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Technological platforms that enable rapid biomarker detection, disease diagnosis, 

prognosis, and treatment monitoring can significantly improve outcomes for patients. This is 

especially true in traumatic brain injury (TBI) and neonatal (newborn) sepsis, for which timely 
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and accurate recognition is important, and clinical signs alone are not sufficient for optimal 

management. This dissertation explores the clinical utility of TBI biomarkers using a novel 

electrokinetic microarray platform, as well as the application of dielectrophoresis for the 

isolation of bacteria from whole blood. In addition, this doctoral research work explores the 

application of machine learning algorithms for microbial pathogen identification, and for the 

detection of emerging infections, using a novel digital high resolution melt platform. 
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Chapter 1  

Introduction 

1.1 Exosome  

Exosomes are extracellular vesicles measuring ~30-150 nm in diameter that have 

been shown to be secreted into the extracellular space by diseased and normal cells alike, 

and found to be present in body fluids [1, 2]. Early documentations of observations 

regarding exosomes dates back to the 1970s and 1980s (Figure 1.1) [3-5]. Formed by a 

process that involves inward budding of the plasma membrane and the endosomal sorting 

complex required for transport (ESCRT) machinery, these small lipid-bilayer-membrane-

enclosed particles contain nucleic acids, proteins and lipids (Figures 1.2 and 1.3) [6, 7]. 

The biomolecular contents of exosomes have been shown to mirror those of their cells of 

origin [8]. Previously thought to be a mere cellular debris, evidence is accumulating that 

exosomes play important biological roles, such as in cell-to-cell communication, immune 

response, antigen presentation, tumorigenesis, and tumor progression, through the transfer of 

packaged bioactive molecules (including proteins, mRNA, microRNA, long non-coding RNA 

and mitochondria DNA) between cells [9-12]. Studies are emerging suggesting the utility 

of exosome biomarkers in the diagnosis, prognosis, and therapeutic monitoring for 

disease management [13-17]. This has led to the increasing interests in exosomes for 
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Figure 1. 1. Fusion of multivesicular elements (MVE) with the plasma membrane and 
release of round bodies.  The figure shows exocytosis into the medium of small dense 
bodies labeled with gold label after a 3-h incubation at 37°C. The gold label is only present 
on the 50-nm bodies which are inside vesicles of 300-800 nm in diameter. The limiting 
membrane of the MVE is devoid of label. Reproduced with permission from [5]. Copyright: 
© 1985 Pan et al. Rockefeller University Press, Journal of Cell Biology.  

 

liquid biopsy. In addition to oncology, interest is also growing in the application of 

exosome biomarkers in cardiovascular diseases [18], traumatic brain injury [19], 

infectious diseases [20, 21], inflammatory disorders [22], and neurodegenerative diseases 

[23]. Despite the growing interests and advancements in the field, optimal and effective 

methods for isolation, purification and analysis of exosomes have remained a challenge 

given their small size and the complex biological fluid in which they are present [24, 25]. 
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Figure 1. 2. Biogenesis of exosomes. Reproduced with permission from [6], Copyright: © 
2016 McGough and Vincent. Company of Biologists, Development.   

 

The standard method for exosome isolation is based on a multistep 

ultracentrifugation technique [26, 27]. Other exosome isolation methods include size-

based techniques [28-31], affinity-based immunocapture [32-34], and microfluidics-based 

methods [35-38]. Harnessing the full diagnostic, as well as therapeutic and discovery potential 

of exosomes would require the development of technologies that allow for rapid, low-cost, 

high-yield, efficient isolation of uncontaminated exosomes in as close to their natural 

unchanged and undamaged state as possible. 
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Figure 1. 3. Schematic representation of exosome membrane composition and biomolecular 
contents. Reproduced with permission from [7]. Copyright: © 2012 Bellingham et al. Frontiers 
in Physiology. 
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1.2 Dielectrophoresis 

The ability to manipulate and separate micro- and nanoscale particles has long 

been of interest in biology and medicine. Over the years, a variety of techniques have 

been developed for this purpose, including optical [39-41], electrokinetic [42-45], 

mechanical [46, 47], hydrodynamic [48, 49], acoustic [50-52], and magnetic [53, 54]. 

Among these particle manipulation techniques, dielectrophoresis (DEP) has attracted 

growing attention in recent decades because of the advantages it offers over other 

methods, such as fully controllable and selective particle manipulation, potential for 

parallelization, miniaturization, ease of integration to existing electronics, and 

inexpensive fabrication [42, 43]. 

DEP, an electrokinetic phenomenon that was first named and described by Herbert 

Pohl in the 1950s [55, 56], is the translational motion of an uncharged polarizable particle 

in a nonuniform electric field (Figure 1.4) [57]. The particle motion results from the 

imposition on it of an external force, the dielectrophoretic force, following the induced 

polarization of the particle under the influence of the nonuniform electric field. Unlike 

electrophoresis, for which the electric field-induced particle motion relies on the particle 

having a net electrical charge, dielectrophoresis does not rely on intrinsic net charge of 

the particle, but instead relies on the dielectric properties of the particle and the 

suspending medium, thereby enabling the manipulation of an electrically neutral particle. 

The wide variety of DEP microdevices that have been developed and employed for the 

manipulation and separation of bioparticles (i.e. DNA, bacteria, viruses, proteins, 

mammalian cells) can be broadly classified based on the applied electric field into two: 
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Figure 1. 4. Schematic of a particle in a suspending medium (A) experiencing zero net 
force while placed in a uniform electric field; (B) experiencing DEP force when placed 
in a non-uniform electric field; (C) experiencing DEP force because of the electric filed 
gradient. Reproduced with permission from [57]. Copyright: © 2009 Zhang et al. 
Springer Nature. Analytical and Bioanalytical Chemistry.  

 

(i) alternating current (AC) DEP (also referred to as metal electrode-based DEP), and (ii) 

direct current (DC) DEP (also referred to as insulator-based DEP) [58]. In general, the 

design of an AC DEP microdevice involves embedding an array of metal electrodes, 

which generate spatially nonuniform electric field, inside the microdevice channels [59]. 

Advantages of the AC DEP include the ability to change the frequency of the applied 

electric field, thereby allowing for more efficient particle manipulation and separation. 

On the other hand, for DC DEP, spatially nonuniform electric field is generally created 

by placing insulating obstacles (hurdles) inside the microdevice, with the electrodes 

remotely positioned at the end of the microdevice channels [60, 61]. Advantages of the 

DC DEP over AC DEP include less fouling at the region of particle manipulation given 

that insulators are less prone to fouling compared to metal electrodes, reduced electrolysis 

(bubbling) in the microchannels due to remote positioning of electrodes, and simple 

device fabrication [61, 62]. However, a drawback with the DC DEP is the potential for 

Joule heating (and the resulting increase in temperature inside the microdevice) following 
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power loss in the DC electric field [63, 64]. For both designs, the DEP force acting on 

the polarized particle moves it toward (positive DEP, pDEP) or away from (negative 

DEP, nDEP) the region of strong electric field, depending upon the relative polarizability 

of the particle and the surrounding medium. A particle exposed to a nonuniform electric 

field experiences pDEP when its induced polarizability is higher than that of the medium 

within which it is suspended. Conversely, a particle subjected to an applied nonuniform 

electric field experiences nDEP when it is less polarizable than the surrounding medium 

(Figure 1.5) [58].  

For a homogenous dielectric spherical particle in an AC electric field, the time-

averaged DEP force is expressed as [65]: 

FDEP = 2πε0εmr3Re[fcm]∇E2        (1.1) 

where ε0 is the permittivity of free space, εm is the relative permittivity of the surrounding 

medium, r is the particle radius, E is the root mean square (rms) value of the electric field, 

and Re[fcm]is the real part of the Clausius–Mossotti (CM) factor, fcm, given by 

fcm = 
!"∗ $		!&∗

!"∗ '(!&∗
            (1.2) 

where ε* is the complex permittivity, subscripts p and m denote particle and medium, 

respectively. The complex permittivity, ε*, is defined by 

ε* = ε - j)
*

           (1.3) 

where σ is the electrical conductivity, ω is the frequency of the applied electric field, and 

j= −1. As shown in Equations (1.2) and (1.3), the CM factor, fcm, is a complex function 
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of the frequency of the electric field, the permittivity and the electrical conductivity of 

the particle and the medium. For an isolated solid homogenous spherical particle, the real 

part of the CM factor, Re[fcm], varies between -0.5 (ε.∗ < ε0∗ 	) and +1 (ε.∗ > ε0∗ ) [66]. 

According to Equation (1.1), the sign of the CM factor, fcm, determines the direction of 

the DEP force. When fcm is positive, a pDEP is created. Conversely, when fcm is negative, 

the particle experiences nDEP. When fcm is zero, the DEP force is zero, and there is no 

particle movement. For a given particle and suspending medium, varying the frequency 

of the applied electric field can vary the Re[fcm] (Figure 1.6) [67]. The electric field 

frequency at which the Re[fcm] is zero is referred to as the crossover frequency.  

In a study it was showed that, for the CM factor at low and high frequency limits, 

conductivity governs DEP behavior at low frequency, while permittivity has more 

influence on DEP behavior at high electric field frequency [68]. Thus, establishing two 

scenarios that govern the relationship between the applied electric field frequency and the 

Re[fcm]: (i) this occurs when σp < σm and εp > εm, making Re[fcm] positive at high electric 

field frequencies and negative at low electric field frequencies; (ii) this occurs when σp > 

σm and εp < εm, making Re[fcm] positive at low electric field frequencies and negative at 

high electric field frequencies (Figure 1.6) [69]. 

For decades pDEP has been utilized for capturing bioparticles contained in a 

suspending medium. However, this particle trapping has been limited by the requirement 

of a low conductivity media. Therefore, given that physiological media, such as blood 

and other body fluids, are high-conductance solutions, this has necessitated the dilution 

of the physiological sample prior to subjecting it to a nonuniform electric field [70-73]. 
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Figure 1. 5. Schematic showing the direction of the DEP force experienced by a polarized 
particle in a suspending medium under the influence of a nonunform electric field. (A) The 
particle is more polarizable than the suspending medium and it experiences net force 
toward the higher electric field (Ehigh) region. This process is known as pDEP. (B) The 
particle is less polarizable than the suspending medium, and the net force on the particle 
acts toward the lower electric field (Elow) region. This type of particle motion is known 
as nDEP. Reproduced with permission from [58]. Copyright: © 2014 Jubery et al. John 
Wiley and Sons. Electrophoresis.  

 

In addition, bioparticle manipulation and separation at the nanoscale were previously 

thought to be impossible owing to the effect of Brownian motion, and the need for high 

voltages that are impractical to generate at the electric field frequencies at which DEP 

operates [74, 75]. Alternative electrode design approaches have been explored to 

overcomes these limitations. Recently, an AC electrokinetic (ACE) microarray chip 

device have been developed and successfully employed for the manipulation and 

isolation of particles, such as DNA, exosomes, nanoparticles, and viruses, from high 

conductance buffer, undiluted whole blood, plasma, and serum [38, 76-80]. The platform 

consists of a microfluidic chamber with a multi-layered microarray electrode, fabricated 
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on a silicon base (Figure 1.8) [80]. With a small sample volume (25 - 50 µL), it has been 

demonstrated to have potential applications in cancer diagnosis, prognosis and therapy 

effect monitoring, drug delivery nanoparticle retrieval and analysis, and traumatic brain 

injury assessment (Figure 1. 9) [38].  

 

Figure 1. 6. The real part of the Clausius–Mossotti factor as a function of the applied 
electric field frequency. Data is shown for a 1 µm solid polystyrene spherical particle 
suspended in an aqueous medium of variable conductivity. The properties of the particle 
and the medium are σp = 0.01 S/m, εp = 2.55, εm = 78.5. For a suspending medium with 
very low conductivity (1 x 10-5 S/m), the polystyrene particles experienced pDEP up to 
~ 2 MHz. Reproduced with permission from [67]. Copyright: © 2010 Koklu et al. AIP 
Publishing. Biomicrofluidics. 
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Figure 1. 7. An illustration of the relationship between applied electric field frequency 
and the Clausius–Mossotti factor with respect to the permittivity and conductivity of the 
particle and the suspending medium. (A) when σp < σm and εp > εm; (B) when σp > σm 
and εp < εm. Reproduced with permission from [69]. Copyright: © 2017 Abd Rahman et 
al. MDPI. Sensors (Basel). 

 

 

 

Figure 1. 8. Schematic of the cross-sectional (a) and top (b) views of an alternating 
current electrokinetic microelectrode array platform depicting application in 
nanoparticle isolation. Reproduced with permission from [80]. Copyright: © 2015 Ibsen 
et al. John Wiley and Sons. Small. 
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Figure 1. 9. Schematic representation of exosomes and other nanoparticles capture on 
the AC electrokinetic device microelectrodes. The electric field lines (blue) run between 
individual microelectrodes on the microarray and converge onto the edges of the 
microelectrodes, forming the DEP high-field regions. The exosomes, EVs, 
nucleosomes, and aggregated protein particles collect in these high-field regions around 
the microelectrode edges. Any cells or larger particles in the sample (blood, plasma, 
serum, etc.) are concentrated into the DEP low-field areas between the microelectrodes, 
while the lower molecular weight biomolecules are unaffected by the DEP electric 
fields. A fluid wash removes any cells and the other plasma materials, while the 
nanosize biomarkers (exosomes, etc.) remain concentrated in the DEP high-field 
regions. Reproduced with permission from [38]. Copyright: © 2017 Ibsen et al. American 
Chemical Society. ACS Nano. 
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1.3 High-resolution melt curve 

The denaturation or melting of DNA with heat is a fundamental property of DNA 

that takes place when a double-stranded helical DNA (dsDNA) separates into random 

coils of single-stranded DNA (ssDNA). Conversely, hybridization or annealing occurs 

when there is a shift from the single-stranded random coil state to the double-stranded 

helical state. In both processes, the transition occurs in a narrow temperature interval 

about a melting temperature, Tm, the temperature at which half of the DNA is double-

stranded, and the remaining half is single-stranded. The DNA melting process can be 

traced by using dsDNA-binding dyes that fluoresces in the presence of dsDNA but not in 

the presence of ssDNA. As the temperature increases, the fluorescence intensity 

decreases as the dsDNA gets denatured to ssDNA. This change in fluorescence as a 

function of temperature is captured by plotting fluorescence vs. temperature to give rise 

to unique DNA melting curve (Figure 1.10A) [81]. The Tm can be approximated by 

taking a negative derivative of the melting curve (Figure 1.10B). 

Historically, fluorescent DNA melting analysis replaced UV absorbance methods 

for monitoring thermal DNA melting. In contrast to the UV absorbance method, which 

required large amounts (in microgram) of DNA and slower heating rates, fluorescence 

DNA melting is more sensitive, requiring much less amounts (in nanogram) of DNA, 

making it attractive for quantification, genotyping and variant scanning of polymerase 

chain reaction post-amplification products [82, 83]. Early fluorescent methods relied on 

labeled probes [84, 85]. However, with labeled probes, sequence variants under the probe 

are detected but not variants outside the region of the probe. The advent of intercalating 

dyes, such as SYBR Green, made it possible to scan for variants anywhere within the  
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Figure 1. 10. Fluorescence of DNA-binding dye as a function of temperature. (A) 
Original fluorescence data showing a linear decrease of fluorescence followed by rapid 
decrease centered around the melting temperature (Tm). (B) The original data is 
normalized between 0 and 100% so that the curve is horizontal outside the transition. 
Reproduced with permission from [81]. Copyright: © 2007 Reed et al. Future Medicine 
Ltd. Pharmacogenomics. 
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Figure 1. 11. Amplicon melting analyses for duplicate samples of factor V (Leiden) 
1691 GNA wild-type (green), heterozygous (blue) and homozygous mutant (red) 
samples. (A) Normalized melting curves, (B) derivative plots. Reproduced with 
permission from [86]. Copyright: © 2008 Erali et al. Elsevier. Experimental and Molecular 
Pathology. 
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PCR product [87]. However, there were some limitations including [85, 88]: (i) the need 

for high concentrations of the dye, which inhibits PCR, (ii) requiring additional sample 

processing steps post-amplification for PCR product separation and amplicon purification 

prior, with the risk of introducing contaminants, and (iii) was able to differentiate 

homozygous variants that differ in Tm but it was difficult to detect heteroduplexes. High 

resolution melting (HRM) was developed to overcome these limitations. 

HRM analysis was made possible by the discovery and synthesis of saturating 

DNA-binding dyes that are compatible with PCR in high concentrations, as well as 

advances in the resolution of melting instruments and data analysis [89-91]. HRM is a 

simple, inexpensive, rapid closed-tube homogenous technique that can be performed with 

just a DNA-binding dye in addition to the PCR reagents and the target nucleic acids, and 

does not require post-PCR sample processing, thereby reducing the risk of PCR product 

contamination [92]. The fluorescence data that is obtained during the DNA melting 

process can be analyzed based on the shape of the melting curve or on the melting 

temperature, Tm [89]. The applications for HRM analysis include genotyping [93, 94], 

mutation scanning [85, 95], and sequence matching [96]. HRM analysis has been gaining 

popularity as a research and clinical diagnostic tool. 

Because of its bulk reaction format, traditional HRM analysis has an inherent 

limitation in resolving individual nucleic acid targets within a heterogenous sample 

containing a mixture of nucleic acids. This is because, with the bulk format, the melt 

curve represents an average of the individual melt curves of all nucleic acids targets 

within the sample [97]. Conventional approaches such as microarray, while allowing for 

semi-quantitative profiling, lack the sensitivity to detect individual nucleic acid 
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sequences at low concentrations and require prior knowledge of target nucleic acid 

sequences, making novel discoveries impossible. Highly sensitive and multiplexing 

technologies such as next generation sequencing, in addition to being costly, time 

consuming and not widely accessible, are prone to errors in base calling. By taking 

advantage of advances in digital PCR (dPCR), which allows for increased sensitivity, and 

progress in microfluidics technology, combined with universal (or broad-based) 

amplification, a novel universal digital high resolution melt (U-dHRM) platform has been 

developed [98, 99]. One application for which the utility of U-dHRM has been 

demonstrated is in microbial pathogen identification for infectious diseases diagnostics. 

As an example, by targeting the bacterial 16s rDNA gene using a universal primer, 

multiple bacterial nucleic acid targets within a sample can be amplified in partitioned 

dPCR reactions, and the melt curve of each target amplicon can be generated and 

analyzed.  

 

1.4 Organization of the dissertation 

This dissertation has two main areas of focus: (i) the application of an AC 

dielectrophoretic microelectrode array platform for the isolation and biomarker analysis 

of extracellular vesicles (exosomes) for the assessment of patients suffering traumatic 

brain injury; (ii) the development of machine learning algorithms for profiling high 

resolution DNA melt curves for microbial pathogen identification, and for the detection 

of novel (previously unknown) microbial DNA melt curves. 

Chapter 2 explores the utility of an alternating current electrokinetic (ACE) 
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platform for the discovery and analysis of exosome biomarkers for traumatic brain injury. 

The levels of glial fibrillary acidic protein (GFAP), Tau, and ubiquitin C-terminal 

hydrolase L1 (UCH-L1) expression on exosomes, and the level of cell-free DNA 

(cfDNA) were assessed. 

Chapter 3 discusses the development of probabilistic classification methods for 

universal digital high resolution melt curve analysis for application in microbial pathogen 

identification. The classification performance was assessed using DNA melt curves of 

ten bacterial species that are among the major causative organisms for bloodstream 

infections in the newborn. 

Chapter 4 describes the development of machine learning algorithms for the 

detection of novel nucleic acid sequences using DNA melt curves generated from a digital 

high resolution melt platform. This has application in the identification of emerging 

pathogens. 

Chapter 5 discusses future work that explores the utility of the ACE platform for 

the isolation of bacteria directly from unprocessed blood.  
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Chapter 2 

Plasma Biomarker for Post-concussive 

Syndrome. A Pilot Study Using an 

Alternating Current Electro-Kinetic 

Platform 

 

2.1 Abstract 

Background: Technology platforms that afford biomarker discovery in patients 

suffering from traumatic brain injury (TBI) remain an unmet medical need. Here, we 

describe an observational pilot study to explore the utility of an alternating current 

electrokinetic (ACE) microchip device in this context. 

 Methods: Blood samples were collected from participating subjects with and 

without minor TBI. Plasma levels of glial fibrillary acidic protein (GFAP), Tau, ubiquitin 

C-terminal hydrolase L1 (UCH-L1), and cell-free DNA (cfDNA) were determined in 

subjects with and without minor TBI using ACE microchip device followed by on-chip 
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immunofluorescent analysis. Post-concussive symptoms were assessed using the

 Rivermead Post Concussion Symptoms Questionnaire (RPCSQ) at one-month follow-

up. 

 Results: Highest levels of GFAP, UCH-L1, and Tau were seen in two minor TBI 

subjects with abnormality on head computed tomography (CT). In patients without 

abnormal head CT, Tau and GFAP levels discriminated between plasma from minor-TBI 

and non-TBI patients, with sensitivity and specificity of 64–72 and 50%, respectively. 

Plasma GFAP, UCH-L1, and Tau strongly correlated with the cumulative RPCSQ score. 

Plasma UCH-L1 and GFAP exhibited highest correlation to sensitivity to noise and light 

(r = 0.96 and 0.91, respectively, p < 0.001). Plasma UCH-L1 and Tau showed highest 

correlation with headache (r = 0.74 and 0.78, respectively, p < 0.001), sleep disturbance 

(r = 0.69 and 0.84, respectively, p < 0.001), and cognitive symptoms, including 

forgetfulness (r = 0.76 and 0.74, respectively, p < 0.001), poor concentration (r = 0.68 

and 0.76, respectively, p < 0.001), and time required for information processing (r = 0.77 

and 0.81, respectively, p < 0.001). cfDNA exhibited a strong correlation with depression 

(r = 0.79, p < 0.01) and dizziness (r = 0.69, p < 0.01). While cfDNA demonstrated positive 

correlation with dizziness and depression (r = 0.69 and 0.79, respectively, p < 0.001), no 

significant correlation was observed between cumulative RPCSQ and cfDNA (r = 0.07, 

p = 0.81). 

 Conclusion: We provide proof-of-principle results supporting the utility of ACE 

microchip for plasma biomarker analysis in patients with minor TBI. 
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2.2 Introduction 

Each year, over 1.7 million people in the U.S. suffer traumatic brain injury (TBI), 

requiring medical attention [100]. Depending on the severity of the clinical presentation, 

TBI is classified into mild, moderate, or severe [101]. >80% of head trauma patients who 

present to the emergency room suffer from mild TBI. While the majority of these mild 

TBI patients are discharged from the emergency room on the same day and recover 

without detectable long-term sequelae, 30% of mild TBI patients will have persistent 

“post-concussive” symptoms that significantly compromise their quality of life, including 

headache, fatigue, as well as altered sensation, sleep, and attention span [102-104]. 

Notably, ∼8% of mild TBI patients demonstrate visible injury to the cerebrum on 

computerized tomography (CT). Direct and indirect costs associated medical care and 

productivity loss associated with mild TBI exceeds $60 billion annually [105]. Mild TBI 

involves complex pathophysiologic processes associated with microscopic shearing of 

cells in the central nervous system secondary to traumatic biomechanical forces to the 

head [106]. Such shearing induces damage to the cell, resulting in the release of neuronal 

and astrocytic proteins or cell-free DNA (cfDNA) not normally found in the extracellular 

space [107], including glial fibrillary acidic protein (GFAP) [108], ubiquitin carboxyl-

terminal hydrolase L1 (UCH-L1) [109], and Tau [110]. Tau is a microtubule stabilizing 

protein abundant in neurons [111], and released into the extracellular space upon neuronal 

damage [112]. GFAP is an intermediate filament protein highly abundant in astrocytes 

[113], and increased levels in blood or CSF are linked to axonal injury [114, 115]. UCH-

L1 is a neuronal protease, with increased levels linked to brain injury [116-118]. Since 

∼20% of circulating blood volume perfuse the cerebrum and TBI often compromises the 
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blood-brain barrier, these released proteins can be detected in peripheral blood drawn 

from TBI patients [119]. The high sensitivity and specificity of GFAP and UCH-L1 as 

proxy for abnormal CT following TBI have paved way to clearance by the U.S. Food and 

Drug Administration (FDA) for their use in TBI work-up. While cfDNA has been shown 

to predict mortality in severe TBI patients, it becomes imperative to explore the utility of 

cfDNA in the management of mild TBI patients that constitute ∼ 75% of the patients with 

TBI annually [120-122]. In contrast to the number of tools that afford study and 

characterization of TBI associated structural injuries, there are currently no standardized 

and well-established clinical criteria or biomarkers that afford identification of the 

minority of mild TBI patients who suffer long-term sequelae despite absence of 

detectable structural damage to the cerebrum [104, 123]. Currently, study of these 

symptoms relies on questionnaires, such as the Rivermead Post Concussion Symptoms 

Questionnaire (RPCSQ) [124, 125], that are administered at regular intervals after the 

injury. Development of predictive tools for likelihood of postconcussive symptoms can 

meaningfully impact the care of mild TBI patients and advance our understanding of the 

underlying pathophysiology. Here, we explore the utility of plasma GFAP, UCH-L1, Tau, 

and cell-free DNA in this context using an alternating current electro kinetic (ACE) 

microchip device. 

ACE microarray chips use alternating current to isolate macro-molecular 

complexes from bio-fluids, such as blood or cerebrospinal fluid, in a highly efficient 

manner [38]. Of note, nearly all plasma GFAP, Tau, and UCH-L1 are found in these 

macro-molecular complexes [126, 127]. The chip-retained protein can be labeled with 

fluorescent antibodies or dyes specific for the biomarker of interest. Quantitative on-chip 
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fluorescent imaging analysis is then carried out Figure 2.1A [128, 129]. In this pilot study, 

we correlated the levels of ACE isolated GFAP, UCH-L1, Tau and cell-free DNA from 

blood drawn at the time of injury to Rivermead questionnaire results collected at one-

month after head injury from mild TBI patients.  

 

2.2 Methods 

2.2.1 Study Design 

Research protocol was approved by the University of California San Diego 

Institutional Review Board (Study subjects were patients who sought care at the 

Emergency Department of the University of California San Diego Hillcrest Medical 

Center. The hospital serves the endogenous population in the San Diego County. 

Inclusion criteria include: patients age > 18 and capable for consent based on- (i) 

determination of the treating physicians, and (ii) the University of California San Diego 

Brief Instrument for Assessing Decisional Capacity for Clinical Research (UBACC) 10 

item scale administered by the trained clinical coordinator [130]. There were no explicit 

exclusion criteria. 

To avoid study interference with the standard-of-care for patients in the 

emergency ward, the study is designed such that the study coordinator regularly checks 

in with the treating physician to identify potential candidate for consent. Treatment 

decisions, including indication for head CT, were made entirely by the treating physician. 

Each patient underwent blood draw as per standard-of-care. Informed consent was 

obtained from each participating patient by a dedicated research assistant on the day of 
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presentation. Blood samples that remain after standard laboratory chemistry were 

collected, and no blood draw beyond the standard-of-care venipuncture was performed. 

The residual blood was collected from the chemistry lab the day after the presentation 

after adequate laboratory values were reported to the Electronic Medical Record. 

Hemolyzed samples were not collected. The volume of the residual blood ranged from 

100 µl to 1.5ml. These samples were collected within 72 h of blood draw and stored in 

liquid nitrogen. 

Samples were collected from consecutive patients who presented with history of 

minor TBI, defined by Glasgow Coma Scale (GCS) of > 13, and without history of loss 

of consciousness [131, 132]. The collection period extended between 2015 and 2016. In 

parallel, our protocol allowed collection of blood from patients who presented to the 

Emergency Ward with non-TBI and non-neurologic complaints. Patients who required 

major medical intervention, such as cardiac catheterization or surgical intervention were 

excluded from the study to minimize risk of adding stress of study participation to the 

patient. Residual blood after completion of standard chemistry was collected from these 

patients in the same manner as described above. Samples were stored in 4ºC refrigeration 

before transportation to the biorepository. After transportation to the biorepository, the 

samples were de-identified and stored as processed plasma by centrifugation at 1,300 rpm 

for 10min followed by 3,000 rpm for 10min. Samples were stored at −80ºC before 

analysis. Procedures for de-identification and human subject protection were performed 

in compliance to the hospital policy. The staff who analyzed the sample was blinded to 

the clinical history of the patients. 

For all study subjects, participation in this study did not alter the standard of care, 
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including the routine one-month post-presentation follow-up for patients with minor TBI. 

For the patients who presented with minor TBI, they underwent standard-of-care work-

up as determined by the attending Emergency Ward faculty physician, including non-

contrast computed tomography (CT) scan of the head. The only exception to the above is 

that the Rivermead Post Concussion Symptoms Questionnaire (RPCSQ) was 

administered by a trained study coordinator at this one-month follow-up [124, 125]. 

During this assessment, the patients are asked to report only symptoms that were present 

prior to the minor TBI. 

 

2.2.2 ACE-Based Processing of Plasma Samples 

ACE chips were purchased from Biological Dynamics, Inc. (San Diego, CA). 

ACE-based processing of plasma samples has been demonstrated previously [133]. A 

syringe pump set to withdrawal mode served to regulate fluid flow across the ACE chip. 

Tygon tubing (inner diameter, 0.020 inches; outer diameter, 0.060 inches) was attached 

with superglue to either end of the chip, both ends were capped with syringe needles, and 

a 1ml syringe was attached to one end. Twenty-five µl of thawed plasma was drawn onto 

the chip. An alternating current (AC) electric field was applied to the chip for 10min at 

14 volts peak-to-peak and 15 kHz to immobilize extracellular vesicles and other 

nanoparticles onto the microelectrode edges. The technique to isolate exosomes from 

plasma samples has been demonstrated previously [38]. With the AC field still on, the 

ACE chip was then washed with 200 µl of 0.5X PBS for an additional 10min. The time 

taken for the entire process was 20min for the ACE-based isolation, plus an additional 

45–90min for antibody binding steps (Figure 2.1A).  



	

	26 

 

2.2.3 On-Chip Immunofluorescent Analysis 

Two biomarkers were tested simultaneously on each chip, using FITC and TRITC 

filter sets on the microscope. On-chip immunofluorescent analysis has been demonstrated 

previously [133]. The manufacturer and catalog number of the antibodies used are as 

follows: Rabbit anti-UCH-L1: Cell Signaling Technologies, clone D3T2E, #13179, 

diluted 1:800; Alexa Fluor 594-goat anti rabbit IgG, highly cross-adsorbed, Life 

Technologies #A11039, diluted 1:2000; Alexa Fluor 488 mouse anti GFAP: clone 1B4, 

BD Biosciences #560297, diluted 1:10; Mouse anti-Tau: clone TAU-5 (total-tau), Life 

Technologies #ABH0042, diluted 1:50; Alexa Fluor 594-goat anti mouse IgG, highly 

cross-adsorbed, Life Technologies #A11032, diluted 1:2000.  

To enable access of the antibodies to proteins within the luminal space of the 

vesicles, EV membranes were permeabilized using 0.1% saponin for 10min. To label 

cfDNA, the selective dye YOYO-1 was added to a concentration of 1:5,000. Antibody 

incubations were performed for 45–90min at room temperature, or, if recommended by 

the manufacturer, overnight at 4ºC for optimal binding. For directly conjugated Alexa 

Fluor 488-anti-GFAP antibody (BD Pharmingen), samples were washed with PBS, then 

visualized and photographed for further analysis. For anti-Tau or anti-UCH-L1 (Life 

Technologies; Cell Signaling Technology), following the wash, Alexa Fluor 594-

conjugated secondary antibody (Novex, Life Technologies) was incubated for an 

additional 60min at room temperature. Following an additional wash, samples were 

viewed on the microarray chips using an Olympus BX51W epifluorescence microscope 

with a 4X objective and imaged with Olympus software. All image acquisition 
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parameters were the same for the same fluorophore. 

To quantify relative levels of fluorescent antibody-labeled Tau, GFAP, UCH-L1, 

and cfDNA for each sample, photographic images of each ACE-chip were imported to 

ImageJ (“FIJI”; National Institutes of Health). A circle was drawn around each of eight 

electrodes, and pixels measured. Background subtracted was the minimum number of 

pixels measured for each electrode, and averages and standard deviations were calculated. 

Direct 3D representations of the images were created using the “3D interactive viewer” 

plug-in for ImageJ. 

Figure 2.1B shows representative examples of plasma sample analyses from the 

study cohort for the relative abundance of UCH-L1 and Tau.  

 

2.2.4 Statistical Analysis 

Models were used to predict the severity of injury with the probability of 

intracranial abnormality post TBI. The probability threshold was chosen as that which 

minimizes the Euclidean distance from point (0.1), or the upper-left corner, on the 

receiver operating characteristic (ROC) curve. ROC curves were calculated to determine 

the area under the curve (ROC-AUC) for different biomarkers. Based on the ROC-AUC, 

the optimal rIF values for discriminating minor-TBI plasma from non-TBI plasma were 

calculated for different biomarkers. 

Model predictions were compared to observed diagnoses and performance metrics 

were calculated, including sensitivity, specificity, positive predictive value (PPV), 

negative predictive value (NPV), and the area under the ROC curve (AUC). Heat maps 
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were constructed and Pearson correlation coefficients were calculated between GFAP, 

UCH-L1, Tau, cfDNA, and cumulative RPCSQ score. Correlation analysis between 

GFAP, UCH-L1, Tau, cfDNA, and individual RPCSQ symptoms was also performed. 

All analyses were carried out using open-source statistical analysis software (R version 

3.5.0). 

 

2.3 Results  

2.3.1 Demographics and Clinical Course of the Study Cohort 

The study enrolled 27 minor TBI subjects and 6 non-TBI subjects between 

December of 2015 and March of 2016. The demographic of the study population is as 

indicated in Table 2.1. The mean age of the minor-TBI and non-TBI cohort was 58.5 ± 

16.4 and 34.6 ± 10.6 years, respectively. The male to female ratio were approximately 

1.7:1 and 1:1 for the TBI and non-TBI cohort, respectively. All patients in the minor-TBI 

cohort underwent head CT as a part of their care. Except for the two patients (2/27 or 7%) 

who showed evidence of contusion on head CT (Figure 2.2A), all patients had negative 

head CTs and were discharged from the Emergency Ward on the day of the presentation. 

The two patients with abnormal head CT were admitted to the hospital for over-night 

observation. Both underwent interval surveillance imaging demonstrating stability of CT 

finding before discharge on the following day. The non-TBI patients presented with chest 

or abdominal discomfort or lower extremity pain. None of the patients in the non-TBI 

cohort underwent head CT. Diagnostic work-up were unremarkable and the patients were 

discharged on the day of intervention. 
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2.3.2 Biomaker Comparison Between Subjects With and Without 

Abnormal Head CT 

Plasma samples from the study cohort were analyzed for the relative abundance 

of GFAP, Tau, UCH-L1, and cfDNA using the ACE microarray and on-chip 

immunofluorescence (IF) analysis. Relative immunofluorescence (rIF) level was 

determined for each sample. We first posed the question of whether any of the biomarkers 

were elevated in the two minor-TBI patients with abnormal head CT (subject 5 and 

subject 8) relative to all remaining patients. We performed this analysis in a qualitative 

manner since the sample size is too small for meaningful quantitative assessment. 

Consistent with the published utility of GFAP and UCH-L1 [134], plasma from subject 

eight showed significantly elevated levels of both proteins. In fact, this subject harbored 

the highest level of both GFAP and UCH-L1 for all study cohorts. Plasma from subject 

5 also showed significantly elevated UCH-L1 (Figure 2.2B). 

Notably, plasma from both subjects 5 and 8 also harbored significantly elevated 

Tau levels. These observations suggest the utility of plasma Tau as biomarker for 

structural brain injury after TBI. In contrast, the plasma level of cfDNA in subjects 5 and 

8 were not significantly elevated relative to other study cohorts. 

As a proof-of-principle study, these results support an association between 

elevated plasma GFAP, UCH-L1, and structural TBI demonstrated on head CT.  

 

2.3.3 Biomarker Comparison Between Mild-TBI and Non-TBI Subjects 
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We wished to determine whether any of the biomarkers studied could discriminate 

the plasma collected from minor-TBI patients relative to non-TBI patients without 

abnormal head CT. We were only able to complete this analysis for plasma GFAP and 

Tau. We additionally excluded subjects 5 and 8 from this analysis since we were 

interested to characterize the value of these biomarkers in head CT negative TBI patients. 

Receiver operator characteristic curve were calculated to determine the area under the 

curve (ROC-AUC) for GFAP and Tau. Based on the ROC-AUC, the optimal rIF values 

for discriminating minor-TBI plasma from non-TBI plasma was 1.75 for Tau and 1.35 

for GFAP (Table 2.2). Using these cut-offs, the sensitivity and specificity of 

discriminating plasma between minor-TBI and non-TBI patients was calculated and is 

shown in Table 2.3. In this analysis, Tau and GFAP performed similarly, with sensitivity 

of 72 and 64%, respectively, and specificity of 50% for both proteins. The combinations 

of GFAP and Tau did not significantly improve the sensitivity or specificity relative to 

the individual biomarker (Table 2.4). 

 

2.3.4 Biomarker Comparison Between Subjects With and Without 

Post-concussive Symptoms  

We next determined whether the presence of post-concussive symptoms is 

associated with elevated plasma GFAP, UCH-L1, Tau, or cfDNA. To this end, the 

Rivermead Post Concussion Symptoms Questionnaire (RPCSQ), a validated instrument 

for assessment of post-concussive symptoms following mild TBI [124, 125], was 

administered to study subjects by a trained study coordinator at 1-month follow-up. 

RPCSQ score was obtained for all 27 minor-TBI subjects. The highest cumulative 
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RPCSQ scores were observed in the two patients with CT imaging abnormalities. No 

significant correlation was observed between the cumulative RPCSQ and cfDNA. 

However, we observed significant, positive correlation between plasma GFAP, UCHL1 

and Tau, and cumulative RPCSQ (Figure 2.3A). Specifically, the higher RPCSQ scores 

were associated with higher plasma biomarkers. The Pearson correlation between GFAP, 

UCH-L1, and Tau and cumulative RPCSQ were 0.68, 0.79, and 0.81, respectively (all p 

< 0.01). In a correlation matrix analysis, we found that plasma GFAP and UCH-L1 levels 

were highly correlated (r =0.95, p<0.001) (Figure 2.3B). These results suggest plasma 

GFAP, UCH-L1, and Tau may be useful as predictive biomarker of post-concussive 

syndrome. 

Pertaining to each of the individual items on the RPCSQ, Plasma UCH-L1, and 

GFAP exhibited the highest correlation to sensitivity to noise and light (r = 0.96 and 0.91, 

respectively, both p < 0.001). Plasma UCH-L1 and Tau showed highest correlation with 

headache (r = 0.74 and 0.78, respectively, both p < 0.001), sleep disturbance (r = 0.69 

and 0.84, respectively, both p <0.001), and cognitive symptoms, including forgetfulness 

(r =0.76 and 0.74, respectively, both p < 0.001), poor concentration (r = 0.68 and 0.76, 

respectively, both p < 0.001), and time required for information processing (r = 0.77 and 

0.81, respectively, both p<0.001). In contrast, cfDNA exhibited a strong correlation with 

depression (r = 0.79, p < 0.01) and dizziness (r = 0.69, p < 0.01) (Figure 2.4). 

 

2.4 Discussion 

In this proof-of-principle study, we determined whether plasma isolated from 
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minor TBI patients can be analyzed using an ACE microarray platform (28). Because this 

platform had not been previously tested in this context, we selected TBI biomarkers with 

substantial literature supporting their utility in the study of TBI, including GFAP, UCH-

L1, and Tau. We additionally tested whether cfDNA may serve as a useful biomarker. 

Our pilot data with the ACE-microarray platform support the utility of GFAP, UCH-L1, 

and Tau as plasma biomarker for TBI. Despite inherent constraints associated with the 

limited sample size, our pilot data are largely consistent with the previously published 

studies, including TRACK-TBI studies [134, 135]. As such, we believe our data support 

ACE-microarray as a platform for blood-based biomarker study in patients suffering from 

minor TBI.  

In comparison to the currently available methods of plasma analysis, the ACE 

micro-array platform presents several major advantages. First, ∼25 µl of plasma is 

required, in comparison to other analytic platforms that require larger volumes. It is 

important to note that the entirety of this study was performed using blood left-over from 

standard chemistry tests. As such, if validated, the ACE micro-array platform may be 

added to the standard chemistry set without additional blood collection. Additionally, the 

ACE-microarray platform minimizes the number of steps in terms of sample transfer, and 

thereby reduces the risk for cross-contamination or sample mix-up. The only sample 

transfer step in the ACE microarray platform was loading of the plasma onto the chip. In 

contrast, serial dilution of samples is typically required for sandwich enzyme-linked 

immunosorbent assays (ELISA). Finally, the chip can be subjected to multiplex 

immunofluorescent study to simultaneously assess biomarkers beyond Tau, GFAP, and 

UCH-L1. 
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A particularly intriguing result in this study involves the correlation between sub-

domains of the RPCSQ and selected plasma biomarkers. Our results indicate that plasma 

UCH-L1, GFAP, Tau, and cfDNA levels correlated with different symptoms in the 

physical RPCSQ cluster domain. As a pilot analysis, the results should not be considered 

without scrutiny. For instance, meaningful quantitative assessment of this correlation is 

possible only in the context of the prevalence of the symptoms in the minor TBI 

population. Nevertheless, if the correlation reported here is validated in a future study, 

these results would suggest that the different aspects of post-concussive syndrome arise 

from pathophysiologic processes that ultimately lead to the release of the distinct 

biomarkers. A corollary of this hypothesis would suggest that medication that mitigates 

select patho-physiologic processes may be helpful to prevent or arrest post-concussive 

symptoms that compromise the patient’s quality of life. 

Admittedly, the predictive utility of the platform is suboptimal given the data 

presented. Improvement in study design is warranted for future studies. For instance, our 

study did not factor into consideration factors that affect serum concentration of GFAP, 

Tau, and UCH-L1, including extracranial injuries, neurological co-morbidities, and pre-

injury functional status. Total Tau was tested in this study, which represents another 

limitation in this pilot analysis. Use of more specific and improved biomarkers like 

hyperphosphorylated Tau can improve the outcome prediction of TBI. 

Additionally, given variability in the half-lives of these biomarkers, collection 

within 72 h of blood draw may present systematic bias in the correlative analyses. The 

reporting of RPCSQ at the time of follow-up is subject to recall bias. These and other 

potential confounding factors need to be considered in the design of future studies. 
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While this proof-of-principle study is, by definition, limited in its sample size and 

pilot in nature, the general demographic of the study population largely mirrors those of 

larger series, including the demographic of the study population and the proportion of 

minor TBI patients with abnormal head CT [136]. The recapitulation of the association 

of GFAP, UCH-L1, and Tau with various aspects of TBI reported elsewhere is also 

reassuring [137]. That said, we caution against definitive conclusions from this study 

beyond feasibility of ACE microarray as a potential biomarker platform. Studies 

reporting test-retest reliability of this assay are warranted in future. There are many steps 

ahead in clinical translation, including direct comparison of results derived from ACE-

microarray platform with other established assays, such as the Quanterix assay [138]. 

Prospective age and gender matched cohorts [135, 139] as well as thoughtful 

consideration of extracranial injuries, neurological comorbidities, and pre-injury 

functional status will be needed in advancing this biomarker platform toward clinical 

application. 
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Table 2. 1. Summary statistics of demographics of the study population with comparative 
analysis in minor traumatic brain injury (TBI) and non-TBI patients 

Variable Minor TBI 

cohort (n = 27) 

Non- TBI cohort 

(n = 6) 

p-value 

Gender, n (%)   0.65 

   Male 17 (63) 3 (50)  

   Female 10 (37) 3 (50)  

Age (years, mean ± SD) 58.5 ± 16.4 34.6 ± 10.6 0.002 

Presentation: n Fall: 16 Abdominal pain: 4  

 Syncope: 5 Chest pain: 1  

 MVA: 4 Lower extremity 

pain: 1 

 

 Others; 2   

MVA, motor vehicle accident; SD, standard deviation. Others include head injury and 

scalp laceration 
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Table 2. 2. Performance metrics of GFAP and Tau biomarkers 

Area under curve (AUC) and cut-off relative immune fluorescence (rIF) value 

for GFAP and Tau 

Biomaker AUC Cut-off rIF  

Tau 0.54 (0.24-0.83) 1.75  

GFAP 0.48 (0.16-0.79) 1.36  

 

 

Table 2. 3. Sensitivity, Specificity, Positive Predictive Value (PPV), and Negative 
Predictive Value (NPV) for GFAP and Tau 

Biomarker Sensitivity Specificity PPV NPV 

Tau 72% 
(0.54-0.89) 

50% 
(0.10-0.90) 

85.7% 
(0.70-1.00) 

30% 
(0.01-0.58) 

GFAP 64% 
(0.45-0.82) 

50% 
(0.10-0.90) 

84.2% 
(0.67-1.00) 

25% 
(0.01-0.49) 

 

 

Table 2. 4. Comparison of Tau/GFAP combination receiver operating characteristic 
(ROC) curve with Tau-ROC and GFAP-ROC 

With z-value p-value 

ROC-Tau 0.25 0.80 

ROC-GFAP -0.23 0.81 
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Figure 2. 1. (A) Overview of ACE microchip immunoassay workflow. Shown is a 
fluidics cartridge containing the 14 × 52 mm-sized ACE chip configured with eight 
sample chambers. When current is applied, extracellular vesicles (EVs), and other 
nanoparticles are drawn to the edges of the circular electrodes; the buffer wash serves to 
remove larger unbound cellular debris and smaller soluble plasma components from the 
chip. The current is then turned off, mixtures of fluorescent antibodies or dyes selective 
for each biomarker are added, and the concentration of biomarker proteins around the 
electrodes can be visualized as circular patterns of fluorescence. Image analysis 
provides a quantitative comparison of fluorescence intensities. (B) Representative 
examples showing relative abundance of UCH-L1 and Tau using the ACE microarray 
and on-chip immune-fluorescence (IF) analysis. ACE, alternating current electrokinetic. 
UCH-L1, ubiquitin C-terminal hydrolase L.  
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Figure 2. 2. (A) CT scan images showing contusion in patient #5 and #8 with minor 
traumatic brain injury (TBI) (black arrow). (B) Scattered dot plots illustrating 
distribution of relative immunofluorescence (rIF) (median with inter-quartile range) 
values for GFAP, Tau, UCH-L1, and cfDNA in TBI cohort, and GFAP and Tau in non-
TBI cohort (represented as GFAP-C and Tau-C, respectively). Blue dots represent the 
rIF values for Tau and GFAP in patients with no history of head trauma. Black triangles 
represent the rIF values for Tau, GFAP, UCH-L1, and cfDNA in patients with history 
of head trauma. rIF values for patient #5 are denoted by red arrow; rIF values for patient 
#8 are encircled in red. GFAP, glial fibrillary acidic protein; UCH-L1, ubiquitin C-
terminal hydrolase L1; cfDNA, cell-free DNA.  
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Figure 2. 3. (A) Correlation between different biomarkers and cumulative Rivermead 
symptom scores; p ≤ 0.01 (B) Heat-map demonstrating the correlation between 
different biomarkers. Pearson correlation coefficient, r is mentioned in each box.  
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Figure 2. 4. Correlation between different traumatic brain injury (TBI) biomarkers and 
Rivermead Questionnaire symptoms. Statistically significant (p < 0.05) Pearson co-
efficient (r) is mentioned in bold format in box; - represents symptoms that were not 
recorded in minor TBI patients. 
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Chapter 3 

Probabilistic Classification for Digital High 

Resolution Melt Curve 

 

3.1 Abstract 

High resolution melting (HRM) is a DNA analysis technique traditionally used to 

confirm specific amplification or detect a mutation in a PCR product. The potential of 

HRM to go beyond these functions and serve as a broad-based genotyping tool is gaining 

considerable popularity with the advances and availability of machine learning (ML) 

tools. Currently applied ML approaches are capable of matching HRM curves from a test 

sample to a database of HRM curves generated from known sequences.  However, these 

algorithms do not allow for the assessment of the goodness of the classification. Herein, 

we develop probabilistic classification models of digital HRM curves to accomplish 

interpretable classification. Our algorithms accomplish an overall classification accuracy 

of 93% and an average area under the receiver operating characteristic curve (AUC) of 

0.99, lending validity as a reliable HRM analysis tool.
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3.2 Introduction 

High Resolution Melting (HRM) analysis is a quick, inexpensive, and powerful 

post-amplification nucleic acid characterization technique that is increasingly being used 

to profile DNA sequences for research and clinical diagnostic applications [87, 140-143]. 

To accomplish HRM analysis, a DNA-binding dye is added to a sample of DNA, where 

it fluoresces upon intercalating into the double-stranded structure. Then the sample is 

heated. As the temperature increases, the double-stranded DNA denatures into single 

strands, releasing the intercalating dye and losing fluorescence. This loss in fluorescence 

with heating is recorded as a function of temperature, generating a melt curve. 

Traditionally, the melting curves were matched to DNA sequence by either the 

melting point (Tm) or the difference in curve created by plotting the difference between 

a test curve and a reference curve [89, 144]. However, both approaches have their 

limitations. A single melt point Tm does not provide sufficient information to 

discriminate more than a few species. The difference curve, on the other hand, typically 

relies on temperature shifting and visual inspection at user's discretion to account for run-

to-run or well-to-well variations. In addition, as melt curve reference library increases, 

the need for an automated curve matching method becomes inevitable. To overcome 

these limitations, recent studies have reported the use of machine learning algorithm for 

high resolution melt curve classification [145, 146]. Automation and incorporation of 

well-to-well and run-to-run variations within machine learning is imperative with digital 

HRM, where digital melt curves are generated simultaneously across many reactions. We 
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have previously demonstrated optimization of our universal digital high resolution melt 

(U-dHRM) platform to minimize run-to-run and melt-to-melt variation, for reliable and 

repeatable melt curve generation, eliminating the need for in-run template standard [99]. 

Machine learning approaches that have been employed include Naïve Bayes 

[147], Support Vector Machine (SVM) [145], k-Nearest Neighbor and Dynamic Time 

Warping [148]. Among these methods, SVM-based approaches have been more widely 

used and have been reported to be more robust [145], likely because of their ability to 

perform well on small datasets. Melt curve pattern recognition with SVM entails finding 

the best n-1 hyperplane in an n-dimensional space that maximizes the margin between 

the classes in the data.  Even with small amounts of representative melt curve data to 

‘learn’ from, SVM algorithms show excellent performance. However, with the 

formulation of the one-versus-one SVM (OVOSVM) that is being applied for HRM 

analysis, it is not possible to assess the goodness of the classification. This limitation can 

be overcome by probability classification methods such as multilayer perceptron (MLP), 

Gaussian Naïve Bayes, and multinomial logistic regression (LR). For its simplicity and 

ease of interpretation, we chose to investigate the utility of LR algorithms for HRM curve 

classification using a large dataset of melt curves generated from our U-dHRM platform. 

Using neonatal (newborn) bacteremia as a test case, we evaluate the performance 

of multiclass LR models in classifying bacteria-derived DNA melt curves. The classes 

include ten bacterial species that comprise the majority of causative organisms for 

neonatal bacteremia. Universal primers are used to amplify hypervariable regions of the 

16s rDNA gene in our dHRM system. This enables broad-based amplification of bacteria, 

while relying on melt curve and ML to specify the organism, and offers the ability to 
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detect individual organisms via the ‘digital’ design [98, 99]. 

 

3.3 Materials and Methods 

3.3.1 Bacterial Strains 

Table 3.1 lists the bacterial species included in the present study. These organisms 

make up the majority of the causative pathogens implicated in neonatal sepsis [149, 150]. 

The organisms were received as a generous gift from Dr. David Pride (University of 

California San Diego School of Medicine) or purchased from the American Tissue 

Culture Collection (ATCC, Old Town Manassas, VA). Bacteria were cultured in Lurie-

Bertani (LB) broth or Tryptic Soy broth (TSB), as required, and incubated overnight at 

37ºC. 

 

3.3.2 Bacterial Genomic DNA Extraction and PCR 

Following overnight culture, bacterial genomic DNA was extracted using Wizard 

Genome DNA Purification kit (Promega Corporation, Madison, WI). Spectrophotometric 

absorbance measurements were used to assess the quality and concentration of the 

extracted DNA, and sequencing was conducted to further confirm the identity of the 

species. Genomic DNA dilutions were prepared for use with dPCR. Commercially 

available QuantStudio 3D Digital PCR 20K chip v2 (Applied Biosystems, Foster City, 

CA) were used for amplification following the manufacturer’s recommended process, 

with the exception of reagents. As described previously, the dPCR master mix was 



	

	46 

optimized for the recommended loading volume of 14.5 µL per reaction, and contained 

1X Phusion HF Buffer containing 1.5 mM MgCl2 (Thermo Fisher Scientific, Waltham, 

MA), 0.15 µM forward primer 5′-GYGGCGNACGGGTGAGTAA-3′ (Integrated DNA 

Technologies, Coralville, IA), 0.15 µM reverse primer 5′-

AGCTGACGACANCCATGCA-3′ (Integrated DNA Technologies, Coralville, IA), 0.2 

mM dNTPs (Invitrogen, Carlsbad, CA), 2.5X EvaGreen (Biotium, Freemont, CA), 2X 

ROX (Thermo Fisher Scientific, Waltham, MA), 0.02 U/µL of Phusion HotStart 

Polymerase (Thermo Fisher Scientific, Waltham, MA), 1 µL of sample, and ultrapure 

PCR water (Quality Biological Inc., Gaithersburg, MD) to bring the total volume to 14.5 

µL. To load the chip, a master mix reaction volume of 14.5µL was spread across 

following manufacturer’s recommendation. After loading, the dPCR chip was cycled on 

a flatbed thermocycler with the following cycle settings: an initial enzyme activation (98 

°C, 30 s), followed by 70 cycles (95 °C, 30 s, 59 °C, 30 s, 72 °C, 60 s) [98].  

 

3.3.3 DNA Melt Curve Generation and Preprocessing 

The U-dHRM device developed by our group has been previously described [98, 

99]. Briefly, it comprises a copper plate on which the microfluidic dPCR chip is placed, 

thermoelectric heater/cooler (TE Technology Inc., Traverse City, MI), proportional-

integral-derivative (PID) controller (Meerstetter Engineering GmbH, Rubigen, 

Switzerland), Class 1/3B resistance temperature detector (RTD) (Heraeus, Hanau, 

Germany) embedded in the copper block, K-type thermocouple (OMEGA Engineering, 

Stamford, CT), and heat sink. A thin layer of thermal grease added between the dPCR 

chip and copper block ensures efficient heat transfer. A custom-made adapter secures the 
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device on-stage for optimal fluorescent imaging. With heat ramping, simultaneous 

fluorescent images from the DNA-intercalating dye, EvaGreen (Ex/Em: 488 nm/561 nm) 

and the control dye, ROX (Ex/Em: 405 nm/488 nm) are acquired with a Nikon Eclipse 

Ti microscope (Nikon, Tokyo, Japan). Melt curves are generated by implementing an 

automated imaging processing algorithm in MATLAB. Although temperature 

measurement offset could occur from chip to chip, the linearity of the slope is maintained, 

allowing us to correct for such shift by using temperature calibrator sequences [99]. In 

the absence of calibrator sequences, we aligned all curves of the same organism by their 

peaks, adding jitter with expected standard deviation given that well to well variations 

follow a characteristic distribution. We used standard deviation of 0.1°C as previously 

reported [99]. All melt curves were normalized using area under the curve normalization. 

As an added preprocessing step to ensure high melt curve quality, melt curves on each 

chip were compared to a representative melt curve (which is an average of a sample of 

melt curves) on that chip. The similarity of each melt curve to the representative melt 

curve was assessed using Pearson correlation coefficient. For the purpose of the present 

study we included melt curves with a Pearson correlation coefficient of  >0.90. Our choice 

of 0.9 cutoff was based on the rule of thumb for interpreting the size of a correlation 

coefficient, which classifies 0.9 to 1.0 as the highest correlation [151]. 

 

3.3.4 Logistic Regression Model Building 

Logistic regression, a non-linear transformation of linear regression, is a 

probabilistic classification method used to classify a given input vector into one of two 

(binary logistic regression) or, by extension, more (multinomial/multiclass logistic 
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regression) classes. By using a set of observations with known classification, LR derives 

coefficients that are then used in the calculation of the predicted probability. For binary 

logistic regression, the equation is given as: 

𝑃 yi = 1 𝑋) = 	 8
8'	9: ;o	=	;1>1	=	;2>2=⋯;n>n 	

		= 	 8
8'	9: ;o	=	B;i>i    (3.1) 

where P (yi = 1|X) is the conditional probability of the ith observation belonging to one of two 

classes, βo is a constant term, βi are derived regression coefficients, and xi terms are the 

attributes (features) used in the classification. For the multinomial (multiclass) extension of 

binary LR, two approaches can be taken. First, the one-versus-rest LR model, in which a 

separate model is created for each class to predict the probability of an observation being in 

that class or the rest of the classes combined. This results in a set of independent binary LR 

models for all classes. Second, the multinomial model, in which the probability of an 

observation being in any class is estimated. With this approach, the equation is given as: 

𝑃 yi = 𝑘 𝑋) = 	 9;k>i

	 9;j>iF
GHI 	

        (3.2) 

where P (yi = k|X) is the probability that the ith observation belongs to the k class, and K is 

the total number of classes. With both approaches the test observation is then assigned the 

class to which it has the highest predicted probability. Although slightly more computationally 

costly, the predicted probabilities with multinomial LR model have been shown to be more 

reliable compared to the predicted probabilities with the one-versus-rest LR [152]. Both LR 

modeling approaches were used in the current study. 

The classes for the present study include ten bacterial organism species. Attributes 

(features) of observations used in the model include negative first derivative of DNA melting 

fluorescence data obtained at given temperature points (range: 51.1 ºC – 92 ºC, interval: 0.1 
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ºC). Data pre-processing included standardization of features. To address the imbalance of 

classes in our data, we applied weights to the classes, that are inversely proportional to the 

class frequency [152]. Thus: 

𝑤K = 	
L

	LMN	
          (3.3) 

where wk is the weight applied to a class k, n is the total number of observations, nk is the 

number of observations in class k, and K is the total number of classes. Applying class weights 

to Eq. (3.2) gives: 

𝑃 yi = 𝑘 𝑋) = 	 OM9;k>i

	 OG9;j>iF
GHI 	

        (3.4) 

 

3.3.5 Hyperparameter Tuning and Model Selection 

In order to avoid overfitting, and to optimize the LR model hyperparameters, we 

evaluated the best values for the algorithm hyperparameters using cross-validation. The data 

was randomly split (65%:35%) into training set and test set using unique dPCR chip 

identifiers, i.e., all melt curves from a particular chip were either present in the training set or 

in the test set, but not both. Stratified 5-fold cross-validation was conducted using the training 

set. Hyperparameter values that generalize well across all folds were identified, and then used 

to evaluate the model performance on the held-out test set. Model performance was assessed 

using accuracy and area under the receiver operating characteristics (ROC) curve (AUC). The 

model with the best performance was then selected.  

 

3.3.6 Model Performance Evaluation 
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Following hyperparameter optimization and model selection, we evaluated the 

performance of the model using the entire dataset. We used leave-one-group-out cross-

validation method, with the unique chip identifiers as the group IDs. This ensures that each 

individual melt curve was in the test set only once, i.e., during the cross-validation fold in 

which the chip containing that melt curve is held out as a test set. Model performance 

evaluation metrics used include accuracy, precision, recall (or sensitivity), specificity, F1 

score and AUC. All algorithms were built and implemented using the scikit-learn package 

within Python programming language [153]. 

 

3.4 Results 

3.4.1 Dataset 

We developed our classification algorithms using a total of 18,893 melt curves in 

our database, generated from 10 bacterial species (Table 3.1). These bacteria species were 

chosen because of their clinical relevance to neonatal bacteremia [149, 150]. Figure 3.1 

shows example melt curves for each of the ten bacteria species. For each species, the 

average melt curve (of all the melt curves for that species) is shown in Figure 3.2. 

 

3.4.2 Multiclass Classification 

We tested the utility of a probabilistic classification LR model for the identification 

and discrimination of bacteria species based on bacteria DNA melt curves. The quality of a 

melt curve from a given chip was assessed by comparing the melt curve to a representative 

curve on that chip using Pearson correlation coefficient. We included melt curves with 
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correlation coefficient of >0.90. To optimize the parameters of our LR models we used the 

grid search and the random search approaches with 5-fold cross-validation, trained on two-

third and validated on one-third of melt curves. To handle imbalanced classes, we set the class 

weight parameter in the model to ‘balanced’, which adjusts class weights to be inversely 

proportional to class frequencies in the input data (Eqs. (3.3) and (3.4)). We evaluated the 

performance of our LR classification model using leave-one-group-out cross-validation, by 

which we train the model on melt curves from all but one chip, and then test the model on 

melt curves from the left-out chip. This approach was to ensure that melt curves from any one 

chip were not concurrently present on both the training and test sets, as this would give rise 

to ‘leaking’ of information from the training set to the test set, resulting in erroneously high 

performance. Figure 3.3 shows the confusion matrix of our classification algorithm. Overall, 

accuracy, precision, recall and F1 score are 93.2%, 93.4%, 93.2% and 93.3%, respectively. 

At the class-specific level, C. koseri has the lowest accuracy of 85%, followed by E. faecium 

with a classification accuracy of 86%. The remainder of the classes have accuracy of 90% or 

greater, with the highest accuracy (99%) seen with Group B Streptococcus (GBS), H. 

influenza and S. pneumonia. Other performance metrics for each class is shown in Table 2. 

Sensitivity and specificity ranged from 85% to 99% and 99% to 100%, respectively. We also 

assessed the discriminating ability of our model using the ROC curve, and determined the 

area under the ROC curve (AUC) (Figure 3.4). The overall class sample size-weighted 

average AUC across all species is 0.99. Species-specific AUC range from 0.97 (E. coli) to 

1.00 (Strep. pneumonia, H influenza, S. gallolyticus, and L. monocytogenes). 

 

3.5 Discussion 
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Herein we have demonstrated the utility of a probabilistic classification algorithm for 

DNA profiling using melt curves generated from a dHRM platform. Our algorithm was able 

to discriminate among ten bacterial organism species with 93% overall classification 

accuracy, and an average AUC of 0.99. Bacterial species-specific classification accuracy 

ranged from 85% to 99%, while specificity was 99% or greater for the species. This work 

demonstrates the utility of a probabilistic classification algorithm in resolving multiple 

bacterial organism melt curves. The large amount of dPCR chip-generated melt curve data 

enabled the development of probabilistic classifier, which distinguishes this study from 

previous studies applying non-probabilistic methods to small datasets of curves [154, 155]. 

Moreover, our approach of limiting all melt curves from a single chip to either training set or 

test set, but not both, at any one time, ensures accurate assessment of the model performance. 

This leave-one-group-out methodological approach is critical in evaluating the predictive 

performance of machine learning tools when applied to melt curves generated across distinct 

runs. Testing prediction models on melt curves generated on the same chip as the melt curves 

that the model was trained on will result in falsely high performance, as some information 

about the test melt curve had already been learned by virtue of the same-chip melt curves 

present in the training set. The implication will be high generalizability error with future test 

melt curves 

Currently, the most widely used classification algorithm for HRM and dHRM analysis 

is SVM [154], which is a non-probabilistic algorithm. There are several advantages of 

probabilistic classification methods over non-probabilistic classifiers. First, unlike 

probabilistic classification models, with non-probabilistic models, uncertainty in 

classification cannot be modeled. This is important in high-stake situations, such as clinical 
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disease diagnosis, where decisions rely strongly on the certainty of the classification [156]. 

As interest in the utilization of HRM technology in the clinical setting grows, probabilistic 

classification methods will likely also become increasingly necessary for these cost-sensitive 

situations, where the certainty of classification has to be sufficiently high for clinical 

management decisions to be made. Second, probabilistic classifiers can be more effectively 

combined with other classifiers within a large machine learning framework [157]. Although 

more advanced probabilistic classifiers could be explored, we chose LR classifier for its 

interpretability and simplicity. 

In conclusion, advances in machine learning and ‘big data’ generation are opening up 

more opportunities for the advancement of HRM, where the speed, low cost and simplicity of 

HRM was already attractive. Probabilistic algorithms can serve as robust tools for HRM 

analysis, which will open up opportunities for the use of HRM technology as a discovery tool 

as well as profiling technology, and further advance HRM technology towards its application 

in research and clinical diagnostics. 
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Table 3. 1. Training data generated per bacterial species. 

Bacterial organism Number of melt curves 

Group B Streptococcus 4167 

Escherichia coli 803 

Haemophilus influenzae 2343 

Listeria monocytogenes 2736 

Methicillin-sensitive Staphylococcus aureus (MSSA) 1792 

Citrobacter koseri 1410 

Streptococcus pneumoniae 1079 

Enterococcus faecium 1468 

Streptococcus gallolyticus  983 

Streptococcus sanguinis 2112 
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Table 3. 2. Multiclass logistic regression classification performance 

Bacteria species Recall/sensitivity Specificity Precision/PPV F1 score 

Group B Streptococcus 0.99 0.99 0.96 0.98 

Escherichia coli 0.91 0.99 0.76 0.82 

Haemophilus influenzae 0.99 0.99 0.96 0.98 

Listeria monocytogenes 0.95 0.99 0.96 0.96 

Staphylococcus aureus  0.90 1.00 0.99 0.94 

Citrobacter koseri 0.85 0.99 0.92 0.89 

Streptococcus pneumoniae 0.99 1.00 0.97 0.98 

Enterococcus faecium 0.86 1.00 0.95 0.90 

Streptococcus gallolyticus  0.92 1.00 0.96 0.94 

Streptococcus sanguinis 0.95 0.99 0.91 0.93 
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Figure 3. 1. Sample DNA melt curves generated from 10 bacteria species 
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Figure 3. 2. Average melt curve for each of the 10 bacteria species 

  



	

	59 

 

 

Figure 3. 3. Confusion matrix for multiclass logistic regression classification following 
leave-one-group-out cross-validation 
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Figure 3. 4. Receiver operating characteristic (ROC) curves showing logistic regression 
model predictability of 10 bacterial species  
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Chapter 4 

Novelty Detection for Digital High 

Resolution Melt Curve 

 

4.1 Abstract 

The rapid detection of novel genotypes remains a challenge for many basic research, 

clinical, and industrial applications. High resolution melting (HRM) is a DNA analysis 

technique with the potential to serve as a rapid and broad-based genotyping tool through the 

use of machine learning (ML). Current ML algorithms are capable of matching HRM curves 

from a test sample to a database of HRM curves generated from known sequences. However, 

they falsely classify melt curves of novel sequences that are not represented in the database. 

Here, we develop probabilistic models of sequence-defined HRM curves to accomplish 

novelty detection. This approach is uniquely enabled by the large melt curve datasets 

generated using our high-throughput digital HRM technique. As an example application, we 

demonstrate the potential of this approach to rapidly detect both known and novel microbial 

pathogens. Using a Shannon entropy-based method and a modified one-class detection 

experimental approach, our models achieve AUCs of 0.92 and greater for novelty detection.
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Our results support the feasibility of HRM-based DNA profiling. 

 

4.2 Introduction 

Advances in high resolution melt (HRM) technology have taken this analysis from a 

simple check on amplification product homogeneity to a tool for mutation detection. Then, 

heat transfer and reaction engineering have improved HRM such that a melt curve could be 

used as a signature unique to the DNA sequence in question. Efforts to harness the potential 

of HRM as a broad-based sequence profiling tool have necessitated the use of machine 

learning for HRM curve analysis. Among the machine learning approaches that have been 

employed such as Naïve Bayes [147], Support Vector Machine (SVM) [145], k-Nearest 

Neighbor and Dynamic Time Warping [148], SVM-based algorithms have been most widely 

used.  

 SVM methods, which entails finding the best n-1 hyperplane in an n-dimensional 

space that maximizes the margin between the classes in the data, have been reported to be 

robust in HRM analysis. However, like other non-probabilistic ML methods, with the one-vs-

one SVM (OVOSVM), a problem emerges when the melt curve to be predicted has no 

representation in the melt curve database. For example, with a database containing melt curves 

from known pathogens, the currently used OVOSVM algorithm will erroneously classify test 

melt curves from an emerging pathogen (that is not represented in the database) into a known 

pathogen class. For HRM to reach its potential as a broad-based profiling tool, there is the 

need for machine learning classification algorithms that enable the identification of such 

‘novel’, emerging DNA melt curves that are not yet represented in the database. 
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Probabilistic classification methods are suitable for such tasks. By outputting 

classification probabilities in addition to class predictions, these methods allow for the 

assessment of the degree of uncertainty of the classification, which can then be used for 

novelty detection. One such novelty detection approach that employs the use of classification 

probabilities is the Shannon entropy method [158]. Entropy-based anomaly detection methods 

are widely used in other fields, computer network security in particular [159-161]. In 

information theory, Shannon entropy is a measure of the uncertainty associated with the 

probability distribution of a random variable [162]. Within the context of classification, 

Shannon entropy can be used to assess the level of confidence underlying a classification 

method’s decision. The magnitude of the entropy can, therefore, be a reflection of the 

uncertainty of the classification. This can then be used to form the basis of confidence scoring 

for the goodness of classification, and allows for a novelty detection threshold to be set.  

While there are methods for generating probabilities from SVM-based approaches 

[163-165], these approaches are computationally expensive and require large amounts of data. 

Moreover, even when used, the probabilities generated may not correlate with the 

classification results. Therefore, we chose to investigate the utility of more traditional 

probabilistic classification methods, such as logistic regression (LR), in novelty detection. In 

addition to the LR model parameters being easy to interpret, unlike SVM-based models 

(which have hinge loss that is generally non-differentiable), the differentiable LR loss 

function allows for the application of regularization methods [166, 167].  

Our approach is to evaluate the utility of the LR algorithm for novelty detection. This 

approach requires large amount of melt curve data than previously reported. The generation 

of thousands of melt curves for our training datasets is powered by our digital high-resolution 
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melt (dHRM) platform, which uses a custom heat transfer and imaging system to reliably melt 

thousands of digital PCR (dPCR) reactions simultaneously. We focus on one application as a 

test case: the detection of known and novel bacterial pathogens relevant to the diagnosis of 

bacteremia in neonates. Although a small number of bacterial organism species are implicated 

in the majority of neonatal bacteremia cases, opportunistic infections and emerging pathogens 

can occur [149]. We demonstrate the ability to automatically detect both causative bacterial 

pathogens as well as rare organisms through their ‘anomalous’ melt curve signatures, lending 

further promise to the concept of using HRM as a profiling technology. 

 

4.3 Materials and Methods 

The bacteria strains, genomic DNA extraction, PCR, melt curve generation and 

processing are as described in the previous chapter. Briefly, bacteria species, that were 

either purchased or received as a gift, were cultured in Lurie-Bertani (LB) broth or Tryptic 

Soy broth (TSB), as required, and incubated overnight at 37ºC. Following culture, 

bacteria genomic DNA was extracted using the Wizard Genome DNA Purification kit 

(Promega Corporation, Madison, WI). Digital PCR was performed using commercially 

available QuantStudio 3D Digital PCR 20K chip v2 (Applied Biosystems, Foster City, 

CA), following the manufacturer’s recommended process, with the exception of reagents. 

DNA melt curves were generated from the U-dHRM device developed by our group as 

previously described [98, 99]. Processing of the melt curve data included curve alignment 

and normalization using area under the curve. Figure 4.1 shows the machine learning 

workflow.  
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4.3.1 Shannon Entropy-based Novelty Detection 

We identified novel curves by evaluating the uncertainty of the predicted probabilities, 

using the concept of entropy. Our entropy-based measure of choice is Shannon entropy [158]. 

Shannon entropy is calculated by: 

𝐻	 𝑃 = 	− 𝑝K𝑙𝑜𝑔(𝑝K)N
KV8         (4.1) 

where P is the probability distribution of a discrete random outcome variable, pk is the 

probability mass function for outcome k using previously defined classification methods.  For 

instance, using Eq. (3.4), we have K hypotheses and thus, given melt curve data X and 

coefficients beta that have already been fitted, we can calculate p1…pK. The magnitude of 

entropy depends on the randomness of the variable, with maximum entropy attained when the 

probability distribution is uniform. Entropy for each melt curve is calculated over the bacteria 

species classes. To assess the ability of our model to detect novel melt curves, i.e., melt curves 

belonging to organism classes not previously represented in our database, we carried out a 

leave-one-class-out experiment similar to an approach that has been previously reported 

[168]. Using melt curves from all ten bacterial species, representing ten classes, we held out 

melt curves for each of the ten classes in turn. Melt curves of the remaining nine classes were 

then randomly split into training and test sets (at a ratio of 80:20). The left-out class was then 

mixed with the test set to make up the new test set. The machine learning model was built 

with the training set following the steps described in the previous chapter. The model is then 
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evaluated on its ability to correctly identify the melt curves belonging to the left-out (novel) 

class from the mixture comprising the 20% split of the remaining nine classes and the withheld 

class. The left-out class was regarded as the positive class. This was done ten times, for the 

ten classes. Figure 4.2 presents a schematic of the novelty detection experimental approach. 

We assessed the performance of the novelty detection model using AUC. We also determined 

the optimal entropy threshold from the ROC curve using Youden’s index (threshold at which 

[sensitivity + specificity -1] is maximum) [169]. We built and implemented all algorithms 

using the scikit-learn package within Python programming language [153]. 

 

4.4 Results 

4.4.1 Novelty/Anomaly Detection 

We developed a novelty detection algorithm based on the probabilistic  

classification models and the Shannon entropy method, for the detection of melt curves not 

represented in a melt curve database. An overview of the experimental approach taken for the 

Shannon entropy-based novelty detection is shown in Figure 4.2. With melt curves of one 

class of bacterial species left out (novel class) in turn, the melt curves for the remaining nine 

classes were randomly split (80:20) into training and test sets. The left-out class was then 

mixed with the test set to make up the final test set. This process was carried out ten times for 

all ten classes of bacteria species in the study. The novelty detection task was to use the 

entropy value derived from the model prediction probabilities to correctly identify melt curves 

belonging to the novel class. We evaluated the performance of our novelty detection model 

using AUC. Figure 4.3a shows box plots of Shannon entropy values for left-out (novel) class 
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and remainder (known) classes for one of the ten rounds. The ROC curve for that round is 

shown in Figure 4.3b. Table 4.1 shows AUCs for all ten rounds of novelty prediction. All 

rounds achieved novelty detection AUC of greater than 0.92. From the ROC curve of each 

round, we then determined the optimal entropy threshold using Youden’s index [169], i.e., 

the cut-off that gives the maximum of (sensitivity + specificity – 1). Sensitivity and specificity 

at the optimal threshold is shown in Table 4.1. At optimal entropy threshold (determined by 

Youden’s index), sensitivity and specificity range from 82% to 96% and 85% to 97%, 

respectively. It is possible to optimize the threshold depending on the goal at hand (i.e., 

threshold can be optimized for sensitivity, specificity, etc.). 

 

4.5 Discussion 

Current widely used ML methods for dHRM analysis [154] are unsatisfactory for melt 

curve novelty detection, i.e., detecting when test melt curves are not represented in the melt 

curve database. This work demonstrates the utility of a probabilistic classification algorithm 

in identifying previously unknown (novel) melt curves that are not represented in the database. 

Our novelty detection models achieved AUC in the range of 0.92 to 0.99. To our knowledge, 

this is the first report of the development of novelty detection methods for HRM analysis. The 

choice of a probabilistic algorithm approach to novelty detection has advantages. Unlike non-

probabilistic classification models, probabilistic classification algorithms allow for the 

modeling of uncertainty in classification, which is critical in situations where decisions rely 

strongly on the degree of confidence in the classification. 

Potential applications include emerging pathogen identification, and discovery 
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research. Emerging infectious diseases have been on the rise, and resulted in significant public 

health and economic burden [170]. With the increasing threats of epidemics and pandemics, 

and concerns about bioterrorism, HRM can serve as a simple, inexpensive, and powerful tool 

for early identification of these threats. Although there has been progress made in reducing 

the cost of next generation sequencing (NGS), it remains inaccessible to many clinical and 

research laboratories. In addition, it is time consuming and requires skilled personnel. As 

interest in the utilization of HRM technology in the clinical setting grows, advances in dHRM 

technology coupled with novelty detection frameworks such as demonstrated in the present 

study will bring HRM technology closer to the realization of its potential as a DNA profiling 

tool.  
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Table 4. 1. Summary of novelty detection model performance 

Left-out class AUC (%) Sensitivity at optimal 

entropy threshold (%) 

Specificity at optimal 

entropy threshold (%) 

Group B Streptococcus 95.3 95.4 95.1 

Escherichia coli 95.5 91.5 86.6 

Haemophilus influenzae 97.1 92.7 90.8 

Listeria monocytogenes 97.2 89.2 93.7 

Staphylococcus aureus  93.1 91.9 85.4 

Citrobacter koseri 92.2 82.3 88.6 

Streptococcus pneumoniae 95.8 86.2 92.9 

Enterococcus faecium 99.1 93.8 96.8 

Streptococcus gallolyticus  94.3 89.5 87.5 

Streptococcus sanguinis 98.6 96.3 93.8 
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Figure 4. 1. Workflow for novelty detection 
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Figure 4. 2. Novelty detection experimental overview. Melt curves for each class of bacteria 
species was withheld in turn and mixed with the test set (randomly selected 20% of the 
remaining non-held-out melt curves) to make up the final test set. The left-out melt curves 
were assigned the novel class. The task of the model is to correctly identify the melt curves 
belonging to the novel class within the test set mixture.  
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Figure 4. 3. Shannon entropy-based novelty detection. a) Box plots for entropy measure of 
left-out (novel) class and remainder (known) classes during one round of novelty detection 
leave-one-class-out experimental approach. b) ROC curve for novelty prediction with S. 
aureus as left-out (novel) class. 

a 

b 
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Chapter 5 

Future Directions 

 

5.1 Enabling the Integration of Host Immune Response 

and Pathogen Identification for Sepsis Diagnosis 

Sepsis is a dysregulated immune system response to an invading pathogen that can 

progress to multiorgan dysfunction and hemodynamic instability (septic shock) [171]. It is a 

leading cause of morbidity and mortality worldwide [172]. In the United states, sepsis is the 

most common cause of death in the hospital [173], and the single most expensive condition 

to treat, accounting for nearly $24 billion in annual costs [174]. The timely and accurate 

diagnosis of sepsis is critical in its management and patient outcomes. On the other hand, non-

infectious systemic inflammation can arise as a nonspecific response to trauma, surgery, or 

other noninfectious conditions. Thus, differentiating sepsis from noninfectious systemic 

inflammation is clinically challenging.  

There has been growing interest in finding biomarkers with sufficient accuracy and 

reliability in differentiating sepsis from sterile inflammation. Several immune response 

biomarkers for sepsis have been reported, including inflammatory markers such as C-reactive 
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protein (CRP) [175], procalcitonin (PCT) [176], cytokines (such as IL-6 and IL-8) [177, 178], 

immune cell surface markers such as CD64 [179] and TREM [180], and gene expression 

(RNA) biomarkers (such as CEACAM4, LAMP1, PLA2G7, and PLAC8) [181-183]. Alone, 

however, host immune response does not provide sufficient information for the optimal 

management of the septic patient. The prompt and accurate determination of the microbial 

etiology of sepsis is important for implementing pathogen-specific targeted therapy. Although 

molecular microbiology tests are growing in popularity, the current gold standard clinical 

microbiologic tests are limited in speed and sensitivity. Therefore, in the presence of a 

systemic inflammation, a delayed or false negative microbiologic test may lead clinicians to 

presume noninfectious inflammation, and initiate inappropriate therapy. On the other hand, 

using empiric antibiotics when sepsis is suspected, but there is lack of information on the 

offending pathogen, worsens the antibiotics resistance problem. Given these challenges, there 

is the need for technological approaches that integrate pathogen identification and host 

immune response profiling for sepsis diagnosis and stratification.   

Critical to the approach of integrating host immune response profiling and pathogen 

identification, is sample processing methods that will enable efficient separation of host 

immune cellular and biomolecular (DNA, RNA) components from microbial cellular and 

biomolecular components within the test sample (e.g., blood). A procedure for isolating 

bacteria from blood culture broth using density gradient solution has been reported [184]. 

However, this method requires relatively large volume of blood (with consequent limited use 

in the pediatric patient population) and suffer from low sensitivity. In addition, commercially 

available human DNA-depleting reagents that serve to improve the recovery of bacteria DNA 

from samples, require lengthy processes, show widely variable efficiencies, and are not 
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optimized for host DNA/RNA recovery [185, 186].  

 

5.2 Rapid On-Chip Electrokinetic Isolation of Bacteria 

from Unprocessed Blood 

With the advances in molecular diagnostics for infectious disease, there is an 

increasing need for sample processing methods that enable rapid, efficient separation of 

bacteria from human cell in clinical samples, to facilitate downstream processes like PCR. 

Microfluidic platforms have emerged as attractive diagnostic tools which offer advantages 

such as small sample volume and reagent consumption, high sensitivity, short assay time, and 

opportunity for automation [187, 188]. We explored, and herein present preliminary findings 

on, the feasibility of dielectrophoretic bacteria isolation from high conductance solution using 

an AC electrokinetic microarray device. 

 

5.3 Materials and Methods 

5.3.1 Bacterial Strain and Growth 

DH5-Alpha Escherichia coli (E. coli) was chemically transformed using two 

different plasmids (sfGFP-N1 pET-39b(+) and pET-28), each offering direct fluorescent 

imaging of collected bacteria from resulting cultures. sfGFP-N1 pET-39b(+) was cloned 

from psfGFP-N1 stab purchased from Addgene (Watertown, Massachusetts) and a pET-

39b(+) plasmid from Novagen/Thermo Fisher (Waltham, Massachusetts). Bacterial 

streaks for both variants showed Green Fluorescent Protein (GFP) fluorescence in 
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colonies. Bacteria were cultured in a standard Lurie-Bertani (LB) broth, with the addition 

of kanamycin at 50 µg/mL, at 37°C.  While in the log phase of growth, an inducing agent 

was added at I µL/mL. It was incubated overnight at 37°C. Following overnight culture, 

freshly prepared bacterial suspension was adjusted to an optical density (OD 600) of 0.5, 

and serial dilutions (10-fold, 100-fold, 1000-fold) were made in phosphate-buffered 

saline (PBS). 

 

5.3.2 On-Chip Dielectrophoretic Bacterial Capture 

Alternating current electrokinetic (ACE) chips were purchased from Biological 

Dynamics, Inc. (San Diego, CA). The ACE-based sample processing has been described in 

chapter 2. Tygon tubing (inner diameter, 0.020 inches; outer diameter, 0.060 inches) is 

attached with superglue to either end of the chip, with both ends capped with syringe 

needles, and a 1ml syringe was attached to one end. A syringe pump set to withdrawal mode 

served to control fluid flow across the ACE chip. The chip was pretreated with 0.5X PBS, 

and alternating current (AC) electric field was applied to the chip for 5 minutes at 3 volts 

peak-to-peak and 14 kHz. The buffer was evacuated from the chip, and 25 µL of bacterial 

suspension was loaded onto the chip. AC electric field was then applied at 2 volts peak-to-

peak and 2 KHz. The syringe pump was set at 3 µl/min.  

Fluorescent imaging of GFP-expressing E. coli on the microarray chips was 

carried out using an Olympus BX51W epifluorescence microscope with a 4X (and 10X) 

objective and imaged with Olympus software.  

 

5.4 Preliminary Results and Discussion 
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Figure 5.1 shows brightfield images of ACE chip before and after AC electric field 

was applied. Fluorescent images of DEP-isolated GFP-expressing bacteria is shown in 

figure 5.2. This demonstrates the feasibility of isolating bacteria from a high conductance 

solution using the ACE chip. A recent study reported the application of a DEP microfluidic 

platform for human and bacterial cell separation from whole blood [189]. However, the 

process of the DEP-based bacterial cell separation required additional sample preparation 

steps and reagents which could potentially affect both the duration and the quality of the 

isolate. While our preliminary results demonstrate the feasibility of isolating bacteria from a 

high conductance solution using a DEP platform, experiments to further quantify the 

bacteria isolate and assess the efficiency of the human and bacterial cell separation are 

necessary. This has the potential to improve the sensitivity of microbial identification 

especially for low volume clinical samples with low abundance microbes (as could be seen 

in the pediatric patient population, and in the early stages of bloodstream infections), and 

enable more streamlined integration of host immune response profiling and pathogen 

identification for the diagnosis of sepsis. 
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Figure 5. 1. Brightfield image of alternating current electrokinetic chip (a) before and (b) 
after AC electric field is applied 
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Figure 5. 2. Fluorescent images of respective dilutions of GFP-expressing E. coli on 
alternating current electrokinetic microarray chip. Starting concentration of bacteria 
suspension (OD 600): 0.5. GFP, green fluorescent protein.
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