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Abstract

Stable isotope tracing is a powerful method for interrogating metabolic enzyme activities across 

the metabolic network of living cells. However, most studies of mammalian cells have used 13C-

labeled tracers only and focused on reactions in central carbon metabolism. Cellular metabolism, 

however, involves other biologically important elements, including nitrogen, hydrogen, oxygen, 

phosphate and sulfur. Tracing stable isotopes of such elements may help shed light on poorly 

understood metabolic pathways. Here, we demonstrate the use of high-resolution mass 

spectrometry to simultaneously trace carbon and nitrogen metabolism in human cells cultured 

with 13C- and 15N-labeled glucose and glutamine. To facilitate interpretation of the complex 

isotopomer data generated, we extend current methods for metabolic flux analysis to handle 

multivariate mass isotopomer distributions (MMIDs). We find that observed MMIDs are broadly 

consistent with known biochemical pathways. Whereas measured 13C MIDs were informative for 

central carbon metabolism, 15N isotopes provided evidence for nitrogen-carrying reactions in 

amino acid and nucleotide metabolism. This computational and experimental methodology 

expands the scope of metabolic flux analysis beyond carbon metabolism, and may prove important 

to understanding metabolic phenotypes in health and disease.

Keywords

metabolic flux analysis; cellular metabolism; mass isotopomer distributions; elementary 
metabolite unit; mass spectrometry; amino acid metabolism; nucleotide metabolism

Introduction

Stable isotope tracing is a well-established method for measuring intracellular metabolic 

enzyme activities across the metabolic network of living cells1. In this technique, cells are 

cultured with nutrients labeled with stable isotopes, and the resulting isotopic patterns in 

cellular metabolites are measured by mass spectrometry or NMR. While software for 
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quantifying isotopic distributions is well established2,3, a wide variety of methods are used 

for interpreting the resulting isotope data to draw conclusions about metabolism, ranging 

from manual inspection and qualitative reasoning to sophisticated model-based 

computational techniques for quantitative metabolic flux analysis4. While qualitative tracing 

methods have been important in biochemistry to systematically map metabolic pathways, 

quantitative methods for flux analysis have largely been employed in lower organisms5 and 

plants6, where precise information about central metabolism is important to optimize 

product yields or crops. More recently, stable isotope tracing has been applied to study the 

metabolism of mammalian cells grown in batch cultures7–11, aiming to systematically 

understand human metabolism and identify enzymes or pathways that are affected in human 

diseases.

To date, the vast majority of studies have employed a single labeling strategy, typically 

using 13C-labeled substrates and focusing on central carbon metabolism, usually including 

glycolysis, the pentose phosphate pathway, and the tricarboxylic acid (TCA) cycle7. Using 

other stable isotopes, including 15N, 2H, 18O, and 34S, could yield information about 

additional metabolic activities in a given experiment, or even allow for study of pathways 

not amenable to carbon labeling. For instance, metabolic flux analysis using deuterium 2H 

has proven useful to monitor redox reactions12. Similarly, tracing nitrogen using 15N may be 

provide valuable information on amino acid and nucleotide metabolism; oxygen tracers 18O 

could be used to monitor phosphates (PO4) in energy metabolism; and sulfur isotopes (34S) 

can inform on metabolism of cysteine, methionine and related sulfur-containing 

compounds13.

Here, we use a combination of 13C- and 15N-labeled tracers to interrogate carbon and 

nitrogen metabolism of human cells within a single experiment. Using high resolution mass 

spectrometry we can resolve and quantify pairwise combinations of 13C and 15N mass 

isotopomers, resulting in multivariate mass isotopomer distributions (MMIDs) that reflect 

the simultaneous cellular metabolism of these chemical elements. To systematically handle 

MMID data, we describe a generalization of the Elementary Metabolite Unit (EMU) 

framework14 that extends metabolic flux analysis to multiple elements. We discuss features 

of carbon and nitrogen metabolism observable in human cells with this method.

Materials and methods

Cell culture and metabolite extraction

Human HeLa cells were cultured in 6-well culture dishes using RPMI-1640 medium (Life 

Technologies) with 11mM glucose, of which 70% was U-13C-glucose (Cambridge Isotope 

Laboratories) and 2mM glutamine, of which 70% was U-13C,15N-glutamine (Cambridge 

Isotope Laboratories), and supplemented with 5% dialyzed FBS (Hyclone). Cell extracts 

were analyzed after 24 and 72 hour culture periods. HeLa cells were plated at a density that 

resulted in ~85% confluency (~1×106 cells per well) at the end of the culture period, and to 

maintain a doubling time of ~30 hours throughout the culture period. At the completion of 

the culture period, spent medium was removed, cells rapidly washed with phosphate 

buffered saline to remove residual medium, and metabolites extracted using 1 mL of 100% 

HPLC grade methanol pre-cooled at −80°C. Cellular material was scraped in the cold 
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methanol, collected and vortexed for 1 minute. Cellular material was centrifuged at 10,000 

RPM × 10 min at 4°C and the organic supernatant containing extracted metabolites was 

collected and maintained at −80°C until analysis. Separate wells with identical plating were 

used for confirmation of final cell counts. Three independent biological replicates were used 

for all cell culture experiments.

Mass spectrometry and mass isotopomer distributions

Metabolites were assayed as previously described15 using liquid chromatography coupled to 

high resolution mass spectrometry (LC-MS). Liquid chromatographic separation was 

achieved using hydrophilic interaction chromatography (HILIC) employing an Atlantis 

HILIC column (150 × 2.1 mm; Waters, Milford, MA) or Luna NH2 column (5µm, 150 × 2 

mm; Phenomenex) with both positive and negative electrospray ionization (ESI). LC was 

coupled to a high resolution Q Exactive Quadrupole-Orbitrap mass spectrometer 

(ThermoFisher) operating at 70,000 resolution, scanning a mass range of 50 – 1000 m/z. 

Metabolites were identified by retention time and m/z from pure standards.15 Observed m/z 

accuracy was maintained at <5ppm. Chromatographic peaks areas were obtained by manual 

integration using in-house software. Peaks corresponding to mass isotopomers were 

manually inspected to verify identical chomatrographic peak shapes, and false isotopes were 

excluded. Mass isotopomer distributions were calculated for each sample by normalizing 

values to the total peak area for all mass isotopomers of each metabolite.

Uptake/release measurements

Absolute concentrations of glutamine, glutamate and lactate in fresh (0h) and spent (72h) 

culture medium were measured using a commercial YSI 2900 bioanalyzer.15 Net rates 

consumption or release of glutamine, glutamate and lactate per cell were calculated by 

normalizing to cell proliferation, as previously described15, assuming constant fluxes over 

time. Rates of acetate, alanine, asparate, citrulline, and biomass components (protein, RNA, 

glycogen, and glutathione) were estimated from literature values (S3 Dataset) for the 

purpose of bounding the model fluxes, assuming 10% error.

Metabolic network model

The metabolic network model used in this work is fully described in the ESI. Reaction 

stoichiometry were obtained from a previously published model of human cellular 

metabolism16. Atom maps were obtained from KEGG17 and were manually curated. 

Molecular symmetry for fumarate, succinate and urea was handled using EMU equivalence 

classes, as previously described14.

Multivariate mass isotopomer distributions

To represent the isotopic labeling state of multiple chemical elements, we introduce 

multivariate mass isotopomer distributions (MMIDs). Denote the elements by e = 1, …, E, 

and consider a metabolite i having  atoms of element e. Then any possible multivariate 

mass isotopomer of this metabolite can be represented by an E-dimensional vector a taking 

values in the array , representing all possible 

combinations of mass isotopomers for each element. An MMID of metabolite i is then a 
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probability (frequency) distribution  over this array, satisfying  and  for all 

a ∈ Gi. For example, if considering 13C and 15N isotopes, then the MMID of glutamine 

(C5H10O3N2) is a probability distribution over Gi = {0,1,2,3,4,5}×{0,1,2}, as in Fig. 1D. 

Note that it is not sufficient to consider the sets of atoms for each element separately as 1-

dimensional MIDs: this would be correct only if the isotopomers of each element are 

independent, so that the full MMID is a product distribution.

To relate MMIDs to fluxes in metabolic networks, we generalize of the Elementary 

Metabolite Unit (EMU) framework14 to multiple elements. We define a multiple-element 

EMU (MEMU) of a given metabolite as a list of subsets of atoms, one for each element, not 

necessarily contiguous in the molecular structure. Again, the mass isotopomers of an 

MEMU are elements of an E-dimensional array, and the MMID of an MEMU is a 

probability distribution on this array. Cleavage or unimolecular reactions are viewed simply 

as a transfer of an MEMU, which means their MMIDs must be equal. For a condensation 

reaction forming MEMU i from MEMUs j and K, the product MMID xi is a now 

multidimensional convolution of the MMIDs xj, xk of the substrates: for each a ∈ Gi,

(1)

Based on these rules, decomposition of the metabolic network model to MEMU networks 

was done using the algorithm previously described for EMUs14. Equation systems that relate 

fluxes to these MMIDs at steady state were generated from atom maps using Mathematica v.

10 (Wolfram Research; code is available from the authors upon request).

Given the MEMU decomposition, for each product MEMU, if reactions with fluxes v1,…, 

vN transfer MEMUs with MMIDs x1,…xN to the same product MEMU, then at steady-state, 

the product’s MMID x0 is a linear combination

(2)

for each multivariate mass isotopomer a, where  is the total flux “through” the 

product. The only difference between (2) and the 1-dimensional case14 is that the MMID xa 

is no longer a vector but an E-dimensional array (for carbon-nitrogen data, E = 2, so xa is a 

matrix), and convolutions must be calculated according to equation (1). While time-

dependent equations for isotopic nonstationary data can similarly be derived, as previously 

described18, we here consider the steady-state case.

Metabolic flux analysis

The vector of metabolic fluxes v was estimated by fitting the MEMU network model to 

measured MMID data using a previously described nonlinear optimization method19, as 

follows. Let x denote the “flattened” vector collecting all mass isotopomer fractions of all 

MMIDs, and write g(x, v) = 0 to represent the collection of all equations (1) and (2) for all 

Nilsson and Jain Page 4

Mol Biosyst. Author manuscript; available in PMC 2017 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



MEMUs, relating fluxes v to all MMIDs in the system. For metabolites present in both 

mitochondria and cytosol, the observed MMIDs y was modeled as a linear mixture MxA = y, 

where A is an index vector for the corresponding model MMIDs and M is a mixing matrix. 

We consider both M, x and v as free variables, and estimate them by solving the constrained 

optimization problem

where B is an index vector for the measured fluxes w, and S is the stoichiometry matrix 

(needed here because cofactor balances are not implied by the MEMU balance equations). 

Note that, while the objective is linear in x, the constraints g(x,v) = 0 are nonlinear due to 

equation (1). Assuming independent errors, the covariance matrices Σy and Σw were chosen 

to be diagonal. Since all possible mass isotopomers do not occur practise, many MI fractions 

were close to or identical to zero, resulting in near-zero standard deviations  on 

the diagonal. To avoid a singular covariance matrix, we therefore enforced a minimum 

bound σi > 0.01.

Optimization was done using CONOPT v.3.15 (ARKI Consulting & Development A/S) 

controlled via the GAMS modeling language (GAMS Software GmbH). A separate 

optimization problem was generated for each biological replicate in order to inspect the 

resulting variation in flux estimates. To check for occurrence of local minima, each problem 

was solved 100 times starting from randomly chosen initial points. Since most flux solutions 

were close together with nearly identical objective values, the centroid of these 100 solutions 

was taken as the final estimate.

Results

Measuring multivariate MIDs in intracellular metabolites

To investigate the metabolism of carbon and nitrogen in human HeLa cells, cells were 

labeled with 70% U-13C-glucose and 70% U-13C,15N-glutamine and cell extracts were taken 

at 24h and 72h time points. The fraction of 70% labeled tracer was chosen to yield 

information-rich isotopomer patterns, as fully labeled substrates tend to produce less 

informative data20. The mass shift due to incorporation of a single 13C atom in a 

downstream metabolite is ~1.003 u, while that due to 15N is ~0.997 u. Hence, isotopomers 

due to 13C or 15N incorporation differ by ~0.006 u, which is readily detectable in small 

metabolites using high resolution mass spectrometers, operating at >70,000 mass resolution. 

In principle, it is therefore possible to distinguish any pairwise combination of 13C and 15N 
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mass isotopomers; we refer to these combinations as multivariate mass isotopomers (MMIs). 

Cellular metabolites were analyzed by LC-MS which fully resolved isotopic peaks from 

adjacent carbon and nitrogen MMIs (m/z difference = 0.006) in metabolites having m/z of 

approximately < 250. An example of separation of carbon/nitrogen MMIs in glutamine is 

shown in Fig. 1A. For larger metabolites, adjacent MMIs were not completely baseline 

resolved, as shown for glutathione (Fig. 1B), but centroiding of m/z spectra still yielded 

intensity estimates for peak resolved peaks, which appeared to be stable during 

chromatography (Fig. 1C), indicating that MMIs can still be measured.

A total of 38 metabolites with high quality peaks were identified using pure standards, of 

which 25 contained at least one nitrogen atom. For each of these metabolites, we calculated 

the fractional abundance of all possible carbon-nitrogen MMIs, resulting in 2-dimensional 

MMI distributions (MMIDs). As an example, the MMID for glutamine is shown in Fig. 

1D,E. Measured MMIDs ranged in complexity from glycine (3 × 2 = 6 MIs) to ADP (11 × 6 

= 66 MIs), for a total of 616 carbon-nitrogen MMIs monitored (S3 Dataset), compared to 

258 when considering 13C isotopes only. Of these 616 MIs, 328 were below sensitivity 

thresholds in all samples, indicating that they are not synthesized by cells in these 

conditions. Nonzero mass isotopomers were highly reproducible over biological replicates 

(independent cell cultures), with standard deviation less than 0.01 in more than 90% of cases 

(Fig. 1F). However, low-abundance mass isotopomers were often systematically 

underestimated, probably reflecting loss of signal near threshold levels (Fig. S1). With a few 

exceptions discussed below, MMIDs were similar between the 24h and 72h time points, 

indicating that in most pathways monitored, metabolic and isotopic steady-state was reached 

already at 24h (Fig. S2). In the remainder of analyses, we consider the metabolic state at the 

24h time point.

Network model and fit to data

The resulting MMID dataset is quite complex, reflecting a variety of activities in the 

metabolic network, and is difficult to analyze manually. To aid in systematic interpretation, 

we constructed a model of metabolism covering the major interrogated pathways, including 

glycolysis, the pentose phosphate shunt, and the TCA cycle, as well as metabolism of 

nonessential amino acids, nucleotide and glutathione biosynthesis, and a simplified biomass 

synthesis reaction. This model consists of 125 reactions and 51 uptake or release fluxes, 

includes cofactor balancing, and covers 121 metabolites compartmentalized into 

mitochondria and cytosol. The atom map for carbons and nitrogens comprised 1,403 atom-

to-atom mappings in total. The eight essential amino acids measured (his, ile, leu, lys, met, 

thr, trp, val) are not synthesized in human cells and contained no label from glucose or 

glutamine as expected, and were omitted from the model. Also, the MMID glucose-6-

phosphate (g6p) was poorly measured and was omitted as well. The full model description is 

given in ESI.

To relate carbon-nitrogen MMIDs to metabolic fluxes in this model, we developed an 

extension of the Elementary Metabolite Unit (EMU) mathematical framework14 that 

describes MMIDs as a function of the metabolic flux state and the metabolic tracers (see 

Methods for details). Briefly, a multi-element EMU (MEMU) of a given metabolite is a list 
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of subsets of atoms, one for each element. These MEMUs allows representing reactions that 

cleave metabolites into smaller fragments, or condense metabolites into larger ones: for 

example, glycine can be derived from the MEMU consisting of carbons 1,2 and nitrogen 4 

of serine. From the atom mappings for all reactions in the metabolic network model, we can 

generate the minimal set of MEMUs whose MMIDs must be calculated to relate the 

observed MMIDs to metabolic fluxes. For the present model, this analysis resulted in 575 

two-dimensional carbon-nitrogen EMUs, for a total of 3,317 MMIs.

Metabolic fluxes were estimated by fitting this MEMU model to the measured MMID and 

metabolite uptake/release data. Of the 29 measured metabolites used to fit the model, 12 

were present in both the cytosol and mitochondria compartments; these were modeled using 

linear mixtures, whose coefficients were estimated from data (see Methods for details). A 

separate model fit was performed for each biological replicate (n = 3) and for each time 

point. In most cases, fitted MMIDs were highly similar between replicates (Fig S3). While 

most measured MMIDs agreed well with model estimates (Fig 2A), were obtained rather 

large errors for glutamyl-cysteine, ADP and UDP-glucose (Fig 2B), leading to higher total 

squared error (598—663 across replicates) than allowed by the chi-square criterion (95% χ2 

quantile = 401). This likely reflects inaccurate or biased estimates of these MMIDs and/or 

lack of metabolic steady state for nucleotide metabolism. For this reason, quantitative 

estimates of metabolic fluxes in this model should be considered uncertain; however, it is 

still possible to gain insight into metabolism by analyzing those MMIDs that fit the model.

Amino acid metabolism

The carbon-only MID of glutamate was consistent with synthesis from consumed glutamine 

via glutaminase, with partial recycling from alpha-ketoglutarate (Figure 3A). The full 

carbon-nitrogen MMID of glutamate, however, exhibited markedly less of the 13C5
15N1 

mass isotopomer than would be expected if synthesized solely from glutamine (Fig 3 A, 1F). 

This suggested that glutamate MMID mostly reflects cytosolic glutamate, which should 

contain less 13C5
15N1 due to influx of12N from other amino acids via reversible 

transamination reactions (Fig 3B). The MMID of proline indicated that approximately 55% 

of this intracellular amino acid is synthesized from cytosolic glutamate (Fig 3C), with the 

remainder originating from uptake from medium or an unlabeled precursor. Of the 

remaining amino acids that can be synthesized by HeLa cells21, the MMID for alanine was 

consistent with synthesis from pyruvate, and nearly all aspartate was derived from 

oxaloacetate, while asparagine, serine, and glycine were not synthesized from glucose or 

glutamine (Fig. S3).

The carbon skeleton of arginine was not synthesized, consistent with arginine being essential 

for HeLa cells21. In addition, both nitrogens in arginine were unlabeled, consistent with the 

lack of an active urea cycle in these cells22. Disposal of excess nitrogen according to the 

model was mainly in the form of ammonium and glutamate (alanine synthesis could not be 

estimated accurately). Ornithine, an important precursor of polyamines required by 

proliferating cells, was unlabeled, indicating that it is synthesized from arginine, not from 

glutamate. Taken together, these results indicate that carbon-nitrogen MMIDs can provide 

additional information on amino acid metabolism compared to carbon labeling alone.
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Nucleotides

Since de novo synthesis of nucleotides requires nitrogen, we anticipated that carbon-nitrogen 

MMIDs may be valuable for studying nucleotide metabolism as well. Due to low LC-MS 

peak intensities, estimated MMIDs for nucleotides were not accurate enough to allow for 

quantitative flux analysis, as seen in large squared errors for these metabolites (Fig. 2B). 

Nevertheless, the measured MMID of adenosine disphosphate (ADP) was broadly consistent 

with the known pathway of de novo purine synthesis (Fig. 4A,B). Incorporation of a labeled 

ribose moiety was evident from the 13C5 carbon mass isotopomer alone. Importantly, 

carbon-nitrogen MMIs provided evidence of de novo synthesis of the purine ring, during 

which labeled nitrogen is incorporated from glutamine and glutamine-derived aspartate, 

while the carbons of the purine ring derive from unlabeled glycine, serine and CO2. It was 

evident that purine nucleobase salvage did not occur in these cells, which would appear as 

a 13C5
15N0 isotopomer, which was not observed (Fig. 4A). About 40% of the purine pool 

remained unlabeled (13C0
15N0), suggesting that only 60% of purines were de novo 

synthesized at the 24h time point, with the remainder obtained from a pre-existing unlabeled 

purine pool, possibly including turnover of RNA (Fig. 4B).

For pyrimidines, UDP-glucose was the only pyrimidine-containing compound definitively 

identified from this experiment (Fig. 4C). While we could not resolve all carbon-nitrogen 

MMIs in this large molecule (m/z = 565), some MMIs could be identified without risk of 

confounding. The abundant 13C6
15N0 MMI indicated incorporation of labeled glucose 

(13C6) into pre-existing unlabeled UDP, which may reflect ongoing glycogen synthesis. The 

presence of various 15N1 and 15N2 mass isotopomers indicated synthesis of the pyrimidine 

ring from aspartate, glutamine and CO2. The model estimated 75% of pyrimides to be de 
novo synthesized at 24h (Fig. 4D). As with purines, there was no evidence of salvage of 

pyrimidine nucleobases, since 13C5
15N0 or 13C11

15N0 MMIs were not observed (Fig 4C); 

this was expected since the medium did not contain these metabolites. In summary, the 

carbon-nitrogen MMIDs of nucleotides were in good agreement with the known metabolic 

network structure, and provided evidence of de novo nucleotide synthesis and turnover.

Discussion

Our results indicate that simultaneous tracing of isotopes in multiple elements such as 13C 

and 15N is experimentally and computationally feasible, and allows for a more detailed 

analysis of the metabolic network than with single 13C labeling alone. In particular, amino 

acid metabolism and nucleotide synthesis are clearly observable with this approach. 

Although this information might also be obtained using additional 13C tracers in parallel 

labeling experiments, as reported by others23, multiplexing tracers may generate more 

information per experiment, and provides independent, direct evidence for nitrogen 

metabolism. Our computational framework also allows handling other isotopes of interest, 

such as 2H, 18O or 24S, in a uniform, systematic manner. The multivariate methods presented 

herein is a straightforward generalization of the EMU methodology. In our experience, the 

increase in mass isotopomer variables is not prohibitively large: for the model used herein, 

we obtained a total of 3,317 MMI variables using carbon-nitrogen EMUs, compared to 

1,971 when treating carbon only. Also, introducing additional elements tends to result in 
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more and smaller EMU subnetworks, which reduces the computational complexity of 

solving EMU balance equations. Methods based on the cumomer framework24 can be easily 

extended along the same lines.

While our computational method can simultaneously track isotopes in any number of 

elements, a practical limitation is that low-abundance metabolites become more difficult to 

measure as the metabolite pool is divided into a large number of isotopomers. For example, 

if one would consider the isotopes of 13C, 2H, 15N, and 18O simultaneously, even a simple 

metabolite such as serine (C3H7O3N) has a MMID with dimensions 4 × 8 × 3 × 2 (192 

isotopomers total). Therefore, multiple isotopes will likely be most effective when studying 

compounds that generate strong LC-MS peaks. In addition, mass resolution limits what 

isotopes can be confidently resolved, particularly in larger metabolites such as UDP-glucose. 

Moreover, natural 34S1 isotopomers are present at +1.996 Da above the base isotopomer 

with ~4% relative abundance, and may be confounded with 15N2 mass isotopomers at 

+1.994 Da. In our data, only glutamylcysteine (C8H13N2O5S) and reduced glutathione 

(C10H16N3O6S) could theoretically generate both 15N2 and 34S1 mass isotopomers, and in 

these cases 15N2 was not present, but this caveat remains important. In our study, a mass 

resolution of 70,000 was sufficient for all but the largest metabolites. Higher resolution mass 

analyzers could theoretically allow using multiple isotopes to generate more rich data. The 

MMID approach could also be useful with other analytical methods, in particular the 

recently introduced high resolution GC-Orbitrap instruments. Future work could also 

explore combining the MMID methodology with data-dependent tandem mass spectrometry 

to determine positional isotope incorporation from MMIDs of metabolite fragments 

(MEMUs).

The use of multiple isotopes markedly increases the number of measured mass isotopomers, 

which provides additional information, but also reveals discrepancies that may go unnoticed 

when fitting carbon isotopomers only. While more measurements is of course desirable, it 

also places high demands on an accurate model of cellular metabolism, rendering model 

fitting more difficult; this was previously seen in a large study19 of E. coli metabolism, 

consisting of 162 measured mass isotopomers (carbon only) from 13 metabolites. Our 

analysis required fitting 462 carbon-nitrogen mass isotopomers from 29 metabolites, and 

although our model agreed reasonably well with data, we were unable to reach a statistically 

acceptable fit, particularly for nucleotides. Partly, this may be due to model errors, such as 

neglected reactions, substrate channeling, and metabolite pools that have not completely 

reached steady state. Also, our model includes balancing of cofactors like NAD and NADP, 

which imposes additional constraints rarely included in metabolic flux analyses. However, it 

is also evident that the error model underlying the standard χ2 model fit criterion (zero bias, 

normal distributed residuals) is not fully appropriate for orbitrap mass spectrometers, as low 

abundance mass isotopomers were systematically underestimated (Fig. S1). Future work 

should explore alternative error models for such data in order to take full advantage of the 

rich isotopomer patterns observable with high resolution mass spectrometry instruments.

In addition to establishing a framework for isotope tracing with multiple elements, this study 

also revealed a number of interesting metabolic features of the HeLa cell line. These cells 

synthesized only a few amino acids, namely glutamate, aspartate, alanine and proline under 
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standard culture conditions, while the remaining are presumably obtained from the growth 

medium. Interestingly, the amino acids synthesized generally appear to have important roles 

in central metabolism independent of protein synthesis: glutamate is a key amine group 

donor in various amino transferases; aspartate is involved in the malate-aspartate shuttle, 

which is known to be active in a variety of cultured cells25; and alanine has been suggested 

to act as an ammonia scavenger26. Why proline is synthesized to a large extent despite being 

present in the medium is not clear, although it has been hypothesized to act as a redox carrier 

in mitochondria27. In addition, while some cell lines have been reported to be dependent on 

serine synthesis from glucose28, we find little evidence of serine synthesis in HeLa cells. 

Indeed, a recent report indicated that serine synthesis varies dramatically between cell 

types29. The regulation of specific amino acid synthesis pathways by amino acid availability 

is still not well understood30, and we anticipate that our method may be useful for studying 

these processes. Our analysis was also informative for studying nucleotide metabolism, and 

suggested compartmentalization of glutamate not evident from carbon isotopomers alone. 

Extending these studies to additional cell types, both normal and transformed, will be of 

importance for better understanding cellular metabolism.

Conclusions

Simultaneous tracing of carbon and nitrogen in mammalian cells is feasible with modern 

high-resolution mass spectrometers, and computational methods for steady-state metabolic 

flux analysis can be extended to handle the resulting data. Nitrogen isotopomers are 

informative for areas of amino acid and nucleotide metabolism that are rarely addressed 

using 13C tracers. Although further work is needed to fully understand the statistical 

properties of full-scan high resolution mass spectrometry data, multivariate mass 

isotopomers obtained from dual substrate labeling provides rich information that can help 

advance our understanding of systems metabolism.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(A) Example 13C and 15N mass isotopomers intensity peaks in glutamine in a single scan of 

LC-MS profile mode data. (B) Mass isotopomers peaks of glutathione, as in A. (C) Region 

of profile mode LC-MS data showing chromatographic elution of glutathione mass 

isotopomer peaks, from the same sample as in B. (D) MMID of glutamine depicted as an 

array plot. (E) MMID of glutamine. Error bars denote absolute standard deviation of 

triplicates. MI, mass isotopomer. (F) Histogram (gray bars) and cumulative density (solid 

line) of MMID standard deviations across all measured metabolites. Undetectable mass 

isotopomers (zero in all samples) were excluded. Rightmost histogram bin represents all MI 

with standard deviation > 0.03.
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Figure 2. 
(A) Model fit to measured MMIDs after 24h culture in labeled medium. Results for one 

sample is shown; all replicates were similar. (B) Total variance-weighted squared error per 

metabolite for each of 3 replicates, joined by solid lines. Difficult to fit metabolites are 

indicated: glucys, gamma-glutamylcysteine; adp, adenosine diphosphate; udpg, uracil 

diphosphate-glucose.

Nilsson and Jain Page 14

Mol Biosyst. Author manuscript; available in PMC 2017 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
(A) Measured, fitted mitochondrial and fitted cytosolic carbon-nitrogen MMIDs of 

glutamate after 24h culture in labeled medium. Complete MMIDs are shown as array plots, 

selected isotopomers as bar charts. (B) Model of glutamate metabolism (simplified) with 

fitted MMIDs. Mitochondrial glutamate (upper) reflects synthesis from glutamine, while 

cytosolic glutamate (lower) is affected by aminotransferase activity, resulting in a smaller 

fraction 13C5
15N1. (C) Measured and fitted carbon-nitrogen MMIDs of proline, as in A.
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Figure 4. 
(A) Measured and fitted carbon-nitrogen MMIDs of adenosine diphosphate (ADP) after 24h 

culture in labeled medium. Complete MMIDs are shown as array plots, selected isotopomers 

as bar charts. (B) Schematic of purine synthesis with fitted MMIDs. Percentages indicate 

relative contribution of pathways according to model estimates. (C) Measured and fitted 

carbon-nitrogen MMIDs of uracil diphosphate-glucose (UDP-glucose) after 24h culture in 

labeled medium. (D) Schematic of pyrimidine synthesis, as in B.
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