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Exome sequencing reveals independent
SGCD deletions causing limb girdle
muscular dystrophy in Boston terriers
Melissa L. Cox1†, Jacquelyn M. Evans2†, Alexander G. Davis2, Ling T. Guo3, Jennifer R. Levy4,5, Alison N. Starr-Moss2,
Elina Salmela6,7, Marjo K. Hytönen6,7, Hannes Lohi6,7, Kevin P. Campbell4,5, Leigh Anne Clark2* and
G. Diane Shelton3*

Abstract

Background: Limb-girdle muscular dystrophies (LGMDs) are a heterogeneous group of inherited autosomal
myopathies that preferentially affect voluntary muscles of the shoulders and hips. LGMD has been clinically
described in several breeds of dogs, but the responsible mutations are unknown. The clinical presentation in dogs
is characterized by marked muscle weakness and atrophy in the shoulder and hips during puppyhood.

Methods: Following clinical evaluation, the identification of the dystrophic histological phenotype on muscle
histology, and demonstration of the absence of sarcoglycan-sarcospan complex by immunostaining, whole exome
sequencing was performed on five Boston terriers: one affected dog and its three family members and one
unrelated affected dog.

Results: Within sarcoglycan-δ (SGCD), a two base pair deletion segregating with LGMD in the family was
discovered, and a deletion encompassing exons 7 and 8 was found in the unrelated dog. Both mutations are
predicted to cause an absence of SGCD protein, confirmed by immunohistochemistry. The mutations are private to
each family.

Conclusions: Here, we describe the first cases of canine LGMD characterized at the molecular level with the
classification of LGMD2F.

Keywords: Muscle, Myopathy, Sarcoglycanopathy, Dog, LGMD

Background
Limb-girdle muscular dystrophies (LGMDs) are a
heterogeneous group of Mendelian disorders affecting
voluntary muscles of the shoulders and hips [1]. While
proximal limb muscles are primarily affected in LGMD,
other muscles may degenerate as well, such as the heart
and respiratory muscles [1]. Sarcoglycanopathies are a
subset of severe, recessive LGMDs (LGMD2C-F) that
present in early childhood [2]. There are six known
sarcoglycan genes (SGCA, SGCB, SGCD, SGCG, SGCE,

and SGCZ); the first four encode single-pass transmem-
brane glycoproteins (α-, β-, δ-, γ-sarcoglycans) and,
along with sarcospan, make up the tetrameric
sarcoglycan-sarcospan complex (SGC). As part of the
dystrophin-glycoprotein complex, the SGC is critical for
maintaining sarcolemmal stability [3]. Mutations in
SGCA, SGCB, SGCD, or SGCG can result in non-
assembly of the SGC and, therefore, the absence of all
four sarcoglycans from muscle of affected patients [3, 4].
There are only a handful of low-frequency founder
alleles in human populations responsible for sarcoglyca-
nopathies [5]; thus, they are most commonly caused by
mutations in compound heterozygosity [6].
In the domestic dog (Canis familiaris), selective breed-

ing practices encourage pairing of recessive alleles inher-
ited identical by descent (IBD). Accordingly, dogs have
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an abundance of recessive disorders [7], including muscular
dystrophies [8, 9]. Most canine muscular dystrophies are
associated with dystrophin deficiency, and founder alleles
have been identified in several breeds [10, 11]. Recently,
two independent mutations causing dystrophinopathy were
described in Cavalier King Charles spaniels [12, 13].
The first report of LGMD associated with sarcoglycan

deficiency in dogs involved three breeds: Chihuahua, Cocker
spaniel, and a 7-month-old male Boston terrier from
Colorado (case 1), but mutations were not identified [8].
Four years later, sarcoglycanopathy was described again in
an unrelated 4-month-old male Boston terrier from Iowa
[14] (case 2). All dogs affected with sarcoglycanopathy had a
clinical dystrophic phenotype including muscle wasting, gait
abnormalities, enlarged tongue, dysphagia, and extremely
elevated serum creatine kinase (CK) activities [8, 14].
Pathologic features were consistent with dystrophy, having
myofiber degeneration, regeneration, and calcific deposits [8,
14]. Affected dogs lacked muscle α-, β-, and γ-sarcoglycans,
confirmed by both western blotting and immunohistochem-
istry [8, 14]. At the time of evaluation, an antibody reactive
with canine δ-sarcoglycan was unavailable.
Here, we describe a sarcoglycanopathy in a third family of

Boston terriers from Arkansas in which two puppies (cases 3
and 4) from the same kennel but different litters displayed
clinical signs of LGMD, pathological changes consistent with
a dystrophic phenotype, and immunohistochemical confirm-
ation of absent or decreased sarcoglycans. To identify the
genetic basis for LGMD in the Boston terrier breed, we per-
formed whole exome sequencing (WES) of cases 1 and 3 and
related dogs. Evaluation of the sarcoglycan genes revealed, to
our surprise, two private deletions in SGCD: a 2-bp deletion
in exon 6 and a 19.4-kb deletion encompassing exons 7 and
8. Both cause a lack of SGCD, resulting in LGMD2F.

Methods
Animals
Clinical details of case 1 were previously published [8].
Biological samples from case 2 were not available.
Female Boston terriers, ages 12 and 5 months, and from
the same breeder in Arkansas (cases 3 and 4), were
evaluated for a chronic history of progressive dysphagia,
lack of appetite, drooling, muscle wasting, and greatly
enlarged tongues. Both dogs were examined by the same
veterinarian in a clinical setting.
DNA was extracted from diagnostic muscle biopsies of

cases 1 and 3 and whole blood of unaffected relatives of
cases 3 and 4 using the DNeasy extraction kit (Qiagen,
Hilden, Germany). Muscle for isolation of DNA was
unavailable from case 4. Whole-blood samples or buccal
swabs from unrelated, healthy Boston terriers were
recruited, and DNA was isolated following the Gentra
PureGene protocol (Qiagen, Hilden, Germany) or the
MagJet Genomic DNA purification kit (ThermoFisher

Scientific, Waltham, USA). Genomic DNAs from un-
affected dogs from multiple breeds were available from
DNA archives at Clemson University and CAG GmbH.
The dogs in this study were examined and tissues col-

lected in a clinical practice setting with the written con-
sent of their owners. Studies on tissue biopsies and blood
samples were approved by the Institutional Animal Care
and Use Committees (IACUC) of Clemson University, the
University of California San Diego, the University of Iowa,
and the Animal Experiment Board in Finland (ESAVI/
7482/04.10.07/2015), as well as the Baden-Württemberg
veterinary office at the Landratsamt Tübingen Abt. 32:
Veterinärwesen und Lebensmittelüberwachung, Tübingen,
Germany (Registriernummer: DE 08 416 1038 21).

Histology and immunofluorescence
Muscle specimens from case 1 were previously obtained as
biopsies and archived at −80 °C at the Comparative Neuro-
muscular Laboratory, University of California San Diego
(CNL). Specimens from limb muscles, heart, and tongue
were collected by a veterinarian following humane euthan-
asia at 1 year of age for case 3 and at 5 months of age for
case 4. Muscles were either refrigerated or immersion fixed
in buffered formalin and shipped to the CNL. Cryosections
from all muscle specimens were processed by a standard
panel of histochemical stains and reactions [15].
Antibodies used for immunofluorescence were rabbit

antibodies R98 anti-α-sarcoglycan [16], R214 anti-δ-
sarcoglycan [17], IIH6 anti-α-dystroglycan [18], R256 anti-
sarcospan [19]; mouse antibodies 5B1 anti-β-sarcoglycan [19],
21B5 anti-γ-sarcoglycan [19], AP83 anti-β-dystroglycan [18],
anti-dystrophin (AbCam, San Franscisco, CA USA), anti-
collagenVI (Fitzgerald Laboratories, Acton, MA USA), and
anti-caveolin 3 (BD Transduction Laboratories, San Jose, CA
USA); rat anti-perlecan (NeoMarkers, Fremont, CA USA).
For secondary immunofluorescence, tissues were blocked

with 10% goat serum in phosphate-buffered saline,
incubated in primary antibody overnight, washed, incubated
in Alexa Fluor 488-, 594-, or 647-conjugated anti-rat,
anti-rabbit, or anti-mouse antibodies (Life Technologies,
San Diego, CA USA ), respectively, and mounted using
ProLong Gold mounting media (Life Technologies). For
α-dystroglycan, sarcospan, δ-sarcoglycan, and γ-sarcoglycan
staining, tissues were fixed in 2% paraformaldehyde,
followed by incubations in 100 mM glycine and 0.05% SDS
prior to processing as described above. Images were
acquired using a VS120-S5-FL slide scanner microscope
(Olympus) with VS-ASW software.

Parentage testing
The Canine Genotypes Panel 1.1 (ThermoFisher Scien-
tific) was used to verify parentage of the experimental
dogs. Samples were amplified according to the manufac-
turer’s instructions and separated and detected on an
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ABI 3730XL (Applied Biosystems, ThermoFisher Scien-
tific). GeneMarker (Softgenetics, State College, PA,
USA) was used to assign peaks and determine genotypes
according to ISAG nomenclature.

Whole exome sequencing
DNA from five Boston terriers (case 1, case 3, and three
unaffected relatives of cases 3 and 4) was used for WES
performed at CeGaT GmbH (Tübingen, Germany). Gen-
omic DNA (1 μg) from each sample was mechanically
sheared to approximately 180–250-bp fragments using a
Covaris LE220 Ultrasonicator (Woburn, MA, USA). Frag-
ment sizes were assessed for quality control purposes (Frag-
ment Analyzer, Advanced Analytical Technologics Inc.),
and the Agilent SureSelect XT Canine All Exon kit (Santa
Clara, CA, USA) supplied the 120-mer biotinylated RNA
bases with which the fragment library was hybridized.
Magnetic streptavidin beads were used for purification
according to the manufacturer’s protocol (Agilent). After
amplification of library DNA, adaptors and barcodes for
sequencing were added (Illumina), and equimolar amounts
of each sample were pooled. Both lanes of a Rapid Flowcell
were used to sequence the pool on an Illumina HiSeq2500,
generating 2 × 100-bp paired-end sequences, resulting in
approximately 6 GB per sample. Illumina bcl2fastq 1.8.2
was used to demultiplex sequencing data, skewer 0.1.116
was used to trim sequencing adapters, and the Burrows-

Wheeler Aligner (bwa 0.7.2-r351) was used to map the se-
quences to the canine genome (CanFam3.1). Samtools
0.1.18 and internal software were used to remove PCR du-
plicates and low-quality alignments. bcftools (0.1.17) and
varscan (2.3.5) and internal software were used to call vari-
ants, and a single Variant Call Format (VCF) file was gener-
ated for each sample using internal software.
IGV (Integrative Genomics Viewer) [20] and Genome

Browse (Golden Helix [21, 22] Inc., USA) were used to
visualize data, and the Ensembl dbSNP (Can Fam3.1
version) and whole genome sequences (Clemson) were used
to exclude variants.

Variant characterization and genotyping
2-bp deletion
The 2-bp deletion identified in case 3 was verified by
Sanger sequencing, using primers designed to amplify
SGCD exon 6 (Additional file 1: Table S1). The deletion
disrupts a BcoD1 restriction enzyme site, yielding a
406-bp and a 347-bp product, representing mutant and
wild-type alleles, respectively. Unrelated Boston terriers
and dogs from other breeds were genotyped using either
restriction digest or Sanger sequencing.

19.4-kb deletion
To define the break points of the microdeletion encom-
passing SGCD exons 7 and 8 and the 3′ intergenic

Fig. 1 Histopathology of muscle biopsies from a female Boston terrier affected with sarcoglycanopathy (case 3). A hunch back stance was
evident in the dog (a). H&E stained cryosections from a representative limb muscle (b) showed degenerative changes and calcific deposits (black
arrow). Similar degenerative changes and calcific deposits were observed in the tongue (c). The calcific deposits in the tongue were highlighted
bright orange using the alizarin stain for calcium (d)
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sequence, primers were designed in flanking sequences
(Additional file 1: Table S1).
For genotyping, primer pairs were designed within the

deletion to amplify only wild-type alleles, as well as
flanking the deletion for amplification of the mutant
allele. Primer pairs were multiplexed for amplification
using Phire Hot Start II DNA polymerase (Thermo-
Fisher) and products were resolved by gel electrophoresis.
Products were initially verified via Sanger sequencing. The
multiplex PCR was used to test unrelated Boston terriers
and dogs of other breeds.

Results
Clinical findings
Muscle wasting, dysphagia, exercise intolerance, lethargy,
and failure to thrive were accompanied by progressive gait
abnormalities including a short, stilted gait in cases 3
(Fig. 1a) and 4. While there was no clinical indication of

cardiomyopathy, specific evaluations for heart disease by a
veterinary cardiologist were not performed. Clinical
chemistry included markedly elevated activities of serum
alanine aminotransferase (ALT; 900 IU/L, reference range
10–110 IU/L), aspartate aminotransferase (AST; 920 IU/L,
reference range 16–50 IU/L), and creatine kinase (CK;
>10,000 IU/L, reference range 50–275 IU/L). Progression
of clinical signs necessitated euthanasia at approximately
1 year of age for case 3 and 5 months of age for case 4.

Histology and immunofluorescence
A dystrophic phenotype including degeneration, regener-
ation, and calcific deposits was evident in the skeletal
muscle (Figs. 1b) and tongue (Fig. 1c, d). Heart muscle
was histologically normal (left ventricle, not shown) from
cases 3 and 4. Immunofluorescence staining of muscle
cryosections showed markedly reduced or absent
localization of α-, β-, γ-, and δ-sarcoglycans and sarcospan

Fig. 2 Loss of SGC staining in cases 3 and 4. Representative H&E and immunofluorescence of cryosections from the muscle of cases 3 and 4, as
well as of a control dog muscle. In the control muscle, antibodies to the SGC (α-, β-, δ-, γ-sarcoglycans: αSG, βSG, δSG, γSG), as well as sarcospan
(SSPN), localize to the sarcolemma of the muscle fibers. Staining from each of these antibodies is reduced in muscle from cases 3 and 4
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in cases 3 and 4 (Fig. 2). In contrast, staining for
localization of α- and β-dystroglycans, dystrophin, caveo-
lin 3, and perlecan was similar to control muscle (Fig. 3).
Staining for collagen VI was increased in the endomysium
compared to the control tissue, consistent with endomy-
sial fibrosis. Results of histology, immunofluorescence
staining, and western blotting of case 1 were described
previously [8]. Staining for localization of δ-sarcoglycan in
case 1 was performed on archived muscle cryosections
and was similarly absent (not shown).

Parentage testing
Parentage testing was performed to determine rela-
tionships between case 3 and three other dogs ob-
tained from the same breeder. One relative was
confirmed to be the dam of case 3 and is referred to
hereafter as the obligate carrier. The test excluded
the remaining two dogs from being full siblings of

case 3 or progeny of the obligate carrier. Their rela-
tionship to the other dogs or to one another could
not be determined.

Variant identification from WES
Disruption of any one of the sarcoglycans results in
reduced immunostaining of the entire SGC, both in
LGMD patients and in animal models of sarcoglycano-
pathy [23–25]. Therefore, genetic sequencing was neces-
sary to identify the defective sarcoglycan gene.

2-bp deletion
The candidate genes (SGCA, SGCB, SGCD, SGCG) were
sequenced to an approximate depth of 30X. For each
gene, we manually screened the VCF file in IGV for vari-
ants fitting a pattern of inheritance consistent with a
rare recessive allele. We expected both affected dogs to
have inherited the causal mutation IBD from a common

Fig. 3 Representative immunofluorescence of cryosections from muscle of cases 3 and 4 and control dog muscle. Staining of α-dystroglycan (αDG), β-
dystroglycan (βDG), dystrophin (DMD), caveolin 3 (CAV3), collagen VI (COL6), and perlecan (PCAN) in cases 3 and 4. Antibodies to α- and
β-dystroglycans, dystrophin, caveolin 3, and perlecan demonstrate sarcolemmal localization and intensity that is comparable to control tissue.
An antibody to collagen VI shows increased localization to the endomysium compared to the control tissue, consistent with endomysial fibrosis
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ancestor; therefore, we searched for variants homozy-
gous in cases 1 and 3, heterozygous in the obligate car-
rier, and heterozygous or homozygous wild-type in the
two relatives. No variants fit these criteria.
Because there was no known relationship between

cases 1 and 3, we considered that they may have differ-
ent genetic causes for LGMD. Thus, we excluded case 1
and searched again for the same pattern. Only one
variant fit the pattern: a 2-bp deletion in exon 6 of
SGCD (Fig. 4). We validated the deletion through Sanger
sequencing and determined that, in addition to the obli-
gate carrier, one relative was heterozygous. The deletion
predicts the substitution of an aspartate for a glutamate

(E178D) and creates a frameshift, leading to a premature
stop codon two amino acids later (P180X) (Fig. 4). We
genotyped 199 Boston terriers and 127 dogs from 33
other breeds; none possessed the deletion.

19.4-kb deletion
Using BAM files, we reexamined each candidate gene
for variants homozygous in case 1 and absent from the
other Boston terriers. This approach revealed a complete
absence of reads from the final two exons of SGCD (7
and 8) in case 1, which was not apparent from the VCF
file. No other variants fit the pattern. We hypothesized
that the absence of reads represented a microdeletion
and designed three primer pairs flanking exons 6, 7, and
8. PCR amplification yielded a product for exon 6 but
not for exon 7 or 8 in case 1, providing further support
for the presence of a deletion.
It was not possible to characterize the deletion directly

from WES because intergenic and intronic sequences
are minimized. Sequence coverage indicated that the
deletion was between SGCD exon 6 and TMD4. Further-
more, sporadic intronic and intergenic fragments were
present 5′ of exon 7, beginning at chr4:53282570, and in
the 3′ UTR, beginning at chr4:53261359, suggesting a
maximum deletion size of 21,211 bp. Primer pairs flank-
ing this estimated deletion size yielded large products
(~3–5 kb), indicating a deletion approximately 2 kb
smaller than suggested by WES. Sanger sequencing of
the breakpoint revealed a substitution (chr4:53262018-
53262020, ATG > CC), followed by 9 bp that were un-
changed before a deletion of 19,403 bp (chr4:53262030-
53281432) (Fig. 5). We genotyped 201 Boston terriers

Fig. 4 Electropherogram showing the 2-bp SGCD deletion in case 3.
The top panel shows the sequence from case 3, while the lower
panel shows the sequence from a healthy non-related Boston terrier.
The SGCD c.534_535delGA mutation leads to a frameshift and a pre-
mature stop codon two amino acids later

Wildtype

Case 1

53262029  53281433

Exo
n 

7

Exo
n 

8

Exo
n 

6
Reference

Wildtype

Case 1

…CATTTGGTCATATTGTCTGTTATCTTTT // CTAAAGTTTACTCTTCACATATGAGGCT...

…CATTTGGTCATATTGTCTGTTACTCTTCA-GGATGAGGCT...

~19.4 kb deletion

Fig. 5 Schematic and sequence showing the breakpoints of the 19,403-bp SGCD deletion in case 1. Note that SGCD is annotated on the minus
strand. Whole exome sequence from a healthy dog and case 1 are aligned to the reference genome, visualized in Golden Helix GenomeBrowse ®
[21, 22]. Case 1 has no coverage of exons 7 and 8 and flanking regions. Sequence of the wild-type and case 1 alleles show the precise break-
points. Nucleotides 5′ and 3′ of the breakpoint are in bold blue and orange typeface, respectively. A substitution (chr4:53262020-53262018, CAT >
GG) is found 9 bp downstream of the microdeletion and is shown in bold red typeface
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and 91 dogs of 19 other breeds and did not find any
carriers.

Discussion
Sarcoglycanopathies in humans are rare genetic disor-
ders, with an incidence of one in every 178,000 human
births [26]. To date, only small animal models are avail-
able for study: gene-targeted mouse models for α-, β-, δ-
, and γ-sarcoglycanopathy [27] and a spontaneous ham-
ster model for δ-sarcoglycanopathy [28, 29]. Here, we
have demonstrated that a naturally occurring muscular
dystrophy in a Boston terrier family is a sarcoglycanopa-
thy, consistent with two previously published case re-
ports in the breed. Given that cases have been described
in three Boston terrier families, we expected a single re-
cessive allele, present at a very low frequency within the
breed, to underlie all cases. Instead, we uncovered inde-
pendent mutations in the two families studied herein.
Unfortunately DNA from case 2 [14] was not available
to determine whether this dog shared one of the muta-
tions described herein, a different mutation in SGCD, or
a pathogenic variant in another gene.
Both families possessed mutations in SGCD, which

encodes δ-sarcoglycan. Canine SGCD is located on CFA
4 and organized into eight exons that form a 1297 bp
mRNA transcript [30]. Human (XP_016865213.1) and
dog (XP_013968526.1) amino acid sequences share 98%
identity. Despite being the largest of the sarcoglycan
genes, SGCD least commonly causes sarcoglycanopathy,
with the majority of human cases attributed to changes
in SGCA [31]. Thus, it is not only surprising that the
Boston terriers had independent mutations causing
sarcoglycanopathy, but that both had pathogenic alleles
of SGCD. Curiously, the only other naturally occurring
model of a sarcoglycanopathy, the Syrian hamster, also
harbors an SGCD deletion [29].
Mutations of SGCD cause LGMD2F, and although

clinical presentation is largely similar among the four
sarcoglycanopathies, this is the only subtype not consistently
characterized by concomitant cardiomyopathy [1]. The ab-
sence of heart involvement in Boston terriers is consistent
with this classification; however, because the affected dogs
were euthanized at an early age it is unknown if muscle
degeneration would have progressed to involve the heart.
Immunohistochemistry illustrated a lack of the SGC in

both cases, but provides no indication as to whether
SGCD is abnormal or absent altogether. Due to limited
sample availability, collected tissues were prioritized for
histopathological analysis and genomic DNA sequen-
cing. RNAs were thus unavailable to investigate the
consequence of the deletions on SGCD transcripts. The
2-bp pair deletion predicts a premature stop codon in
exon 6, possibly causing nonsense-mediated decay. The
19.4-kb microdeletion eliminates the last two exons of

SGCD; the complete loss of an SGCD exon is rare [5]. It
is hypothesized that exon 6 would splice to one or more
cryptic sites, triggering either nonsense-mediated decay
and/or the production of mutant protein. It is likely that
mutant SGCD would cause assembly of the SGC to fail,
resulting in LGMD [3, 32].
WES is a cost-effective method for the sequencing of

multiple family members and has been used successfully
to identify LGMD mutations in humans [33]. It was an
advantageous choice over transcriptome sequencing in
this study because SGCD transcripts would have been
absent in case 3 and possibly case 1 as well, necessitating
additional sequencing of SGCD to identify the causative
mutations. In dogs, WES has led to the identification of
alleles underlying progressive retinal atrophy, primary
angle closure glaucoma, and nemaline rod myopathy
using small numbers of related cases [34–38] but is not
ideal for detecting intergenic deletions or genomic rear-
rangements [39]. The development of improved WES
enrichment kits for dogs [39, 40] will facilitate future
detection of disease variants in canine models.

Conclusion
The identification of canine models of disease holds
promise for new advances in the understanding and
treatment of analogous human diseases. For example,
the well-characterized Golden retriever model of
Duchenne muscular dystrophy (DMD) has proven to be
an invaluable resource for gene therapy and other trials
[41, 42]. Here, we have clinically and genetically character-
ized the first large animal model of sarcoglycanopathy.

Additional file

Additional file 1: Table S1. Primers used to define and genotype
SGCD mutations. (DOCX 12 kb)
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