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ABSTRACT

A new finite element for the linear analysis of thin elastic
shells of revolution by the displacement method is derived, tested
and discussed. It offers an alternative to the curved elements
of revolution, with displacements represented by polynomials and
Fourier series in_the meridional and circumferentiai directions
respectively, which are ordinarily used to solve nonsymmetrical
deflections of this type of shell, The principal lines of cur-
vature, which coincide with parallel and meridian lines in
axisymmetric shells, are used to delimit the new element and as
a basis for the curvilinear coordinates used throughout the
derivation.

Because 1atér extension of the element to the large deflec-
tion range is foreseen, special care is taken in the selection
of strain-displacement relationships. Sanders' expressions are
chosen and discussed with regard to linearization, effects of
small and large rigid-body motions.

Bilinear and bicubic interpolation functions approximate
the surface and transverse displacements, respectively. Because
they are expressed in terms of curvilinear coordinates, these
functions provide compatible displacements but do not include
rigid—bgdy motions,

A general procedure to describe rigid modes, to find if
they are already represented in the stiffness matrix, and add
them if they are not, is presented and applied to the new shell

element., Unfortunately, the addition of rigid modes can render

the displacements incompatible,
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Several examples are solved by means of a specialized com-
puter program: rectangular and circular plates, rings, cylin-
drical and spherical shells, hyperboloids of revolution, They
permit drawing conclusions about the efficiency of the element

and the relative importance of rigid modes and displacement

incompatibilities,
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NOMENCLATURE

A list of all important symbols in the text is compiled
here; most often, the place where they first appear is also indi-
cated, Very few of them have two meanings; these are clearly
defined and should not confuse the reader.

The diagonal summation convention is used in Chapter 2 with
Latin indices ranging from 1 to 3 and Greek indices from 1 to 2,
In all other chapters, the matricial notation is used and sub-
scripts refer either to the elément corners i, j, k, 2 or to

some descriptive characteristic of the element they affect,

L 1,1 ]T matrix and matrix transposed

{3
-

i
N
~

=

column vector

]
~
—

=

row vector

partial and covariant derivative with

b
L 4 respect to variable xI (2.8)
( )“A surface covariant derivative with
respect to XA (2.20)
d " 9 ) . ) i
() = 35 ()° = 36 partial derivatives with respect to the
element surface coordinates (Table 3,1)
A element area
AA and Ea surface base vectors in the undeformed and
deformed configuration (2,13)
AAB and auB surface metric tensor in the undeformed
! and deformed configuration (2,15)
A and a determinant of the above two metric
tensors
BAB and de N second fundamental form in the undeformed
and deformed configuration (2,18)
[B] matrix of interpolation functions for

strains (3, 30)



[D]

IJ

o

AB
E(AB)

{E}

f f

u v
F , F, F
u v
{F}
EI and gi
GIJ and gij
G and g
h
A /.\ A
1 "or g
KAB
[X]
[Kp1, [K,]

elasticity matrix (3,33)
Young's modulus

Almansi strain tensor (2.30)

middle surface components of EIJ (2.44)

physical components of %AB (2.84) to
(2.86)

vector of physical components of the
linearized surface strains and changes

of curvature (3,31)

displacement interpolation functions
(3.20)

first and second derivatives of the above
functions

distributed and concentrated external
loads in the direction of u, v, w

displacements

vector of the generalized nodal forces
equivalent to the external loading (3.52)

base vectors in the undeformed and
deformed state (2.3), (2.33)

metric tensor in the undeformed and
deformed state (2,3), (2,29)

determinant of the above two metric
tensors

shell thickness

normalized orthogonal base vectors

tensor of surface curvature changes (2,.44)
element stiffness matrix (3,39)

element stiffness matrix when it is
necessary to specify that deformation

displacements (4.,40) or total displace-
ments (4.45) are involved



(€, K.,
[Kopd, [K ]

1

M(11),...,mM(21)
N(11),...,N(21)

N =4a;andn = a

o]

and,E

g and'g

xi

submatrices in the augmented stiffness
matrix (4.41)

element meridian length

physical components of shell bending
moments (4,61)

physical components of shell membrane
forces (4.61)

unit vector normal to the middle surface
before and after deformation (2.11)
and (2.36)

uniform pressure force (Table 3.2)

position vector of the point P in the
shell middle surface before and after
deformation (2,35), (2,36)

components of the position vector'E with
respect to the local Cartesian basis
at the element center 0 (4.,10)

position vector of a point Q before and
after deformation (2,27)

parallel radius, first component of the
cylindrical coordinates (r, 6, z) used
to define points on the shell middle
surface (2,91)

parallel radius at the element center O

radius of a circular meridian arc or
spherical shell

curvature radii of a surface along the
coordinate lines (2,25)

rigid translations along the general
Cartesian basis (Section 2,9.2)

vector of the generalized nodal forces
(Table 3,1)

same as above when it is necessary to
specify that total, deformation or rigid
displacements are involved (4,35)



t=rd9

[T,

Tll,... 33
[,

=t

(vpd, fvy), fv)

xii
meridian curvilinear coordinate

parallel curvilinear coordinate in case
of large radius (2,107)

torsion of a surface (2,26)
transformation matrix between local
Cartesian bases at the element center O
and the middle surface point P (4.4)

components of the above matrix (4.5)

transformation matrix between {UR} and
fvpl (4.20

strain energy (3,32)

'displacement vector of a point P in the

shell middle surface (2.38)

surface components of the above vector
(2,38)

first physical component of the displace-
ment vector U (2,74)

rigid translation at element center O
(4.6)

vector of the small rigid motions at the
element center 0 (4.19)

displacement vector

second physical component of the dis-
placement vector U (2,74)

rigid translation at the element center O
(4.6)

vector of nodal degrees of freedom
(Table 3,1)

same as above when it is necessary to
specify that total, deformation or rigid
displacements are meant (4,32)

normal component of the displacement
vector U (2.38)



XI and x
ZI and zl

Zy, Zy, %, and

F12 gy F3

Z = X3 and z = X

3
,GA
e{11),..., €(32)

1L ,..s, W12)

xiii
third physical component of the displace-

ment vector U (2.74)

rigid translation at the elemént center O
(4.6)

eigenvector corresponding to the eigen-
value Xn (Section 4,4)

curvilinear coordinates in the undeformed
and deformed state (Fig. 2,1)

general Cartesian coordinates in the un-
deformed and deformed state (Fig. 2.1)

local Cartesian coordinates referred to
the element basis at O before and after
rigid motions (4.12)

curvilinear coordinate normal to the shell
middle surface before and after
deformation (2,11), (2.36)

third component of the cylindrical
coordinates (r, ©, z) used to define

points in the shell middle surface (2,91)

same as above at element center O

element parallel opening (3.19)

intermediate Quantities defined in (2,57)
to (2.59)

rigid rotations (Sections 2.4.2 and 4.2,3)

Christoffel symbols of first and second
kind (2,.6)

Kronecker delta

intermediate quantities defined in (2,49),
(2.50) :

physical components of the linear strains
(2.78) to (2,83)

physical components of the nonlinear part
of the Lagrangian strains (2,84) to (2,86)



6
o

n(11),..., n{21)

2]

(6,1, [2)]

e

Xiv
dimensionless element curvilinear coordi-
nate in the parallel direction (3.18)
second component of the cylindrical
coordinates (r, 6, z) used to define
points in the shell middle surface (2,91)

same as above at the element center O

physical components of the linearized
curvature changes (2,88) to (2.90)

nth eigenvalue of the element stiffness
matrix (Section 4,4)

Poisson's ratio

dimensionless element curvilinear coordi-

nate in the meridian direction (3.13)

meridian slope measured from the vertical
(Fig, 2.2)

matrix of interpolation function for
displacements u, v, w (3,29)

same as above when it is necessary to
specify that deformation or rigid dis-

placements are involved (4.17), (4.47)

vector measuring the rotation of the
middle surface normal (2.37)

components of K'(2.39)
intermediate quantity defined in (2,69)

physical component defined in (2.75)



1. INTRODUCTION

1.1 Objective and Scope

The purpose of the present thesis is to formulate and test a
new finite element for thin shells of revolution, capable of

solving axisymmetric and asymmetric problems. Only linear appli-

cations will be considered here but a possible extension to

geometrically nonlinear problems was considered from the start and

played an important role in the selection and development of the

element,

This introductory chapter will review the background material
and explain the decision-making process which finally led to the
method chosen to solve the problem at hand: how, by ;uccessive
elimination, it was decided to select a numerical approach, the
finite element method, and finally, a doubly curved, quadrilateral
element,

Section 1.2 will justify the problem discussed in the thesis:
Why are shells of revolution used, what are the difficulties en-
countered in analyzing them, why should one study large deflec-
tions of shells, why is a numerical approach desirable? Past
attempts at a numerical solution will be briefly reviewed,

Then, the attention will focus on one method: the applica-
tion to shells of finite elements., After a general presentation
of the technique, the conical frusta and curved segments
specialized for shells of revolution will be critically examined.
Neft, one will proceed to the ggnera} elements for shells: the

assemblage of flat plates, the elements based on classical shell



shear deformations, FEach category will be discussed in the 1;gpt

of the special problem one has in mind,
Finally, on the basis of the accumulated knowledge, a new
finite element will be chosen and the steps to be taken for its

development summarized,

1.2 Presentation of the Problem

1.2.1 Review of Shell Theory

The structural advantages of thin shells have long been
acknowledged: the combination of membrane and bending stiffness
lead to an almost ideal utilization of the material and to light,
elegant structures which have found numerous applications, The
gpgs}ruction industry uses them in domes, cylindrical or hypar
roofs and hyperboloid cooling towers; other industrial applica-
tions include submarine hulls, pressure vessels, pipe-lines,
storage tanks, refinery equipment and the like, But it is in the
aerospace industry, where weight is of such paramount importance,
that the most dramatic and sophisticated uses of thin shells are
currently being made,

Because it is a very challenging problem, stress analysis in
shells has received considerable attention and has been the sub-

Jject of innumerable papers in the last fifty years [89]*.

*The number between brackets refers to the alphabetically ordered
bibliography.

theory, those derived from a three-dimensional solid and including



From the beginning,it-was-understood-that to-make a solu-

—

tion possible, the otherwise three-dimensional shell problem had

i it

to be reduced to one characterized by two-dimensional field
equations. The first complete linear theory, based to some ex-

tent on Kirchhoff's earlier work on plates [64], was given by
ol (NN Sl B~ oo B i | Y

Love [73]. Most authors have derived their equations on the

basis of the so-called Lovefgirchhofg_gg§umppiqps;)

R r————AS RS

a) points which lie on a normal to the undeformed middle surface
also lie on a normal to the deformed middle surface;

b) the effect of the normal stress acting on surfaces parallel
to the middle surface may be neglected in the stress-strain
relations;

c) the displacements in the direction of the normal to the middle
surface are approximately equal for all points on the same
normal,

But, to quote Naghdi (1963) [857]: ''Since the appearance of Love's

work, so far as the foundations of the theory are concerned,

despite extensions, generalizations, re-examinations and re-deri-
vations of the equations of the linear theory, there are still
unsettled questions!" Namely, what constitutes a first approxi-
matiop (comparable to the one used in the theory of bending of

plates)? In the light of the contradictory assumptions b and c,

what are satisfactory constitutive equations?

Koiter [66] pointed out that complete rigor in an analysis
based on approximative basic assumptions is, of course, meaning-

less, He then proceeded to derive a set of equations, for both



the linear and nonlinear theory of shells in as simple a form

as is consistent with the basic assumptions. His equations

coincide with those independently derived by Sanders [106, 1077,

" They do not present any of the inconveniences affecting some

other theories:

a) the equilibrium equatién of a shell element about the normal
to the middle surface is identically satisfied;

b) Betti's reciprocity principle is satisfied;

c) the equations are invariant under rigid body displacements;

d) they remain invariant under a transformation of the middle

surface coordinates,

Sanders-Koiter equations, and sometimes the less consistent

Novozhilov's equations [93] are widely accepted as the best
linear and nonlinear equations for practical use.

More refined theories were developed. For instance, Naghdi
and Nordgren [87] presented an exact, complete and fully general
nonlinear theory of elastic shells founded under the Kirchhoff
hypothesis; but an application of Koiter's criterion for con-
sistency can show that the additional terms are practically un-
important. In recent works, Naghdi [86] and Kratzig [67, 68]
abandon Kirchhoff hypothesis and represent the deformed normal
by a power series of the curvilinear coordinates; their formula-
tion includes ordinary shell theory and Reissner's theory with
shear deformation [1037] as a particular case; although of con-
siderable academic interest, these works present the same defect

as most refined theories: they are much too complicated for
Ly SR e o



practical solutions either in analytical form or through numeri-

t; s wovi-L R 7

cal computations.

1.2,2 The Problem of Shell Instability

A linear stress analysis is not sufficient for most of the

ghells used in the aerospace industry. Here the quest for min;i
{mum—weight optimum structural designs inherently tends to undercut
.the validity of the assumptions leading to linear formulations of
the structural analysis problem, {Ed9299r_to.predict structural
behavior, it frequently has become necessary to base equilibrium“
equations on deformed geometry, to employ more exact deformation-

displacement relations and to consider the nonlinear behavior of

materials,

T emara—

Material nonlinearities and general shell geometries will
not be considered in the present work; but, even when the interest
is restricted to linear elastic materials and to shells of revolu-
tion, a number of interesting problems remain to be solved,
Many papers have been published about the stability problem
of shell structures., The objective of these studies has been to
find the buckling load i.e., the load for which
a) a perfect system admits a non trivial equilibrium configura-
tions (equilibrium method) ,

b) the deflections of an imperfect system increase beyond any
prescribed limit (imperfection method),

c) the potential energy of the perfect system ceases to be posi-

tive definite (energy method),



d) the most general free motion of the system ceases to be bounded

(kinetic method)

Because of the mathematical complexity of the problem, the
analytical treatments of shell stability have been mostly res-
tricted to the particular cases of cylindrical, conical and shallow
spherical shells, |

_The first investigators assumed a homogeneous solution or

.membrane-type solutions for the prebuckling equilibrium. To their

great disappointment, the buckling loads determined experimentally

were only a fraction of their computed results [88].

Koiter [65], by studying the neighborhood of the bifurcation
point and the postbuckling behavior showed that the buckling load
really represents a peak of the load-deflection curve that could
be obtained only under the most ideal test conditions, The real
models are always imperfect, theMFeal boundary conditions imper-
fectly simulate the assumed ones, and asymmetrical deformations do
occur in symmetrical shells symmetrically loaded. When the
possibilities were considered analytically, the theoretical re-
sults for both the cylinder [52], [3] and the shallow spherical
cap [53], [124] were reduced to the level of the experimental
values, or even lower,

Even though their importance was suspected for some time, the

initial imperfections and deformations prior to buckling were too

difficult to be taken into account, Since modern computing tech-

niques make it feasible, most recent papers stress the need for

plotting the whole load deflection curve, preferably including the
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postbuckling range, rather than being satisfied with the buckling
— —— s = ~ — - _
load, A few papers have been published already describing the

complete nonlinear behavior of some shells but much remains to be

done in this field.

' 1.2,3 Numerical Solutions for Shells

Until the fifties, analytical results were available only
for linear shell structures: closed forms or series solutions
for particular types of shells (membfanes, cylinder, sphere,
cone, shallow shells) subjected to special loadings. Collections
of such results can be found in books by Timoshenko [117, 1187,
Flugge [327], Girkmann [41],for instance. A few buckling loads
had also been found but they were known to be unreliable,

With the advent of high speed computer, numerical methods
took over, A few of the more important developments will be men-
tioned here,

The invariant imbedding method reformulates the boundary
value problem into an initial value problem, It was applied by
Junghanss [57] and Kalnins, Lestingi [587] respectively to linear
and nonlinear elastic shells of revolution, The inconveniences
of this method are said to be:

a) the risk of numerical instability,
b) a family of problems is to be solved instead of a single
prpblem.

The nonlinear differential equations obtained in the equili-
brium approach to fhe stability problem have been solved using

the perturbation technique [607], the power series [124],



trigonometric series expansions [111] and parametric differentia-

tion [99]., These methods determine the buckling loads and mode

shapes only and tend to be abandoned in favor of techniques

covering the whole nonlinear range,

The finite differences method has been highly successful in
finding linear and nonlinea; solutions of some complex shell
forms. A few significant contributions are reviewed here below,

The small axisymmetric Qeflection problem of shells of
revolution was solved by Radkowski et al, [100], Budianski,
Radkowski [12] and Albasiny, Martin [2] solved the asymmetric
case by using Fourier series in the circumferential direction.
and finite differences along the meridian,

tﬁ‘ Archer [5] and Bushnell [14] treated large axisymmetrical
deflections; both of them use Reissner nonlinear shallow shell
equations [1027]; Bushnell also shows that initially imperfect
spherical shells can yield locally at pressures well below the
theoretical elastic collapse,

Family, Archer [297] and Kao, Perrone [59]_591ved the large
asymmetrical deformation problem by applying parallel and méri—
dian finite differences to the Marguerre equétions of shallow
shells [75]. This choice of the strain expressions essentially
restricts their investigation to shallow spherical caps.

Ball [8] solved the large asymmetrical deformations by means
of Fourier series and finite differences in parallel and meridian
directions, respectively; Sanders' nonlinear strain-displacement,

and linearized curvature-displacement relationships are used.



One inconvenience is that the nonlinear strain terms introduce a
coupling of the Fourier series terms; some are taken care of by
using trigonometric identities which lead to series whose co-
efficients are series themselves; others are transferred to the
right hand side of the system of equations and treated as pseudo-
loads. Another inconvenience is that Sanders' equafions,
especially gfﬁgg dropping the nonlinear curvature terms, are valid_

for "moderately large rotations' only; this implicitly imposes

e

limitations on their range of applicability although this must be
considered much less severe than the restrictions on Archer's

and Perrone's solutions, Indeed, Ball's paper only shows
examples of shallow caps; on the other hand he also includes
studies of dynamic effects,

Up to the present time, finite differences have not been
?gg}ied to large asymmetric deformations of deep shells or shells
With‘variable curvature like the junction of a cylinder and a
toroidal segment, Finite difference methods are difficult to use
for some boundary conditions, They also lead to trouble if variations
of the shell geometry or matefial properties (a discontinuity like
a porthole for instance) cannot be easily represented analytically
or by curve fitting,

On the other hand, the finite element method can take care
of these problems and, since it was selected for use in the
present work, its application to the shell problems will now be

more closely examined,
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1.3 The Finite Element Method

The initial development of the finite element method in the
field of structural mechanics can be traced back to a paper by
Turner et al. [1217]; the term "Finite Element" itself was coined
by Clough in 1960 [19]. Since then, the method has progressed
with giant strides. A survey of its present versatility can be
found in the monographs by Zienckiewicz [129, 130] and the con-
tributions of Argyris [6, 77. .

Concurrently with the development of new elements, papers by
Fraeys de Veubeke [337], Melosh [77], Arantes de Oliveira [4],
Felippa, Clough [31] provided the mathematical background for
the method. They showed that it is a specialized form of the
well-known Rayleigh-Ritz procedure for constructing approximate
solutions to a governing variational principle; in elasticity,
this variational principle is equivalent to the minimization of
the total energy, strain energy plus load potential, of the
system, This mathematical formulation permits a general approach
to the questions of convergence, error bounds or estimates,
element expansion requirements, etc,

Theoretically, equilibrium models or displacement models can
be developed by assuming stress fields or displacement fields over
the finite elements [347], But in shell theory, the second approach
has been used primarily and the following requirements for the
displacement functions have gradually taken shape as a result of
theoretical work and practical experience by a number of

researchers,
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The continuity of displacement and slope must be enforced

at the inter-element boundaries, This is due to the fact
that the equilibrium equations of thin shells with the
Kirchhoff hypothesis, written in terms of displacements, are
a set of fourth order differential equations; the related
minimum potential energy functional requires second order
derivatives in the unknown displacements to be evaluated; in
the finite element method this means that the element dis-
placement assumption must lead to continuous displacement
fields which have continuous first derivatives,

The rigid body motion of an element must be represented in
the displacement functions., This condition yill pe discus§ed

at length later in the thesis,.

A1l "pertinent" constant st wwin Wedes must be included [377.
As the grid is refined, the strain state within an element
approaches a constant value; if a constant value of strain
lacks representation in the subject formulation however, con-
vergence to the correct result cannot be achieved, A typical
exampie, borrowed from>the plate theory, is the square plate
simply supported at three corners and loaded at the fourth;
satisfactory convergence cannot be achieved unless the finite
element contains a constant twisting mode [97.

Greene et al, [48]/claim that the meridian, parallel and
perpendicular displacements u, v and w should be represented
with equal accuracy, which, in general, means by polynomials
of equal degree, This requirement is indispensable to main-

tain continuity if u, v, w are displacements in some global
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coordinate system but may be relaxed if they are curvilinear
displacements expressed as functions of convected coordinates.
This condition may also have arisen in the need to better
approximate the rigid body modes; although desirable indeed,
it should not be considered as an absolute requirement,
All‘these conditions presuppose that the continuum itself,
i,e, the shell and its boundary conditions, are correctly repre-
sented, A number of successful shell'elements have been developed,
however, in which one or several of these requirements were not

met, They are now goiﬁg to be reviewed.

1.4 Specialized Finite Elements for Shells of Revolution

The first efforts were directed towards axisymmetrically
loaded shells of revolution, After pioneering attempts by Meyer,
Harmon [807] and Popov et al, [74], a conical frustrum element was
set up [447], [98], [27], in which u and v were represented by
linear functions and w by a cubic function of the meridian
coordinate s; asymmetric deformations were represented by
Fourier series expansions of u, v, w in the parallel coordinate 9.
In this element, all rigid body modes are correctly represented
(Fig. 1.1). 1Its disadvantages are that many elements are needed
where the shell is strongly curved, residual meridional moments
may exist even with consistent loading and inaccuracies can be
expected in the regions of high stress gradients [56],

This was corrected by the introduction of a curved element
for axisymmetric [56] and asymmetric problems [1177]. The dis-

advantage of this element, however, is that, unless explicitly
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introduced as in [567], [40], the rigid-body motions cease to be
present except in.the limit when the curved segments are so

small as to be almost conical, This may require again many
elements for deep shells and is even more disturbing in nonlinear

theory when large rigid motions may be involved.

Yaéhmai [125 and Sharifi [110] avoided the difficulty in the
large axisymmetric deformations of elasto-plastic and sandwich
shells by using a curved element but displacements measured along
its chord; they also found that a cubic rather than a linear
polynomial for u was desirable.
Stricklin [49] first showed that for a slope change of 2=
or less the axial rigid motion could be considered as included
in the curved element with linear u and cubic w, Later [76],
he also acknowledged that cubic u and v were preferable to
reasonably approximate the asymmetric rigid motions, His dis-
cussion is based on a comparison of the eigenvalues of the
element stiffness matrix; they are representative of the energy
associated with straining eigenmodes and should be zero for
rigid modes. Nevertheless, he used trigonometric series along e,
cubic w and linear u, v along s in a series of papers dealing with
large asymmetric deflections of shells of revolution [113, 114,
115, 1167,
Several criticisms may be made of Stricklin's approach,
a) Novozhilov's nonlinear strain-displacements and linear curva-
ture-displacements were used; but some terms were dropped with

the effect that some rigid body modes produce strains even if
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c)
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these displacements are perfectly represented.

Fourier expansions are effective in linear cases because
trigonometric relationships make the coupling of the
different terms in the series disappear when the stiffness
matrix is formed by integration over the element area. In
the nonlinear case,triéle and quadruple products of trigono-
metric functions have to be integrated; the coupling does not

1"

disappear. Stricklin himself [114] confesses that the
numerical integration over the element involves many terms

and requires 20,000 computer storage locations for the

program statements alone," and that was at a time when he
considered only third order trigonometric terms! Later he
realized that fourth order terms were required especially in
the vicinity of the buckling load and included them at the
expense of further programming complexity [50].

The rigid motions of the element of revolution are roughly
those of a parallel circle of the shell, 1In some applications
it is conceivable that important rotations occur within the
element itself, for instance a twisting along the parallel
direction (Fig. 1.2). In such a case, the use of a linearized

curvature-displacements relationship becomes questionable,

Navaratna [92] also used the same kind of element in a non-

linear analysis, But he chose the stability approach i,e, res-

tricted himself to the study of buckling loads and modes and

linearized the prebuckling state which allowed him to consider

only third order trigonometric terms, Even so, a close
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Fig. 1.2, Rigid Motion and Deformation Applied
to a Conical Frustum or to a
Quadrilateral Element,

examination of his work [917] reveals again the complex coding

problems generated by the coupling of the Fourier terms,

1.5 Finite Elements for General Shells

Since the element of revolution leads to undesirable charac-—
teristics under large asymmetric deflections, the alternatives

will now be considered., An extensive critical survey of general

shell elements existing in 1969 was given by Gallagher [37] while
a more limited review accompanied by numerical examples was given
by\élough, Johnson in 1970 [207]. The most significant contribu-

tion since then were presented at the Third Conference on Matrix

Methods in Structural Mechanics, 1971 [24], [38], [131].

The general shell elements used in the displacement method

can be divided into three broad categories: assemblages of flat
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plate elements, doubly curved elements based on shell theory,

doubly curved elements derived from solid elements or relaxing

some hypotheses of the shell theory,

1.,5.1 Assemblages of Flat Plate Elements
A typical quadrilateral\élement formed by the assemblage of
four triangular elements with membrane and bending stiffness was
devised by Johnson [20],[55]. Results of reference [207] show that
——
it compares favorably with a more refined element including doubly
curved triangles [112], [257]. In a version modified by Felippa
it was even successfuliy applied to nonlinear dynamic problems
[187.
The shortcomings of the flat plate models are:

a) The behavior represented by the differential equation is not
approached in the limit of refinement by the flat plate
representation, Fulton et al. [35] indicate that this effect
is of small magnitude,

b) The discontinuities of slope between adjacent elements may
introduce residual bending moments as already mentioned for
the conical frustum.

c) The rigid body modes are easily represented but lack of
interelement compatibility of displacements may be expected.

d) The effects of curvature in the form of the coupling of mem-
brane and flexural behavior is lost in the interiors of the
individual elements,

The last defect might prove crucial in a stability analysis. Any-

way, it seems pointless to base a general refined nonlinear shell
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analysis on an element which poorly approximates the geometry
in the first place,

1.5.2 Curved Elements Based on Shell Theory

Gallagher's discussion of doubly curved shell elements [37]
will not be repeated. Only a few characteristics and their impor-
tance in nonlinear shell analysis will be singled out.

Several rectanéular [23], parallelogram [97 ], quadrilateral
[24] or triangular [122],[112], [11] elements are based on shallow
shell theory, either Marguerre's [75], Novozhilov's [94] or
Reissner's [1047]. Consequently, some aspects of the difference
between the shell surface and its projection are neglected in the
strain-displacement relationships. Even within the framework of
the finite element theory, Argyris [legtrqngly advises against
using this kind of element to analyze deep shells; but Cooper,
Lindberg [24] have recently devised a suitable transformation be-
tween the shallow shell degrees of freedom and those for the deep
shell, The extensioqwqf these elements into the realm of large
displacements has not been tested yet.

Doubly curved elements for deep shells seldom have midside
or internal nodes; they generally differ from each other in the
number of Degrees of Freedom® at corner nodes which, after multi-
plicafion by the number of corners, is directly related to the
order of the interpolation polynomials. Doubly curved triangles

range from 36 DOF elements with incomplete quartic polynomial for

w and complete cubic for u, v [24] to 63 DOF elements with

*Later abbreviated as DOF,
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complete quartic for u, v, w [7]. Doubly curved quadrilaterals
may possess from 20 DOF with incomplete quartic for w and
bilinear for u, v [23] to 48 DOF with bicubic polynomials for

u, v, w [10]. Generally speaking, more DOF mean improved or per-
fect displacement compatibility and representation of rigid
modes; but Argyris' SHEBA element [7], for instance, requires
more than 2000 computer storage locations for one half element

stiffness; the number of equations and corresponding bandwidth

for a réfined grid would be prohibitive for mostréf‘thé available
computer facilities, especially in a nonlinear analysis.

Except for specialized geometries like the cylinder, these
curved elements only approximate the true shell, matching the
coordinates, slopes and sometimes the curvature at the nodal
points, This seems to be of little concern to the analysts,
probably because there is already such an improvement over the
idealization by an assemblage of flat plates.

Most of the doubly curved elements include the rigid-body
motions only in an implicit manner, i.e, they are present in
the 1imit when the grid is so refined that the finite element is
almost flat. At the price of a loss of compatibility, EgeMrigid
motions have been explicitly introduced by Cantin [16, 17]

in a 24 DOF rectangular element for cylindrical shell, This made

the element superior to a similar one having twice as many DOF

[10].

When the isoparametric concept is used, the element geometry

and the displacement field are approximated by the same type of
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interpolation functions and the r;gid body modes are automatically

inpluded. This aﬁproach is useful when the middle suféaéé described
in a Sh?1179095ﬂ29?t? system ceases to bg'theu@pqtigonveniént system of
reference; this happens in the third category of shell elements
described hereafter but has been little used in the frame of
classical shell theory.

To the author's knowledge, few of these doubly curved
elements based on shell theory have been applied to geometrically
nonlinear problems.' Schmit, Bogner, Fox [108] studied finite
deflections of curved panels. Gallagher studied the elastic

stability of cylinders and shallow shells [40] using his first

element, lacking compatibility and rigid modes, and the postbuck-

ling behavior of a curved plate [38] using an extension of
Bogner, Fox, Schmit element. Finally, Dupuis et al. [28] studied

a shallow spherical cap under point load using a triangular

element.

1.5.3 Curved Elements with Relaxed Shell Theory

Recently many authors have proposed to relax some of the
Kirchhoff-Love hypothesis.,
Wempner, Oden and Kross [126] derived a linear theory for
the deformation of thin shells, including transverse shear defor-
mation, in terms of the middle surface displacements and the
rotations of normals to the middle surface., The advantage of this
formulation is that the equilibrium equatigpg Qf thin ghells with

transverse shear strains are a set of second order differential

equations; the related minimum potential energy functional
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requires only first derivatives in the unknown displacements to
be evaluated; in the finite element method, this means that the

element displacement assumptions need only provide continuous dis-

placement fields (instead of coqtinuous displacement apd slopes
as required with classical shell-theory). .

On the basis of this fheory, Key [61, 627 has developed a
successful 36 DOF quadrilateral element for shells of revolution,
while Dhatt [25] concentrated on curved triangles with 27 DOF
after static condensation,

A broader approach was taken by Ahmad, Irons, Zienckiewicz
[1] in which a shell element with shear deformation is obtained

by degenerating a three-dimensional solid element, Reference [1]

and [96] show remarkably good results for shells of revolution
with symmetric or asymmetric loading and general moderately
thick to thin shells,

With the development of these degenerate three dimensional
elements, it seems that one hag come full cifqle: the Kirchhoff-
Love hypotheses, which were originally introduced because one was
unable to solve the three-dimensional problem, are dropped
because this problem is now becoming tractable, Does this mean
that the classical shell theory will disappear? Probably not
because its foundation is a solid one for thin shells, where a
three-dimensional approach may fail, and reasons of economy will
always give the edge to a two-dimensional element over a three-

dimensional one whenever equal accuracy is expected,
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The nonlinear theory corresponding to this third category
of shell elements is still in development. An element for large
deformations of membranes [51] and another for 1a£ge axisymmetric
displacements of shells of revolution [70] are being tested in
é;;keley, while Zienckiewicz and Nayak just published their

first nonlinear results [130]. Much more can be expected along

these lines in the future,

1.6 Selection of a New Element

The experience gained by critically reviewing past attempts
can now be used to seléct a new element well adapted to the
present problem: a linear solution of shells of revolution
nonsymmetrically loaded, susceptible of later extension in the
field of large displacements.

The elements of revolution must use Fourier series in the
asymmetric case; attempts to replace these by other functions, in
particular by Hermite polynomials covering parts of the circum-
ference were unsuccessful, If large deformations are expected,
higher order strain must be used; these are known to introduce
coupling of Fourier terms and almost insurmountable programming
difficulties.

To solve geometrically nonlinear problems with finite
elements, a special technique has been used frequently in frame
problems [547]. It consists in dividing the element displécements
into a rigid part and a deformation part. When the elements are
small enough, this insures that the deformation displacements are

small; less refined strain expressions can be used; most of the
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geometric effects will be taken into account when the displaced
element is reincorporated into the global structure. This tech-
nique was extended to plates by Murray [81, 827 and proposed,
but not effectively used, for shells by Wempner [125]. Because
so much deformation can occur within one element (see Fig. 1.2),
it could not be applied with elements of revolution.

Therefore, elements of revolution are eliminated and the
search is restricted to triangular or quadrilateral elements.

Assemblages of flat plates are inconsistent with the level
of refinement expected. from a nonlinear solution; they are not
considered,

The elements including shear deformations are not considered
either although this decision is much harder to justify. The
primary goal of solving thin shells is one reason; the 139# ofﬂa
nonlinear theory for these elements straddling the fﬁstgEffween
shell and three-dimensional theory was certainly another at the
time of the choice. By contrast, with classical shells, the
trouble would rather be a plethora of theories!

Among the doubly curved elements, the best having a reasonable
number of DOF seem to be Cowper's triangle with 36 DOF [24] and
Bogner et al, quadrilateral [108] with 48 DOF generalized by
Gallagher [387]. Both of them give compatible displacements but
do not include explicit rigid body modes.

Nonlinear shell theories are less complex when the curvi-
linear coordinates coincide with principal lines of curvatures,

These are easiest to find in shells of revolution: they are the
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meridian lines and parallel circles, For these reasons, the
quadrilateral element with edges cut along parallels and meridian
lines is preferred.

If the element is to be used in a nonlinear problem, where
the structural system is going to be solved again and again, it
is very important to limit the number of DOF, and 48 is a pretty
high number of DOF for one element,.

In the case of a cylindrical shell element, ng?}gﬁjl?j sim-

plified Bogner's element by using bilinear instead of bicubic

polynomials for u and v, which reduced the DOF to 24, But he

also added, and condensed out, explicit rigid body modes, Since

his element was successful, the same approach will be attempted

here, e

1.7 Summary of the New Element Development

In Chapter 2, Sanders' strain-displacement relationships in
convected coordinates will be established and specialized to
shells of revolution, Effects of small and large rigid-body dis-
placements will be considered in Sanders' expressions and a few
other shell theories of freqﬁent use,

In Chapter 3, the stiffness matrix of the selected doubly
curved quadrilateral eleﬁent for shells of revolution will be
established, fhe number of Gaussian points necessary for numeri-
cal integration will be experimentally determined.

The element gives compatible displacements but lacks rigid

body modes; if the rigid modes are introduced, it ceases to give

compatible displacements, The relative importance of
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compatibility and rigid modes is still a subject of controversy
and it is impossible to decide a priori which one of the two
alternatives hereabove is best., This question will be settled
in Chapters 4 and 5.

A general procedure to find which rigid modes should be
added and how to add them will be presented in Chapter 4 and
demonstrated on a circular plate, cylindrical, conical, spherical
and toroidal shells,

Different examples with predominant membrane or bending
states, with symmetric. or asymmetric deflections, with or without
rigid modes, will finally be solved in Chapter 5 to evaluate the
general behavior of the element and assess the effect of rigid

modes,
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2. STRAIN-DISPLACEMENT RELATIONSHIPS

2.1 Geometrical Preliminary

2.1.1 Some Results from the Geometry of Euclidean Space

Let ZI (1=1,2,3) refer to a fixed right—handed'orthogo-
nal Cartesian system in a Euclidean three-dimensional space and
let X; denote an arbitrary curvilinear coordinate system defined
by the transformation

zT g (X7) . | (2.1)
Denoting by 3 the position vector of a generic point with coordi-
nates XI, the square of a line element is given by

dQ .dQ = G, dX'dX’ (2.2)
where

Gr=Q,; : Gy = G.Gs (2.3)

represent the covariant base vectors and the metric tensor
respectively, and the comma indicates partial differentiation,.

; . ’ I ;
The reciprocal, contravariant base vectors G and the conjugate

tensor GIJ are defined by

IJ JI
¢' - 6™ EY 67 = BE 7 . B
= —-F <~ (2.4)
G
JI : :
where % are the cofactors of GIJ in the expansion of the
determinant G = \GIJ“

The Christoffel symbols of the first and second kinds, de-

fined by
L
Lok = Guelzs - E[GIK;J+ i~ GIJ;K] » (2.5)
may, in view of (2.3), also be expressed as
I I
Fz.nc" gx'gr;.r > [_}K =G g.r,x (2.6)



28

and hence

K
Grs =1y G - (2.7
The covariant differentiation will be designated by a stroke ([).

As an example, the covariant derivative of a mixed tensor of

second rank Ti is defined by

T}'K = T.;,K + FZKT; e .r‘;< T: . (2.8)

2.1.2 Some Results from the Geometry of a Surface

Let XI be identified with a set of normal coordinates in a
Euclidean three-dimensional space (Fig., 2.1, page 31) so that the
position vector‘g now éssumes the form

Q = P(XIX?) + XA, (X, X?) = P(X.X?) + ZN(X}X?) (2.9
subject to the restriction

Q:A'éJEQ)A"N=O ’ 43'.65

o
Z
=

= 1. (2.10)

-
—~

In what follows, Greek capital indices A, B, I' will have the
range 1, 2, while Latin indices will continue to assume the range
1, 2, 3., Thus, for the space of normal coordinates defined by
(2.9) and (2,10), the base vectors and the components of the

metric tensor are

Ga=Quu=Pa+X°Bu=Fa+ZN, , G; =4, =N , an
Gap = G- G, , Gu3=0 , Gy =1 . (2.12)
The equation X3 = Z = 0 defines a surface whose position
vector is P, If one introduces the notation
én =P = Ga (x30) , (2.13)

one has, from (2.10),

AA'AJE!.\A'N=0 > ﬂ-’,ﬂ'ﬂ'i =NA.N=O (2,14)

ol i~ -~ ~

the first of which reveals that 53 is perpendicular to the surface
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L

X =% =0 at every'point: A’ is the unit normal to the surface

3
defined by‘B (hence the notation‘g used in parallel With,ﬁg)'

1 2 i %
The X and X coordinate curves form a system of curvilinear
coordinates on this surface whose metric and conjugate tensors
are given by
A,,- A

AAB =

A (2.15)

]
2>
. >
>
>
i}
®
>

(2.16)

The square of a line element on the surface X? =EZ =0,
called the first fundamental form of the surface, is given by
dP.dpP = A, dX"dX®. (2.17)
The second fundamental form is defined by the scalar product
dP.dN = - BysdX*dX® (2.18)
where, by (2.13) and (2.14), .
-BAB:BBA=“éA'Q[78=N'ésB . (2.19)
The covariant derivative with respect to the surface metric
will be designated by double strokes (H); when applied t6 a sur-

face tensor such as Tg , it reads
A A A A ATA
TB"P =TA + LT -I0T] (2.20)
with the surface Christoffel symbols given by
A A :
Lr =é -éa,r‘ z [;Br' =@A-éﬁ;/‘ c (2.21)

The second fundamental form also satisfies the formulas of

Gauss, Weingarten and Codazzi

Aunls =Aass _L3 A = Bashs (2.22)
‘N"A = N4 =-BiAs , - (2.23)
-BAB”[' = BAI‘"B . (2.24)
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When the surface coordinates are orthogonal, the curvatures
and surface torsion along the coordinate lines are equal to the

physical components of the second fundamental form

B~ Bu_ _L , B2_Bz2z __ I | (2.25)
Au R A 22 Rz

\,%2 B, = Vzl%_f/—z B%= —LT . (2.26)

2.2 Nonlinear Strains

2.2,1 Exact Derivation

Let'g be the position vector of an arbitrary point Q in
the undeformed shell space (Fig. 2.1). Under the influence of
external loads, the shell occupies a new configuration defined by
a displacement field’x. The position of Q in the deformed state
is labelled q; it is described by the position vector

9 =Q+V . (2,27)

The squares of the length of differential elements at Q and q are

given by
ds? = G, dX'dx’ 1,7 =1,2,3 (2.28)
ds? = 9y dxédx’/ (,j =1,2,9 (2.29)

where GIJ and gij are the metric of the undeformed and deformed
space, respectively.

When the Lagrangian point of view is adopted, the deformation

is described by the Almansi strain tensor E

1J’
ds2-dS2 - 2E,,dX'dx’ (2.30)
from which it follows that
2E;; =9 dz¢ dxd Gy (2.31)

YaxT 3X7
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Using the definition of base vectors,

Gr= Qs it
I I
g(=~q1l=(~Q *Y),I gil =(§[+y’_{) ii" 2 (2.33)

in Eq., (2.31), the strain-displacement relations for the three-
dimensional space reduce to

2Er;=Gr-Ys +tGr- Vv Vu-Vor . (2.34)

To an arbitrary point Q of the shell corresponds a point P
on the middle surface which is the foot of the normal to it through
Q:

Q(XAZ) < P(X") + Z N (X/) henz. (239
Because of Kirchhoff-Love hypothesis, the same kind of relation
holds true in the deformed configuration:

g (x%x) =p(xr®) + &1 (x°) a=12 (2.36)
and it is possible to express the displacement of an arbitrary
point of the shell in terms of the displacement of the correspond-

ing point of the middle surface:

V(XYZ)= U (X")+Z ¥ (X7) (2.37)
where

U(X") = p-P =U"Ay+WN (2.38)

VX' = n-N =By N (2.39)

represent the displacement of P and the rotation of the middle
surface normal at the same point. In small strain theory,
Novozhilov [93, p. 1957 shows that the physical components of X
can be related to the direction cosines of that fiber of the shell
in the strained state which, in the unstrained state,was normal

to the middle surface,
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Substituting (2.35) into (2,32), the expressions for the

base vectors reduce to
Ga =(§5-ZB7)4As (2.40)
Gj = N (2.41)

where BAB is the metric of the second fundamental form of the
undeformed shell space

Using results established in the theory of surfaces, the

derivatives of the displacement vectors are found to be

,YJA o (( UB"A -WBj)+ Z (¥ 20 “PB?‘”,@B

c((W,, +BraU)+ Z(¥y +Bra 7)) N (2.42)

V,; = P7A4+¥N . (2.43)

Substituting from Egs., (2.40) to (2.43) into (2.34) and rearrang-

ing, the strain-displacement relations for the shell reduce to

2E = ZEAB +2 7 Kpg + terms in A (2.44)

253/) ,—;[% ""PBE/? ‘f(l*W)Ej]‘f‘Z[ABP‘/JB %"A +(1+‘V} ‘/J,A] (2.45)

2E; =(1+9)2+A" W ¥, - 1 (2.46)
where

2E1 = Uplla + Uala -2BasW + Ara E5 €4 +E3E5, (2.47)

2 Kys =(Yllg + Yella)-2Bae¥ - Bra€h -Bra€ih
+E (Vo +BEY) +E3 (Vi +Ba ¥r)

+ EN(¥ra-Brs¥) + €5 (Yela-Bra¥) (2.48)
€r =Ull, -BaW (2.49)
Ei =BI'A Urf W,A . (2.50)

The first two quantities represent the middle surface or membrane

strains and the middle surface changes of curvature or bending
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strains, respectively. In convected coordinates, they can be in-
terpreted as the changes of the first and second fundamental forms

of the surface between the deformed and undeformed state:

= ox?® dxP
2 EAB = aap a—)-(_A —57(—3 - AAB (205]—)
|
| “2Kpp = by, 0x% 22 _ B, . (2.52)
! AB dﬁaXA QXB AB

The mathematical statement of the Kirchhoff-Love hypothesis
is now used to find the components of‘i in terms of the compo-
nents of U. The conservation of the normal in direction and

length gives

Ezy =E;, =E33=0 (2.53)

i,e,, with results (2.45) and (2.46),

(82 +E8) Wy + (1+¥)EZ =0 (2.54)
(1+?’)2+AABV’A"VB—I = @ . ‘ (2.55)

Equation (2,54) can be solved for WA in terms of (1+ {):

"Uﬁ=gi(1+‘l’) (2.56)
d.‘}
3
where
al= ETELI-E](1+€3) (2.57)
al< €, € -€3(1+&)) (2.58)
al = (1+E/)1+EF)-E 67 . (2.59)

Substituting into (2.55) and rearranging, one gets

1+‘IU= a:;

\[(a3)? + A" aja}

(2.60)
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Notice that in (2,47) the first three terms are linear in
the displacements, all the others are quadratic., Although
further simplifications are theoretically possible, the finite
membrane strains can be used in their present form, On the other
hand, an exact computation of bending strains would require the
evaluation of eg and 62 by (2.49) and (2.50), a's by (2.57) to
(2.59), ¥ and wA by (2.60) and (2,56); finally, all these inter-

mediate quantities should be introduced in (2,48); it is almost

unfeasible and simplifications are desirable,

2.2.2 Small Strain Approximations

Small Stréins lead to two approximations,

The first one is to neglect the change in volume, It can
be shown (see, for instance, [937], page 191) that the denominator
in (2.60) is equal to the ratio of surface metric determinants

after and before deformation, Hence,

V(ag)‘? +A"Bajaf,‘ zw/‘; =~ 1 (2.61)

1+Y¥Y =~ a"; (2.62)

j (2.63)

The second approximation is to neglect the strains with

respect to the metric, i.e.

G[J -I-ZEIJ = GIJ . (2,64)

This leads to a series of approximate relationships between

A 3 : :
€B, EA, ¢A, V¥ ; they are given by Mushtari [83, page 19] and,

with indicial notations, by Sanders [107, page 29].
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Simplications are also obtained if orthogonal curvilinear
coordinates are chosen, not necessarily along the lines of
principal curvature,

These approximations and simplifications do not affect the
membrane strains, But, after steps not reproduced here, the

bending strains become
2Kps= Bra€f -Bra€h +€as(1+¥) ~E4]s ¥r . (2.65)

To show off the real complexity hidden behind the indicial nota-
tions, consider a conical frustum with slope ¢, parallel radius r,
curvilinear coordinates s along the meridian and © along the para-

llel; the curvature change along the € coordinate line is:

2Kyy= —r wsp U
23

4 QU2 . ,
30‘2/ ae){(f gg)[1+.ﬁ(014m<p+Wcoo&p)+§%}

_(_g.g = U’sin gp)( ‘)g[—(l’zmm cf)f

+ [%Z‘_i " sin p (r+Utsinp + W cos q))]{(g-sqi,-f U’sin LP)(%’[- Ulrcosp)

[1+_{U4Ln¢P+WC‘”‘P) }33 }

2y2 U U' , cosp W
e g m Pir ) (RO S5 « SR 5o ]

{(_g_gl_ U‘!I”Jinﬁ")g—jw"( BU‘)(‘)W UZV‘CO’J‘P)} . (2.66)

And a conical frustum must be considered as a simple type of
shell! Nevertheless, this is the kind of formula that should
theoretically be used if a conical element of revolution is ex-

pected to undergo an important twisting as shown on Fig, 1.2,
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2,2,3 Linearized Curvature Changes

If one retains linear terms only, the membrane strains

(2.47) becomes

2E,5 = Ul + Uglla -2 BasW . (2.67)
If one uses the small strain results (2.62) and (2.63) and drops
all nonlinear terms in (2.57), (2.58) and (2,48), the bending
strains reduce to

2Kpp = -(ER s + Eala) - 2BasA™Eyr ~ By€ry - Biépry . (2.68)
Let

26.)/35 = UB”A - UA”B ; ‘ (2.69)

[+]
One can rewrite QAB in terms of wAB and the linearized EAB:

£AB_=%(UA”B + Ua"n "ZBABW)"‘ZL(UA”B‘UB”/}) = éAB +Wga . (2.70)

Then,

-2Kpg = fi"3+£';”,; +B,’;CJB,~ +Bga),,,- (2.71)

~BasA™ Enr -BhErs - BLE,
Koiter-Sanders' linearized changes of curvature are identical to
the first line of the present result; both authors consider as
negligible the additional terms of the second line, Koiter, who
is only interested in a consistent linear theory, systematically
drops the terms of order "strain over curvature radius.' Sanders
neglects AFA EAF with‘respect to unity when the ''small strain"
hypothesis is introduced; he neglects EAB with respect to w in

BA

(2.70) in his "small strains, moderately large rotations' theory.
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2.2.4 Physical Components of Strains

For practical computations, covariant and contravariant
tensor components should be replaced by their physical equivalent,
In oblique coordinates, there is no consensus about what are the
physical components. But, if an orthogonal basis is chosen, the
physical components of a vectof or tensor are respectively defined

as

V<o

\l

vi\G ., =5 \IG“ =\[_\C/,_£ s (no sum) (2.72)
11

T‘{J VGHGJJ=TJI G“ = TIJ . (no sum) (2,73)
Gy \’G,,G_,,

Special notations are introduced for the displacements and the

i

T<is>

rotation about the normal

lt
g

u (2,74)

u<i> , v=U , w

w

W <12y . (2.75)

For the physical components of the curvature tensor, one has pre-

viously written

B<uy=Bf=-L 1, B<22>=B§=~% P (2.25)
R, 2
Bey <\[Av B! - \|A22 B2 --L , (2. 26)
Az Ay T
where Rl’ Rz and T are the principal radii of curvature and torsion
of the middle surface along the orthogonal coordinate lines.
With an orthogonal basis,
12 2/
A12=A2’=A -_—A =0
A =A Az
A" = i, A22=-1- (2.76)
An Aa2
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and the only nonzero Christoffel symbols reduce to

]7:=N_L_ IVAN r2 1 QVZ:;

’ 2 -

Var X' /2 OX* |
I_~_Z__ a\/lq_”— ‘ _L 0 AZZ 2.77)
[72- A’I'SSEZ s I;r ~Vﬁ;; 3X ! P (2.
[‘*4!:_@ VA« , [ = VA WAz
T A, X2 i By S

When results and new notations (2.74) to (2.77) are brought

into (2.49), (2.50) and (2.47), one finds for the nonlinear

strains
E<uy =1 4 v 3_‘/__57 W (2.
VA oX' “VA 9X7 TR,
1 v  u MNWA. w
€Ay =—= ——=, -— .= (2.
VA WK Tya exz T T
E3y w1 W u v (2.
VAy 2X' +R' T
1 u v VA,
E¢py= L _ T 2 = .= (2.
12> .A;; a}(Q N X! T
[ v, u NVAp w
£<22> = 3% +\//T X R» (2.
Ecipymat 2W 22 U (2.

2Euy=2€E<uy +2M<»

= 2EN + ECNYECHY + ES2IYERIY + EL31Y E3ID (2

2 E <22y =2¢&<c22y + 272 <22

= D E22y + E<I2YEILY + £<22Y €22 + £<32) €432y (2.

E <2y +Ecany = €12y +£<21> + nizy + <215

= EI2> +EKAUY + ECUY E 21y + X215 EX22% + E431YEC32N. (2,

78)

79)

80)

81)

82)

83)

.84)

85)

86)
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The linearized changes of curvature become

20 _ 1 v v WAz 1 Ju _u MA
VA VAy 3X' VA X' VA 9X2 VA JX? (2.87)
223y = dey | <32y VAL 1 &

VA, °X! vaA 9X2 TvA (2.88)

1 9&«¢32> E<an VA2 1 ‘6.)

- 2 = - + = —

296(2)\/_72 SX 2 A X' TTVA
1 QJE&<3) L EQD VA

~X12y =X 2 =

VA, oX! VA oX? (2.89)
L e €<3z>aAza+(i_L)_Q_
A, X2 VA oX! R, R, VA (2.90)

2.3 Application to Shells of Revolution

2.3.1 General Shell of Revolution

With the systems of Cartesian (Zl,Zz,ZS), cylindrical
(r,9,z) and curvilinear coordinates (Xl,XZ,Z) defined in Fig,

2.2, one has, before deformation:

= A o P i T
P=2'T +2%7, + 278 = (1, + [ sinpds) ain 6
~ (]

+(l; +_/0P4¢'n<fd.5) c0s 0 T,

P
A (2.91)
(2, +f° cos ¢ ds) I,
A, =28 _ 4 ROl + 5in P01 3
Ai=55 = sng sind i + 4 g F Col Py
P " w6
42333(12. = rcsf i, - rasn @ 0, (2.92)

43=A'XA2= s ¢ SN O Ty +cospcosOl, - siny T,

A”:] ] A22=r2 » A[Z:AZ[:O » Az"z (2.93)
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B,-A;. A, -d¢p/ds J o _Bu _ _27%

n=fs- Lo - 20/ * R T A > 7

Bzg:éj._éz,z:_rcoﬁ‘f s L =—P£= oy »
RZ Az r

B/2=,63‘A112=0 ’

szz,é,a.éz,;zo P P el Ba .

(2.94)

The last result shows, as.expected, that meridians and parallels

are principal lines of curvature in a shell of revolution,

If the deformation from P to p is described by curvilinear

components of U, one has

p-EB-Y

=20, + 2%, + 220 + U'A, + UPA, + WA,

1]

(rsin@ + U'singsind +Urcs @ + Weosgaind) i,
o(reos@ +U'sin s -Ulrdind + Weesp cos0) I,
2 +U'wsp -Waingp)i,

Ay =(e,9n8 + ¢ @30) T, + (ci0050 ~co4inb) 7, + €51,

A, = (Cycos8 + CoainB) Ty + (-6, 4B+ Cs030) L + €5 i

with

€1 = diny +i£_’_'/.u'mp ,_(j”a(m'nlﬁ)* awCo:f(p 1‘—‘/\, d(cos P)

05 PY; o5 a5
By & V% r | Usin P
5
G = o5 @ +2Q1¢n39+ U'éﬁ“_‘ﬂ)_é_wmhso_ww
as 95 s 35
Cq=f+U’4Lh(p+§izf'+wco’3‘P
20
er= W o _U + 2W
5 3 sny -Ur + 30 s ¢
AU’ oW .
Césm—wﬁ?—%/jln?.
From this, one can compute 2,17 @999 8191 8917 and

(2,95)

(2.96)

(2.97)
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2E,=a, - A,

2Es=a, -Az

Ep+Ey =(an-A,)«(ag -Ay) -
After switcﬁing to physical components, one gets
& =(§%_w%§i) (2.98)
(5w 3B (55 (5% -« 52))
Ec2 = f‘;’é + “4‘nf+wcm¢)
[ -2 0y - ssnprene) ey f] fo.on
e ) 165 25220
o [gs )(raa m%f”)*(%; (735 * w)(z 100)
Slsu “ﬂ)(rae Tﬂa]

Although these results could have been obtained by a direct

application of (2,78) to (2.86),

strate once the metric approach,

it was estimated useful to demon-

To find the linearized curvature change, (2.80), (2.83) and
(2.87) to (2.,90) are used
_ 2w 2% (2.101)
€31 =53 + U3
IR X A = C 4 (2.102
€2 = roe T Tr , )
20 _ v gine, o4 (2.103)
VA 95 r T rae
Q%w L du of 2% (2.104)
-k = + U .
352 95 s 352
Pw cos@ dv | sinp dw  sing ) (2.105)
- X<22y= [73m ~ Ty et T 95 t o 45E
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1 . _w _ sing dw
-2-(96</z> 96<2/>)—r39a5 30

2 ‘ v
it a1 e

J
B

%

du
);35- (2.106)

R [
oy

2.3.2 Particular Cases of Shell of Revolution

Strains for different degenerate cases of shells of revo-
lution are given in Table 2,1 in the next two pages. A few re-
sults deserve special attention.

a) The linear strains in a cylindrical shell are identical
to Sanders' results [106]., Note, however, that the last

curvature change differs from Timoshenko's and Flugge's

du 1 ov

. . . 1
cylindrical shell equations by terms Ir 756 and it Ss

which are of order "strain over radius."

b) The circular plate gives the strains of plane elasticity
and curvature changes of plate theory expressed in polar
coordinates,

¢)  The same results, in Cartesian coordinates, are obtained
for the cylinder, cone or plate with "large radius", by

which it is meant that

lim rd@ = d¢t.
d';,:ooc (2.107)

d) The symmetric case with '"large radius" eventually permits
to solve beam problems for which strains and curvature

changes reduce to
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d 1 duy? 1 pdwy? 2.108
E(II):-d—L;- +ECF) + Z(d—j) " ( )
By = dw (2.109)

ds?

2,4 Effect of Rigid Motions

During recent years, researchers working with finite elements
have paid considerable attention to the inclusion of rigid motions
in the assumed displacement fields, Sometimes, however, they have
failed to recognize an older problem, namely that strain-displace-
ment relationships used in some shell theories give strains under

correctl& represented rigid motions as explained in the following.

2.4,1 Small Motions in Linear Theory

In [15], Cantin compares strain-displacement relationships
for cylindrical shells as established by Donnell [26], Flugge
[32] (simplified‘equations), Reissner [1017], Novogzhilov [94] and
Naghdi [847; he shows that only Novozhilov's and Naghdi's theories

)
lead to strain-free modes for and only for rigid motions,

Meyer [78] makes the same comparison for conical shells; he
shows that Flugge's refined.and simplified expressions [32] give
strains undér rigid modes while Novozhilov's equations [94] are
correct again; he points out that the latter are rightly used in
references [27], [44], [98].

For general shells, a table comparing different theories,
from Love [73] to Koiter [667], can also be found in Naghdi [85,

page 767,
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A detailed study of the effects of rigid motions on Sanders’
linearized strains and curvature changes can be found in {1067,
In this reference, Sanders introduces the position vector of an
arbitrary point P of the middle surface, a constant displacement
vector and a constant small rotation vector, all of them

described in terms of the normalized curvilinear basis at P

E = P(/)fﬁ—h + P(z)ézl +P<n>y N (2,110)
A A (2.111)
= =L 4 A A Ay N .
A Amm“ + <2)IA2| + N
- A Bz L Do N (2.112)
Q- naop oy ~

The displacement vector U of P due to the rigid-body motions

A and Q is given by

A A
U=A+OxP=u" +v22 +wN (2.113)
with
u=»48aua + 02¢2>P«NY ~N<n> P>

v =A@y + 2¢GYP<iy - ayPeny ' (2.114)

it

w =A<y + DayPezy - <2yPcy .

The linear part of the strains (2,84) to (2,86) and the changes of
curvature (2,88) to (2,90) vanish when these physical components
of displacements are plugged in, which shows that they are insen-
sitive to small rigid-body motions, '
Note that Sanders' proof is restricted to small rotations
because the vectorial representation assumes that no difference is
made between the angles and their sines, and because the rotations

are superposed without due regard to the order in which they are

applied,
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2.4.2 Large Motions in Nonlinear Theory

No comparable studies seem to have been made for nonlinear
theories. Instead of an elegant and general discussion (perhaps
based on tensor analysis), a much simpler approach is chosen here,
It consists in taking a typical shell of revolution, giving to
it all possible rigid motions and computing the strains. The
principal results are summarized hereafter,

1 1. = Translations S_, S_, S

a) Translations along axis ?1, o1 Iy S PYRE

(Fig. 2.3 and 2.5).
=35 wsBsng , w= Ssinbsng , u=-5w0s¢p,
v ==, sinb ) v= S50 , v=20 , (2,115)

w= 858 cos¢ w= S,5mB s , W= Sn¢.

Ecuy =Ecrs + <> =0 +0

E <22y = €<22y +M¢225= 0 +0

21(E</2> +E<2/)) =—2’- (€ <2y +£<2¢>) + 2£/7z<:z> +n2y) = 0+ 0
Xy =0

X 22y =0 ’

1 -

.Z-(Xuzn)f(zn)-o.

b) Rotation about the axis of revolution = Rotation 53 (Fig. 2.6)

If the rotation is large, If the rotation is small,
a‘zr(m/e,-i)ffmt,o u =0
U = rain p; v =1rp; (2.116)
w = I (s p;-1) cos ¢ w =0

E <> = (cos ps-1) 3in?p ~(cos py-1)din*p=0 Eu>=0+ —L(’gj zdmfgo
E 22y=(cos p;-1) - (@05 p;-1) = 0 £ <225=0 ,(/ZJ)Z

1(E</z>+E<2/>)=0+o %(E</z>+E<z/>)=0+0
2
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Rigid Translation Sl-

2,3,

Fig,

Rigid Rotation Bl.

Fig. 2.4,
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Fig, 2,5, Rigid Translation 83.

Fig, 2.6, Rigid Rotation BS'
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X(M)=—(mch—<j¢'/z2<p}3—f(co6ﬁ3—1) X<y =0
X 22y= -sin? ¢ co;szp% (05 B3 -1) X <22y=0
%(X(l?) +Xcan) = 0 . -;-()602)\«)6(2/)):0 .

Tilting about ?1 axis = Rotation Bl (Fig, 2.4)

If the rotation is large,

U = (rainfsing -z cos )(ws p,-1)- (roinbeos ¢ +2sind-siny) sin g,

V= rs @ sind (cos p,-1) -2 cos § sin By _ (2.117)

w=(r4n®gws ¢ +zsiny)(cosp,~1) + (rain 8 sin @ - £:5in 6 cos p)sin p,
E s = (ain*8-sin’p+ cos?p)(cos p, -1) - (sin 20 sinlip + wos?p) (cosp, 1) =

Ec22y= cos?8 (cosp-1) ~ cos%8 (¢osp;-1) = 0

0

—;(502) +E¢2) = 5inb w30 sin p (o3 py - 1) - 9 8 cosbsing (cos 1) = 0

22 cus = - 049 (din?p - cos?p) %g (cos p,-1)
2 X <22y=~ %r-‘f(cmza w0s?p - 5in?0) (cos p;-1)
Xcizy + X cary = —«.uh@m@mhcp{_‘%_f + ;T"){coa,a, -1).

If the rotation is small,

..(r44‘/z¢9coﬁgo+zdth94‘hf’)ﬁt

N
i

Q
I

= ZCOJH/S’
w= (roinlcwse - zanfsing)p,
Ecny= 0 + (0328 cos*p + 4n?0) _(2ﬁ22

E<22y=0 + 3?9 /_57_)2

(2.118)
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1(E<:z> +£‘<21>) =0 f/fm@cosedmfﬂﬂz
2 2
22Xy =0

d X22v=0

u
<

212y + X 21

d) Tilting about ?2 axis = Rotation Bz.

The results are the same as above if the origin of 9

angle is rotated by 90°,

The following conclusions can be drawn from these results.

a) Linearized strains and curvature changes vanish under any
small rigid motion as expected after Sandgrs' proof,

b) Translations, no4matter how large, produce neither strains
(the linear and nonlinear parts vanishxseparately) nor
linearized curvature changes,

¢) Large rotations give zero strains, although the linear and
nonlinear parts, taken independently, may be different from
zero,

d) Large rotations give linearized curvature changes of order

ws p -1 ~ . AP (2.119)
2 .
This shows that moderately large rotations will still give

small curvature changes and confirms the hypothesis on which

(2.71) was obtained,

e) Small rotations produce nonlinear parts of strains of order
2
B”; this is negligible since B is assumed small in the first

place,
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In another test of rigid motions, not reproduced here, the
nonlinearized curvature changes (2,.65) were computed for a
conical frustum subjected to the six motions described above
(the curved element had to be aﬁandoned because of (2,65)
complexity), The linear and nonlinear part taken independently
do not vanish but their sum is zero. This was expected since no
approximation is made to obtain (2.65) except smallness of
Strain, which is perfectly realized in a rigid motion,

Finally, the motions (2,115) to (2,118) were introduced into
Stricklin's strains and changes of curvature [1147]. It was found
that for small rotations, the linearized change of curvature
n(12) + n(21) does not vanish: it is of order B; i.e. the rota-
tion rigid modes are not present in his formulation, Besides that,

neither large nor small rotations give total nonlinear strains

equal to zero,

2,5 Discussion of Nonlinear Strains

Here, results (2,47) and (2.71) or their physical equiva-
lents (2.84) to (2,86) and (2.88) to (2.90) were considered to be
the best, What justifies this choice when compared with results
obtained by other authors?

Naghdi and Nordgren [87] derive the absolutely exact ex-
pressions for strains within the frame of Kirchhoff assumptions,

In material description, they write for the Almansi tensor

ox* Jx? 2x% Jxk
EAB =(aa,s§‘x—,a 3XB ‘Ane) +2Z ('bapm 5‘;("5 +BAB)

« 3k
+ Zz(barbg ‘3;_.4 3—;‘8 -B,,,-Bg) . (2.120)
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The third term is in Z2 and contains the difference of third
fundamental forms; this term is almost impossible to use in prac-
tical computations and could éventually be justified only if an
equal level of sophistication was used for the definition of
shell forces and constitutive equations, If terms of order
"thickness over’curvature radius" are neglected in the definition
of shell forces and plain Hooke's law is used to find stresses,
then Koiter's criteria for consistency [66] show that it is
pointless to keep this third term,

The nextrlevel of approximation, represented by the first
two terms in (2,120) or by Eq. (2.99), is arrived at by éanders
[107], Mushtari [83], Navaratna [917], Novozhilov [93], among
others, 'All of them, although proceeding in different ways, use
Kirchhoff assumptions and -the "small strain' approximation to
find the éimplified curvature changes (2.65), the strains (2,97)
rémaining unchanged. Novozhilov, who, by the way, is using
orthogonal curvilinear coordinates and physical components from
the start, stops here, His strains and curvature changes are not
restricted by the magnitude of rotations but, as §hown by (2.66),
this form of the curvature change is still too complicated.

What the next approximation should be is not agreed upon.
Mushtari specializes his theory; large deflections of shallow or
cylindrical shells, partially linearized stability problems, etc.;
the approximations are different in each case, Navaratna falls
back to Sanders' equations. Stricklin [1147] uses Novozhilov's

nonlinear results [73] but he reduces the strains to
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2B, = Ulls + Ugly - 2BasW +€1 € (2.121)
and he simply linearizes the changes of curvature; so doing, he
gets a %(12) + M(Zl) different from the one obtained by Novoz-
hilov himself in his linear theory [94]; these unjustified
approximations lead to nonzero strains under some rigid motions!

The most consistent approximation, coming from the nonlinear
approach, seems to be Sanders' ''small strainé, moderately large
rotations theory.'" By this, he means that € being a small
quantity compared to unity, the strains are of order €2 and the

rotations of order €, He ends up with
3 E2 €} + W, W (2.122)
2EAB = UA”B 'f'UB"A "Z BABW + ACs -+ Al ws .

for the strains, He acknowledges that the last term is additional
with respect to a nonlinear theory derived by Donnell [26],
Vliassov [123], The trouble is that this last term is not equiva-

lent to the term €£ €FB of (2.47) and, whether it is present or
not, some rigid motions contribute nonzero quadratic terms in

(2.122). For the changes of curvature, he finds

-2 Kag =€l +€als +Bacdp, + BE war ' (2.123)
i,e. the same completely linear result as obtained by Koiter in
his consistent linear theory,

Since no unanimity can be reached for simplified nonlinear
strains and since the exact formula (2.47) is relatively easy to
use for a shell of revolution, it seems reasonable to choose it,
The more so because it will not give any strain under rigid
motions, no matter how large they are, and its linear part will

not give any strain under small rigid motions, With a computer
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application in mind, it does not matter too much that three
nonlinear terms are included in each strain when one only could
be retained, perhaps, under appropriate simplifications; what
makes a difference in computer time and coding difficulty is the
fact that a nonlinear part is present or not in a given strain
expression; that this nonlinear part contains one tefm or three
terms is almost immaterial,

For the curvature changes, it is very comforting to see that
formula (2,71) obtained by pure linearization is as good as any
for moderate rotations, does not give any strains under small
rigid motions and gives strains of order (cosf-1) at most for
large rotations, To computer users, the fact that linearized
curvature changes are mixed with nonlinear strains must not come
as a surprise; this approach has been successfully used for a

long time in nonlinear frame analysis where strains

2 d dutt: 1 (dwié
Ey - du  1odw Ey- 44 1du), 4(ou) (2.124)
i dx ‘2 dx) 7 " ax *Z(dx) Z(dx ‘
are chosen while the nonlinear denominator is always dropped in
A*w
1 dx?
= = 2,125
e [1+(2z))" (2129
ax

Among the references for numerical nonlinear analysis for shells
mentiohed in the introduction, only Yaghmai [128]

considers nonlinear curvature changes; he uses refined expressions
because he is studying plastic deformations, can expect large
strains and noh—negligible volume changes; he is able to do it

because he considers axisymmetric problems only,
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Now that shell strain-displacement relationships, suitable
for a linear or nonlinear analysis, have been found, the purpose
of the next chapters will be to set up a shell element using
them in the linear range but also capable of extension in the

nonlinear range.
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3. APPLICATION OF THE FINITE ELEMENT METHOD
TO SHELLS OF REVOLUTION

3.1 Preliminary Remark on Notations

The indicial notation and summation convention, best suited
to shell theory, are now abandoned and replaced by the matricial
notation, which is more convenient for finite elements.

Physical quéntities referred to the original configuration
afe used gverywhere; letter indices designate element corners; a
column vector v is represented by {v}, its transpose or row

vector by {V}T = (v), a matrix A by [A].

3.2 Representation of the Element Geometry

For shells of revolution, a division into quadrilateral
elements along the parallel, and meridians constitutes the most
natural grid, The parallel edges, each with a constant radius,
are exactly represented; the meridian curves must generally be

approximated,

3.,2.1 General Meridian Curve

Khojasteh-Bakht [637] studied different ways of idealizing
the meridional shape and concluded that a representation within
each element by a cubic polynomial matching the coordinates and
slopes at the end points is very satisfactory. The quantity being
approximated can be either the rise { above the chord (Fig., 3.1)
or the parallel radius r; the polynomial variable can be either
T along the chord or s along the arc. There is no significant
difference between the different approaches and it must be noted

that all of them require a numerical evaluation of the arc length
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4 sooner or later,

-
z T ’
rg
]
T I
Z

Fig. 3.1. Representation of the Element Geometry,

The method chosen here consists in expressing r as a func-
tion of s varying between o and £ or, equivalently, as a function

of the dimensionless variable € defined so that
-1<$—_—-1+31—5\<1. (3.1)

The arc length 4 is evaluated by assuming an arc of a circle with

chord length ZC and angular opening A¢Y between i and k

le =\(2g-2) +(rp-n)* , A¢=y -y, (3.2)
e [ ~IRAY] . 3.3)
2 sn %f ? 4 . .

After fitting the nodal radii and slopes, the cubic polynomial

becomes
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From this, other useful quantities can be derived

s = ;{: ;Z[gi
2
Hlatd )0l )

ol

U1 & 3%, o L1 & 3E?
*"”"’«‘2('7'3*7)”’”“’#2(4* )] @
s p = VI - st (3.6)
de_d . /. 1 disne) 2
5 ods " (%) i df [
lz;so["(f)*'”(g)ﬂ‘”?’ (-3+3 )mm%zi(z’,«%é)j (3.7)
de _d ) 2 d‘?{/_ungo) sin ¢ Qdamw_z_
dse ds\ds lasp dé? coa‘go ds i {
(3.8)

Beapli ) el 3) - g 3 (3)r sngy 3 ()] S (5

The coordinate z0 which is also necessary for future computation

is obtained from

st
Z ./ fewspds = & -.L/ cos ¢ d§
S=0 2 ga—l

(3.9

o

or

(3.10)

o
It

=0

iy -
z€+/’ o3 p ds = z,?+-l_/€ 'cmydé X
s 2 Js

2
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Both formulas require a numerical integration, 1In the program,

both are used and z, is taken as the average of the two results,

3.2.2 Particular Cases of Meridian Curves

a) If the element is slightly curved in the meridian direction,

the angle

Do = - (3.11)

may be so small that

sin Mg = Dyip , s By =1-@-‘£li’.2+ 2l . (3.12)
In that case, the interpolation function (3.4), written as

r=[3(nen) v (ong - ang) «[2(np-1)-§ (oing +sin pp)] &

+[~é (sinip; ~sin ﬂ;)}é" *[Z’ (r;-rg) "81 (din @; + sin ;%)]53 (3.13)

can be replaced by

redfnere)«k cosp Dpg + 5108 - 2 eosy, Ay 82 (3.14)

by neglecting terms in (Acpik)2 in front of unity, i.e. by com-
mitting approximations similar to (3.12),
b) The conical segment, which includes the cylindrical shell and

circular plate as particular cases can be exactly represented

re=rnz(i-8)+r 3(1+5)
-1/ Zp-Z
¢t (5 )

(3.15)
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c) The arc of a circle, of such a frequent use in spherical,
toroidal or torispherical shells, also deserves a special
representation., In that case, expressions (3.2), (3.3) become
exact and

f,p =1 ~Rcos

Zo=%; + Raing;

it

[

=S (1-8)+ Pe3(1+5)

r = "". +R CM‘P (3'16)
a¢_ vp-w

das {

.@: 0

ds?

Z, = %, + RN .“’L_;_‘l'ii’

d) The general formulation can give relatively inaccurate values

2

2
of %g , a7 for an almost flat element with ® == 90°, 1In that
ds .

case, it may be advantageous to approximate the element by an arc

of a circle when the data are input,

3.3 Displacement Fields

In elements of revolution, it is customary to take a linear
interpplation‘function of the coordinates for the meridian and
parallel displacements u and v and a cubic for the transverse dis-
placement w; Fourier series are used to represent variations along
the coordinate 6. 1In replacing the element of revolution by a
quadrilateral and the Fourier series by polynomials, the idea
naturally came up to use linear and cubic functions of 6 for

u, v and w, respectively,



64

Define the dimensionless variables (Fig. 3.2)

- '+5 +2
-1 & - ‘55‘ s’?) "< 1 (3.17)
R |
_(6,.0;)+ 20
“lsm = (48 ‘;’ < 1 (3.18)
d‘"
giving '
a5 __ 2 _ 2 dn __2 _ 2
s —3'9‘54' =7 ) 70 -@"94‘ == (3.19)

Fig. 3.2, Element Coordinates

Also define the following functions and their derivatives:

? df (x)
x ’ ,’,(x)_Z/_;_

4 afs (x)
s é(ﬁ) :f%——

{
%

fix) =

1
2
(3.20)
) =5+

4

N|- W [SN
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d*f (x)

dx?
d*f, (x)
dx?
iy (x)

dx?

(3.20)

fo=d-Jzde, fig= B8 .
fw=dedx-la, e dh®, py

! x _x? - dva) 9
)§~(“f)=7;-—4;—7;+z—— ’ /;() — /5{x)_

I x  x2 x3 dfx) . d¥(a)
/G(x)=‘z_“'4“’+z—+z— ] f(X) _.L__ 5 ’g{x) __aéz .

These functions can be interpreted as Hermite interpolation poly-

nomials extending over the range -1, +1,

When linear interpolation is used along the meridians, the

value of u anywhere in the element can be described in terms of

its values along the meridian through i and the meridian through

k:

w(s,0) = w(0)L(1-2) + upl) L(1+%) .

When linear interpolation is also used along the parallels,

(3.21)

ui(e) and uk(e) can be described in terms of the nodal values

u,, u, and u, uz respectively,

u;(6) = ut-(1 1) + dj (1+ )

ug(8)

Hence,

upL(1-m) +up L (1em) .

|

w@,0) = uc L(1-8) L(i-n) + 4 Lf1-8) Liter)

+u?§(1+$)§{l~qr+u?§(1+é)%ﬂ+q)

(3.22)

= “z,{{élzﬁz) + u/ﬁ (§),{Z l+ “,pé(ﬁ)/;ﬁ[) + a//zzg)/z/q) . (3.23)

Similarly,

v(5,0) - v [E)f (1) + YIE L + LB [+ [ 1) ). 320



66

When cubic interpolation is used along the meridians, w is

given by
wis,o) = w; (4 f,(8) + wp o) f,(4)
(2], e+ [5F (9))3% [ (3.25)

and, if cubic interpolation is used along the parallels too,

w (6)= wfin) + wy [ o) +(S5), 4 fen + (58), 4 L ()

(3.26)
(32 0], G2) 0+ (32) hew (5. 5 ke (355} S o
and similar expressions, with r,  instead of r , for wk(e),
g: (e)]k. After substitution,
wis)= [w [@ ) + (32 5 hBf ) + (35,55 f@fa)
(), L [ if o) + [sfem +2) 4 [k
,aé, L L) +(5) UL @) + [meh e
(3. 20)

o(22) L L@ ) +(29) 22 f 1) +(mss S ko )
[W!//é),i(vz) +( )(,z Lefm +(;’a—“gpﬁsz Lefm)
() S L)
When the interpolation functions are introduced as explained
above, the choice of the 24 DOF* to be used follows automatically

from the symmetric problem, The bilinear and bicubic interpola-~

tion functions used for u, v and w can also be written

*pDefined in chapter 1 as the abbreviation for Degree of Freedom,
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U=a e a5 vazn v+

v=astagk + a7y +agk7
(3.28)
w:/ag)+(a,0§+a,,7z)+/a/z€2+a/5€7z +ayn?) +(a/f€j”’a/6€2’i+al7§7z *alaﬂj)
gL + QR+ Ay E°) + (A EnP + azs§50°) + (@ E°0°)

Under this form, however, it is not so clear which DOF are sim-
plest and easiesf to use to determine the 24 unknown an
coefficents,

These incomplete polyhomials of degree two and six in § and
T have been very succeséful in solving rectangular plate problems
[91, [377; thefe, the advantage is that they insure continuity of
displacements and slopes along interelement boundaries and that
they include rigid body modes, Thanks to the choice of displace-
ments, related to the middle surface rather than to a global
framé, the interelement compatibility is maintained in the QOubly
curved element introduced here. Unfortunately, because of this
same choice, the rigid body modes are lost; this last point will
be discussed thoroughly in chabter 4,

For future use, the interpolation functions are abbreviated
as

us, o)

v (5,0) § = [qﬁ (5,9)] {v} (3.29)

w(s,0)
with [2(x,8)] and the vector {v} of generalized DOF defined in
Table 3,1 on the next page.

Also for future use, one has represented in the same table

the vector {S] of generalized forces associated with {v}.
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TABLE 3,1, INTERPOLATION MATRIX; DOF; GENERALIZED FORCES,

[poe] -

g

’ﬁ(é)ﬁ (q) o

o fdifig) o

0 o ffm)

0 0 Z’ Y2 %)

0 0 :‘%’;,g(g)/s(q)

0 0 4?;5(;),;(7;)
f&rm o 0

o ffym o

0 o f&Lim

0 o Zfslblfyn

0 0 %’I}S(é){sm

0

0 %’”__i’ p

ffm o

0

0 L& fa o

0 o f&ifym

0 o tidpm

0 0 9‘2‘1’@ ﬁf(s)fsnﬂ

0 o 4l a
f, L o 0

o  f@&fm o

0 o fibfm

o o g,té(%;fq(q)

0 0 %fﬁﬁ(ﬂf;(ﬂ)

0

LR

5 {v)=1

U,

Vi

M

wi -_—( g?!)(

w; =(%)L‘
o 2

u,;.',:(r%azg)‘,

%j

’lg.

W

“ <(32)

“ = (355 );
o9 2

wi =(raao%’;)/

Uy

Uy

wy

wi=(5%),

wi=(23% )

%’=(%?—33)A

wy

Yy

Wy

wi=(5%),

W = 5%’ )!

v _ [ dw
'l ms)(,
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3.4 Derivation of the Element Stiffness

3.4.,1 Strains

When the displacement fields (3,29) are introduced into
the strains for general shells of revolution derived in chapter 2

(Table 2,1), one finds

{e} = [B]{v] | (3.30)
6xl 6x24 24xl .
where

KEY = &<y <22y é(fmnia/)) ~ Uy - 22) -é{x</2>+?£<2/))> (3.31)

[B] is given in transposed form (24 X 6) in Table 3.2 on the

next page. |

3,4.2 Strain Energy

~

The forﬁula for the strain energy U of a thin linear elas-

r
tic shell in terms of the deformation measures € and K is given by

1 |
U- 2-4<£>[D]{E}4A (3.32)

with

h
(p) = £ 2 upz (3.33)
VA, o RP VA
12 12
yh* h*
0 0 0 -;? I—é'
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Although all of the assumptions on which this relationship

is based are widely accepted in linear shell theory, some of them

are worth recalling.

a) The usual Hooke's law for linear isotropic materials holds;
this should be reconsidered if nonlinear strains were used,

b) This law is transformed for plane stress; but the condition of
zero transverse strain was used in (2,53).

c) The strain across the thickness can be expressed in terms of
middle -surface strains and curvature changes only; this is
true because terms in 22 were neglected in (2,44),

d) The integral over the shell volume is approximated by [66 ]

/Vdv=/§ / 1__7_z_+ku )dZ dA / Z/AdZdﬂ

In terms of the nodal degrees of freedom, (3.32) becomes

NI:~
a

L (V)j [(BT)[D](B]dA {V} - \ (3.,35)

3.4.3 Virtual Work Principle

If one designates {S} the vector of generalized forces
associated with the nodal DOF (see Table 3,1), an application of

the virtual displacements principle gives immediately
vy {5} = <év>£ [BT)(DP}[B] dA {V} (2.38)

{s} = [K}{v} (3.37)

with the element stiffness [K] defined as

=/A [B"][D](B] dA . (3.38)
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3.4,4 Numerical Integration

When the triple matricial product [BT][D][B] is performed,
a typical term appearing under the integral sign may contain the

different following factors in E:

Approximate or Exact Representation

to
Factor General Shell | Toroidal Shell Conical Shell

fl(g), fz(g) polyn, 1lst deg.|polyn. 1lst deg.|polyn, 1st deg.

f3(§),...,f6(5) polyn, 3rd deg.|polyn. 3rd deg.|polyn. 3rd deg.
r(g€) polyn. 3rd deg.| trigon, funct. |polyn, 1lst deg,
1 1 1 1
r(g) polyn, 3rd deg.! trigon., funct, |polyn, lst deg.
. or .
sin® = s polyn., 2nd deg.| trigon. funct, constant

cosp =41 - sian irrat. funct, trigon, funct, constant

29 _ o(sin®)/3s | polyn, lst deg.
ds cos® irrat, funct,

linear in € 0

The variable T| appears only through fl(ﬂ) to fe(ﬂ) i,e, through

polynomials of degree one to three in 1,

, Eh
For instance, the energy term (611'——5 €11> will contribute the
1-v
following dot product to the componént K11 of the stiffness matrix
£Eh T
/<B// By oo By Toyz < By Bz .- By, > dA (3.39)
A

where the subscripts are now used to represent row and column
numbers in matrices; in particular, the last term of the dot

product writes
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Rp2j2 rtl +1 2
#ﬁ,—;@% Bﬁ,dm%e‘_@ﬂ/’ [15/7’]2‘{’1[, SE[[e)) rig)cle (3.40)

o

The integrand in T is a polynomial of degree 6; considering I
as linear in € (torus), the integrand in € is a polynomial of
degree 11, If one assumes that the elements are small enough so
that the trigonometric and irrational functions can also be
approximaéed by polynomials, a similar study can be conducted

for all diagonal components of [K], which are likely to give the
highest products, One finds that degree 6 in T and approximate
degree 11 in & are the highest polynomials to be expected for a
general shell of revolution; for a cylindrical shell, degree 6

can be expectéd in both & and 1.

Formal integration of all 300 components of one half stiff-
ness matrix is theoretically feasible, but very tedious, for the
circular plate, the cylindrical and conical shells, For more
general casés, numerical integration is necessary.

It is known that Gaussian integration with n points will give
exact results for polynomials of degree up to (2n-1). Therefore,
in the present case 4 points seem required in the T direction and
4 to 6 points in the € direction depending on the type of shell,

Ih practice, numerical integration with 6 X 6 and 4 X 4 points
were found to give almost equivalent stiffnesses for a spherical
element, But significant differences were found when it was
attempted to use 3 and 4 points on the T} and £ directions

respectively, Therefore, a 4 X4 grid was adopted,
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It must be noted that comparison of stiffnesses was based on
their 24 eigenvalues rather than their components, Besides the
advantage of having to look at 24 values instead of 300, the
sensitivity of the eigenvalue problem makes more obvious dif-

ferences in accuracy of the numerical integration process,

3.4,5 Interpretation of Stiffness Terms

While the stiffness matrix was being checked, a puzzling
problem arose; although its solution turned out to be trivial,
it seems worth mentioning because it is representative of the
surprises to be expected with curvilinear coordinates,

For simplicity sake, this problem is explained on a circular
ring which can be considered as degenerated from the cylindrical
shell by choosing the loading and the elastic coefficients such
that the variable u can be neglected, The DOF reduce to

(Fig. 3.3).

VY =<K v w wp v w, w/ > (3.41)

Fig. 3.3, Circular Ring DOF,
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In the resulting stiffness matrix, the first column, for
instance, can be interpreted as the set of generalized forces
required to maintain a deformed configuration in which vi =1,

all others DOF being blocked. Hence, for this particular

deformation
Ky = Fv[ ’ Ky = Et'u[ s Ky = F’kq’ ’
(3.42)
K4/=F7? s Kf]: qu‘/ 9 K6/=F’Il/j

A preliminary check of correctness for [K] consists in verifying
that this first column satisfies translational and rotational
equilibriums., Similar interpretation and identical checks can be
performed on every column of [K].

The natural tendency would be to write for the translation

check along 22 and rotation check about O

(3.43)

It
e}

Fy{ + 1:/ wos a +F1‘94£h0(

]
<

-Fy, -Ew/. vrFy + rFq,/. (3.44)

It turns out that none of these equilibriums is satisfied! A

closer look reveals that a translation S2 along 22 produces
v(0)=S5,0050 , v=5 , v =S5 wa
w(8)= 5, xn8 W= 0 ;Y= S, sin (3.45)
W'(€)=;5"_Zc069 , 'wg=:_5ri s %’:.‘%’:’_ma

and a small rotation B3 about 0 gives
v{0) =pr s U=pr o, YT
w(6) = 0 . we=0 w = 0 (3.46)
w(8) = 0 , wi=0 , w=0
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An application of the virtual displacement principle to transla-

tion 82 and small rotation BS gives

SPRIE _‘3:5 Ffw[ v 5 osa F;{/ + 3, dina F;,? - %?coda F,,,;::O (3.47)
ﬁJro‘- +/33rF19_ =0 (3.48)

from which one obtains the correct equilibrium equations

Fo, + Fy cosa + By, sin & +LFy » @A Fy =0 (3.49)

F7,( + Fqg_ =0. (3.50)

The error implicitly committed in (3.43) and (3.44) was to
consider Fw' and Fw° as bending moments. They are not bending
i J

moments because Wi.and Yf are not physical rotations, The real

physical rotations are

)/(-“-'Z(/‘.‘.-—/:é‘.

l? = W, - ;?'. (3.51)
The second term is due to the rotation of the curvilinear basis
from point to point and would come from Christoffel symbols if
the indicial notation was still used,

If the Y's were taken as nodal degrees of freedom, the re-
sulting stiffness matrix would avoid the pitfalls explained in
this section, They are not chosen however, because they are less
convenient to use in the displacement interpolation functions,

Another important remark ought to be made here, Even the
correct equilibrium equations (3,49) and (3.50) will not be
satisfied by the stiffness matrix (3.38) for a general element of

revolution; this can be explained as follows,
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Because they are not exactly represented in the displacement
interpolation functions, the rigid modes produce some strains
when they are imposed on the element, The left hand sides in
Egs, (3.47) and (3.48) represent the virtual work of the exter-
nal loading, replaced by nodal generalized forces, iq rigid motions
S2 and Bs. If the rigid motions produce strains, these left hand
sides should be equated to the internal work or internal energy
variation produced during these displacements, then the right hand
sides are not zeros and (3.49), (3.50) are no longer satisfied.
This point will be discussed again in chapter 4, But it

may already be mentioned that when the rigid body modes are in-

troduced in [K], Eqs. (3.49) and (3.50) are finally satisfied.

3.5 Generalized Nodal Forces

The concept of tributary area is sometimes used to replace
the distributed load externally applied to the element by concen-
trated nodai forces. In the virtual work approach, on the other
hand, generalized forces are associated wifh each DOF by the con-
diton that they produce the same work as the external load under
any possible deformation pattern,

The reliability of these methods depends essentially on the
type of element. The tributary area may be satisfactory for plane
stress or plane stress elements with displacement DOF only, The
generalized forces seem preferable in plate bending elements with
rotation DOF (the fributary area will not associate any forces

with those), But the generalized moments may in turn be
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detrimental if the flat plate elements are an approximation of a
curved shell, as experienced by Johnson [217],

In the element being developed here, half of the DOF are
displacement derivatives without clear physical significance;
the tributary area concept which would not ass;ciate'forces with
any of these seems unsafe,

The generalized forces {F} are obtained from the virtual

displacements expressions

u fa
<5V>{F}=A<Ju dv dwd ’{’ dA=<5V)/[4>T] £, +dA (3.52)

where fu’ fv, fw are distributed loads in the u, v, w directions,
Table 3.3 on next page contains the generalized forces {F}
for the following loading cases:

a) Concentrated loads <Fu’ F, Ew> applied at coordinates E,T,

v

along the parallel ij,

]

b) Uniform line loads (f , £, f ). .
u’ v w'ij

¢) Uniform line loads (fu, f, fw>k2 along the parallel k{,

v

d) Uniform line loads (fu, £, along the meridian ik,

v fw>ik

e) Uniform line loads (fu, f fw>j£ along the meridian j&,

V,
f) Uniform dead load fd directed along the axis of revolution,
g) Uniform inner pressure p.

Numerical integration must be used again wherever the integral

signs have been left,
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3.6 Structure Stiffness

The structural stiffness can be formed from the element stiff-
nesses by means of the direct stiffness method. The geometry
jdealization maintains continuity of slopes between adjacent
elements; on the other hand, the chosen DOF are referred to the
middle surface; therefore, at one given nodal point, the DOF are
the same no matter which element they are supposed to belong to.
No transformation to a new global system of reference is necessary
before assemblage into the structural system; this is an advan-
tage to be credited to the curvilinear coordinates,

The load vector can also be formed by direct addition of the
generalized forces contributed by neighboring elements to a

given nodal point.
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4, REPRESENTATION OF THE RIGID MODES

4,1 General

In chapter 3, two facts concerning the derivation of the
stiffness matrices were mentioned: first, that the rigid body
modes were not included in the assﬁmed displacement fields and,
second, that the columns of the stiffness matrix did not satify
equilibrium precisely because of the lack of these rigid body
modes, :This topic will be further discussed in the present
chapter,

The exact small rigid motiohs for the quadrilateral curved
element are derived in Section 4.2, It is shown that they cannot
be represented in general by the set of chosen interpolation
functions, except in the limit, when the element is almost flat,
or in certain degenerate cases,

A study of the eigenvalues permits one to find how many rigid
modes, if any, are already present in the displacement field, but
not to decide which ones should étill be added. 1In Section 4.5,
it is explainéd first, how to'add all rigid body modes and second,
how to determine which ones are redundant, The technique is demon-
strated on a cylindrical shell element and later applied to other
types of elements of revoiution.

The chapter concludes with the computation of shell forces in

the presence of rigid body motioﬁs.
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4,2 Exact Small Rigid Motions for the Quadrilateral Element

4,2,1 Relationships Between Bases

The normalized curvilinear basis at an arbitrary point P

can be expressed in terms of the general Cartesian basis (Fig, 4.1)

as

_é_‘j ’61'/1506069 gin (pmh 2] -cos @ (1))

1Al

J Al _ | -and s 0 0 I (4.1)
FA|

(N Jp Ly sl cspsnd  sng | &)

The same relationship holds at the element center O when ¢ and ©

are replaced by mo and 90. Its inverse at 0 is given by

( i‘/‘ S }pa cos 90 "’4{’2 HO CO’J% cos 9: r"d_I‘
| (A
) ?2y - 4[/2%4[,190 CG’SBD cas%/ﬂ'm% {_:/t_\_‘_z_} 4.2)
| A4
R -cos @, 0 s ¢, N
\ - Vg

From (4.1) and (4.2), it is possible to find the relationship be-

tween the normalized curvilinear bases at 0O and P:

(4.3)
A o i e oY (A
ﬁ sinig 3l os + cosf s -ding,sind Sing cospiosh -cosginy | .MT:‘.W
B2l _ | sin @ siné cos b cos @sind A,
ol 4 i
N | |eosy, singcos8-sing s -cosysinf o3 §, cos pcosd+ang sinyp Lgl
‘ e ‘P

in which (9—90) has been reduced to © by assuming that O belongs

1 and ?3. In matrix form

ol -

with

to the plane defined by 1
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41
VAR
&

Fig, 4,1, Quadrilateral Shell Element,
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17’ 'TA:" T.‘il
[T7)=|Te T T 4.5)
To Tz T

4,2,2 Translations

Assume fhat the element undergoes a translation described
by the vector U whose components are uo, Vb’ w0 with respect to
the normalized curvilinear basis at element center O, The dis-
placement is also described by’g at an arbitrary point P but its

components with respect to the normalized basis at P are

Cu v wr=<KU, VvV, Wp»> [TPT] ’ (4.6)

For future purposes, it is also interesting to compute the deriva-

tives of w so that, finally,

( -~
« | Ti Te Tis
v Tz T2 Tas
13
w T T2 T ° “n
= » ? v, *
2w ¢ Ty T2 Ty ’
23 o o o w,
W T3 Tz T ‘
roe ;
Fw| | Ty YT
3835 ] s
with the matrix of T's detailed here below,
'f:m% 'Szmpcw@fcod% coly Stn <f4«'n0 m% /.ﬁ.'n;‘um:sé’—ﬁft'rl%m:l?W
-ding Sin 8 cos -Cos ¢ Sin 8
Stn () o3 p 038 - Co3 (g Jin co:f%m'nﬁ cos%cod(fcos9+4c‘n%4m50
(4.8)

-4m%5¢hsocm9%’-m%m¢_§g -4['2504(/1:93_5‘6 _mgg:sénycmagg’,ﬂh%mf%’

k—/ﬂ}z%M’ﬂdlhﬁ% co:ycoaé% -8y, cospsind 1

.dt'/z% 6[:1y4¢'n€.3§f."= -ah;acweg’_;_ m%4;n¢44-,¢97{ -§¥-’

4
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4.2.3 Small Rigid Rotations

Consider the normalized basis at O as a local Cartesian

basis fixed in space,

{f}o = {A/léllo 4.9)

Assume that the rotations El, g about the three basis direc-

2’ BB
tions at O are so small that, for each of them,

ws p =1 , mh,a;/e (4.10)
gnd that they can be superposed without paying attention to the
order of rotation,

Take an arbitrary point P; its coordinates {Z} or rotation

radii {P} with respect to the local Cartesian basis are

Z, sin g, (reos@-1) -ws @ (2-2,) P
ZZ = rdthg = PZ 4.11)
Z; s (reosf-r,)+ sing, (Z-2) P,

When the element rotates while the local Cartesian basis remains

fixed, the coordinates of P become

Z 1 -Ps B2 Z,
L= | Ps 1 -P1 Z; (4.12)
2 -B2 P1 1 Z;

The difference between coordinates after and before rotation gives
the components of the displacement vector at P referred to the

Cartesian basis at O.

G-Z) o -pp pe] (2] [0 B -R] (P
Z-Z,0 - | Ps 0 Pl {Zab= |y 0 P, B, b (4.13)

n-Zy |- P 0} |Zs |B -R 0 P3
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When the displacement vector is referred to the normalized basis

at P, one gets
<u v wd=<2z-Z z-I z_,—Z3>[TPTJ (4.14)
and finally,
U ) (-TzPs +Tis Py TuF3-Ti3F “TuP2 +Ta P ]
v “TzzPy + Ta3Py TP =T P ~TyPr +T32 P
w “Ty2 Ps + Ty3Ps Ty Ps = Toy Py “TuP +T2 R B
(
{Z—?-r V2| TR -Te Bt Tak sl TR+ B -TER-Tsl  -TIR-TyR+T2P+TeR | Br} (4.15)
;—Ba—a:-; TP TP+ T3P+ B Tyl + BB -Tah TP TR -TyB+TR +Te B | | B
2 -, . 3 pye . L3 o3 » e ° - Ly 5 e ]
fa:;s “T78 T~ Tl Ty B” Tl v LB+ TH B +Tu k5" BB -T5i B -5} B Tar &
{ T R+ T3 R TR + TPy TR ~Ta BT3B T R” +T3R + TR + e R + T B
with Tll"" ,T33 and Pl’ P2, P3 defined by (4.5) and (4.10),
respectively, and their derivatives given by
sy b _ T, s _dTy  _ -T, 2%
Pﬂ ds I ’ 'Eu s '3s
y AP ? aT:; a(P
p-2k _71 , To=902 _ T 3¢
2 ds 12 x74 s 12 s
JP. s _ T3 b Y4
P, =_3 = T = o3 = _.T er
Y P o Ta ds #3s
. dPp . . « AT .
=E70 - _sinpsind Ty = &3l = L gngspsind
-5 f © T iee TR
. . oPF - 3Ty, ! (4.16)
- L - coje T = 3 = - 03 6040
B rof ’ 327 a0 Fey
P. - BP.E =~ COS jl,ﬂg ) T. = —————a'l}j = -‘— [<re) £os 4[’13
3 rag ‘)po 33 rae r % y
o JZP 1 .- . . * aZT 14
=2 L =_245tnip singsind Ty = ZSH8L- _p” €L
L ra0ds  ronhAnY ’ I 035 T s
o_ 2P, 1 .- s T, *s
P,-'- 21 4n tp cos 0 Tyy = =232 _ _ _a.f
Y ST i ’ %2 rd0ds 235
w_ 2P g : s T3 s D¢
P2 =-2cos¢sinpsnl TS = = _pre¢
SV it A C BT 58s T TP 3
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4.2.4 Summary

For future use, define
u (4,0)

v (5,000 - [¢R/5,9)] {UR] (4.17)
wi(s,0)

where
To To T ! -TeR+Tsh TyB-Teh -TR+T.R
I
Ty T T {‘E2P3 +TsPy TuPs -TpP -TyR+To2H (4.18)
|
I

o)

T Tz Ty TB+Tuh TyB -Tish -TyR+Th
Upd> =<u, vo W i p B B3 (4.19)
Also introduce
{V} = [Tr){v]) (4, 20)

where {VR} is the rigid part of the usual 24 displacement DOF
vector and [TR] is a (24X 6) matrix obtained by applying results

(4.7) and (4.15) successively at

a) corner i : 0:-% , Y=9; ,‘:3_“: :(%‘g)‘. , r=r; ,

b) corner j 9:% s cf:tﬂ, ,%fs’ ;(%;f)[ , =1,

c) corner k : 6:-% 5 tp:?£ , g;::(%),{?’ r=rg ,

d) corner 4 : 9—_2! ; (qu’ﬁ ’%’?‘(%E‘F)ﬁ’ ro=rp

4,3 Representatioﬁ of the Rigid Modes by the Displacement

Functions

The results (4.7) and (4.15) show that u(s,8), v(s,9) and
w(s,8), due to small rigid-body mgdes, are not polynomial func-
tions of the coordinates s, 6 or their dimensionless eéuivalents
€ and N. The dependency on 6 is in the form of trigonometric

functions and s indirectly appears through r, z, sin®, cosQ ,
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of which only the first one is a polynomial, So there is no

possibility to represent a rigid-body motion by a combination of

the polynomials defined in Section 2,3, This conclusion must be

revised in two special cases discussed hereafter:

a) the finite element mesh is so refined that the elements are

almost flat,

b) the shell is a degenerate form

4,3.1 Almost Flat Elements

If the following approximations are made

coéﬂzI R 41..[10:0

[l

sin = Sin (¢, +8¢) = sing, + By sy,

W= s (¢+Ay) = s - Apsing, .

]

(4.21)

(4.22)

the transformation matrix [TP] and the displacements due to a

rigid translation of element center O are given by

w(s8) /| 0 (sing, +bpcosq) Ay i,
v (5,8)}- | -9sing, 1 -Oeng v,
w(5,0) -Ay 0 (m%—Aydin%) 1 w,

The displacements due to small rigid rotations Bl, ﬁz,

given by
w(s,0)) (-0 (ang +Apcos %)[Coug, (r-1,) + singy, (2-2,)] + A r8)
v(5,0) |- -[cagg(r-r;pdt’n 73 (Z—z,,)] -0 cosy, (r0) By
wi(s,0)] [-0(cosy, -Aapa'n%)[m% (r-fy) + st g, (z-z,,)] +(rd)

'3

+9

(4.23)

63 are
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[m @ (r-r,)+stng, (2-3,))] - Ago[4£n% (r-r,) - cos (g, (z~z;,)]
B -Gdzh;g[cos%{r—r;)., sing (2-4,)] » 8 cosip, [sing, (r-1, ) - o3 (2-%,) ]} B
L-A(p[cos @, (r-Ip) + SN, {z-z,,)] - [stn g, (r-15) - 089, (2-2,)]

(-(rf) + 0 (sing +A¢p sy ) [sing, (r-r,) -w@s @, (2-2,)]

+4 0sing (rB) +[sin @ (r-r,)- cosy (2-%,)) Ay

L Ag(r) +0 (ws g -Agsny)[sng, (r-,)-cwsq (2-2,)] j
(4.24)

The coordinate ©® now appears linearly and the small rigid
motions will be correctly represented by linear polynomials as
far as the variable & is concerned, But the variable s appears
through A®@ in the translation part of u and w, through r, z in
the rotation part of v, and through the products rA®, zA® in
the rotation part of u, w, This shows that the linear polynomial
in s used to interpolate thé displacement u will not represent
correctly the translations unless AP ™= sin® be considered as
linear in s; it will not represent correctly the rotations unless
r, z and AQ be considered as linear and constant in s, The cubic
polynomials used for w, on the other hand, are accurate enough for
the translations and will be correct for rotations if r, z and AQ
are qugdratic‘and linear in s, respectively,

The result (3,14) shows that a quadratic representation(of r
and its conseduences, linear A¢®, quadratic Z, are reasonable
approximations for elements with slightly curved meridian. ’There—
fore the conditions imposed by w on r, z, AP are not really res-
trictive and the correct w under rigid motions will be recovered

in the limit when the finite element mesh is refined. But the
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condition imposed by u, namely that r be linear in s, is much more
restrictive. It means either that A9 is zero, i.e. the shell is
conical, or AQ is neglected with respect to unity, which is a
rougher assumption than (4,22), Hence, the correct u under rigid
motion will be recovered in the limit much more slowly than the w,
This reveals a disadvantage of choosing polynomials of lower
degree for u, v than for w., This choice was based on the under-
standing that smaller values and smaller gradients are expected
for the "membrane’ displacements u and v than for the "plate”
disﬁlacement w, However, the above discussion shows that u, v, w

deserve equal treatment as far as rigid motions are concerned,

4,3,2 Degenerate Shells

Only the case of a cylindrical shell, which exhibits most
of the interesting features of degeneracy, will be described here,

It is characterized by

(5) = =0 , ¢osp =1 , Hng=0 |,
' fo Y ¥ .25
resy =r, =R, , %(8)=2,-5 .
Hence, rigid motions are described by
'4 3
U,
u 1 0 0 0  r(ws8-1) -v,5inl v,
vl |0  cos® -sinb gueso-n ssin@ Secsb | (w,)y (4.26)
w| |0 snrd s rand -50s0 S5ond P
B2
L A3l

The linear and cubic interpolation functions chosen for u, v and w

obviously include the translation along the revolution axis giving
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u(s,8) = u everywhere, But they seem unable to represent any
other motion since they can only approximate the trigonometric
functions,

If, however, one considers a small rigid rotation Y3 about
the axis of revolution, it can be considered as the superposition
of a translation vo = + Y3 ro and a small rotation Bl = - Y, at

3

element center 0 (Fig. 4.2). And, as such, it gives

u 0 0
vi. lrnesd -0+, , = {6 (4.27)
w r,stnb - rysinb 0

which is also representable by the chosen interpolation functions,

A

N

Vs I e 7
& ——f——

b!tj

/r, | >/

Fig. 4.2. Rotation of a Cylinder About Revolution Axis,
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Therefore, even if the selected six rigid motions are not
included in the displacement functions, linear combinations of
some of them may still be present; there may be fewer missing
modes than suspected at first sight.

In the case of the cylinder, also notice that, for a mesh

refined in the 6 direction,

- ‘ 'uo‘
%
u 1 0 0 0 0 -rd
wﬂ
vy |0 1 -6 0 58 5 ) g (4.28)
B
w 0 6 1 158 -5 50 '
Pz
Y%

All rigid body modes are comprised in linear displacement func-
tions, The same conclusion holds for the cone, cylinder and
plate with very large radii r and small central angle 0,

The cylindrical shell is a simple example, For other
elements, it may not be so easy to determine how many rigid modes,
or combination of them, if any, are present, A more general pro-
cedure is required for this purpose and will be explained in the

next section,

4,4 Eigenvalues and Rigid Body Modes

Physically, an eigenvalue Kn of an element stiffness matrix
can be interpreted as the energy stored in the element while it is
deformed in the associated mode shape {Wn}. A mode of defqrmation
in which no energy is stored, i.e, the associated eigenvalue is

zero, is called a rigid mode,
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To illustrate this property of the eigenvalues and the pre-
vious discussion of rigid modes, three examples are presented in
Table 4.1,

The first example is a large element cut along the diameter
of a spherical shell (¢ = 22,5°, 0 < ¢ < 22,5°) (Fig. 4.3). The
first column of Table 4,1 shows that no rigid modes are present:
the six last eigenvalues are far from being zeros; eigenvalues 19
and 20, corresponding to "rigid modes'" are just as big as eigen-

T

value 18, which is supposed to represent a ''straining mode,'

= 30,106 psi
= 0,3

0 5'l

= 100"

f=v = i <]
i

= 22,5°

o= 22 5° Large Element

>R

o =1°

= 1° I Small Element

[ g
S
!

Fig. 4.3. Spherical Elements,

When a much smaller element (¥=1°, 6° <@ < 1°) is cut from
the same sphere the second\column of Table 4,1 shows that a gap is
opening between the "straining” and "rigid" modes. Considering
the 15 digits accuracy of the computations, the last eigenvalue
can be thought of as a perfect zero, This indicates that some

modes are recovered faster than others in the limiting process,
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If they happen to be the important modes because the others are
already included or not needed in the problem under considera-
tion, the element is said "to contain the rigid body modes for
all practical purposes.' This conclusion was reached by
Stricklin for curved segments of revolution with Ag < 2° [49]

and by Schmit et al. for a specialized element [108],

The next example is a cylindrical shell element (Fig, 4.4).

E = 30.106 psi
v = 0,3

'h = 0,5"

R = 100"

o = 22,5°

1 = 40"

Fig. 4.4. Cylindrical Element,

As expected, the‘éolumn 3 in.Table'4.l exhibits two zero eigen-
values (the minus sign and the residual figures in eigenvalues
23 and 24 are due to roundoff errors), The corresponding eigen~
vectors can both be considered as linear combinations of a

vertical translation

uL _-le = uﬁ :.—UP - Llo
_ow _dw _ 2w Lt iR P
W= ys T ra6 T rovss ZAE

(4,29)
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and a rotation about the axis of revolution
1"' == ’V = 1’#

¢ L A
_dw _ dw _ Hw y
“ 35 " rad " rioe M AR

(i

(4.30)

Again, in the cylindrical case, it is easy to find the rigid
modes by inspection of the eigenvectors. But the fact that théy
represent linear combinations of the modes derived in Section 4,2
makes them difficult to identify in a general case, Also, the
straining modes, imperfectly uncoupled from the rigid modes in
this approximate representation, can inject some components in
the "rigid modes" eigenvectors and make the interpretation even
more difficult,

Therefore, an eigenvalue study can tell how many modes are
present but not identify them in general. An easy way to identify

them will be explained later,

4.5 Determination of the Represented Rigid Modes

4,5,1 Addition of Rigid Body Modes

Assume that the displacement functions do not include any

rigid body modes,
The total displacements {u v W>T and the total 24 displace-
ment DOF {VT} can be divided into a deformation part and a rigid

part such that

(14 u u

v
vril= vl +Jol = [% E?R] U‘.’- (4.31)
w T w D wR £
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| Vi
()= (%) o) = (1 ) {2 o aw
24 x! : 24x2%4 24x6 30:!1

i
b
f

where [1] is aA identity matrix, [@D], f@R], [TR] are given by

l
(3.29), (4.18) and (4,20) respectively.
l

As emphasized in Chapter 2, the selected strain-displacement
I .

!
relationships do not produce strains under rigid motion. therefore

= [B g o] {.\{}i-] (4.33)

One can proceed as before to derive the stiffness matrix, Vir-

tual displacements produce the internal work

[(B)D)B)dA: 0 [V, | K10 ](V,
<SSV 8UN Ao I FER SR 3TAF 1% BRI § S W2
' 0 10 J LU 00 lug

The external work can be written in any of the three following

ways:

I Ip

<8V, {3} =<8 [6Uk> [5] {Sp) = <8VaibUR> {7} ca3m)
, Tr ' Sk

After equating the internal and external work one gets

K!o] (v,
_-- {ST} ——- - - - - (4.36)
oo |Ug

from which some predictable conclusions can be drawn:

a) the stiffness matrix [K] previously derived is a‘deformation
stiffness,

b) all generalized forces associated with rigid modes vanish
[TR ]{51} {s:]}-0 (4.37)

¢) the generalized forces associated with total or deformation

DOF are identical
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[1){5:} - s}

In the solution process, the deformation DOF {VD] do not
present any interest as such; one would like to replace them by

the total displacements {VT}. To this purpose, use

) Vr .
{V} =[I _; ]}]f-_b;} | (4.39)
and the above conclusions to perform the following transformations
(5o}~ [Ka) {W%) (4.0
I

) - ) (1 f

Tr, I

u
i

Sp Ky Ko Tr { Vr Koo Kor|| Vr
(4.41)

0 Ti Ko Tr Ko Tr) L-U, Keo Kar] -Ug

which is the result usually obtained when a deformation stiffness
is transformed into a complete stiffness by a congruent transfor-
mation. In the following, the new stiffness will be called the

" PR | :

augmented matrix; its different parts KDD’ KDR’ KRD’ KRR are
defined by (4.41),

4.5.2 Static Condensation of Rigid Modes

The rigid body modes {UR}'need not be compatible between
adjacent elements; they can be considered as internal degrees of

freedom and eliminated by static condensation, Using (4.41),

{-Ue} . ’[KR.;?’][KARD]{VT} (4.42)

{Sr}= [Kr){Vy} (4.43)

with




{sr} = [59} (4.44)

[KT]=[KDD]“[KDR][KR-;][KRD] . (4.45)

The structure stiffness is formed by assembling Eq. (4,43),
written for each element, and the global system is solved to find
{VT}. The rigid motions {UR} and nodal deformation DOF {VD} can
then be recovered by means of (4,42) and (4.39):

Now, the nodal displacement {VT} will be compatible, i.e,,
at a given corner, the total displacements will be the same no
matter which of the adjacent element this corner is supposed to

belong to, But, the rigid motions being discontinuous from one

eiement to the next one, different values of
{Va}=[Te ] {Us} p {Vo) = {ve}-{va} (4.46)

will be obtained at the same corner, depending on which element
is used to compute them., Furthermore, between the nodal points,
the defdrmation part of the displacement will be represented by
polynomial functions, while the rigid part will be represented

by functions including trigonometric functions of 6 and s:

u(s,0) u (5,0) |
vis.0)} = [4,60]{b) , {veol = [§E0]{U] . @4
w(s,0) ar (5,0) ‘

Therefore, the total displacement will be discontinuous between

adjacent elements, the compatibility being recovered at the modal

points only for the considered DOF,

The static condensation does not usually produce this diffi-

culty because, unlike the present case, the displacement fields
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associated with the eliminated DOF often vanish on the element
contour, Wilson [127], hdwever, has developed elements rendered
incompatible by static condensation of midside DOF; these elements
compare favorably, in computational efficiency, with compatible
elements possessing the same total number of DOF, Therefore, in-
compatibility, per se, does not invalidate a solution; its main
drawback is the loss of the lower bound characteristic for the
finite element solution based on displacement functions and
stiffness matrices,

Additional comments will be made about incompatibility in
Section 5.8, They are delayed until then because they are better
understood in the light of numerical examples,

4.5.3 Determination of the Rigid Modes Included in the Displace-
ment Functions

So far it has been assumed that no rigid modes were in-
cluded in the displacement functions
I1f one of them is present, it was previously explained that
it can be considered as the eigenvector {Wn? associated with the
eigenvalue Kn = 0 of the stiffness matrix [K], If its presence is
not detected, one may try to add it again: one column of [TR]
will be identical to {Wn} save for a constant proportionality

(Koe) = [Ko)[Te)  — [Ko}{Wa] = hefwa}-{o)
[ RD] [TRT][KD] — <Wn>[KD] = M < Wpd=<0> (4.48)
Kad - (E)KT) — <Wod(Ke) {9}~ = 0

I

i
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i,e. one row and column, including the diagonal term, will be all
zeros in the augmented matrix, which makes the rigid mode already
represented easy to identify.

Note that, in practice, due to roundoff errors, the zeros
are replaced by small quantities. Experience has shown that,
even though [KRR] is singular, its inversion during the static
condensation process does not stop the computer!

Suppose now that none of rigid body modes {UR} is present
but a linear combination of some, representing another rigid.
mode, is included in the displacement functions, Say, for in-
stance, that columns p and q of [TR] can be combined to give the
rigid mode {Wn}:

{ Tz }P ¢ a {Tk}q = {Wi} (4.49)

Then, column p and q of [KDR] are given by

{Koalp = [K){ T}y = (K) ({Wa} - a{Ta}q) = - a [K}{Te)q
(4.50)
{KDR}q = [KJ{TR}q
Typical elements rp, rq, pp and pq in [KRR] are given by
(Kea)pp = <Tode (KJ{To), =-a <Ted, (K){Tel,
(Kea)eg = <Te>n (K] (T} q (4.51)
(Ken)pp = <Tadp (K] {Tel, = a2<Td, (K]},

(KRR)Pq = <Tg)p [K] {Tqu =-a <TR>¢,(K] {Ta}q

which shows that two columns in the augmented matrix, those
corresponding to the rigid modes p and q, will differ only by the
proportonality factor -a; because the augmented matrix is

symmetric, the corresponding rows are also proportional and a very
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small pivot, theoretically Zero, will appear again during the
inversion of [KRR] performed for the static condensation,

Once a rigid mode already present has been identified, it
must be removed from {UR} before applying the augmentation and
static condensation processes,

If a linear combination of two modes is included, like in
(4.49), one of them must be removed, What must finally be
represented in the stiffness matrix is a basis of six linearly
independent vectors capable of combining into any rigid trans-
lation or small rotation, Since {Wn} is already present, {TR}p
and {TR}q cannot both be kept, but {Wn} and {TR}p or {Wn} and
{Tqu are two acceptable pairs of base vectors for the rigid

motions,

4,5.4 Example of Cylindrical Shell

This type of shell was already discussed from a theoreti-
cal standpoint in Section 4,3, Numerical results are now ex-
hibited for an element whose dimensions have been shown on
Fig, 4.4
The augmented matrix is reproduced in Table 4,2, It can be

observed that:

a) the rigid body mode uo, already present, gives a zero row and
column,

b) the rows and columns corresponding to vy and Bl differ only
by a factor r0 = 100 because a small rotation YS about the
revolution axis, equivalent to a translation vO = - Y, r

3 "o

followed by a rotation Bl =Y is already present,

3!
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TABLE 4.2
CYLINDRICAL ELEMENT. AUGMENTED STIFFNESS MATRIX

«TISF N7 «?26AF€0T  -,340E+06 -,227E407 -.191E+07 ~.127E+D8 «738E+06 «206E#06 -~ 146F+06 -,9T1E+06 «127E+07 «B4TELOT
SPRREADTT SO TAGF40T_ -.11SE407 -, 6596407 «T5SEE0T ~o432F408 | ~u206E+06 = 465E4DT - 115E4NT  ~.659E+07 «15SE+07 «432E+08
S MDERNA — JL5TADT T TL3160E406 «204E¢07 «201E407 «LL4E+08 | ~.146E+D6 «115E407 «122E406 «693E¢06 -~<115F+07 -o853E+07
- P7TRANT - ASAF 0T +204E407 L 153E408 «115E+08 «B57E+0B | —.A71E+06 «659E407 *693E+06 »509E+07 ~e4B4ELOR
= 1BLF4NT - 7SKF4QT «201E+07 11554087 T ol4BE+QB_  .BA3E4NR | - 12TE+07 «T55E407 » L1SE+OT «653E407 -« 591E+08
-+127F40R  -,437E408 s114€408 857409 +843E+08 ", 640E+09 | - B4TELOT 2432E408 «653E+07 «484E+408 «5O1E¢08 -.%44E¢079
STATFADR T - 2NEF+08 - 1ABE+06 <, GTIESD6 —ol27ES07  ~o G5 TESOT «T3SE+OT__—426B8E+)7T -~.340F+06 -.22T7E+0T «191F«D7 « 127E+09
SP0AESNE -, 455 +0T « L15E+nT «659E407 «755E407 «432E400 | ~.26BE4+07 L T4BEOT_ L IU1SE+0T7 »659E¢0T7 -, T55E4¢0T ~.432F+08
e 1R6F4NA < 1155407 +122€¢06 «6935406 «115€407 « 6536407 | ~434DE+0E +LISE407  TL360E+06. ,206E407 ~.201F+407 =-.114E+0R
-« OTLFA04 < 6597407 »693E¢06 «509F+07 «653E+07 «4B4ESO8 | ~,72TE+07 «659E+07 +204F+07 o« 153E408_ - 1156408 ~,857E+08
127007 «TSSESOT - 11SE40T7 -.653E407 -,104E+08 -,591E+408 #191E40T <. T55E40T7 ~,201E+07 -.115E+08 14AE+0R L A43C+08
LR4TE40T 2432E408 -.653E407 -, 484E+00 -—.591E¢08 -, 484E+09 2127E408 -4,4326¢08 -.114E+08 -,.B57E408 «843E+08 2 640E¢09
~s461F 0T » 7066406 «340F¢06 «227E407 «191E+07 S12TE#0R [ — IGREFGT «268E407 +146E406 +9T1E¢N6 -~ 12T7E+07 ~.B4TE4DT
- 2DAF N6 2NELO6  -.495E406 -, 440E407 -.324F+07 -, 288E+08 «?60€407 ~2374E407 -.494E+06 -,440E+07 «324E407 +288LH0A
-<3ADEHNA -, 4058406 = 122E406 «117E+07 «6BLE+06 «654F¢NT | —L 145E+06 +494E+06 «»428€405 «404E+06 - .39TE406 -.378R+07
<3PTE4OT 440E407 - L1TE40T ~,108E408 =-.654E+407 -, 603E408 «9TLE+06 —a%40€¢07 -,404%5406 ~,366E+407 «3TBE+OT » 344E+08
“w 1RLE4OT o 324E407 «6A1E+06 + 6545407 «492E+0T «&4TTE408 | -4 127E+07 «324E+07 »39TE+08 «3TBE«0T  -.352€407 ~-.338E+08

1276408 ~e654E+407 -,603°408 -.477E¢08 -, 445E409 B4TE+Q0T7 ~-,28BE408 -43TRE¢QT -,344E+08 38E+08 «312F¢09
EPELLLEY 1k «146E+06 «9TIE+OS «127E+Q7 +BATESDT | ~4441E+07 ~,206E406 +»340E+06 « 22TE+07 191E+07 ~.127E+08

=2 26AE40T  ~,3T74E+NT «494E406 «&40E€+07 #324E+07 «28BE+08. « 206E+06 =910E406 «495E+06 « 440€E407 324E407 ~,2BBE¢0B

=~ 146F+N6 -, 494E406 +42BE+05 «404E4+06 «397E+06 «37BE+0T | ~«340E+06 +495E ¢06 «122E406 «11TE40T  -.6B1E+06 -, 654F+07
VAT 406 «440E407 =~ 404E406 -4 366E+07 - 3TBEOT -, 344E+08 «227TE40T  ~a6440E¢07 -,117E+07 -,108E+08 »654E4+07 «H03E+08
L127F a7 «I24F40T -.31975¢06 -, 3TBE+07 ~,352E4+07 ~-.33189E¢08 «191E40T7 -, 328E¢NT -, 601E¢+06 -.654E+407 »4 926407 +4TTEOB

- AGTE4NT -, 2RAF+08 +37RE¢0T a344C¢08 +33BE+08 23126409 | -.12TE+ 08 2288E4+08 «654E407  J603E408 -~.4T77E+0R  -.445E409
L10ac-06 0. ~e279E-08 -, T4SE-08 «298E-07 « 119E-05 »596E-Q7 #»L30E~07 ~.186E-08 « 149E-0T7  -.224E6~07 .
«FAIEL05 -, 42TE-OT -,507E405 ~,338E406 ~,166€406 ~—.I11E+QT | -.633E+05 -.652E~-08 «507E+05 «3IBEC06 -, 166E+06 ~o111F¢07
2 32NFan? «IN9E403  ~,213E402 ~-,142E+03 «107£405 = TL2E+05 «320€402 —.109E403 -,213E¢02 -,142€4¢03 -~,107E+05 -,T12E+05
+6HAIC4NT -, ISRE-06 -+SOTE40T -.33BE+08 -,166E¢08 -, 111E409 | -.633E+07 «134E-06 «SO07E+Q7 +338E+08 ¢ 166E+08 -, 1L1E€09
ARLF-QOT «TATE4OT ~o171E403 -.569E+03 «8TOE+0S «205E+06 «316E-06 ~,737E407 ~.171E4+03 ~.569E+03 -.8706+05 ~.285E¢06
~148F 40T «145E¢07 «4N5E+06 «135€¢07 #133E+07 » 843407 | ~. 148407 «145E¢DT7 -~,405E¢06 ~-.135€+07 «133E407 “443EeQT

SRGATEANT - P06E406  -o340E+06 2276407 -,191E¢0T  .127E+08 | ~.36BE+0T =, 268E¢DT -.1466406  L9TIE406  L127E+0T -, B4TE+OT
INGEA06  (910F406 - GISEED6  L440E+0T -.324E40T L 28BE408 [ ~.268E407 -.374E407 -.494EC06  J44OE¢OT  ,324E+07 -.2RBE+0A
»300E4D6 =~ 4G5E406 1226406 <. 1L7E607  <6BLE406 - 654E¢07 | J148E+06  +494E406  ,428E+05 -2404E406 -.397E406 . 3TBE+O7
SP27F4NT - 44NE4NT  (11TE40T - 1NBE+OB  .654E¢07 -, 603E408 | «9TLE®DE  .440E+07  o404F+06 -o366E407 - 3TBECOT . 344E+08
<1C1E407 - 374E4DT  L681E+06 -.654E407  L492E4DT -, ATTESOB | L12TE+0T  .324E¢07  .39TE406 -.378E+07 -.352E407  »33BE+08
21276408 . 20RE+08 ,654E407 -y 60IE40B  ATTES0D  ~.465E+09 | .BATESOT o 26BE¢D8  ,3TBE40T -.344ES08 ~-,338E408  .312E+09

SOARREINT  Z6BENT - 14BEF06  JIT1ES06 —e12TEYOT  LRRTESOT | <.48LE€E¢07 . 206E¢06 —.340E+06 ~ .23 TE0T

GIECOT " ~o 12ZTE+DA
SIRRELDT  ~,3TAECOT  L494E+06 4406407 ,324E«07 ~,288E+08 |~,206E406 .9L0E406  L49SE+D6 -, 440E¢07 ~-,324E¢07  ,268E+08
SLG6E406 -~ 494E4NE  442AE40S

404AE+06 +397E+06  -,3TBE+0O7 +340E+06 «495E4+06 «[122E406 - 11T7E+07 ~,681E+06 «654E+07
AnATVLEENA -, 440E+D7 +404E406 -.366E+07 23TBE+OT - 354E+08 «227E+07 «440E+DT «LL17E407 -, 10BE+08B -,654FE«07 +603E+08
=+ 1277407 «124T407 ~,39T7E+406 «ITBEDT =.352E¢07 + 3386408 |-, 191E+07 ~«6BLE+06 «654E+07 «492F¢07 -.4TTE+OR
SoRGTE407 L 2RBE4OB  -43TBE40T o 344E¢0D8  -.33BE¢08 _ ,312E+09 |-, 127E+08 654E+07  #6DIEC08_ 4TTE408 - 445E¢09
TTAGE4NT -, 26RF+07 +340E406 -, 22TE+07 «191E+07 -.12TE+0B «T3BE4+06 46E+06 =-.971E+06 ~,127E+07 «B4TE+OT
- PRRF4NT TLTABEENT_ -, 115E407 659E+0T -~ T3SE+OT 432408 «206E¢06 —o465E+37 ~.115€+07 » 659E ¢07 «TS5E+07 -,432E+408
JIANF DA ~L 1150407 T T160E+06_ 204E+07 «201E+07 ~.114E+08 0 146€4086 « 1156407 e 122E+06 ~.693E4+06 -.115Ee07 «653E40T
~-277=407 <659E40T -, 204E+07 T +1S3E+¢08_ -J115E+08 +ASTE408 |-o9TLIES06 -~ 6S9E40T ~,693E+06 « 509E«07 «653E¢07 - 4B4E+0B
«191°¢NT -, 7SSE+07 «Z0LE40T ~.1156¢08 ~L,148E¢0R  -.A43E+0p8 «12TE+07 «TS5E40T ~1156407 -.653E407 -.104E+08 591E+08
- ~a127F¢0a  ,432E409 -,114F+08 «B57E+08 ~.843£+408 T+ 640E+09 i -,847E+07 —e%32E208 -.653E¢Q7 < 484E+08 S91E+0B  ~.454€E¢09
~ TIRE NG « 7D6E406 +146E406 «127TE+0T -, B4TESOT | S735E+407_ . 26BE+07 «340E+06 2276407 - 191E¢07 +127E+08
=L P2NRFANA -, 465F 40T +115€407 «TSSE+0Y -—.432E+08 «268E+Q7 TTHBE+0T_ 41156407 -,659E407 -,.755E+07 #»432E¢0R
« 14AT 406 -, 115%407 W122E¢06 ~,693E406 « 1156607 ~.653E+07 «340E+08 «115E+07 -HGDEOOA_‘-. 208E40T -.201E+07 o 114E¢n8
~aQTLF4N6 « ASFELOT  -,693E+06 +509E+07 ~.653E+07 «4B4ESNB | -, 227€407 -.659E407 -,204E407 T15S3E40B_ _ JU1ISE+08 -.B5TE+08
~a 1275407 STSS5E4NT  -,115F407 +653E407 -,1065¢08 +SSLECDD |- 190E40T ~,TSSECDT ~.201E+07 «115E408 “lkﬂEﬂ)ﬂ\_-.Bk!E*O&
2AGTENT -, 432F40B +653E407 -.484E408 +5S9LE408 -, 404E+09 212TE+0OB «432E408 »2114E+08 ~.857E4+08 -.843E+08 L 640E+09
24INE-NT -, 31T7E-07 »186€E-08 «373E-08 0 =2 596E-07 [Da «29BE-07 0. Da [N «238E~06
~e6IBE4N5 ~,ITIE-ND8  ~,G50TE+0S5 «33BE406 -J166E+06 « 11 1E+07 2633E+05 «S126-07 «SOTE+05 -4338E¢06 ~.166E+406 elLLIE¢OY
=,320F402 » 109E 403 2138402 » 1426403 «10TE405 =oT12E¢05 [~4320E+02 ~-.109E+03 -,213E+02 » 142E+03 -,107E+05 « TL2E+05
~ h33E 40T «119E~06 ~,507E+07 3386408 -,166E+08 »111E¢09 0 633E¢07 « 149E-06 «507€E+07 -+ 338E+08 -.166E+08 +111E+09
=+ 156F N6 ~, TATE+DT +LT1E403 -.569E403 -.870E+05 «285E¢06 |-.137E~06 «TITE+DT e 1T1E+03 569E+03 +B7OE+05 =~,285€+06
«149F+NT -, 145FeNDT  -.405E406 » 135E407 . -4133E+07 +443E00T7 |-, 148E¢07 =~,145E+07 e 805€¢06 -, 1356407 ~,133E+07 »443E+07

A I E-N6 «633F 405 «320E402 «633E407 «B64E-07 «146E407 )
n, ~+b42TF-07 «109€+403 ~,.358E-08 «TITE+OY » 185E¢07
~+279F-08 -.5077+05 ~«507E+07 -.171E+03 «405E+06 NODE i
~+T745F-Np -~,338E¢NG ~«338E+08 ~.569E¢03 «135€+07

« 2980T  ~,16AF406 +10TE405 ~.166F408 «8T0E+05 »133E+07

S119F-06 ~4111F¢07 «T12F405 -.111E+09 «2B5€+ 06 +443E+07

«S96F-07 -,633E+05 «320E402 ~o,633E407- o316E-06 ~.148E¢07

21ANE-0T - 6526-08 «134E-06 -oT3TE+07 « 16SE+07
- 1BAF-np - 5NT5405 »507E40T7 =, 1T1E+03 -.405E+06 NODE i

L 14nf-07 «33BE+06 «330E4+08  -.569F+03 -.135E+07 )
=+ ??26F-N7 -, 16AFE4NG - ~+166E+0B -~.B870E+0S « 133E+07

o, 111E407 ~,712E405 ~. 1116409 -,285E¢06 <45 3E07
JH10F-DT 633E+0S -, I70E402 -~ EIAE07 -.354E~06 « 18E+0T

~<ATE-07 373E-08 «109E+03 +L1GE-06 -.T3TE40T -.145E+07
» 196 E~NA

+5076405 ~,213E402 -.507E+407 «171€403 -, 405E+06 NODE k

+AT¥F-0A « 3187 106 «142E403 +3305408 ~,569E+03 « 1356407

=+ 166F 06 «10TE+05 -, 1666408 -.BTOE+05 ~.133E+07
+111F407 -,7312E4D5 o« L11E¢09 «205E406 244 3E¢07
«63IF405 - 320E407 «633E+0T  ~,13TE-06 ~. L4BE+OT
«512F-NT7 -,109F+03 +«149E-06 «T3TE4+0T -, 145E+07
«SNTEENS  —,213F+02 «50TE+O7 «17T1E+03 « 405E+N6 NODE |

~«338E+06 «142E403 ~-,3386¢08 -.569E403 —,135E+D07

~s166FE406 -,107E+05 -.166F+0R #«BTOE+05 ~-.133E+07

»2388-06  J111Ee07 «T12E408 = 3116409 -.285E¢06 +443E207

2 205F=0h 1" THAE-0T —,A40F-08 «298E~-Q7 -,087E-07 «396E-05

SVSAE=07 | 330E+NS | ,9726-08  +330E+4D7  .5A06~06  .399E-05
-, RGNE~nA «972f-08 <112E-06  .4T3E-06 ~.182E-06
429AF=NT  L330FeDT  ,112F-06 ~s106E-05 . 6A3E-05 RIGID MODE

~.RATF=0T  ,590£-N6  J4TIE~06 =, 106E-0 ~o 104E~D4
396505 LI99F-N5 -, 182E~06 ,683E-05 -.104E-04
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The matrix after static condensation is reproduced in Table

4.3, Notice

a) the small pivot in the u, row,

b) the additional small pivot appearing in the vO row after a
backward Gaussian elimination has been applied to rows v,
and Bl’

c) the important changes between the element stiffnesses [KD]
and [KT].

The matrices [KRD] and [K obtained before and after

RR],

static condensation when 4 rigid modes only are added, namely A

v, B

9 and BS’ are reproduced in Table 4.4, They no longer con-
tain zero lines or zero pivots,

The eigenvalues of the matrix [KT] obtained either from the
(30 X 30) or from the (28 X 28) augmented matrix are reproduced
in Table 4.5 together with the eigenvalues of the original [KD]
matrix. Observe now the reduction of all eigenvalues and the
presence of six rigid body modes. The equality of eigenvalues ob-
tained by adding and condensing out 6 or 4 rigid modes shows that,
in this particular case, it did not hurt to invert a "singular"

(6 X 6) matrix [KRR]. Nevertheless, it is preferable to add the
minimum possible number of rigid modes to save on operations and
avoid potential troubles with very small pivots,

It is sometimes considered that a reduction in the trace, a
reduction of the maximum eigenvalue or the eigenvalue sum are
measures of the improvements brought to a stiffness matrix. In
all these respects, going from [KD] to [KT] represents an improve-

ment; but this favorable opinion must be tempered because
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TABLE 4.3
- CYLINDRICAL ELEMENT. AUGMENTED STIFFNESS AFTER STATIC CONDENSATION

CTUFNT T TLRABFAOT 125E407 -,693EeNT -, TQ0E+0T -,444E+08 «ISAE+06  —,454E¢07 -4 105E+0T7 -,626E+07 «T25E+07 «422FE+0B
~»344Fenh - 1258407 W254E406_ L 143E07 «166E+07 w4 2E40T7 | - 14LEe0h «105E+27 «228F406 « L30E4DT -, 150E407 ~.ASSF+07
~e 1967407 H9IE+DT «143E+07 TLLISFEeNE L952E407 « TI4LE+408 128E+07 +626E407 «130E+Q7 +BEBEENT -,B55E+0T7 DQF + 08
-+ 193F+n7 TA0E+0T 2 166F407 «9525407 T L123E+08 +bATE+08 126E407 - T25E¢07 «150FE+07 «ASSE+0T -,102E+08 « S66F +0R
=o 1175498 -,444E+0R 22407 « 7356408 +6BTEL08 " S 53I9E409 | ~4951E+07 «422E+08 +B35€+07 2 609E108 ~.566F¢08 -.424F¢09

+12AF4NT S LAAF406 - 141F¢06 -, 12BE+07 -—a126E+07 <—.95LE+0T To6BO6E+0T_ ~a23FE4DT  -.344E+06 -, 196E+07 «193F+¢07 «117E+08
~o158F406 -~ 454E+07 «105F+07 «626E4+07 «T25E+07 4226408 [ -4 231E+07 “-bbbE*O'L_ « 125E407 «693E+0T7 - 7906407 -, 444E+08
—eV41F 06—, 105F+0T «22BF¢06 «130E+07 +150E+07 «B55E+07 344E+06 S 125E4DT © TL2G4E406 S 143E40T -, 1HEECOT  -LR42E40T
=+ 120F407 -, 626F+07 «130F+07 «BA6E+07 +855E+07 »609E+08 196E+07 «693E+07 «1430007 "TLMLSE4NE  -.952E¢07 -, 734E+08

1267407 «725E407 - ,150E¢07 ~_,RSSE+07 ~,102E408 =-,566E+0B «193E+07  ~.790E40T -.166E407 ~-.952E407 ~ 11236408 _ . 687E+NA

= 9514¢07 24226408 -~.BS5E407 —.609E408 —.566E+00  ~,424E+09 117E+OH —o484E+08 -.942€+07 -, 734E+N8 +6RTEL08 ~ 5539609
~a466CE07 -~ 15RF406 «l41F+06 «129E¢07 «126E+07 «950E407 | ~23435407 «231E+07 «344FE406 « 196E4DT  -L193E¢0T -~ 117E¢08

» 1588406 «1T4E4NT -~ 39SFE406 -, 406F+0T -.292E407 -,27BE+08 w23LE+O0T  ~43B6E40T -4594F¢06 -~,473E407 +357€+07 «299E+08
=141 FeDh  ~, 3058406 « 7265405 « T4BE+08 «521E+06 «S16E407 | —4364E+06 2+594E+D6 «G26E+05 +B30E+06  ~,563E+406 =-.519E407

«128FenT CANGE+OT  ~,T&E4O6 ~.TH5E+07 ~,516E+407 -,S501E+08 «196E¢07  ~u4T73E+07 —,B3I0DE+DEL - 6BOE+OT «S19E+07 « 44Q9E+08
=« 1260407 -, 292F+n7 «S21Eene «SL6E+0T »304E+07 A1E4DE | -4 193E+QT «35TE407 +563E406 «519F+07 -,271E+07 ~,294E¢n8

<I5NELNT 2278F¢08  ~.S16E407 -,501€408 -~o3%1E+08 -.352E409 «117E+DB -.299E+08B -,519E407 -.449E+08 s234E+0R «285E409
=+ 343407 -, 231E+4NT «344E206 «196E+07 «193E+07 «ILTE4DB | -, 466E+07 «158E+06 «141E¢06 «128E407 -, 126E+07 =-.950E¢07
~e2WERDT <L 3RGE4DT +594E406 2 4T3IEL0T «35TE+0T »299E408 | ~.158E+06 s 1T4ELOT +395E406 « 406E+07 Q2E+07 27AE+08
~+344F206  ~.594E406 «926F+05 «BI0E 06 «563E+06 ~e141E406 «395E406 «T26E405 « T4 8E+06 «521E406 - 516E+07

= 196€40T7 w4TIFE0T - A30E+06 ~—.6ROF¢0T -.519E407 2 12BE+07  -o406E40DT -.74BE+D6 =~ T65E+07T »5U6E+0T -501€£+08

«183F 407 «ISTESNT - S63E406 —,SI9E+07 -,271E+07 -,294E+08 »126E+0T  ~e292E¢07 -.521F+06 ~,516E+n7 «J04E+OT «341F+08
Ta1175¢0R  -,7299E¢08 °  ,519E¢07 2449E+0R 2294E+08 «285E¢09 | ~,9S0E+0T «278BE+08 2 516C407 +501E¢08 -,341F408 -, 352E+09
—eAS5E407 - 5T4E407  ~,130F¢02 ~-.453E402 <,999E¢02 ~.541E¢03 «538E¢02 -.505E+402 «151E¢02 s 507TE+02 «LLLE#N2 «191E+03

«43RE4NG «4SAE NG «102E+04 «356E+04 «T9IE+04 o 435E405 | —.423E+04 «39TED4 - [19E+04 ~,399E+404 -,101E+04 =-,1595405

«YI79E4 0N «129E401 ~,253E¢00 ~,16RE¢01 +126E+03 «043E+03 «3Y9E400  —.129E401 ~,?53E+00 -.16BE+01 -.126E+03 -.843E403

«JOPE-O1 - B9TE-14 ~.153E-01 -,1026400 =4503E-01 -—,335E+00 | -.192E-01 =e490E=-14 «153E-01 o 102€400 ~,503E-01 -, TIS5E+400

«238F=11 »641F-01  ~,148E~05 =~,494E-05 «TS6E-03 «2608E-02 | ~¢199E~13 ~,641E-01 -,148E-05 ~,494E-05 =~,756E-03 -,724R€E-02

«251F¢00 » Z46E400 »68BE-01 «230E400 »226E+00 » 752E400 | -, 251 €400 «246E400 -.688E-01 -,230E+00 «226E400 « 752E4¢00

( TLEahFanT +23LE¢NT - A44F906 ~.196E¢07 =.193E407 -, 11 TE+09 «123E407T <~ 158E+06 -.141F+06 -,128E¢07 +126Ee07 «H5LF40T7

=+ 4h6F 40T «158E+06 -.141E+06 »128E407 -,126E407 «950E407 | -, 343E+407  -.231E+0T -.344E+06 o 196E+07 +193E+07 -.117E+08
~<15RF+06 1745407 - ,395E406 «406E¢07 92E407 «278E408 | -4 231E+07 =.3B6E407 ~.594E+06 «4T3E+07 #«35TE+OT  -.299E+08
«141F406  ~,395F 4086 «T26E+05 -.748E406 «521€E406 -, 515E+07 «344E+06 *+S94E+06 «926E405 -,B30E406 ~-.5A3E406 «S519E+«07
SIPAFLNT  ~L 4068407 «T4BE4DE . T65E+07 +516E407 -,501F+08 #«196E+07 «4T3IE+OT «830E+0h -, 6A0E+0T7 -.519E+07 «449E+08
1265497 -.292E¢n7 «521E+06 -,S16Ee07 «308E+07. -2 341E+08 «193E+07 «35TE+0T «S63E+06 ~a2TLE+07 +296E+0R
2950F 407 ~.2TBE+OR 2516E¢07 -.501E+08 +341E+D8 -, 352E+09 2117E+08B «299E+08 #SI9E¢07 ~,449E408 ~.294E£¢08 «285E+09
=+ 343F N7 e 73LE+0T  ~.344E+D6 «196E+07 -,193E+07 «1LTE+0B | -.,466E+07 -.158E¢06 -~.141E+06 «128E407 »1268407 -,950E¢NT
+231F407  ~,3B6ELOT «594E406 ~.473Ee07 «ISTE+OT  ~. 299E+08 «158E+06 »L74E407 «395E406 - 406E40T -.292F+07 « 2785408
23445406 -.596F 06 +926E40S5 -.B30E+06 «563E406 ~.S519E+07 «141E406 »395E+06 «T26E+05 ~,74BE+06 -,521E+406 +516E+07
~196EeNT - 473E+DT «830E+06 -.680E+07 «S19E407 -4 449E+08 «128€+07 «406E+OT « T4BE+ D6 T65E+0T -.51AE+07 «501E408
-.193E¢a7 «35TE4OT  -.563E+06 «519E¢07 -,271E¢0T * 2946408 | -, 126E407 -.292E+07 -,521E+06 «516E+07 «304E+07 -, 341E+08
-« 117F +0R 2P99E408 -.519€+07 +5499E¢08 -.294E+08B +285€+09 | ~.950E+07 ~.27BE+08 -,516E¢07 «501E+08 +341E+08 -.352£+09
SHB6E407 -, 221E+07 «344E406 ~,196E+07 «193€407 -, 11TE+0B «123E407 «158E+06 «141E406 - 12BE407 ~-.126E¢07 « 951607
~2231FenT T T 666E40T -.125E407 «693E¢0T -~ T90E €07 «444E4+0B | - L5BE+06 —.454E+07 ~,105E+07 +626E4+07 « T25E4¢07 -.422E+0R
+366F4N6 -, 1255407 T L254E406 -, 1436407 «166E407 ~.942E407 s 141E¢0s =105€¢07 #228E+06 -4 130E407 -, )150E407 «B55£407
—« 196E+0T «693E40T -, 143E40T T L LISE408  ~o952€+07 «T3I4E+08 | - 12RE+0T ~.626E¢07 -.130E+07 «BR6E¢NT »BSSE4NT  -.609E+08
+193F+07  ~.T90E+07 +166F+07 ~,952E+07 123E+08_ -, 687E+08 «126E¢07 «T25E407 «150£407 -,B55E407 -,102E+08 «366E+08
~+ 117F¢0R 5644F408  -.942E407 «TI4E+08 -~,68TEFO8 ~ T 530E409 | ~oG51E¢07  ~u422E408 - BS5E+07 «609E4+08 25b66E¢08B -, 524E+09
«123E407 -, 1S5AE+06 «l41E¢06 128E+07 «126E¢07 -, G51E¢OT +6B6E+DT___ . 731E+07 »344€406 -, 196E+07 ~.U193E+0T «117E¢0B
“1SRFeN6 -, 454T407 = 1056407 626E+07 o« T25E407 ~o422E+08 #23LE¢0T T T666E40T._ «125F40T =,693E407 -, 7906407 «444E+0B
«141E406 ~4 105F+07 «72RE¢06 ~.130E407 «150E+07 ~.BS5E¢0O7 +34%E406 21256407 ~ 254E406. -4 143E+07 -,166E+07 9425407
~«128E+07 «626F407  ~.130E+07 +BB6E+OT  —4A55E¢07 «609E+08 | -, 196E407 -,693E407 T S LISE«08 «952F407 -.T34E¢NB
~s 1267407 « 1256407  ~,150E+07 «BSSE+0T  —4102E+08 «566E408 | -,193E+0T . 790E+07 « 9526407 T~ S 123E+08 6ATE+NR
2 A51F+07  -.422E¢0R 2B55E407 -~ .60%E+08 «566E+08 -, 424E¢Q0 =117E+08 2 444E408 9 S42E+0T -, TISE408 -~ ,68TE+08 ~ ~,539E+09
~«S54AE+N2 «S39E 402 «144E¢02 -,492E+02 -.849E+01 « 226E403 «5T4E+02 «S40E+02 -.134E+07 «452E402 «104E+03 -, 490£+03
SGNEENL 4268406 -, L1IE4D4 «3IBTE+04 *B04ES03  ~.1ATE40S | ~,453E+04 -.425E+04 »105E¢06 ~,355E404 -.B3SE+04 «394E+05
~«3TOE4+00 «129E+01  -,253£400 «168E401 «126E+03 -, B43E¢03 [ ~.379E+00 -, 129E401 ~.253E+400 « 168F401 -4126E4+03 «841E403
=1 192F =01 ¢ 525E~14 -.153E-01 +102E400 —4503€-01 «3315E+00 «192E-01 «5TSE-14 «153E-01 -, 1026400 -,503E~01 # 3356400
«196E-13  «,841E-01 «148E-05 -.4946-05 -~.756E-03 «24BE-02 [~,238E-13 «b41E=01 «14BE-0S -, 494E-05 +T56E~03 -,248E-02
12516400 - -, 246E¢00 - ,68RE-01 +230E400 -.226E+00 +752E400 | -4 251E4¢00 =-,246E¢00 «60BE-01  ~a230F400 ~,226F+00 » TS2E 400

~«6HA9E-04 ~,102E-05 «320E+02 «633€407 «269E-05 +148€¢07

~» T13F-04 ~,105E-0n5 «109E403 -.197€~05 +T3TEO7 «1645E407
=+ 1616-04 -, 237E-06 -.213E402 -.507E4¢07 -,171E+03 +405E406 NODE i
~«563E-04 «R29E-06 -.142E403 -,33BE+PB ~,%569E+03 v 135E¢07 !
-« 124F~07 +107E405 ~,166E+08 «BT70E+0S » 133E407
- 672F~03 2T712€¢05 -.111E409 ~2B5E+056 s 443E+07

«O668F-04 »320£402 ~-,633E407 ~.229E-05 -~ 14BE+07

~eh2TF=0D4  -,925E-06 -,109E03 -,1626-05 —.T3TE40T . 1456407
1A7E~04 +SOTE4OT -o)71E403 -, 405406 NODE |
<6295-n4 «33BE40B -.569E¢03 -, 1ISE40T J
#1376-06 [ 2366-06 ~,107EsDS ~,166E+0R -.B70E405 . 133E+07

223TE=03 L 3T0E-05 -.712E405 =-o111E409  ~-.2B5E¢06 _ ,443E407 :
= 6RNE-0F = INOE~05 -~ 320F+07 ~+633Es07  +2256-05 o 14BE#OT
«AROE-04  L9ARE-06  109E80I  L173E-05 ~-,73ITE+0T -, 145E407
ALT9F=06  L264E~06 -o213E402 -o507E00T  171E¢03 -, 4N5E406 NODE k
-~ h10E-D4 9016-06 1426403 L IIGEC08 -.569E403 L 13SE¢07

~e105F-n4 IATE-06  L10TE+05 -.168E408 ~,8TOE+0S -, 133E+07
s2R0F-03 ,436E-05 -.T126405 21116609  .205E¢06 o454 3E407
LTTIE-0& L IDSEZNS  —,320F+D2  «633E407 —4274E-05 <.14BEs0T
»ATOF-0D4  ,OA9F-06 ~,100E+03  ,190E~05  J73TE407 -, 145E+0T
= L66E=04  ~,245E-06 -.213E402  J507E¢0T  JLTLES03  .405Es06 NODE |
AS61T-04  (A2TE-06 o 142E403 ~.338E+08 -.569E¢03 -, [ISE40T

S1306-03  L194E~05 -,107E¢05 ~,166F+08  ,BTOE+05 s 133E07
—<60BE-03 ~,91RF=0 STI2E+05 o 111E409 -.285E¢06 o 443IE40T
S1Z4E-NY | TASE=07_ ~,B406-06 o 29B:-07 ~uBBTE-07  »396E=05
<CGATE$DZ [~.733E-09 | .B859E-0A _ .33054¢07  .SBOE-06 . 3996-05
~2904F~10 T J102F-09 | L A44E¢02 | L1126~06  L473E-06 -, 182E-06

W903E-16  J100F~01 — ,340E-15 =e106E-05  ,6B3E~-05 RIGID MODE
~«T71E-15 «504F-14  ,4126-14 -,91BE-14% -« 104E-04
«€TIE-12  L6THE-17 -,309F-13  L116E~11 <, 176E-11
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incompatibilities are also introduced in this process!

4.6 Rigid Modes to be Added for Different Types of Shells

of Revolution

The procedure of finding which rigid body modes need to be

added has been applied to several different types of shell

elements, The following conclusions can be drawn from numerical

results obtained in these studies and from theoretical considera-

tions,

1.

For a doubly curved element, all six rigid modes need to be

added,

For a cylindrical shell, the translation along and the rota-
tion about the axis of revolution are already present, only

four modes, either (vo v 52 53> or <wo Bl 82 BB> need

to be added.

For a conical shell the following five rigid motions are of

interest

(W) (s’ 030 + sin%g  diny 4nd sy, sing, (tosB-1) | (u,

{¥l - |[-4ing 4nb ws 0 -cos g, sin 6 vt (4.52)

(W) | Sing cosy (ws8-1)  cosy, 5in8  Cos?yp s 0 + sinigg | %

(u [ 0 -, Sh 6 1

lvl_ -7 cos, + 1 cosy, cos B rdin ¢, - reiny, cos 0 +s s 0 2 (4.53)
. . B

W| |4 +Ssnpsing 3 cos g, sn G

/A

A translation S3 along the revolution axis is equivalent to

the superposition of translations

Uy = - (05 ¢, W, = S (Y (4.54)
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while a rotation Y3 about this revolution axis is the superposi-

tion of
v"='5)3 , /BI="}-/3M50 , /3,:)54(/19/; (4.55)
resulting in
u - o3 (@, 0
33
_ J3
w sy 0

These two modes are represented by the displacement functions and

only four others, <vo wo Bz 83> for instance, need to be added,

The circular plate is another interesting example, The rigid

modes reduce to

4o
u csB snf o 0 0 -1, 4tn 8 %
w,
v _ [-sn@ @b o0 o o0 r-r,csf UV @sn
B
w 0 0 1 rsab -(reosb-r) o
‘ P
s

The translation along and the rotation about the revolution axis,
respectively represented by wO and a superposition of v = ysr,

o)
83 = Yl,are present in the displacement functions, If one attempts

to add them in the plate whose dimensions are described in Fig,

10

4.5, fhey give pivots of order 10 and 10—7 in [K these can

RV
be considered as very small compared with the "nonzero" pivots

which are of order 10° or more, Moreover, besides these two "very
small" pivots, two other "small" pivots appear: one of order 1072

in the Bl row, the other of order 101 in the 62 row, They

represent the order of approximation by a cubic polynomial of the
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= 30.106 psi
0,3

0.511

80"

22,5°

- 4011

]

11

1

HQQ R o<
1

Fig. 4.5 Circular Plate Element

trigonometric functions sin € and cos e, respectively, with
~-1/8 < 0 < 1/8, An examination of the eigenvalues shows
that, for practical purposes, Bl but not Bz_can be con-
sidered as already included, The three modes still to be
added can be chosen as <uo Bz BS>'
For a toroidal shell with very large parallel radii, the ro-
tation about the axis of revolution is included and

(u_ w_ B, B

o 1 Bs> must be added.

2
For a cone, cylinder or plate element with very large radii

of revolution and very small parallel opening, such that

rd® = dt, all six rigid modes

uﬂ
u 1 06 0 o0 0 -t ]|%
Wy
vi-1 0 1 o 0 0 5 | ? (4.58)
£ :
w 0 0 1 t -5 OJ P
L 3]
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are present; none need be added,

4,7 Computation of Shell Forces

The interpretation of stress resultants in a finite element
analysis based on the displacement method poses certain diffi-
culties., The methods most frequently used to compute stresses
are:

a) direct computation of forces from the element stiffness matrix,

b) computation of strains and then stress resultants from the
assumed displacement field,

Other methods have sometimes been proposed [90] but do not seem

to improve much over the’former ones,

Whatever method is used to compute the shell forces, it must
make use of the deformation displacements, Therefore, the first
step, if rigid modes have been added and condensed out, is to
recover the rigid modes through

{-Ug) = - [Kee ) [ Kro) {Vr} (4.59)

and the deformation DOF

Vr

) {} (4.60)

Ur

{vp} = (I

When the element stiffness is used directly, the results

{55} = [KD]{VD} (4.61)
represent the generalized concentrated forces associated with the
generalized DOF. Even in the simple case of a rectangular plate,
some of these forces are not quite straightforward to interpret:
Buffer and Stein [13] have showh that to BZW/BS ot is associated

a bimoment defined as (Fig, 4.6)
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e = lim (€2F) (4.62)
E—~0
F— 00

Fig. 4.6 Definition of Bimoment,

When curvilinear coordinates are used, the physical interpreta-
tion of these forces is even more complicated as was already
shown in Section 3.4,5, This method of computing forces will
nevertheless be used in the ring example to be discussed later:
in this case it is relatively easy to relate the generalized nodal
forces to well-known quantities such as bending moments, normal
and shear forces,

In the second method of computing the stress resultants, the
interpolation functions for the displacements and the linearized
strain displacement relationships are combined to compute the

strains
(£} =[8]{V) (3.25)
at any point within the element, The shell forces, measured per

unit length of the middle surface, are defined as the integrals

over the shell surface of the stresses and stress moments
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h ]
N = /: oy dl M<ny = /: oun ZdZ
Tz ’ T2
h h
2
N <22y = / o<2ydZ M <22y = /: ocenZdl
A
V4 Tz
(4.63)
h h
N<zy = /2 o«»dZl M«uzy = /ZUUZ)ZdZ
h A
Tz 3
h L '
2
N<¢zpy = j owezndl  , M« = /2 gz lZdZ
A
-4 _%,
with
Nc¢izy = N<aiy s M<izy = M<any (4.64)
because the shear strain and torsion are defined as
1 1
Z(£ 12y + £<21) ; 1 (F <125 + & <21) (4.65)

It is easy to show that the shell forces are related to the

strains by

(N <y (1 y QY (&<
Eh
I N <22y ,=1_v2 Y 1 0 € <22) ! (4.66)
N Gz)) [0 0 (1-¥)] |beaunreen)
(M(n)‘ ] Yy 0 Y (<
) EhS :
Meexy._—— VY 1 0 X {22y
1 [ Z(1-7%) ! (4.67)
M <12y |0 0 (I-V)J %(aem) +x<z:>)J

In practice, these shell forces are computed at the element
center, where the displacement method and the interpolation func-
tions are supposed to give the best results, and at the four

corners, Even when rigid body modes are not added, the ''membrane'
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displacements u and v but not their derivative are continuous

at the nodal points, the "plate" displacement w and its first
but not its second derivatives are continuous at the nodal
points, Therefore, the strains, curvature changes and, conse-
quently, the shell forces will have four different values at the
same corner depending on which of the four adjacent elements is
used to compute them, ' The average of these foﬁr values is also

considered a good measure of the shell forces,
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5. NUMERICAL EXAMPLES

5.1 General

A computer program written to test the new shell element is
first briefly described.

Then several examples are solved and discussed, They were
selected and arranged to exhibit the various levels of importance
of the rigid body modes and the incompatibility they introduce,
This ordering coincides with a classification based on purely
geometric considerations,

a) In rectangulaf plates, the rigid body modes are not necessary
and therefore, not added,

b) In circular plates, the rigid body modes may be added or not;
they do not play any significant role,

¢c) In shellé with zero Gaussian curvature, exemplified by cylin-
ders, the rigid modes are extremely beneficial; they must be
added.

d) In shells with positive or negative Gaussian curvature,
~such as spheres and hyperboloids of revolution, the incompati-
bility defects predominate; the rigid modes cannot be added,
The chapter concludes with a short discussion of the incom-

patibilities introduced by the rigid modes.

5,2 Computer Program

5.2,1 Description

The concepts described in Chapters 3 and 4 were incor-
porated in a program called NADESOR (Non Axisymmetric Deflections

of Elastic Shells of Revolution) run on the CDC 6400 of the
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University of California at Berkeley. A succinct flow chart is
given on Fig, 5.1. Although the program performs linear analysis,
a few extensions directed towards solution of nonlinear problems
are me;tioned in the description here below,

NADESOR, the primary overlay, directs the program towards one
of the three secondary overlays,

ENTER prepares all data and preliminary results by means of
the following subroutines:

1) 1INCARDS reads all data cards and automatically generates the
parallel coordinates for intermediate segments evenly spaced
along a straight or circular meridian,

2) © NUMELEM automatically numbers the elements and nodal points to
produce the minimum bandwidth,

3) BOCOVEC translates thé boundary conditions imposed on meri-
dians, parallels or nodal points into numbers of restricted
DOF,

4) APPGEOM approximates an arbitrary meridian by a cubic curve
and computes geometric data at Gaussian integration points.

5) DELTAFI computes the strain-displacement matrix [B] at inte-
gration points,

6) ELASTIF forms the linear elastic stiffness using a grid of
4 X 4 Gaussian integration points,

7) RIGIMAT forms the rigid motion matrices,

8) LOADVEC assembles the load vector; all elementé at the same
segment level are scanned for nonsymmetrical loading; if

present, such a loading is computed by ELTLOAD,
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9) OUTAPES saves on tape all results of the first overlay if
execution is stopped at this point,

SOLVE forms and solves the global stiffness relationships of
the system,

1) INOUTAP(1l) retrieves results of ENTER or, in nonlinear cases,
the last results of SOLVE if execution is restarted,

2) ELEMSTI loops over elements to augment the stiffness and con-
dense out the appropriate small rigid body modes by megnns
of SMARIMO; eventually, a nonlinear modification of the stiff-
nesé will have been performed at this stage by NONLINE,

3) FORMSTI forms one half band of the symmetric stiffness and
MODISTI modifies it in correspondence with the boundary
conditions,

4) TRIA triangularizes the stiffness, :BACK backsubstitutes and
MODISOL modifies the solution if boundary conditions require
it,

5) DECIDOR decides the orientation of the program in a nonlinear
analysis.

6) INOUTAP(5) saves on tape all results of the second overlay if
execution is stopped at this point.

STRES computes the stresses at the element center and four
corners,

1) RECOVER retrieves results of SOLVE if execution is restarted.

2) PREPARE computes the strain displacement matrix [B] at points
o, i, j, k, 1,

3) SMARIGI recovers the small rigid motions and thé deformation

part of the nodal displacements,
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4) CORNEFO directly uses the element stiffness to find corner
forces.
5) STRANFO computes the strains and shell forces by means of the

displacement interpolation functions,

5.2,2 Additional Comments

A very severe limitation is imposed on the number of ele-
ments in this program: the total storage space occupied by the
stiffness halfband cannot exceed 35700 words, which corresponds
roughly to a 6X12, 7X10 or 8X9 finite element mesh, This is be-
cause TRIA and BACK work entirely in core: ’only small examples
are expected to be solvéd by this experimental program and an
equation solve; using tapes would be prohibitively slow when the
nonlinear possibility is introduced and the equation system has
to be éolved again and again, The division in overlays is intro-
duced partially to alleviate this space problem by keeping in
core the minimum number of instructions while the equation system
is set up and solved,

Thanks to the overlay feature and the data saving subroutine,
the program can stop at the end of ENTER or SOLVE and be restarted
from the stopping point. This allows the user to check data after
the first overlay or to 106k at results before computing stresses;
this latter capability would be most useful after any step or
iteration in a nonlinear pfoblem.

The different cases of automatic numbering programmed into

NUMELEM are illustrated by the annular plate of Fig. 5.2,
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a)
b)
c)
d)

e)

Fig. 5.2, Automatic Node Numbering,

No symmetry plane; a complete circumference is required,
One symmetry plane.

Two symmetry planes.

Complete symmetry of revolution.,.

The structure to be studied is a sector only of a shell of

revolution,

Note the numbering along the meridian or parallel first to
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produce minimum bandwidth,

The complete symmetry of revolution requires only 6 DOF per
segment, <uiiwi (dw/ds)i uk wk (dw/ds)k>. The program is in-
efficient in this case since 24 DOF are used; the superfluous DOF
are eliminated, however, before solving the structural system,

If the shell has a pole, i.e, r = 0, strain expressions
become singular at this point., Special strain expressions [47]
or special elements [1287] can be derived to take care of this
difficulty. No such provisions are incorporated in the present

program: to handle the singularity problem, a small hole with

free edge boundary condition is introduced at the pole,

5.3 Rectangular Plate Examples

5.3.1 Rectangular Plate Under Uniform Load

A simply supported plate of dimensions 8" X 16" is approxi-
mated by a portion of an annular plate (see Fig. 5.3a). The
circular edges have length of 7,.9936" and 8,0064" and the annulus
width is 16", As in the case of the real plate, "symmetry"
conditions make it possible to study a quarter of the plate only;
a 1X1, 2X2 or 4X4 finite element mesh afe used over this quarter,

The convergence with mesh refinement of deflection at the
plate center and the bending moment Me along the radial centerline
are shown on Fig. 5.3b and ¢, These results are identical to
those obtained by Bogner et al, [10].

Several conclusions can be drawn from this example:

a) The "large radius, small angle" approximation is satisfactory:

when r is so large and @ so small that rd® can be replaced by
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0.0008 rad.

E = 10000 psi
v =20,3
p = 1 psi
2X2 Mesh a) Geometric Idealization k=1
: Q_e{lect«'ir“
pa‘/p _
) NADESOR
w° . \ Exact [22] , _
A.CM[22]
g
o L
l -
o “ HMesh
b) Deflection Convergence at A’ ﬁqﬂhement
Moment o

0.10
0.08 |
0.06
0.04%
0.02 |

0.25 0.50 0.75 w00 = x/a

¢) Moment Mg Along Centerline AA’

Fig. 5.3, Rectangular Plate Approximation,
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dt as defined in (2.107), the sector of annular plate

constitutes a good approximation of a rectangular plate,

With r = 10000” and o varying between 010001 and 0,0004 radi-

ans, all present results are within 0,1% of those obtained

with the perfectly rectangular plate, On a computer using

15 significant digits in simple precision, the loss of

accuracy that could result from differences of large radii

was never experienced,

b)  In the "large radius, small angle" case no rigid modes are
added, The fast convergence of results shows that they are
indeed not necessary,

c) The Bogner, Fox, Schmit’plate element compares very favorably
with other plate elements with similar number of DOF. This
can be verified by comparing curves 5.13b and c with
equivalent curves plotted by Clough and Tocher [227]. Of
course, one must remember that the present rectangular
element does not offer the same versatility as many quadri-
lateral and triangular elements discussed in f22] or
developed later [30].

One final remark ought to be made about this example, The
central displacement converges from above while convergence from
below is expected in a displacement analysis using a compatible
element! Buf as recalled by Bogner et al, [10], the minimum
energy and not the displacement at a single point should be
examined in assessing the convergence; when the work done by the
uniform load acting on the whole plate is evaluated, the proper

convergence is recovered,
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5,3.2 Twisted Square Plate

A plate of dimensions 8" X 8", with the same thickness
and elastic properties as in the above example, is simply
supported at three corners and loaded at the fourth by a trans-
versal point 1oéd of 5 1bs, It is again approximated by an
annular plate of mean radius 10000", The results obtained with

different meshes are as follows:

Deflection | Deflection at Torsion Moments at
Mesh | Under Load | Plate Center Element Centers
(in.,) (in.) (1b,-in,/in.)
1X1 0.2498 0,06246 5,004
2X2 0,2498 0.06246 5,003, 5,002, 5,003, 5,001
4X4 0.2498 0.06246 5.004 to 5,000

Besides confirming conclusions a) and b) of the first example,
this shows that a constant twisting mode is included in the
present element (it comes from the Xy term in the displacement

functions). The lack of it plagued some elements studied in [22]7.

5.4 Circular Plate Examples

5.4.1 Curved Slab

An annular plate, with 30° central opening, 20 ft. span,
simply supported along the radial edges and subjected to uniform
load is portrayed on Fig. 5.4a. It can be thouéht of as a slab
used in a curved foot—bridge. The symmetry makes it,possible to

study one half of the structure,.
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When a refined mesh of 8X8 is used to model this system, it
does not matter whether rigid body modes are added or not., The
finite element results are compared in Fig. 5.4 and 5.5 with the
exact solution in Fourier series given by Timoshenko [119],[69]
and programmed by Meyer [78]. Comments on these results follow,
a) Curves of displacements were not plotted because they coin-

cide with the exact ones,

b) Values of M obtained by averaging corner values based on

9’
strains, agree with exact results; a plot aiong the inner
edge is shown on Fig., 5.4b,

c) Moments Mr’ also obtained by averaging corner values, do not
agree so well, as may be seen in the curves along the axis of
the slab and the symmetry axis (Fig. 5.5a and 5,5b), But
better égreement is obtained when values based on element
center strains are plotted (Fig. 5.5c¢).

The fact that rigid body modes do not make any difference in
this case deserves an explanation, In Section 4,6, it was shown
that, for a circular plate element, only the radial translation,
rotation about the normal, and rotation about the tangent to the
parallel line at element center O needed to be added, Because of
the loading conditions, the first two modes do not play any role
here, It was shown in the same section 4,6 that the interpolation
function approximates the third mode to the order 94 (difference
between cos® - 1 and a cubic in 6); here, 8 varies between %
0,0164 radians within each element; therefore, the third mode
is quite well represented already and its addition does not

modify the solution significantly,
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Fig, 5.4. Simply Supported Curved Slab,
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The lessons to be drawn from this example are obvious,

a) In circular plates undergoing transversal deflections only,
the rigid body modes are quite well represented by the cubic
interpolation functions used for w; they do not need to be
added, especially when the elements have only a small parallel
opening. |

b) In stress computations, the values at the element center are
more reliable than those obtained at corners by averaging

results in adjacent elements,

5.4.2 Circular Plate with Concentrated Force

Lee [71] has analytically solved the problem of a circular

piate simply supported along a concentric circle and loaded by a
doncentrated force located inside or outside that circle. One
such example is shown in Fig., 5.6a. Again, the symmetry allows
to solve only one half of the plate,

The 7X10 mesh used in the analysis of this plate is nearly
the most refined mesh acceptable in the program, One small
ring of elements is used near the tiny hole replacing the pole to
avoid ill-conditioning; surrouﬁding that, 6 segments are evenly
spaced along the meridian; the parallel opening of the elements is 18°,
This must be considered a rather coarse mesh to represent the
concentrated load effect,

Again, the rigid body modes do not play any significant role
in this study. The results agree fairly well with those already
available in [71], namely the displacement along the 1oaded

diameter (Fig. 5,6b) and the radial moment at the support



129

Simple Support

= 30,10 psi
= 0,3
10 Mesh
a) Problem Description and Finite
Element Idealization,

Ip
Lee [71]
Finite Elements

A’

b) Displacement w Along Diameter AA’.

‘Fig, 5,6, Flexure of Circular Plate by Concentrated Force,
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(0.478 P, in the program, versus 0,502 P), . Better agreement on
the stresses could certainly be obtained with a more refined ’
mesh,

This example does not lead to new conclusions. But it was
introduced to show the relative versatility of the program., The
preceding curved slab problem was solved with 25 Fourier terms
twice faster than with the fihite element program, Buf the
present concentrated load and’boundary condition cannot be as
easily represented in an analytic solution; thus here, the finite

elements have the edge,

5.5 Cylindrical Shells

5.5.1 Circular Ring Under Diametral Load
A circular ring subjectéd to diametrically opposed loads

was solved several times, either by means of a special program
for circular beam elements, or.by applying the program NADESOR to
Van equivalent cylindrical shell having zero Poisson's ratio and
subjected to uniform line loads along two diametrically opposed
meridians. In either case, symmetry permits one to study one
quarter of’the ring only. Both coarse and refined meshes were used in
the analyses, comprising 4 or 16 elements over 90° respectively;
A summary of the results is presented in Table 5.1 and selected
results are plotted on Fig. 5,7 and 5.8, A discussion of the
results follows,

In case 1, cubic interbolation functions are used for the
transversal displacements w and for the axial displacements u,

With 4 elements, the displacements are "almost" exact, by which
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Section AA
P = 20000 kg
= 21000 kg/mm2
V=0

a) Problem Description

b) Idealization by
4 or 16 Elements

90 (%

c) Transversal Deflection

@ Exact Curve
Legend: C) 4 Elts with Rigid Modes (Line 9 in Table 5,1)
® 16 Elts without Rigid Modes (Line 8 in Table 5,1)

Fig, 5,7. Ring Under Diametral Load,
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a) Bending Moment

4
(#9) {J:>
' b) Normal Force
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Legend:: @ Exact Curve

(@) M & N Based on Strains (Line 8 in Table 5,1)
@ M & N Based on Stiffness (Line 9 in Table 5,1)
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Fig. 5.8, Ring Under Diametral Load,
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it is meant that their divergence from the exact results is well
below 1%, However, the bending moments and, above all, the normal
forces are not too good; this is due to the fact that unwanted
stresses are caused by misrepresented rigid motions. When the
mesh is refined, in case 2, the.cubic polynomials approximate
well enough the trigonometric functions, and the results are much
better, This is a typical case in which "the rigid motions are
recovered in the limit and can be considered included for all
practical purposes.”

The DOF v; = (Bv/rae)i, v5 = (Bv/rae)‘j are necessary to
determine the coefficients in the cubic polynomial for v, But to
keep them among the external DOF amounts to imposing continuity
of the axial strain at nodal points, This unnecessary constraint
is relaxed if v; and v5 are condensed out of the stiffness matrix
at the element level, This was dpne in cases 3 and 4 and produced
slightly improved results,

A much bigger improvement is obtained when rigid motions are
added to augment the stiffness matrix and then condensed out
together with v; and v}. Because of the special characteristics
of the loading, only two out of the four modes which actually are
missing in the cylindrical shell element (see Section 4.6) must be
added, namely v, and w, or LA and Bl. Both the pairs of rigid
motions possess an interesting property: the displacements
uR(s,S), wR(s,e) they produce do not vary as trigonometric func-
tions but are constant along the meridian edges of the cylinder
element. 1In this problem, the deformation displacements

uD(s,G), wD(s,e) are also constant over the height of the cylinder.
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Therefore, continuity of total displacements at'the extreme nodes
of a meridian edge will maintain compatibility of displacements

over the whole meridian. It may thus be concluded: 1In this ring

example, the addition and static condensation of rigid modes

Vo and wy do not produce incompatibilities, Perfect displacements

and almost perfect forces are obfained in case 5 with a coarse
mesh; this is remarkable since each element has a parallel
opening of 22.5°, With 16 elements, case 6 gives'results correct
to the sixth digit at least.

Starting with case 7, different levels of interpolation
functions are used in the elements: cubic for the transversal
displacement w and linear for the axial displacement v; this is
the kind of approximation used in the element described in
chapter 3 and used in all other examples of the present chapter,

The coarse mesh gives catastrophic results: the displéce—
ments are ten times too small and the forces do not even present
a recognizable pattern, The results of the refined mesh of case
8 are plotted in Fig. 5.7b, 5.8a and 5.8b. They demonstrate con-
vergence but many more elements would be necessary before the
linear interpolation function used for v provides a satisfactory
approximation of the trigonometric functions,

When rigid motions are added and condensed out, cases 9 and
10 show a dramatic improvement, With as few as 4 elements, the
displacements and forces are practically correct (see Fig. 5.7b
to 5,8b); only the normal forces obtained by averaging at the
nodal points diverge from the exact solution, With 16 elements,

all results are perfect,
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In the ring example, the usual bending moments, normal and
shear forces are related to the generalized forces obtained by

direct application of the stiffness matrix through

M: = Fu; , ,M/- = Fu;
N" = Fp'+% le.' P AD = F"g'*%F’k:/' (5-1)
5‘ = F:u,i » SJ = Fu{)

In cases 7 and 8, the forces obtained in this way from two adja-
cent elements do not balance each other at the nodal point;
neither do they satisfy overall equilibrium, But they do balance
and verify equilibrium in cases 9 and 10 when rigid body modes are
introduced. This is a direct consequence of the equilibrium
properties of the rows in an element stiffness matrix; these
properties were already discussed in Section 3.4.,5,

This example confirms several past conclusions and leads to
new ones,

a) When no rigid body modes are added the element with cubic w and
v is far superior to the element with cubic W and linear v,
especially with regard to the convergence properties.

b) The addition of rigid body modes does not always introduce
incompatibilities.

‘In problems where compatibility is maintained, the following
conclusions also are valid,

¢) The addition of rigid body modes can make a tremendous differ-
ence: 4 elements with rigid modes give much better results in

case 9 than 16 elements without rigid modes in case 8,
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d) The addition of rigid modes is preferable to the addition of
an equal number of DOF increasing the degree of interpolation
functions; the comparison of improvements going from cases 7,

8 to cases 9, 10 or to cases 3, 4 demonstrate this point,

5.5.,2 Pinched Cylinder

This example, represented on Fig. 5.9, was already solved
by Bogner et al, [10] using bicubic interpolation functions for
u, v, w, and by Cantin [17] who reduced interpolation functions
for u and v to bilinear polynomials but added rigid modes. It is
repeated here because Cantin failed to show how much improvement

was provided by the rigid modes themselves,

P =100 1lbs
: 6
h yb = 10,5 X 10" psi
=0.09
p " 4 v = 0,3125
4:;53” ! 1 - 2X4 Mesh
- . T |

Fig. 5.9, Pinched Cylinder,
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The displacements under the load are tabulated here below

for different mesh refinements:

B A Cantin Cantin
Mesh B'oggér et al. Bilinear u, v Idem Plus
es teubte u, v, w Bicubic w Rigid Motions
No. of | Displmt No, of Displmt No. of Displmt
Eq, (in,) Eq. (in.) Eq. (in.)
1X1 - - 24 - 0,0017 24 - 00,0048
1x4 120 - 0,1087 60 -~ 0,0152 60 - 0,1099
2X4 180 - 0,1098 - - - -
4x4 - - 150 - 0,0237 | 150 - 0.1126
4%8 - - 270 - 0,0558 270 - 0,1132
8X8 - - 486 - 00,0582 486 - 0,1139

The deflection obtained by Timoshenko [119] is - 0.1084 in, but
he takes only bending deformation into account,

These results confirm for a cylindrical shell example the
conclusions reached with the ring,

a) The complete bicubic interpolation functions converge but

slower than the bilinear and bicubic functions with rigid
body modes added: 180 versus 60 DOF to attain the same
deflection w = 0,1098,

b) The bilinear and bicubic functions without rigid body modes

produce extremely poor results, The jumps in convergence occur

when the number of elements is increased in the parallel
direction which attests again that the poor representation of

trigonometric functions of 6 is responsible for the poor

behavior of this element,
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5,5,3 Cylindrical Shell Roof

This example, described on Fig., 5.10a was solved by
several authors and extensively discussed by Clough and Johnson
[21]. The "exact" solution in this reference is plotted on
Fig, 5,10b, 5.11a and 5.11b for comparison with some significant
results obtained with the program NADESOR.

The vertical deflection along the central section exhibits
the usual good or very slow convergence of the element with or
without rigid motions, respectively. What is interesting to note
is thgt,without rigid motions, the cross section deflects verti-
cally almost uniformly, without distorting. This is most apparent
when only four elements are used and indicatgs that the structure
behaves more like a beam than like a shell, This would be
acceptable for a long shell, but for a short one, it really means
that an important characteristic of the shell behavior is lost.

The consequences of this lack of distortion appear in the
diagrams oyf'Me and NS across the central gection. The transverse
moments MQ’ especially the nodal values are much too small because
the section is not transversally distorted., The distribution of
longitudinal stress NS reproduces almdst exactly the profile of
the shell: NS varies linearly with the vertical distance from a
neutral axis; this is typical of beam behavior again and reveals
a tétal absence of warping of the cross section,

By contrast, all results obtained with a 9X8 mesh including
rigid body modes look very good, They provide about the same

accuracy as a 12X8 mesh of Johnson's quadrilateral elements [557.
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432000 kips/ft2
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Dead Weight = 0,09 kips/ft2
9X8 Mesh
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a) Problem Description and
Finite Element Idealization,

b) Vertical Displacement §

?-_“‘\uN\\\\\‘l\ at Central Section AA’
2
0 A " A
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9X8 Mesh with Rigid Motions
4X4 Mesh with Rigid Motions
9X8 Mesh.No Rigid Motions
4X4 Mesh.No Rigid Motions
Exact [21]

Fig, 5,10, Cylindrical Shell Roof,
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a) Longitudinal Ms and Transversal Me
at Central Section AA’

Legend: ® 9x8 Mesh with Rigid Motions
-x- 4%X4 Mesh No Rigid Motions
— Exact [21]

b) Longitudinal N_ at Central Section AA’

Fig, 5,10, Cylindrical Shell Roof,
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On the basis of the examples solved so far, one could con-
clude that the addition of rigid modes cannot do any harm and in
most cases will bring an improvement capable of raising this 24
DOF element to the same level of accuracy as more refined
elements. Unfortunately, this optimistic conclusion is soon going

to be contradicted,

5,6 Spherical Shells

5.6,1 Sphere Under Internal Pressure

The data of Fig. 5.,12a are borrowed from Key [61]. TUnder
this completely symmetric loading, it suffices to study one
typical slice of the half sphere fixed, at one end, on a horizon-
tal roller along the equator, and at the other end, on a vertical
roller along the hole replacing the polar point. The expected
displacements reduce to a constant w = 0,00350" over the whole
sphere, which should be exactly representable by the polynomial
displacement functions, There is no bending, just a uniform
state of stress Ne = Ns = 500 1lbs/in., everywhere.

As shown on Fig. 5.12b and ¢, the displacements and stresses
obtained with an uneven mesh of 20 elements with rigid modes
added are completely wrong. Attempts to modify the finite ele-
ment grid, the size of the polar hole, the parallel central
angle o proved equally unsuccessful,

Results obtained without adding the rigid modes, on the
other hand, are absolutely correct, Even one single element, with

@ =5° and 0 < ¢ < 89°, gives
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Fig, 5.12, Sphere Under Internal Pressure,
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0.00350000 < w < 0,00350001
499,996 = Ns < 500,001

499,982 < Ne < 500,000,

In the case with rigid motions, a close scrutiny of inter-
mediate print-outs for the‘element adjacent to the equator points
to the rotation 82 as the principal source of errbrs in the
solution. As sketched on Fig, 5,13, it is possible to find a
combination of rigid body motions Bz and WO such that the boun-
dary conditions uk = uz = 0 will be satisfied while a gap is
opening between the two nodes. Of course, the same rigid motions
also introduce a rigid contribution to the DOF w, dw/0ds,
ow/rof, Bzw/raeas at k and £4; but for this particular boundary
element these contributions are small aﬁd can easily be compen-
sated by an artificial bending deformation so that the total DOF
satisfy again the boundary conditions,

It is likely that the same situation occurs at other parallel
interelement boundaries, These incompatibilities ihtroduce un-
realistic bending and lead to a complete misrepresentation of the
membrane state: it is not surprising that the solution with
rigid body modes is bad.

In conclusion, rigid motions and membrane displacements u
and v are not needed in this problem; therefore, the shell éle—
ment, as derived in chapter 3, gives very good results, The
surprise is that when rigid modes are added, they are found to
be different from zero; introduce incompatibilities and throw the

solution completely off,
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——

4

Fig. 5.13. Incompatibility Produced by
Rigid Motions,

5.6.2 Sphere Under Point Load

If the previous example was designed to test the membrane
behavior, fhis one, also borrowed from Key [617] should test the
bending characteristics, The dimensions and elastic properties
of the shell are described in Fig, 5.14a. The finite element
solution is compared with curves plotted by Key according to
formulas found in Flugge [32],

A first solution, taking into account ﬁhe symmetry of the
problem was obtained with a 20X1 mesh‘of elements with rigid
motion; added, The displacements are much too large as can be
seen from curve (:) on Fig, 5.15. The stresses are wide of the
mark,

When the rigid motions are not added, the same mesh gives
practically correct displacements: curve (:) on Fig, 5.15. The
shell forces Ns’ Ne computed at the element centers are repre-

sented on Fig, 5.14b, Except very near the polar hole where Ns
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90l ¢(9

b) Circumferential and Meridian Stresses

Fig. 5,14, Sphere Under Point Load,
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falls to zero instead of going to infinity, they are remarkably

good,

The same example was also solved as an unsymmetric problem

Jjust by shifting the pair of forces from the polar axis to the

equatorial plane. Then, one octant of the sphere must be studied

and is divided into 8X9 elements (Fig. 5.15). Only a solution
without rigid modes was computed. The w curves along the equator

and along the meridian through the load (@ and @ on Fig, 5,15)

should both be equal to the previous result . The agreement is

fairly good immediately near the load and more than 40° away

from it; between 10° and 40°,there are not enough elements to

represent the fast variation of w. (See Fig. 5.15 and note the

change of scale between 10° and 20° to picture accurately large
and small displécements.)
The results of this example can be summarized as follows:

a) The incompatibilities introduced by the rigid motions render
the solution with them worse than the solution without
them,

b) The bending and transversal displacements are predominant in
this example, therefore, the biliﬁear u and v are not too
inconvenient. Good results are obtained without rigid modes
when the mesh is refined enough (syﬁmetric case) but results

get poor as the mesh gets coarse (unsymmetric case),
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5.7 Hyperboloid of Revolution

5,7.1 Hyperboloid Under Dead Load

Cooling towers in the form of a hyperboloid of revolution
were analyzed by Gould and Lee;[42, 43, 1097 using a closed form
solution, by Albasiny and Martin [2] using the finite differences
technique, and by Zienckiewicz [130] and Yeh [18] with finite
elements, 1In the present discussion, the first reference was
preferred to the others because its boundary condition, simple
support on an infinitely stiff ring, seemed more realistic than
the clamped bottom edge used in the others. Later, it turned out
that Gould's example was not consistent in its geometric descrip-
tion and required interpolation in tables with large intervals;
then, the tower described on Fig. 5.16a was also solved by means
of Larsen's program [70] for axisymmetric deformation of shells
of revolutioﬁ; it utilizes a refined isoparametric element of
revolution: cubic description of geometry, w and u, shear
deformation included,

As with the spherical shell, the solutions obtained when
rigid body modes are added is far worse than the solution without
rigid modes; only the latter will be Aiscussed here,

The displacements found with the program NADESOR will not Be
plotted because they practically coincide with those given by
Gould or Larsen's program. The meridian and hoop stresses, com-
puted at element centers, are plotted on Fig. 5.16b, They are
identical to Larsen's results but differ from Gould's curves; the

latter cannot be plotted with much accuracy, however,
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Fig. 5.16, Cooling Tower Under Dead Load, ®
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Unfortunately the bending moments printed by NADESOR differ
so much from the exact results that they are not even plotted!]
The bending, instead of being concentrated near the bottom edge
propagates throughout the whole shell, When it was discovered
that the consistent loading could produce bending moments along
the parallels of the same magnitude as the peaks expected near
the boundary, it was replaced by a loading based on the tributary
area concept, but to no avail!

All the references mentioned earlier indicate that the dead
load induces mostly a membrane state of stress in the hyperboloid
of revolution., Fig, 5,16b show that these stresses vary almost
linearly with the height. This means that the strain 611 = du/ds
- wd®/ds should vary almost linearly with the meridian coordinate
s; but the most important term du/ds can only vary by jumps be-
cause of the assumed bilinear variation of u, The membrane
strains and stresses are correct at the element centers but
intermediate print-outs show that they hardly vary within one
element and important out of balance forces exist at the inter-
element boundaries. For instance, there is an unbalanced
meridional stress of 537 lb/ft along fhe top parallel and a
desequilibrium of 1201 1b/ft along the next one,

It is well known that, in shells with negative Gaussian
curvature, perturbations applied at one edge propagate straight
to the other edge without dying out as they do in shells with
positive Gaussian curvature, It is suspected that such perturba-

tions, induced by the imperfect representation of the membrane
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state are responsible for the poor showing of the element in

this example,

5,7.2 Hyperboloid Under Wind Load

The distribution of wind pressure on a hyperbolié cdoling
tower, recommended by Rish and Steel [1057], based on measurements
taken from a wind tunnel experiment, is given on Fig. 5.17,
together with the finite element mesh used to solve that problem,

The displacements obtained are plotted on Fig, 5.18, They
agree qualitatively with the results published in [109], [2], and
[187]., - But many more elements would be necessary to get a valid
stress analysis., For information, 72 elements are used here
versus 432 triangular elements or 15 refined isoparametric

elements of revolution with 12 Fourier harmonics in Zienckiewicz

[1307].

5,8 Discussion of Incompatibilities

In concluding this presentation of the results of exémple
calculations, it may be useful to discuss further the problem of
the incompatibilities introduced by the rigid body displacements,

If one considers two elements adjacent to the same meridian
(Fig. 5.19), the total displacements in eléments 1 and 2 and
their differences along the common edge are, in terms of the

generalized coordinates § and 1)
U, (,1) U, (s,-1) Uy (4,1) - Uy(6,-1)

UI (é,f) s vz fé‘:") 2 vffgfj)_’uélé;"} .
wy (5,1))1 W, (6,-1)jT - w; (§,1) - w, (5,-1))7
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Fig, 5.17, Wind Distribution and Finite Element Mesh,
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Fig, 5.19., Two Elements Adjacent to the Same Meridian,

The differences and the derivative B(wl-w2)/as vanish at £ = £ 1,
as is required by continuity of nodal DOF, but not necessarily in
between, This is the incompatibility introduced by the rigid
modes announced in section 4.5,2,

It may happen that the structure and its loading are such
that only some of the rigid modes need to be added, If these
modes do not have any effects on the displacements u and v, only
a discontinuity on w will occur. Because this discontinuity re-
sults from the difference of smooth functions, the fact that it
and its first derivative vanish at the nodes A and A’ insures
that it will remain "small" everywhere along A’

In other circumstances, the common meridian may be a straight
line, 1In such a case, the displacements introduced by the small
rigid motions are not expressed by trigonometric functions but by
linear polynomials, The deformation part of u and v is also a
linear polynomial, Hence the sum of rigid and deformation parts

is also a linear polynomial and the equality of total u and v at
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nodes A and A’ insures full compatibility of these displacements
everywhere along AA'. The same conclusion can be reached for w,

In the circular plate examples both favorable conditions are
met: the active rigid motions affect w only and full compatibil—
ity is maintained along the radial straight edges. Only "small”
incompatibilities in w can occur along'the parallel edges, This
explains why the rigid motions introduce so little difference in
the solution,.

In the shells with zero Gaussian curvature, not all modes
need to be added and there are always straight edges along which
full compatibility is maintained; they probably also have the
effect of constraining the rigid modes and prevent them from taking
unreasonable values,

In shells with nonzero Gaussian curvature, all six rigid
modes need to be added and all four edges are curved. The dis-
continuities on w may still be small but discontinuities in u and
v are surely introduced and the only restriction imposed on them
is that they vanish at the corners; gaps can open everywhere else
along the four edges, This is enough to ruin the solutions with

rigid modes in the sphere and hyperboloid examples,
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6, SUMMARY AND CONCLUSIONS

A new doubly curved quadrilateral element for shells of revo-
lution has been developed in curvilinear coordinates, With 24
DOF only, it is one of the simplest curved elements developed on

the basis of the classical shell theory, An attempt to correct

e,

its main defect, the lack bf rigid body modes representation,
has led to an extensive study of this particular problem,

It has been pointed out that a correct representation of
rigid modes must start with a careful choice of the strain-
displacement expressions. This may be trivial in general but is
not for shells where so many theories have been proposed, A
procedure to check that the rigid motions are effectively strain-
free has been demonstrated in the linear and nonlinear range
using Sanders' strains, finally selected for this research; at
this occasion, the effects of linearizing small rotations have
also been discussed.

A general process to compute the effects of rigid motions on
displacements has been applied to the shell element, which is
probably one of the most complicated examples, By going to the
limit of an almost flat surface, the degree of approximation in-
volved in some element "containing rigid modes for all practical
purposes' has been estimated,

The procedure to find which modes are already included, how
well they are represented and how to add the missing ones has also
been described in general terms, It can be applied to any element

but does in general introduce incompatibilities, This method has
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also been used to show why, in some structures or in some loading
cases, elements missing particular rigid modes can behave
satisfactorily,

The first applicatian examples have demonstrated the element
capability to solve rectangular or circular plate problems, The
~curved beam element, degenerated from a cylindrical shell, has
proven that, if they do not introduce incompatibilities, the
rigid modes are the most useful DOF to augment a stiffness matrix.
The success obtained by Cantin [17] in adding rigid modes to
cylindrical elements has been confirmed but, unfortunately has
also been found to be limited to shells with zero Gaussian curva-
ture, For shells with positive Gaussian curvature, the elements
without rigid modes can give good results if the mesh is refined
enough; the degree of refinement depends to a large extent on
the circumstances as discovered with the examples of a sphere
under pressure or point load. For shells with negative Gaussian
curvature, the poor approximation of the membrane state has been
held responsible for some disappointing results. Finally, on the
basis of these examples,’a rationale has been proposed to explain
why incompatibilities introduced by rigid body modes have negli-
gible or catastrophic consequences depending on the problem,

In summary, this new element must be considered as a mixed
success, ’If certainly offers an alternative for nonsymmetric
problems usually solved by means of elements of revolutioh with
trigonometric functions in the ciréumferential directiong its

advantages are greatest in cases where the Fourier series are not
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at their best in dealing with point loads. But two expectations

generated by a preliminary study of the circular ring have not

been fulfilled.

a) The addition of rigid modes is not always beneficial, It

| counteracts the poor quality of u and v interpolation func-
tions and greatly improves the element stiffness for a cylin-
drical shell and its corollary, the circular beam, In these
two degenerate cases, the proposed method is probably the most
efficient one available since good results have been obtained
with elements spanning a parallel angle of up to 22,5°, 1In
circular plates, u and v do not appear and the element is
efficient enough without rigid modes. But in general shells,

—_— —
the advantages of addingwrigid modes are overshadowed by

their adverse.effeet:—the intréduction

”incompatibilities.

b) When rigid modes are not added, the linear functions chosen
for u and v require such a refined mesh to obtain adequate
membrane strain definition that much of the predicted advan-
tage over a shell idealization by flat elements is lost, It
had been hoped that the complexity of using curvilinear
coordinates would bring at least one benefit: g drastic
reduction in the number of elements necessary to idealize a
shell, Now it seems that without rigid modes, a parallel or
meridian opening of 5° is the maximum acceptable, With an
equal mesh, Johnson's shell element [55], formed by assemblage
of four plate membrane triangles, would approximate the

curved surface within 1,25°%; the maximum angle bétween plates,
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which is responsible for some degree of approximation in this

element, would be 2.5° at most; the results would be good, as

demonstrated in [557] [18]; finally, it should be noted that

Johnson's elements possess 20 external DOF versus 24 here,

Certainly, there are instances in which the curved element

is superior to the assemblage of flat plates (the sphere

under point load is one)vand vice versa (cooling tower) but

a priori, for a general shell, there is no compelling reason

to choose one element rather than the other,

The author remains convinced, however, of the superiority of
curved elements in the nonlinear theory and intends to pursue his
research in that direction,

A first step, of course, will be to modify the program to
increasé the acceptable number of elements., But, if one accepts
the idea of more elements to accommodate the membrane behavibr,
one may wonder: why not keep the same number of elements and im-
prove their membrane characteristics by increasing the number of

DOF per element? A logical step in that direction would be to

JE ——,

take the same bicubic interpolation functions for u, v and w;

this amounts. . to generalizeMthe 48mDQF“cylihdricalwshellwetementwmm
derived by Bogner, Fox, Schmit [107], Since it was shown that

cubic functions can approximate the rigid modes for elements with

central angle up to 20°, this would remove the need for a

posteriori addition of rigid modes, Preliminary studies in the

large displacement range also indicate.that a unifor

m agéfééwof

interpolation may be desirable,



161

This does not preclude the possibility of a later investi-
gation to replace the element based on classical shell theory by

another one derived from a three-dimensional solid,
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