCLUSIONS

Analyzing the full sky for clustering of astrophysical

neutrinos using seven years of through-going muon data
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from 2008 to 2015 and five years of starting tracks (2010-

2015), we did not find any significant steady point-like

emission over background expectation.

An unbiased scan of the full-sky was performed, as
well as dedicated searches using promising γ-ray can-

didates and searches for populations of weak sources.

Results are consistent with background and 90% upper-

limits on steady neutrino emission are calculated from

the observations. In the northern sky (δ ≥ 5◦), the
best limits are set by IceCube and the sensitivity is

below E2
νdφ/dEν < 10−12 TeV cm−2 s−1 over a wide

declination for the first time, compare Fig. 8. More-

over, the declination dependent flux limit is a factor of
∼ 100 (∼ 10) below the integrated diffuse astrophysical

neutrino flux in the northern (southern) sky. With in-

creased statistics of three additional years compared to

the previous analysis, the upper-limits in the southern

sky are of the same level as for Adrian-Martinez et al.
(2014), however, testing a complementary energy region

above PeV neutrino energies. Model-specific 90% upper-

limits were calculated for representative cases from the

literature, and previously unconstrained neutrino emis-
sion scenarios for sources in the northern sky are now

disfavored by IceCube. With the newly available data

presented here, improved results for other tests are an-

ticipated, for example searches for extended sources or

stacking and time-dependent analyses (Aartsen et al.
2014e, 2015e).

With increasing exposure, IceCube continues to im-

prove the sensitivity to steady neutrino fluxes. Figure 15

shows the progression of the 5σ discovery potential with
increasing time for three declinations. A continuous

gain in performance is observed with time T that is

faster than 1/
√
T , a scenario assuming statistical limita-

tion by background, and much closer to 1/T indicating

limitation by signal statistics. This can increase even

further with anticipated improvements in background

rejection, angular reconstruction, or detector improve-

ments (Aartsen et al. 2014b).
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Neunhöffer, T. 2006, Astropart. Phys., 25, 220
Olive, K. A., et al. 2014, Chin. Phys., C38, 090001
Padovani, P., Petropoulou, M., Giommi, P., & Resconi, E. 2015,

Mon. Not. Roy. Astron. Soc., 452, 1877
Padovani, P., & Resconi, E. 2014, Mon. Not. Roy. Astron. Soc.,

443, 474
Petropoulou, M., Coenders, S., & Dimitrakoudis, S. 2016,

Astropart. Phys., 80, 115
Petropoulou, M., Dimitrakoudis, S., Padovani, P., Mastichiadis,

A., & Resconi, E. 2015, Mon. Not. Roy. Astron. Soc., 448, 2412
Reimer, A. 2015, Proceedings, 34th International Cosmic Ray

Conference (ICRC 2015)
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Table 2. Sources contained in the first source list. In addition to its type, common name, and coordinates

(Equatorial (J2000)), the best-fit of signal events nS and spectral index γ with the pre-trial p-value − log10 p

are quoted. For null observations nS = 0, no p-value and spectral index are quoted. A 90% upper-limit for an

E−2 unbroken power-law is calculated for all sources that showed clustering of neutrinos. The upper limits are

shown in Fig. 8, for null-fits the limit equals the sensitivity of this analysis at the corresponding declination.

Type Source α δ p-value nS γ B1◦ Φ90%
νµ+ν̄µ

1◦ 1◦ ζa

BL Lac PKS 0537-441 84.71 -44.09 · · · 0.0 · · · 45.7 9.79

PKS 2155-304 329.72 -30.23 · · · 0.0 · · · 52.6 6.07

PKS 0235+164 39.66 16.62 0.12 16.2 3.4 72.0 0.94

1ES 0229+200 38.20 20.29 0.20 9.5 3.5 66.6 0.84

W Comae 185.38 28.23 · · · 0.0 · · · 60.8 0.62

Mrk 421 166.11 38.21 0.32 2.7 1.8 53.1 0.94

Mrk 501 253.47 39.76 0.18 10.5 4.0 52.0 1.15

BL Lac 330.68 42.28 · · · 0.0 · · · 50.4 0.63

H1426+428 217.14 42.67 · · · 0.0 · · · 50.9 0.70

3C 66A 35.67 43.04 · · · 0.0 · · · 50.9 0.70

1ES 2344+514 356.77 51.70 · · · 0.0 · · · 46.3 0.81

1ES 1959+650 300.00 65.15 0.018b 15.4 3.1 42.8 2.36

S5 0716+71 110.47 71.34 · · · 0.0 · · · 38.4 1.34

Flat-spectrum PKS 1454-354 224.36 -35.65 · · · 0.0 · · · 49.1 7.99

radio quasar PKS 1622-297 246.53 -29.86 0.11 3.8 2.3 52.7 8.20

QSO 1730-130 263.26 -13.08 · · · 0.0 · · · 49.8 2.18

PKS 1406-076 212.24 -7.87 0.053c 7.3 2.6 50.5 1.65

QSO 2022-077 306.42 -7.64 · · · 0.0 · · · 50.5 0.99

3C 279 194.05 -5.79 0.42 0.5 2.0 54.3 0.63

3C 273 187.28 2.05 0.25 7.7 3.2 76.4 0.59

PKS 1502+106 226.10 10.49 0.38 3.1 2.7 73.7 0.59

PKS 0528+134 82.73 13.53 0.44 2.7 4.0 73.0 0.60

3C 454.3 343.49 16.15 0.12 4.1 2.0 72.3 0.93

4C 38.41 248.81 38.13 0.12 6.3 2.4 53.2 1.31

Galactic center Sgr A* 266.42 -29.01 · · · 0.0 · · · 52.2 6.08

Not identified MGRO J1908+06 286.98 6.27 0.025 4.5 2.0 74.9 0.99

Pulsar wind Geminga 98.48 17.77 · · · 0.0 · · · 69.3 0.49

nebula Crab Nebula 83.63 22.01 0.34 6.1 3.8 67.0 0.68

MGRO J2019+37 305.22 36.83 0.23 7.8 4.0 53.2 1.04

Star formation region Cyg OB2 308.30 41.32 0.26 5.9 4.0 50.6 0.99

Supernova remnant IC443 94.21 22.50 0.22 8.1 4.0 66.0 0.83

Cas A 350.81 58.81 0.14 8.1 4.0 44.5 1.49

TYCHO 6.36 64.18 0.27 4.6 3.4 42.4 1.23

Starburst/radio Cen A 201.37 -43.02 0.21 0.5 1.2 46.2 10.41

galaxy M87 187.71 12.39 · · · 0.0 · · · 73.2 0.48

3C 123.0 69.27 29.67 · · · 0.0 · · · 59.5 0.57

Table 2 continued
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Table 2 (continued)

Type Source α δ p-value nS γ B1◦ Φ90%
νµ+ν̄µ

1◦ 1◦ ζa

Cyg A 299.87 40.73 0.068 2.1 1.4 51.1 1.50

NGC 1275 49.95 41.51 · · · 0.0 · · · 50.6 0.71

M82 148.97 69.68 · · · 0.0 · · · 39.7 1.09

HMXB/mqso SS 433 287.96 4.98 0.40 4.1 4.0 75.8 0.47

HESS J0632+057 98.24 5.81 0.10 13.6 3.6 75.4 0.77

Cyg X-1 299.59 35.20 0.31 4.5 4.0 54.4 0.90

Cyg X-3 308.11 40.96 0.077 12.8 4.0 51.3 1.53

LSI 303 40.13 61.23 · · · 0.0 · · · 43.8 0.79

Note—Sources of the list are grouped by their classification and ordered in ascending declination δ. High-
mass X-ray binaries and micro-quasars are abbreviated by HMXB/mqso.
Spectral indices quoted as γ = 4.0 are at the boundary of the parameter space for minimization. This can
happen when there is an over-fluctuation of low-energy events close to the source location. It was ensured
that for all events, the minimization converged successfully to the minimum within the parameter-space.

aUpper limits are in units of ζ = 10−12 TeV cm−2 s−1

bMost significant source in northern sky in this table. The trial-corrected p-value is 54%.
cMost significant source in southern sky in this table. The trial-corrected p-value is 37%.

Table 3. Sources contained in the second source list, using only sources in the southern sky and focusing

on galactic objects.The information listed is the same as in Tab. 2.

Type Source α δ p-value nS γ B1◦ Φ90%
νµ+ν̄µ

1◦ 1◦ ζa

BL Lac PKS 2005-489 302.37 -48.82 0.071 0.9 1.0 44.7 13.45

PKS 0426-380 67.17 -37.93 · · · 0.0 · · · 47.2 8.93

PKS 0548-322 87.67 -32.27 · · · 0.0 · · · 51.2 6.79

H2356-309 359.78 -30.63 · · · 0.0 · · · 52.1 6.18

1ES 1101-232 165.91 -23.49 · · · 0.0 · · · 52.6 4.64

1ES 0347-121 57.35 -11.99 0.21 1.4 2.4 52.2 2.16

Flat-spectrum PKS 0454-234 74.27 -23.43 · · · 0.0 · · · 52.8 4.58

radio quasar PKS 0727-11 112.58 -11.70 0.20 2.7 3.7 52.0 2.30

Not identified HESS J1507-622 226.72 -62.34 · · · 0.0 · · · 43.4 11.02

HESS J1503-582 226.46 -58.74 · · · 0.0 · · · 45.5 11.79

HESS J1741-302 265.25 -30.20 0.19 2.1 4.0 52.6 7.33

HESS J1834-087 278.69 -8.76 0.21 1.2 3.7 49.5 1.47

Pulsar wind HESS J1356-645 209.00 -64.50 · · · 0.0 · · · 42.4 10.90

nebula PSR B1259-63 197.55 -63.52 0.21 1.3 2.0 42.7 11.43

HESS J1303-631 195.74 -63.20 0.076 4.5 2.3 42.3 13.61

MSH 15-52 228.53 -59.16 · · · 0.0 · · · 44.9 11.28

HESS J1023-575 155.83 -57.76 · · · 0.0 · · · 46.4 11.79

Table 3 continued



20 M. G. Aartsen et al.

Table 3 (continued)

Type Source α δ p-value nS γ B1◦ Φ90%
νµ+ν̄µ

1◦ 1◦ ζa

HESS J1616-508 243.78 -51.40 0.0022b 2.4 4.0 45.0 19.37

HESS J1632-478 248.04 -47.82 0.16 1.5 2.7 44.7 10.79

Vela X 128.75 -45.60 0.13 2.7 2.4 45.8 10.79

HESS J1837-069 279.41 -6.95 · · · 0.0 · · · 48.1 0.89

Supernova remnant RCW 86 220.68 -62.48 · · · 0.0 · · · 43.1 11.02

RX J0852.0-4622 133.00 -46.37 · · · 0.0 · · · 45.6 10.40

RX J1713.7-3946 258.25 -39.75 · · · 0.0 · · · 45.5 9.22

W28 270.43 -23.34 · · · 0.0 · · · 52.9 4.58

Seyfert galaxy ESO 139-G12 264.41 -59.94 · · · 0.0 · · · 44.0 11.28

HMXB/mqso Cir X-1 230.17 -57.17 · · · 0.0 · · · 46.3 11.03

GX 339-4 255.70 -48.79 0.15 2.6 2.2 44.8 11.29

LS 5039 276.56 -14.83 0.26 2.1 4.0 52.3 2.72

Massive star cluster HESS J1614-518 243.58 -51.82 0.0058 2.2 4.0 45.4 18.33

Note—Please refer to Tab. 2 for comments regarding this table.
aUpper limits are in units of ζ = 10−12 TeV cm−2 s−1

bMost significant source in this table (South only). The trial-corrected p-value is 9.3%.




