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Slicing Spam with Occam’s Razor

Chris Fleizach, Geoffrey M. Voelker and Stefan Savage
Department of Computer Science and Engineering
University of California, San Diego

Abstract

To evade blacklisting, the vast majority of
spam email is sent from exploited MTAs (i.e.,
botnets) and with forged “From” addresses.
In response, the anti-spam community has
developed a number of domain-based authen-
tication systems — such as SPF and DKIM
— to validate the binding between individual
domain names and legitimate mail sources
for those domains. In this paper, we explore
an alternative solution in which the mail re-
cipient requests a real-time affirmation for
each e-mail from the declared sender’s MX of
record. The Occam protocol is trivial to im-
plement, offers authenticating power equiv-
alent to SPF and DKIM and, most impor-
tantly, forces spammers to deploy and expose
blacklistable servers for each domain they use
during a campaign. We discuss the details of
the protocol, compare its strengths and weak-
nesses with existing solutions and describe a
prototype implementation in Sendmail.

1 Introduction

By almost any metric, spam email has become a per-
vasive blight on e-mail users and service providers
alike. The low marginal costs of spam delivery com-
bined with the effectiveness of early content-based fil-
tering and domain-based blacklisting have led spam-
mers to develop large-scale remailing infrastructures
in response. Thus, a modern spam campaign can
comprise hundreds of millions of messages, addressed
from tens of thousands of domain names, and deliv-
ered via thousands of distinct Mail Transfer Agents
(MTAs). Indeed, with some reports indicating hun-
dreds of millions of compromised “bot” hosts on the
Internet [Markoff, 2007], the ability to produce 100
million spam messages a day has become a trivial task.

In response, the anti-spam community has focused
considerable attention on limiting domain address
spoofing and, through it, the ability to create an ef-
fective large-scale spam mailing infrastructure. For ex-
ample, the Sender Policy Framework (SPF) and DKIM
systems allow receivers to validate if an email’s “From”
domain address is consistent with the source of the
message (authenticated via digital signature or the IP
address(s) of the sending MTA). While each of these
approaches has its benefits, neither is in pervasive use
today and at least some of the early adopters have
been spammers themselves.

In this paper we present a real-time challenge-based
authentication protocol called Occam based on an ex-
ceedingly simple algorithm: when an email arrives, the
receiving MTA sends a validation query back to the
server who “should” have sent the message (the MTA
responsible for the domain claimed as the source). If
this MTA responds that it has indeed sent the mes-
sage, then all is well; if not, then the domain has been
spoofed and the contents are likely a spam or phish.
In a real sense, this is mail authentication stripped to
its barest essentials.

We believe the Occam protocol offers two contribu-
tions over previous approaches. First, Occam is ex-
tremely simple to deploy. For all small to medium-
sized domains, Occam can simply be enabled — with no
site-specific configuration at all — and yet deliver equiv-
alent authenticating power to SPF or DKIM. In Sec-
tion 5.2, we discuss how large domains can use Occam.
Second, because Occam is a challenge-based authenti-
cation system, it shifts the burden of mail authenti-
cation to the sender on a per-domain basis. Thus,
to participate in the protocol a spammer must pro-
vide online server resources available for any domain
they use and this server must be capable of answer-
ing queries about any e-mail sent from that domain.
This requirement increases the infrastructure demand
on the spammer and, moreover, the addresses of these
servers must be exposed during a spam campaign, thus



becoming prime targets for blacklisting.

The remainder of this paper is structured as follows.
In Section 2 we relate our approach to previous anti-
spam solutions, and then in Section 3 we describe our
proposed Occam protocol. In Section 4 we analyze
how spammers might try to sidestep Occam were it
deployed and highlight the strengths and limitations
revealed by this evaluation. We describe our Sendmail-
based prototype for small domains, along with how
large domains could implement Occam in Section 5.
We follow with an analysis of performance overhead
in Section 6 and a conclude with a summary of our
findings in Section 7.

2 Related Work

The prolific growth of unsolicited email messages, or
spam, has transformed the Internet landscape over the
past ten years. By 2006, industry estimates suggested
that such messages comprised over 80% of all Internet
email with a total volume up to 85 billion per day [Mes-
sageLabs, 2006, Keizer, 2006]. The estimated costs to
industry are similarly staggering, amounting to 20 bil-
lion dollars worldwide lost in productivity in 2003 [Ly-
man, 2003]. In response, an enormous industry has
been created to deal with and attempt to eliminate
spam.

Anti-spam defenses fall broadly into two categories:
those that focus on spam content and those that focus
on spam infrastructure.

The former category is based on the premise that the
contents of spam e-mails can be automatically differ-
entiated from legitimate e-mail and filtered appropri-
ately. The best known of these approaches is Bayesian
filtering, popularized by Paul Graham [Graham, 2002],
and now widely-supported in systems such as SpamAs-
sassin [SpamAssassin.org, 2007]. In this model, each
e-mail is broken into a series of features (e.g., words)
that are in turn represented by the prior probability of
finding this feature in spam vs legitimate e-mails. By
regularly training the classifier on labeled data, these
probabilities can adapt to the changes in both spam
and legitimate e-mail content. A range of enhance-
ments have been developed over the years [Drucker
et al., 1999, Delany et al., 2005, Androutsopoulos et al.,
2000], but today this basic model — aided by human
tuned rules — remains at the heart of most content-
oriented defenses.

However, content filtering of this kind requires regular
training and tuning, and thus is most effective in large
e-mail services.! Moreover, most learning algorithms

In one recent report, it was stated that AOL filtered
over 2 billion spam messages per day in 2003 in this man-

are fragile against adversarial training or to mimicry
attacks [Wittel & Wu, 2004, Graham-Cumming, 2004]
and spammers have employed both to evade such fil-
ters. Finally, even the best systems misclassify a small
fraction of spam e-mail and allow it to proceed unfil-
tered. Thus, by simply sending more variants, a spam-
mer can still maintain a high delivery rate in spite of
filtering. Indeed, the very success of content filtering
has implicitly supported the increased total volume of
spam today.

However, to support high spam volumes, spammers
must in turn deploy large-scale mailing infrastructure.
Thus, the second major class of anti-spam defense fo-
cuses on either detecting and blacklisting this infras-
tructure or minimizing its value. For example, popular
blacklists like SpamHaus [Spamhaus, 2007] allow for
community efforts to update and maintain databases
of IP addresses that are found to act as open relays or
as spam sending hosts. Previous studies have looked
at the completeness of such blacklists. For example,
using a “spam trap” as an oracle, Jung and Sit found
that 80% of spam sources are eventually identified in
some spam blacklist [Jung & Sit, 2004], results which
are corroborated by Anderson et al. [Anderson et al.,
2007]. However, recently Ramachandran et al. have
presented evidence of spam mailings using large num-
bers of low-volume hosts — few of which may ever
source enough traffic to be blacklisted [Ramachandran
et al., 2006]. Occam is likely to help in such scenarios
since spammers must offer up a capable server for each
domain name forged and thus blacking efforts can be
concentrated on this smaller set of servers.

Since spammers are focused on speed and volume,
their MTA’s are frequently specialized to this task at
the expense of protocol robustness. Thus, another de-
fense against spammer infrastructure involves detec-
tion of protocol non-compliance (e.g., invalid return
paths or Message-IDs), or pushing the protocol out-
side its norms (e.g., greylisting) [Slettnes, 2004].

Yet another technique is to increase the burden on
spammer’s infrastructure by demanding solutions to
“computational challenges”.  Computational chal-
lenge, or “proof of work”, systems require some form
of computation to be performed by the sender to le-
gitimize a message [Back, 2002, Seltzer, 2003]. While
this cost is minor to a client, it can significantly lower
the rate at which a spam server can send. Conse-
quently, the effectiveness of this approach ultimately
depends on how its computational demands compare
with the marginal cost for a spammer to obtain more
relay servers and on the rate of return on a mail-
ing [Laurie & Clayton, 2004]. However, since chal-

ner [Pfleeger & Bloom, 2005].



lenges typically require MUA modification they have
not become widely used. Occam has some similarities
to these efforts since it is a challenge/response proto-
col, but rather than demanding computational effort,
Occam demands information about the recently sent
message.

Finally, to minimize the spammer’s ability to spoof
“From” addresses within their infrastructure, a num-
ber of systems use reverse DNS lookups to authenti-
cate whether an e-mail originated from a legitimate
source. For example, the Sender Policy Framework
(SPF) [Wong & Schlitt, 2006] provides a DNS-based
means for specifying rules about which IP addresses
can be used to send e-mail from a particular domain.
Similarly, the DomainKeys Identified Mail (DKIM)
system allows MTAs to append a digital signature to
each message they forward [Allman et al., 2007]. Thus,
when a message is received, the receiver can retrieve
the domain’s verification key via DNS and validate the
origin of the message.

However, each of these approaches entail some amount
of administrative overhead, in crafting SPF policies
or integrating DKIM signing into mail infrastructure.
Consequently, in one recent study only 5% of domains
had some SPF policy in place [Liu, 2007]. Moreover,
while both approaches help secure the binding between
an e-mail and the domain it was sent from, neither pre-
vents spammers from acquiring their own domains and
complying with the protocol. Indeed, some early anec-
dotal reports suggested that spammers were among the
earliest adopters of SPF.

Occam is primarily a domain authentication protocol
like SPF and DKIM. We believe it distinguishes itself
by being very easy to deploy (no configuration required
except for large sites) and by forcing spammers to de-
ploy servers for each domain to handle Occam protocol
challenges.

This sampling of anti-spam solutions is by no means
a complete list, but we believe it represents a rough
overview of the current approaches. We echo Leiba
and Borenstein’s observation that effective spam de-
fense is multi-faceted [Leiba & Borenstein, 2004] and
many of these techniques are complementary in prac-
tice.

3 Occam’s Razor

Occam is a new protocol for combating the growth
of spam email. Occam is motivated by the observa-
tion that most spam email contains forged addresses
typically sent by botnets [Ramachandran & Feamster,
2006]. The strength of the protocol lies in its simplic-
ity. Using Occam, receivers simply ask the sending
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Figure 1: Outline of the Occam protocol for a valid
email exchange.

domains identified in a message whether they actu-
ally sent the message. With legitimate email, the do-
mains will acknowledge sending the message. Spam
email that forges the domain, however, will not be
acknowledged and receivers can classify the email as
illegitimate. As a result, Occam requires spammers
to provide available resources for acknowledging the
spam they send, and induces spammers to control their
own domains and identify those domains in their spam
email. These requirements increase the resource bur-
den on spammers and further expose spammers to ef-
fective blacklisting. In this section we focus on the
operation and implementation of the protocol, and fur-
ther discuss the implications of Occam in Section 4.

Figure 1 illustrates the operation of the Occam pro-
tocol. When a receiving server receives a message,
it parses the Occam-Header to determine the sending
domain. The Occam-Header looks like email address,
with a user and a domain, but the domain specifies the
server which should be contacted. In most situations,
the Occam-Header will be identical to the envelope-
sender, also known as the Return-Path. The following
shows a sample Occam-Header.

Occam-Header:

The receiver should only use the DNS MX records
when resolving the domain. This requirement helps
prevent using botnets as valid domain servers, since
many botnets are desktop computers and generally do
not have MX records (even though they may have
A records). As a concrete example, assume that
server A receives a legitimate message for the user
alice@serverA.org that contains the Occam-Header
bob@serverB.org. The Message-1d listed in the email
message is Id-123/.

bob@serverB.org



The receiver then sends a query message to the server
for that domain. In this case, server B is the server
that resolves to the MX record for serverB.org. The
query includes the “From” address from the email to-
gether with the Message-1d:

From: bob@serverB.org
Message-Id: Id-1234

The domain server uses these fields to identify the mes-
sage that was sent in a log of recently sent messages.?
As a result, Occam requires each domain server to
maintain a log of sent messages. Each log entry only
needs to include the “To” address, the “From” address
and the Message-Id. The “From” address is not al-
ways necessary, but provides information for a domain
server to identify potentially abusive clients that try
to guess Message-Ids and subvert Occam. The domain
server can expire the log entries when the receiver ac-
knowledges the response from the server. These fields
can be compressed to about 30 bytes per record, so
that even an outstanding log of 100 million entries
would only require 300 MB, small by any standards
for contemporary servers.

If the domain server finds the message in the log, it
returns the “To” address of the corresponding mes-
sage back to the receiver as acknowledgement. The
acknowledgment allows the sending server to remove
the entry from its log. In our example, server B re-
sponds with:

To: alice@serverA.org

Note that since the domain server synchronously sends
the response to the receiver using the same socket
binding as the query request, it does not need to spec-
ify the Message-1d; the receiver knows which request
the response matches.

The receiver validates that the “To” address from the
domain server matches the “To” address in the orig-
inal email message; requiring the “To” address in re-
sponses prevents malicious domain servers from sim-
ply acknowledging all Occam queries. If the “To” ad-
dresses match, then the receiver finally delivers the
message to the user’s mailbox and acknowledges the
match to the domain server:

Received
Id-1234

Status:
Message-Id:

The domain server can now remove the corresponding
entry from its log of messages sent. Note that, in this
exchange, the receiver asynchronously acknowledges
the match to the domain server and must explicitly
specify the Message-Id.

2Continuing the theme of simplicity, Occam is a text-
based protocol.

These exchanges correspond to the case when the do-
main sender has sent legitimate email. There are three
cases where the protocol detects illegitimate email.
First, if the domain server does not find the message
in its log when queried, it responds to the receiver ac-
cordingly:

Status: Unknown

Or, if the domain server does not find the message
logged and it wants to know who the message was sent
to, it can respond to the receiver asking for the “To”
address:

Status: Unknown To

The receiver can then respond with the “To” field from
the message and remove the email as it sees fit. In our
example, server A would return:

To: alice@serverA.org

Second, if the receiver finds that the “To” address does
not match what was in the email, then the receiving
server concludes that the sending server did not actu-
ally send the message. In both cases the receiver can
then take appropriate action against the illegitimate
email.

Third, if the receiving server does not immediately re-
ceive a response from the domain server, it can limit
the rate of querying, much like SMTP does when re-
peatedly trying to deliver messages to bad addresses.
After each attempt that does not succeed, the receiv-
ing server doubles the amount of time to wait before
retrying. After a timeout, the messages can be marked
as illegitimate if no response was ever received.

4 Slicing spam

Having described the operation of the Occam protocol,
we now discuss how spammers might respond to Oc-
cam, and what constraints and burdens Occam places
on spammers for them to continue to deliver spam suc-
cessfully. We then discuss the advantages Occam offers
compared to current methods, as well as its limita-
tions. Finally, we discuss how Occam can be incre-
mentally deployed in the Internet today.

4.1 How might spammers respond?

The goal of Occam is to impose a substantially higher
resource burden on spammers, and to further expose
spammers to effective blacklisting. Naturally, spam-
mers will respond to Occam and change how they de-
liver spam.

Put the bots to work. Occam requires senders to
validate and acknowledge the email they send. Spam-



mers could try to distribute this load across the bots
they already use to send out their spam and use the ex-
isting domain name for the bots in the Occam-Header.
Occam, however, identifies senders using only the MX
records to resolve domain names for servers. As a re-
sult, Occam makes it challenging for spammers to use
generic bots for this purpose. Since many bots are
hosts that will not have MX records that resolve to
them, such bots would not be able to validate spam
that they send. The implication is that bots cannot
be used for the crucial step of validating messages with
Occam, although they can, of course, continue to send
messages.

In response, spammers could compromise or purchase
bots that do have appropriate MX records, but har-
vesting specialized bots increases their cost and dimin-
ishes spammer profits. Alternatively, spammers could
establish a DNS domain structure where each bot is as-
signed a separate sub-domain or entirely new domain.
Spammers could create MX records to have the do-
mains used in the Occam-Header resolve to the bots
spending the spam. Such an elaborate DNS domain
structure, though, makes spammers more vulnerable
to blacklisting and increases cost. If spammers use
many sub-domains, one per bot, the sub-domain struc-
ture would create a telling signature that the entire
domain is being used as a source of spam. Given this
signature, all of the sub-domains could then be easily
blacklisted by blacklisting the entire domain. Spam-
mers could use many domains instead of sub-domains,
but doing so greatly increases the cost and manage-
ment burden of managing the bots for sending spam.
Further, the list of domains directly expose the iden-
tity of the bots and expose them to blacklisting. Fi-
nally, allowing bots to respond to Occam queries as-
sumes they can accept incoming connections on low
numbered ports, a policy which many ISPs do not al-
low.

Centralization. Rather than distributing the load
across many bots, spammers could instead use a cen-
tralized server to handle the request load for validat-
ing the spam messages they send. In this scenario,
spam would have an Occam-Header that resolves to
this server. This server would then acknowledge re-
quests from receivers so that spam could successfully
be delivered. Spammers could still successfully deliver
spam, but Occam forces this server to stay online as
spam is sent. It increases the complexity and cost of
managing and operating a spam campaign, and the
server becomes an obvious target for blacklisting.

With Occam, spammers have to keep track of the email
targets that they distribute to each of their bots. Be-
cause Occam requires the validating server to respond

with the “To” address used in the original email, the
validating server cannot blindly acknowledge all re-
quests from receivers. Instead, spammers must pre-
compute and distribute Message-Ids with “To” and
“From” addresses to the bots being used for spam re-
lay. The validation server must keep this list so that it
can successfully reply to receiver requests. And spam-
mers must provision the server so that it can handle
a validation request load that grows in proportion to
the number of spam messages sent. A spammer can
use a botnet to send out millions of spam emails, but
for them to be successfully delivered the spammer will
need a server that has the resources to handle respond-
ing to millions of validation requests. As a result, Oc-
cam shifts the resource burden from the receiver to
the spam sender. In other approaches, such as DKIM,
the burden remains on the receiver, which must down-
load keys and cryptographically validate each message.
Furthermore, Occam requires spam senders to keep
their validating server available and responsive dur-
ing a spam campaign. Concentrating validation on a
centralized server exposes that server to blacklisting.
Once the server is associated with spam, adding the
server to a blacklist will prevent spam validation and
thereby delivery. Since spam campaigns can persist
for days [Anderson et al., 2007], early blacklisting can
substantially impede spam delivery.

DDoS Reflector. Finally, spammers could use the
protocol as a reflector DDoS attack. A spammer could
send millions of messages claiming to be from a tar-
geted domain identified in the Occam-Header. As a
result, receivers will then direct millions of valida-
tion requests to that domain. If a site has multiple
MX entries in DNS, this could result in a multiplica-
tive increase in the number of queries. Larger sites
could likely handle this load, but smaller sites could be
overwhelmed (we show in Section 5.2 how larger sites
can avoid the amplification problem). However, when
overloaded, a site could just as easily start dropping
requests and rely on Occam’s backoff and retry mech-
anism to distribute the load over time. More gener-
ally, though, if attackers want to use Occam to launch
DDoS attacks, it would be easier for them to launch
the attacks directly rather than use Occam. If an at-
tacker can send out millions of messages, they are ca-
pable of a straightforward DDoS attack on the domain
rather than performing an indirect attack through Oc-
cam. Indeed, they could simply send millions of mes-
sages directly to that domain, independent of whether
Occam is used or not.

4.2 Advantages

The Occam protocol offers a number of distinct advan-
tages over other methods that are currently in use.



Ease of administration. Occam does not require
effort by administrators to make the system work, an
important consideration for the thousands of small do-
mains that may not have the technical expertise for
more complex approaches. To use DKIM, for instance,
domain administrators must create and insert a public
key into a special DNS record. They then must con-
figure the outgoing MTA to append signatures to all
messages using a private key on each message. Pre-
sumably, they would also want to set up the MTA to
handle incoming mail using DKIM as well. This pro-
cess requires a certain degree of proficiency that may
not be available for many small domains. The Oc-
cam protocol, however, can be implemented directly
in MTA software packages, such as Sendmail, qmail
or Microsoft Exchange Server. It can then be rolled
out into a software upgrade, a process that is more
familiar to users. We note that Occam is trivial to
deploy for a small domain 3. Obviously, larger do-
mains will need a more involved process to implement
Occam than compared to SPF, which only requires a
DNS entry to be inserted. We argue that adoption of
a protocol depends equally on its acceptance by small
and large domains and Occam makes this process easy
for the small ones. Larger domains are in position to
roll-out their own deployment.

Enhanced culpability. The Occam protocol en-
hances what approaches like SPF and DKIM can ac-
complish. Both systems validate that a message came
from a specific domain or that a sender is authorized,
but the burden of proof rests with the receiver; again,
with DKIM, the receiver must perform a cryptographic
operation on each message. Moreover, the approach is
still open to abuse. For instance, a spammer can just
as easily set up a domain that has a perfectly valid SPF
rule that specifies any IP address can send mail for the
domain. A botnet can then send an unlimited number
of messages that all look legitimate from the stand-
point of SPF. They could alternatively find “open SPF
relays” that allow any sender to send messages. This
undermines the values of blacklisting domains based
on SPF abuse. Occam shifts more of this burden to
the spammer. It forces the actual sender of a mes-
sage to be involved in it’s authentication in an online
manner. Legitimate hosts stay online and available as
a matter of course. Spammers have gone to extreme
lengths to avoid being detected and pinned down to a
valid online presence. Thus Occam makes spamming
more difficult to accomplish without creating an ex-
posed and more expensive centralized infrastructure.
Occam, in effect, undermines the value that botnets
provide to spammers.

30ccam is also trivial to implement, as described in
Section 5.1.

Real-time validation. Occam requires that the
“work”, in our case responding to a validation query,
be performed online by the sender of the message.
This requirement contrasts with protocols like Hash-
cash, where the “work” can be precomputed during
idle time across thousands of botnets before any spam
campaign begins. With Occam, the spammer must be
able to respond successfully to all the queries that ar-
rive in real-time. The effect of responding in a timely
fashion is that the spammer must have a valid domain
name that resolves to a server in their employ. This
server must be available to accept queries on the Oc-
cam port and be provisioned well enough to respond to
many queries. The Occam protocol forces the spam-
mer to expose this higher value target, presumably
more expensive to obtain, and makes the domain and
IP used an easy target for blacklisting. If the spam-
mer attempts to switch to a different IP address, the
domain still remains blacklisted. Since the spammer
must own that domain, blacklisting a domain can no
longer affect the credibility of domains that are nor-
mally “hijacked,” as is done currently.

Input for reputation systems. As mentioned
above, a spammer could register many domains and
keep changing DNS records so that they point to new
servers able to answer queries. However, these rapid
DNS changes would create a telling signature in their
short TTL and IP churn. According to [Taylor, 2006],
webmail services are establishing reputations for do-
mains that allow them to filter spam more effectively.
These two characteristics, IP churn and short TTL,
would be clear indications that the domain was in-
volved in sending spam, evidence that reputation sys-
tems could use to reliably identify spamming domains.

Anti-Phishing capability. An unexpected benefit
of using Occam is that domains will immediately be-
come aware of when they are being phished (or, more
generally, being spoofed). Since receivers will begin
querying a spoofed domain for non-existent messages,
Occam enables domains to discover immediately when
they are being spoofed. Moreover, Occam provides a
mechanism for a receiver to determine the “To” ad-
dress to which a phishing email was sent. Such infor-
mation would be useful to companies that must often
deal with phishing attacks, as it allows them to flag
accounts to watch for suspicious activity or to take
other measures to contact the users that they know
have been exposed. The ability to be notified immedi-
ately of phishing and spoofing would consequently be
available not only to large and well-funded companies,
but any organization, thereby reducing the effective-
ness of more elaborate attacks like spear-phishing.

Phishers could try to avoid having the original domain



know about the phishing attempt by specifying one of
their domains in the Occam-Header. However, aside
from the difficulties spammers would have in using
their own servers, the discrepancy provides a strong
indication that a message is illegitimate if the domain
in the Occam-Header lies outside of the top level do-
main for an organization.

Low overhead. The Occam protocol is simple to
implement and straightforward to deploy. It also im-
poses low overhead to operate. The overhead is pro-
portional to the number of messages received and sent,
imposing little additional burden on both small and
large sites. We further explore Occam overhead in
Section 6 by experimenting with a prototype Occam
implementation.

4.3 Disadvantages

As with any approach, Occam has disadvantages as
well, which we discuss below. For the large majority
of domains, though, we believe the benefits of Occam
outweigh these disadvantages.

Mobile mailers. There are some legitimate reasons
that a sending server might not be able to respond to
an Occam query. One is to retain the ability to send
mail from a host intermittently connected to the Inter-
net, while allowing another server to handle incoming
mail and SMTP related functions, like error messages.
We believe this flexibility in SMTP is abused by spam-
mers and that it is in the best interest of most servers
to exert greater control over who is allowed to send
mail claiming to be from their domains.

Denying service. The Occam protocol also opens
up a potential denial-of-service attack against email re-
ceipt. An adversary could potentially try to query for
and acknowledge email requests from a sending server
in an attempt to make them remove their logs pre-
maturely, thereby preventing delivery of the email by
the receiver to the original recipient. As an example,
if server A sends a message to server B, a malicious
server C could try to guess the Message-Id and the
From address and reply more quickly to server A than
server B does. Server A would acknowledge sending
the message and remove its log information about the
message, causing a subsequent validation by the real
receiver, server B, to fail.

However, precisely since the Message-Id and the From
address are required information for querying a server,
there is a reduced chance such an attack would suc-
ceed since an attacker has to guess these fields. Corre-
spondingly, it would benefit all MTA software to add
more entropy to the Message-1d fields. Further, most

queries by the legitimate receiver would happen in a
relatively short amount of time, limiting the window
of opportunity of an attacker. Finally, a sending server
could keep the necessary information around for some
period of time after it has been successfully queried
before removing it.

4.4 Deployment

Full benefit of the Occam protocol necessarily requires
the cooperation of almost all domains sending email.
However, domains can gain incremental benefits from
incremental deployment, much as DKIM has been de-
ployed. Initially, pairs of domains would recognize
that both are observing the protocol through out of
channel mechanisms or probing procedures, and would
then make arrangements to use the protocol. For ex-
ample, if eBay began observing the protocol, Google
mail would be able to verify all mail that purported
to be originating from eBay. Over time, Occam im-
plementations could be rolled into future upgrades of
popular mail transfer agents that administrators in-
stall. If domains see that a certain site is not using
the protocol, they can use their existing approaches
for determining and dealing with spam as usual; and
the fact that the message could not be validated us-
ing Occam could be additional evidence in the spam
filtering decision process. If Occam use reaches criti-
cal mass, then domains could assume that any site not
using the protocol should be regarded as an abusive
server and its messages ignored outright.

5 Implementation

We discuss our experiences in designing a prototype
implementation of Occam that would work well for
small to medium sized domains. We then explore how
large domains can implement Occam without incurring
synchronization and centralization overhead.

5.1 Prototype implementation

We implemented a prototype of Occam to assess the
feasibility of the protocol and evaluate its overhead.
The Occam prototype consists of a daemon that oper-
ates in cooperation with an MTA. We used the Send-
mail MTA [Sendmail Consortium, 2007] due to its pop-
ularity and available source code. To ease the devel-
opment of a prototype, we did not fully integrate our
entire implementation within Sendmail or use a Send-
mail milter. Instead, we made the minimal changes
to Sendmail as necessary to delegate operation of the
Occam protocol to a separate application. In all, we
only made changes to five lines of Sendmail source code
across two files. When Sendmail sends a mail message,



the new code logs the “From”, “To”, and Message-Id
fields to a file. When Sendmail receives a message, it
uses a Sendmail operation to place the file containing
the message into quarantine. If the Occam daemon
determines that the message is legitimate, it will move
the message file out of quarantine. Sendmail will then
deliver the message to the user’s mailbox without fur-
ther changes.

The Occam daemon operates independently of Send-
mail, consuming the records of sent messages produced
by Sendmail that are stored in the log and scanning
for quarantined messages. It is a multi-threaded C++
program that implements both a client and server
mode, with a thread executing each mode. When the
server starts, it binds to UDP port 25 and drops root
privileges. It then loads in the sent messages from the
log file. When it receives a query, it first checks the log
file to see if updates have been made before checking
its own cache. When expiring a queried entry, it clears
its memory cache of the entry and removes the entry
from the log file. Using a database to manage the log
entries could simplify the implementation further.

The client mode of the daemon continuously scans the
mail queue for messages that Sendmail has quaran-
tined. When a new message appears, the daemon
opens it and retrieves the Occam-Header, “From” ad-
dress, “To” field and Message-Id. It then parses the
Occam-Header to obtain the domain. It looks up the
MX records only for that domain and stores them in
order of their MX priority. For each server in that list,
it queries the server to find out whether the server was
the sender of that message. If a server acknowledges
sending the message, it removes the quarantine sta-
tus of the message by changing the first letter of the
filename. It then informs Sendmail of the update by
invoking it with the “-qf” flag to cause Sendmail to
check its queue of updated messages. If no server ac-
knowledges sending the message, the daemon unlinks
the message file to dispose of it.

The Occam daemon uses UDP for its transport pro-
tocol, following the example of DNS which has suc-
cessfully used UDP to implement an efficient and re-
liable service for a critical application. Most message
exchanges require one UDP packet, with particularly
long Message-1ds requiring two. Although using TCP
would ensure messages were received by both parties,
UDP does not tie up connection resources as TCP
does, and does not require extensive handshaking be-
fore sending messages. If overhead is of less concern,
though, Occam could use TCP instead.

The daemon has a short and simple implementation
consisting of 1,000 lines of code: 300 for the server, 400
for the client, and 300 shared among the two modes.

Given its ease of implementation, it should be straight-
forward to extend any MTA with an implementation
of the Occam protocol.

5.2 Implementation in large domains

For sites that handle much larger volumes of email,
scaling could add complexity to the implementation,
but need not. Moreover, these sites likely have support
to address scaling issues already. The Occam protocol
requires only basic logging and querying functional-
ity, operations that can be streamlined with database
servers if necessary. Overhead due to the Occam pro-
tocol would not then be significant for domains already
sending large quantities of email. More significantly,
Occam imposes the same requirements on spammers:
large-volume spammers would have to similarly scale
their logging and querying ability, often under the con-
straints of using bots. This is another operation that
reduces their return on investment, making spamming
less profitable.

Obviously, our prototype implementation is unsuited
for domains that have dozens or hundreds of mail
server. These domains however have a few options.
They could centralize their logging and query oper-
ations, although doing so may be awkward for large
sites. Instead, large domains can balance the logging
and querying operations in a straightforward fashion.
A mail server sending mail can add an Occam-Header
that points back to that specific server, instead of the
entire domain. Doing so distributes load naturally and
groups sending mail with answering queries on the
same server, requiring no coordination among large,
distributed mail server farms. This solution also elim-
inates the amplification DDoS attack. Each of these
mail servers does not need to have multiple MX val-
ues for it. The receiving mail servers, who do not
respond to Occam, can then refuse incoming Occam
queries, and these packets can be dropped at border
gateways.

6 Estimated Impact

An important consideration for any new protocol is
the impact it would have on the current Internet in-
frastructure and the servers responsible for deploying
it. The Occam protocol does have the potential to
raise bandwidth costs and server utilization. We ar-
gue that these costs, however, have minimal impact.

First we examined the time overhead for our Oc-
cam prototype implementation compared to similar
approaches, DKIM and SPF. We measured the time
to send 1,000 messages for all three implementations,
and used Sendmail 8.13.8 as the MTA for all exper-



Configuration | Time (s) |
Sendmail 100.40
Sendmail with OpenSPF | 100.03
Sendmail with DKIM 251.23
Sendmail with Occam 102.4

Table 1: Average time to send 1,000 messages using
Sendmail.

iments. The DKIM implementation ran dk-milter
0.4.1 [domainkeys-milter, 2007] and the SPF imple-
mentation ran with smf-spf 2.0.2 [Kurmanin, 2007] us-
ing libspf2 1.2.5 [libspf2, 2007]. We used two servers
for sending and receiving email, respectively, and a
third that handled DNS requests for both MTAs. The
DNS server had the following records for SPF and
DKIM:

SPF: v=spfl a -all
DKIM: k=rsa; t=y;
p="MHwwDYJKoZIhvcNA. ..’

We sent 1,000 messages using a Perl script from one
server to the other five times. Table 1 shows the aver-
age time for each experiment, with insignificant vari-
ation across runs. The results show that the Occam
protocol does not add significant overhead and is com-
parable to sending without additional measures and
sending with SPF enabled. We also found that DKIM
adds a significant computational overhead.

The communication overhead of Occam is proportional
to the amount of email, particularly spam email, sent
on the Internet. Given the amount of spam sent on
a daily basis, this overhead might be substantial. To
estimate the overall communication overhead on the
Internet, we can perform a back-of-the-envelope cal-
culation to indicate the added data costs that the pro-
tocol would impose. If we take an upper estimate on
the number of email messages sent [Radicati Group,
2006], there were 171 billion messages delivered daily
in the first quarter of 2006, of which 71% were spam. If
every one of those email messages required three UDP
packets to determine their status, plus one MX record
lookup, where we assume the packet size is a generous
200 bytes, then 800 bytes would be needed by Occam
per email. This overhead would add 136 TB of total
data into the Internet per day. Spread out over an
entire day, the load averages 1.58 GB/s, a very small
rate at Internet scales.

7 Conclusion

The Occam protocol provides a simple light-weight
mechanism for authenticating e-mail messages. Its
simplicity makes it easy to understand and, as well,

easy to administer — requiring no site-specific configu-
ration. Moreover, spammers who would chose to ad-
here to the protocol are forced to support and expose
dedicated infrastructure for the duration of their cam-
paign. Finally, as a side-effect, the Occam protocol
notifies domain owners when their addresses are be-
ing spoofed, which is useful for combating phishing at-
tacks. Occam is not a silver bullet for solving the spam
problem and, like most anti-spam technology, is most
effective in tandem with existing approaches including
spam filtering, reputation systems and blacklisting ser-
vices. However, we believe Occam’s advantages make
it a valuable addition to the repertoire of weapons in
the fight against spam.
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