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ABSTRACT
The Moscovian plant macroflora at Cottage Grove southeastern Illinois, USA, is
a key example of Pennsylvanian (323–299 Million years ago) dryland vegetation.
There is currently no palynological data from the same stratigraphic horizons as the
plant macrofossils, leaves and other vegetative and reproductive structures, at this
locality. Consequently, reconstructions of the standing vegetation at Cottage Grove
from these sediments lack the complementary information and a more regional
perspective that can be provided by sporomorphs (prepollen, pollen, megaspores
and spores). In order to provide this, we have analysed the composition of fossil
sporomorph assemblages in two rock samples taken from macrofossil-bearing
inter-coal shale at Cottage Grove. Our palynological data differ considerably in
composition and in the dominance-diversity profile from the macrofossil vegeta-
tion at this locality. Walchian conifers and pteridosperms are common elements
in the macroflora, but are absent in the sporomorph assemblages. Reversely, the
sporomorph assemblages at Cottage Grove comprise 17 spore taxa (∼16% and
∼63% of the total assemblages) that are known from the lycopsid orders Isoetales,
Lepidodendrales and Selaginallales, while Cottage Grove’s macrofloral record fails to
capture evidence of a considerable population of coal forest lycopsids. We interpret
our results as evidence that the Pennsylvanian dryland glacial landscape at Cottage
Grove included fragmented populations of wetland plants living in refugia.

Subjects Ecology, Paleontology, Plant Science
Keywords Refugia, Pennsylvanian, Paleoecology, Vegetation reconstruction

INTRODUCTION
The Pennsylvanian Subperiod of the Carboniferous (323–299 Ma) was characterized

by a series of glacial–interglacial cycles that exerted profound control on the distri-

bution of vegetation at this time (Eros et al., 2012). In particular, these cyclic climatic

changes resulted in the alternating dominance of wetland and dryland vegetation in the

Pennsylvanian tropics (DiMichele, 2014). The wetland vegetation of this time period is

represented in the fossil record by the classic Pennsylvanian Coal Forests, which were
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composed of arborescent lycopsids and, depending on the flooding regime, an understory

of marattialean tree ferns, pteridosperms, sphenopsids and cordaitaleans (DiMichele &

Phillips, 1994; DiMichele, 2014). In contrast, Pennsylvanian dryland vegetation is recorded

by rare gymnosperm-dominated fossil assemblages, which contain drought-tolerant plants

such as cordaitaleans, pteridosperms and walchian conifers (Falcon-Lang et al., 2009;

Dolby, Falcon-Lang & Gibling, 2011). There is also evidence for the co-existence of wetland

and dryland vegetation in at least regional proximity, reflected by fossil remains of dryland

plants preserved alongside fossil wetland vegetation. These drier elements are thought

to have been transported from upland (extrabasinal sensu Pfefferkorn, 1980) areas into

wetland basins (e.g., Gastaldo, 1987; Lyons & Darrah, 1989; Falcon-Lang & Bashforth, 2004;

Gastaldo & Degges, 2007).

A good example of Pennsylvanian dryland vegetation is the Moscovian age macroflora

found at Cottage Grove Mine, Illinois (Falcon-Lang et al., 2009). This flora was discovered

in fine siltstone layers closely associated with conglomeratic facies within a shallow

channel, laterally equivalent to a calcic vertisol (indicating a seasonally dry climate) just

below the Baker Coal in southeastern Illinois, USA (37◦46′N, 88◦25′W) (Feldman et al.,

2005; Falcon-Lang et al., 2009). The Cottage Grove macroflora is composed mostly of

cordaitaleans together with pteridosperms, walchian conifers, ferns and sphenopsids, and

lacks classic Coal Forest plants such as lycopsids (Falcon-Lang et al., 2009). The small size

of the channel (∼250 m wide) and locally derived channel fill indicates that the drainage

area was relatively small (Feldman et al., 2005). The plant macrofossils (leaves and other

vegetative and reproductive structures) at Cottage Grove are associated with locally derived

conglomerate and this, together with information on channel morphology, is interpreted

as evidence that the macrofossils represent local vegetation growing on interfluves, close to

the depositional environment (Falcon-Lang et al., 2009).

There is currently no palynological data from the same stratigraphic horizons as the

plant macrofossils that are preserved at Cottage Grove (Falcon-Lang et al., 2009). Recon-

structions of the standing vegetation at this locality therefore lack the complementary

data that can be provided by sporomorphs (prepollen, pollen, megaspores and spores)

(e.g., Chaloner, 1968; Gastaldo et al., 1998; Jackson & Booth, 2007; Mander, Kürschner &

McElwain, 2010). To address this deficit, we have undertaken a palynological investigation

of the macrofossil-bearing shale found within the conglomeratic channel facies at Cottage

Grove. This shale, and the sampled interval, is important because it was not deposited

in association with widespread wetland environments typical of peat forming portions

of glacial-interglacial cycles. Our results highlight considerable differences between the

macrofossil and sporomorph records at Cottage Grove. Notably, our study reveals a

population of 17 species of lycopsids from the orders Isoetales, Lepidodendrales and

Selaginallales that flourished at Cottage Grove, but is entirely absent from the macrofossil

record at this locality. Consequently, suggestions that Pennsylvanian dryland vegetation

at Cottage Grove was dominated by xerophytic plants and devoid of wetland taxa such

as lycopsids (Falcon-Lang et al., 2009) are incompatible with our palynological data. We

interpret the discrepancy between the macrofossil and sporomorph records at Cottage
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Grove as evidence that the Pennsylvanian dryland interglacial landscape in this region

included fragmented populations of wetland plants living in refugia.

MATERIALS AND METHODS
Plant macrofossils at Cottage Grove are preserved in fine-grained siltstones in close

association with conglomeratic layers (Falcon-Lang et al., 2009). We have analyzed the

palynological composition of two samples from sediments containing a conifer macrofossil

that occurred in a layer sandwiched between channel-bottom siltstones and conglomeratic

deposits (lithologically unit 6a at the Cottage Grove locality; see Fig. 2A of Falcon-Lang

et al., 2009). We have taken a palynological sample from the sediments (Sample 1) in

which the conifer macrofossil (USNM 536629; see Fig. 3 of Falcon-Lang et al., 2009) was

embedded, and a palynological sample of the counterpart surface (Sample 2). This means

that the deposition of the two samples was temporally separated by less than the amount

of time it would have taken for the deposited conifer remains to decay. Sample 2 originated

from a slightly darker area on the counterpart surface of the same conglomeratic unit.

The sample was bulk macerated using hydrofluoric and hydrochloric acid, and

the remaining organic residue was processed at the Laboratory of Palynology and

Palaeobotany, Utrecht University, according to palynological techniques (heavy liquid

separation and sieving over 15 µm mesh). The samples were not sieved over 250 µm mesh.

This will be addressed later. The organic residue was mounted in glycerin jelly. The two

samples were screened for identifiable sporomorphs, and a count of 433 (Sample 1) and

300 (Sample 2) sporomorphs was performed at the species level. Additional slides from the

two samples were then screened for rare species. Two additional rare taxa were recorded

in this process. Taxonomic descriptions by Smith & Butterworth (1967), Ravn (1979)

and Ravn (1986) were used for identification. A list of sporomorph taxa, their botanical

affinities, and their relative abundances in each of the two samples were compiled (Table 1,

Table S1).

RESULTS
The sporomorph assemblage of Sample 1 is dominated by characteristic Middle

Pennsylvanian wetland taxa (Table 1). Spores of arborescent lycopsids (e.g., Cadiospora,

Lycospora spp., Granasporites) make up the majority of the assemblage (60.8%), with fern

spores (16.9%) and cordaitalean prepollen (Florinites spp., 15.5%) as the other major com-

ponents (Fig. 1). Notable occurrences include Lycospora granulata, which was produced

by the highly specialized wetland arborescent lycopsid Lepidophloios hallii (DiMichele,

2014), and represents 15.2% of the total sporomorph assemblage. Sub-arborescent

lycopsids are represented by low numbers of Endosporites, Radiizonates and Cristatisporites.

Spores that have been found in situ herbaceous lycopods (Cirratriradites spp.) are rare

elements. Sample 1 also contains the spores of a variety of ferns, including marattialean

tree ferns (Cyclogranisporites, Thymospora, Punctatosporites, and Latosporites) as well as

spores of sub-arborescent Calamites (Calamospora) and smaller-sized Sphenophyllales.

Cordaitaleans are represented by four Florinites species, of which F. mediapudens is the

most abundant (10.6%). Prepollen of other seed plants, such as medullosan prepollen
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Table 1 Botanical affinity pollen and spores. Pollen and spores recovered from Cottage Grove plant locality, Cottage Grove Mine, southeast Illinois,
together with their botanical affinity. The assignments to major taxonomic groups are based on information in a synthesis (Balme, 1995) and articles
covering the same time interval and floral realm (Bashforth et al., 2011; Dimitrova, Cleal & Thomas, 2005; Dimitrova, Cleal & Thomas, 2011; Dolby,
Falcon-Lang & Gibling, 2011; Eble, Greb & Williams, 2001; Van Hoof et al., 2013). The plus signs indicate rare, isolated occurrences.

Sample 1 Sample 2

LYCOPSIDS 62.6% 16.3%

Isoetales

Chaloneriaceae

Endosporites globiformis (Ibrahim) Schopf, Wilson et Bentall 1944 0.5% 0.0%

Endosporites sp. Wilson et Coe 1940 0.2% 0.0%

Radiizonates tenuis (Loose) Butterworth et Smith, 1964 0.2% 0.0%

Cristatisporites indignabundus (Loose) Staplin et Jansonius 1964 0.0% +

Lepidodendrales

Diaphorodendraceae

Granasporites medius (Dybovd et Jachowicz) Ravn et al. 1986 1.4% 12.0%

Lepidocarpaceae

Cadiospora magna Kosanke 1950 0.5% 0.3%

Lycospora brevijuga Bhardwaj 1957 0.0% 0.7%

Lycospora brevis Bhardwaj 1957 2.8% 0.0%

Lycospora granulata Kosanke 1950 15.2% 0.0%

Lycospora parva Kosanke 1950 0.0% 0.7%

Lycospora pellucida (Wicher) Schopf, Wilson et Bentall 1944 9.5% 0.0%

Lycospora punctata Kosanke 1950 1.4% 0.0%

Lycospora pusilla (Ibrahim) Schopf, Wilson et Bentall 1944 15.9% 0.0%

Lycospora sp. (Ibrahim) Schopf, Wilson et Bentall 1944 14.1% 0.0%

Lepidodendraceae

Crassispora kosankei Potonié et Kremp 1955 0.0% 2.3%

Selaginellales

Selaginellaceae

Cirratriradites annulatus Kosanke 1950 0.5% 0.0%

Cirratriradites annuliformis (Kosanke et Brockaw) Kosanke 1950 0.5% 0.3%

SPHENOPSIDS 4.4% 5.0%

Calamitales

Calamitaceae

Calamospora breviradiata Kosanke 1950 0.0% 1.3%

Calamospora microrugosa (Ibrahim) Schopf, Wilson et Bentall 1944 0.0% 0.7%

Calamospora parva Guennel 1958 0.9% 0.7%

Sphenophyllales

Laevigatosporites minor Loose 1934 3.0% 1.3%

Vestispora pseudoreticulata (Spode) Smith & Butterworth, 1967 0.5% 1.0%

FERNS 16.9% 28.3%

Filicales

Granulatisporites granulatus Ibrahim 1933 1.2% 0.7%

(continued on next page)
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Table 1 (continued)
Sample 1 Sample 2

Gleicheniaceae

Triquitrites bransonii Wilson et Hoffmeister 1956 3.2% 0.0%

Triquitrites sculptilis (Balme) Smith & Butterworth, 1967 2.8% 0.7%

Botryopteridaceae

Microreticulatisporites nobilis (Wicher) Knox 1950 1.2% 0.3%

Tedeleaceae

Raistrickia fulva Artüz 1957 0.0% 0.3%

Raistrickia irregularis Kosanke 1950 0.0% 0.3%

Raistrickia pilosa Kosanke 1950 0.7% 0.3%

Marattiales

Marattiaceae

Cyclogranisporites aureus (Loose) Potonié et Kremp 1955 0.0% 5.3%

Punctatosporites rotundus Bhardwaj 1957 0.5% 0.0%

Laevigatosporites globosus Schemel 1951 + 0.0%

Thymospora pseudothiessenii (Kosanke) Wilson et Venkatachala 1963 3.0% 0.0%

Psaroniaceae

Latosporites minutus Bhardwaj 1957 1.2% 0.0%

Unknown ferns

Deltoidospora levis (Kosanke) Ravn, 1986 0.0% 0.3%

Deltoidospora ornata(Ishchenko) Braman et Hills 1977 0.5% 0.3%

Deltoidospora priddyi (Berry) McGregor 1973 0.0% 1.7%

Deltoidospora tumida (Butterworth et Williams) Ravn, 1986 0.0% 0.2%

Deltoidospora sp. Miner 1935 0.5% 0.0%

Dictyotriletes mediareticulatus (Ibrahim) Potonié et Kremp 1955 0.0% 3.3%

Granulatisporites adnatoides (Potonié et Kremp) Smith & Butterworth, 1967 0.0% 0.3%

Leiotriletes tumida Butterworth et Williams 1958 0.2% 0.0%

Mooreisporites inusitatus (Kosanke) Neeves 1958 0.0% 0.3%

Punctatosporites sp. Ibrahim 1933 1.2% 0.0%

Verrucosisporites donarii Potonié et Kremp 1956 0.2% 9.3%

Zygopteridales

Zygopteridaceae

Verrucosisporites verrucosis Ibrahim 1933 0.7% 4.7%

CORDAITES 15.5% 50.3%

Cordaitanthales

Cordaitanthaceae

Florenites sp. Schopf, Wilson, et Bentall 1944 1.4% 0.0%

Florinites florinii Imgrund 1960 0.9% 1.7%

Florinites mediapudens (Loose) Potonié et Kremp 1956 10.6% 37.3%

Florinites pumicosus (Ibrahim) Schopf, Wilson et Bentall 1944 2.1% 9.0%

Florinites visendus (Ibrahim) Schopf, Wilson et Bentall 1944 0.5% 2.3%

UNKNOWN AFFINITY 0.7% 0.0%

cf. Punctatisporites 0.2% 0.0%

Cheiledonites sp. Doubinger 1957 0.2% 0.0%

Cuneisporites rigidus Ravn, 1979 0.2% 0.0%
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Figure 1 Pollen and spores from Cottage Grove plant locality. Selected pollen and spores from Cot-
tage Grove plant locality, Cottage Grove Mine, southeast Illinois. Specimen names are followed by
USNM specimen numbers, slide code, and England Finder graticule coordinates. Scale bars are 20 µm.
1. Laevigatosporites minor (USNM 606400), E36-1. 2. Thymospora pseudothiessenii (USNM 606401),
S34-3. 3. Granulatisporites granulatus (USNM 606402), H46-1. 4. Triquitrites bransonii (USNM 606403),
Y36. 5. Triquitrites sculptilis (USNM 606404), T45. 6. Deltoidospora priddyi (USNM 606405), T18.
7. Deltoidospora ornata (USNM 606406), K41-4. 8. Crassispora kosankei (USNM 606407), Q39-3.
9. Granasporites medius (USNM 606408), K31. 10. Cyclogranisporites aureus (continued on next page...)
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Figure 1 (...continued)

(USNM 606409), R15. 11. Verrucosisporites (USNM 606410), Q34. 12. Verrucosisporites verrucosis (USNM
606411), P30-2. 13. Lycospora brevis (USNM 606412), U44-1. 14. Lycospora pusilla (USNM 606413),
Q46-3. 15. Lycospora (USNM 606414), T33-2. 16. Lycospora granulata (USNM 606415), M47-3. 17. Radi-
izonates tenuis (USNM 606416), U35. 18. Cheiledonites sp. (USNM 606417), P33-2. 19. Cuneisporites
rigidus (USNM 606418), J49-2. 20. Cadiospora magna (USNM 606419), Q38-1. 21. Cirratriradites
annulatus (USNM 606420), T34-1. 22. Endosporites globiformis (USNM 606421), Q48-1. 23. Florinites
mediapudens (USNM 606422), M25-4. 24. Florinites pumicosus (USNM 606423), V41.

(Schopfipollenites), walchian conifer prepollen (Potoniesporites), or other pseudosaccates or

bisaccates are absent from among the ∼1,500 palynomorphs that have been scanned. The

diversity of this sample is 39, and its evenness is 0.76.

In Sample 2, the cordaitalean prepollen Florinites dominates the sporomorph

assemblage (50.3%), while spores of ferns (28.3%) and arborescent lycopsids (16.0%)

are also abundant (Fig. 1). In this sample, Granasporites medius is the only abundant spore

produced by the Lepidodendrales. Sigillarian lycopsid spores (Crassispora kosankei) are

common, and spores of herbaceous lycopsids (Cirratriradites) are rare in this sample.

Marattialean tree ferns are represented by Cyclogranisporites (5.3%), and sub-arborescent

Calamites is represented by Calamospora. Spores of other ferns and the smaller-sized

Sphenophyllales are present, but in low numbers. Prepollen produced by other seed plants,

conifers and seed ferns, is not present in this sample. The diversity of this sample is 32, and

its evenness is 0.69.

Comparison of samples
The sporomorph assemblage of Samples 1 and 2 are composed of the same plant groups,

but the relative abundance of these groups in the two samples is substantially different

(Fig. 2). Although sphenopsid spores are a minor component of sporomorph assemblages

in Samples 1 and 2, cordaitaleans and ferns are much more abundant in Sample 2 than

in Sample 1, and lycopsids are considerably more abundant in Sample 1 than in Sample

2 (Fig. 2). There are also major differences in the species-level composition of the two

samples. For example, of the 54 sporomorph species that were recorded in the two samples,

just 17 are present in both (Table 1), and a Sorensen’s index comparison of Sample 1 and

Sample 2 returns a value of 0.48 (Table 2) (SI = 20C/[A + B], where C is the number of

species in common between two samples, and A and B are the total number of species in

each of the two samples (McElwain et al., 2007)). These differences are surprising given

the stratigraphic proximity of Sample 1 and Sample 2. Sample 2, however, originated from

a slightly darker area on the counterpart surface of the same conglomeratic unit, and it

is possible that this reflects subtle differences in the taphonomic conditions of the two

samples. Factors that could create compositional differences between the two samples

include the hydrodynamic regime (Havinga, 1967), the degree of oxidation or microbial

activity, and the action of wet and dry cycles (Campbell & Campbell, 1994; see Mander et al.,

2012 for a review).
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Figure 2 Composition of palynological Sample 1 and 2. Graphical comparison of the composition of
palynological Sample 1 and Sample 2 from Cottage Grove plant locality, Cottage Grove Mine, southeast
Illinois. Dashed diagonal line represents a line of equality. Major plant groups from Table 2.

Table 2 Abundance major plant groups in macrofossil and sporomorph assemblages. Relative abun-
dance of major plant groups in the macrofossil and sporomorph records at the Cottage Grove plant
locality, Cottage Grove Mine, southeast Illinois. See Table 1 for count data.

Plant group Macrofossils (%) Sample One (%) Sample Two (%)

Cordaites 68.3 15.5 50.3

Lycopsids 0.0 62.6 16.3

Sphenopsids 2.4 4.4 5.0

Ferns 9.8 16.9 28.3

Conifers 7.3 0.0 0.0

Pteridosperms 12.2 0.0 0.0

Comparison of sporomorph and macrofossil assemblages at
Cottage Grove
There are considerable differences in the relative abundance of the plant groups that

are present as sporomorphs in Samples 1 and 2 and the plant groups that are present

as macrofossils at the same locality (Fig. 3; Table 2). Cordaitaleans, dominating the

macroflora, are less abundant in the sporomorph record at Cottage Grove. This difference

is particularly striking in Sample 1, in which sporomorphs produced by cordaitaleans
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Figure 3 Comparison composition macrofossil and sporomorph assemblages. Graphical comparison
of the composition of macrofossil (leaves and other vegetative and reproductive structures) and sporo-
morph assemblages at Cottage Grove plant locality, Cottage Grove Mine, southeast Illinois. Dashed
diagonal line represents a line of equality. Major plant groups from Table 2.
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represent just 15.5% of the total sum (Fig. 3; Table 2). Lycopsid spores are major

components of the sporomorph record at Cottage Grove, comprising 62.6% of the total

sum in Sample 1, but this plant group is absent from the macrofossil record at this

locality (Fig. 3; Table 2). Ferns are also more abundant in the sporomorph record than

the macrofossil record at Cottage Grove, while sphenopsids are a minor component of both

the sporomorph and macrofossil records at this locality (Fig. 3; Table 2). Walchian conifers

and medullosan pteridosperms comprise ∼7% and 12% of the identifiable macrofossils

recovered from sediments at Cottage Grove, but prepollen produced by these two plant

groups is completely absent from both palynological samples (Fig. 3; Table 2).

DISCUSSION
This comparison of the macrofossil and sporomorph records at Cottage Grove builds

upon previous comparisons of these two fossil groups in the Carboniferous (e.g., Mahaffy,

1988; Willard, 1993; DiMichele & Phillips, 1994), and emphasizes that they provide very

different pictures of the standing vegetation at a given locality (e.g., Chaloner, 1968;

Gastaldo et al., 1998; Jackson & Booth, 2007; Mander, Kürschner & McElwain, 2010).

Especially the absence of prepollen of medulosan pteridosperms (e.g., Schopfipollenites

and Monoletes) and walchian conifers (Potonieisporites) in Cottage Grove’s palynological

samples is striking. It has been suggested that certain differences between the pictures

provided by each fossil group may be explained by palynological processing techniques.

For example, large (>200 µm) prepollen referable to medullosan pteridosperms can

be inadvertently removed from palynological preparations by sieving over coarse mesh

(DiMichele & Phillips, 1994). However, our samples were only sieved over 15 µm mesh, not

200–250 µm mesh as is standard in some palynological processing protocols. Therefore,

in contrast to previous suggestions (DiMichele & Phillips, 1994), sieving cannot explain

why these plants are present in the macrofossil record at Cottage Grove (Falcon-Lang et al.,

2009), but entirely absent from our palynological samples from the same sediments (Fig. 3;

Tables 2 and 1). It is possible that our samples, which are derived from very thin siltstone

horizons, represent very brief intervals of geological time in which there was no conifer

pollen being produced by plants in the source vegetation.

Other differences between the macrofossil and sporomorph records of vegetation

at Cottage Grove could be explained by the different ways in which macrofossils and

sporomorphs are representative of the standing vegetation, in terms of composition,

dominance and spatial scale. In general, macrofossil assemblages are typically weighted

towards plants of large stature that produce a considerable number of potential fossils

that may disperse widely (e.g., Spicer, 1989; Greenwood, 1991; Gastaldo, 2001). In addition,

parautochthonous macrofossil assemblages will tend to be strongly biased toward those

plants living in close proximity to the environment of deposition (Scheihing & Pfefferkorn,

1984; Burnham, Wing & Parker, 1992). In contrast, sporomorph assemblages are weighted

towards taxa with high sporomorph productivity and/or taxa that produce sporomorphs

that are deposited slowly from the atmosphere (Prentice, 1985). Sporomorphs also can be

carried longer distances from source areas by water than is typical for foliage, and certain
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depositional settings, such as large lakes, therefore may have a significant extra-local

elements not represented among the macrofossils (Farley, 1990).

In addition to the absence of conifer and pteridosperm prepollen, there is a distinct

mismatch between cordaitalean abundance in the Cottage Grove macro and microfloras.

The dominance of Cordaites leaves in the macrofossil assemblages at Cottage Grove

(Falcon-Lang et al., 2009; Fig. 3; Table 2) may be partially a taphonomic bias, reflecting

their robust, “leathery” construction (Stewart & Rothwell, 1993, p. 400). Their morphology

made them differentially resistant to destruction, particularly if carried in relatively coarse,

bed-load sediment. There are suggestions of a counter bias with regard to cordaitalean

pollen. Comparison of macrofossil and sporomorph assemblages in Westphalian Coals

indicated that sporomorphs produced by cordaitaleans were under-represented relative to

macrofossils of the same genus (DiMichele & Phillips, 1994), an observation consistent with

our data (Fig. 3; Table 2).

The opposite of the walchian conifer and medullosan pteridosperm pattern is that

of the lycopsids. The microfossil-macrofossil mismatch in terms of lycopsid abundance

in Cottage Grove Sample 1 (Fig. 3) only partially reflects the high abundance of three

Lycospora species in sporomoph sample (Table 1). Over-representation of Lycospora

relative to macrofossil estimates of parent-plant abundances also matches comparisons

from Westphalian coals (DiMichele & Phillips, 1994). The relative over-representation of

lycopsids in Sample 2 from Cottage Grove (Fig. 3; Table 2), however, is mainly due to

the high abundance of Granasporites in this sample (Table 1). This is unexpected because

Granasporites is thought to be under-represented in sporomorph assemblages due to low

spore productivity by the parent plants, Diaphorodendron and Synchysidendron (DiMichele

& Phillips, 1994). This may indicate that some results from macrofossil–sporomorph com-

parisons in peats and coal balls (e.g., DiMichele & Phillips, 1994) cannot be generalized,

but it is more likely that there were cryptic populations of Granisporites producing plants

nearby on the landscape.

Implications for the dynamics of Pennsylvanian tropical lowland
vegetation
Our palynological data indicate that the macrofossil record fails to sample a considerable

population of lycopsids at Cottage Grove (Fig. 3; Table 2). This population comprises a

total of 17 species (Table 1) and represents between ∼16% (Sample 2) and ∼63% (Sample

1) of the total sporomorph assemblages at this locality (Table 2). As a consequence of the

abundance and diversity of this population, we rule out reworking of sporomorphs as

a primary cause for the difference between the macrofossil and sporomorph records at

Cottage Grove. This population includes Lycospora granulata, a spore produced by the

highly specialized wetland arborescent lycopsid Lepidophloios hallii (DiMichele, 2014),

and indicates that wetland plants were present on the seasonally dry landscape near

Cottage Grove. A seasonally dry climate at Cottage Grove cannot be inferred from the

dominance of cordaitaleans alone, since this group of plants has broad environmental

affinities. However, the macrofossil assemblage at Cottage Grove is devoid of lowland
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wetland plants and contains drought-tolerant walchian conifers (Falcon-Lang et al., 2009).

Additionally, the Cottage Grove channel deposit is located within a paleosol interval. It is

entirely encased in, and formed lateral to and contemporaneously with a calcic vertisol

below the Baker coal bed (Falcon-Lang et al., 2009), which indicates that the climate regime

was characterized by sufficient evapotranspiration to result in carbonate deposition within

the soil. This paleobotanical and geological evidence together supports the idea that the

Pennsylvanian interglacial climate at Cottage Grove was seasonally dry.

The exact geographic location of wetland plants at Cottage Grove cannot be determined

from our data. Sporomorphs can be transported considerable distances by wind and water

(Prentice, 1985; Sugita, 1993; Hofmann, 2002), so it is possible that they were present in sites

some distance from the interfluves on which the local vegetation is thought to have grown

(Falcon-Lang et al., 2009). In the context of Pennsylvanian glacial–interglacial cycles (Eros

et al., 2012), we suggest that the wetland taxa in our palynological analysis represent the

survival of these plants in refugia during the seasonally dry parts of glacial–interglacial

cycles. This supports the idea of the Pennsylvanian Coal Forest as a dynamic biome

expanding, contracting and fragmenting in concert with changes in the prevailing climate

(Falcon-Lang & DiMichele, 2010; DiMichele, 2014). Such refugia are likely to have been

spatially discontinuous, small, wet areas such as inland swamps, waterside habitats, and

coastal wetlands (DiMichele, 2014), or dry season waterholes (Bashforth et al., 2014).
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