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ORIGINAL RESEARCH
ADULT BRAIN

An Automated Statistical Technique for Counting Distinct
Multiple Sclerosis Lesions

X J.D. Dworkin, X K.A. Linn, X I. Oguz, X G.M. Fleishman, X R. Bakshi, X G. Nair, X P.A. Calabresi, X R.G. Henry, X J. Oh,
X N. Papinutto, X D. Pelletier, X W. Rooney, X W. Stern, X N.L. Sicotte, X D.S. Reich, X R.T. Shinohara, and

the North American Imaging in Multiple Sclerosis Cooperative

ABSTRACT

BACKGROUND AND PURPOSE: Lesion load is a common biomarker in multiple sclerosis, yet it has historically shown modest association
with clinical outcome. Lesion count, which encapsulates the natural history of lesion formation and is thought to provide complementary
information, is difficult to assess in patients with confluent (ie, spatially overlapping) lesions. We introduce a statistical technique for
cross-sectionally counting pathologically distinct lesions.

MATERIALS AND METHODS: MR imaging was used to assess the probability of a lesion at each location. The texture of this map was
quantified using a novel technique, and clusters resembling the center of a lesion were counted. Validity compared with a criterion
standard count was demonstrated in 60 subjects observed longitudinally, and reliability was determined using 14 scans of a clinically stable
subject acquired at 7 sites.

RESULTS: The proposed count and the criterion standard count were highly correlated (r � 0.97, P � .001) and not significantly different
(t59 � �.83, P � .41), and the variability of the proposed count across repeat scans was equivalent to that of lesion load. After accounting
for lesion load and age, lesion count was negatively associated (t58 � �2.73, P � .01) with the Expanded Disability Status Scale. Average
lesion size had a higher association with the Expanded Disability Status Scale (r � 0.35, P � .01) than lesion load (r � 0.10, P � .44) or lesion
count (r � �.12, P � .36) alone.

CONCLUSIONS: This study introduces a novel technique for counting pathologically distinct lesions using cross-sectional data and
demonstrates its ability to recover obscured longitudinal information. The proposed count allows more accurate estimation of lesion size,
which correlated more closely with disability scores than either lesion load or lesion count alone.

ABBREVIATIONS: CC � count based on the standard connected-components technique; CG � criterion standard count; CP � count based on the technique
proposed in this study; CV � coefficient of variation; EDSS � Expanded Disability Status Scale; EDDSavg � average of the EDSS scores over all visits for each subject in
the National Institute of Neurological Disorders and Stroke longitudinal study; NAIMS � North American Imaging in Multiple Sclerosis; OASIS � Automated Statistical
Inference for Segmentation

Multiple sclerosis is a neuroinflammatory disorder character-

ized by demyelinating lesions that occur in the central ner-

vous system. MR imaging is the most commonly used method to

observe these lesions, especially in the white matter of the brain.1

The presence of new lesions on MR imaging is often considered an

important clinical marker of disease activity, yet MR imaging–

based measures of disease severity have been elusive.2 The total

lesion burden in the white matter or “lesion load”—measured as

volume or volume fraction of brain size—is often used in the
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study of MS, typically as a measure of disease severity3 and as a

clinical trial outcome.4 However, lesion load has consistently

shown a surprisingly weak association with clinical measures of

disease severity, calling into question its usefulness as a surrogate

and reinforcing the need for further development of MR imaging

outcomes for MS.2,5

In past years, several clinical studies have discussed the num-

ber of lesions in a patient’s brain as a possible outcome of inter-

est.6-8 In these studies, baseline lesion count has been shown to be

correlated with the Expanded Disability Status Scale (EDSS) and

changes in lesion count have been shown to be correlated with

changes in the EDSS. However, obtaining an accurate count of

biologically distinct lesions in the brain can be costly and logisti-

cally challenging, typically requiring expert review or automated

analysis of scans obtained at frequent follow-up visits. This pro-

cess is especially difficult in patients with a high lesion load and

many confluent lesions.9

Confluent lesions commonly occur when pathologically dis-

tinct lesions (ie, lesions that arise due to spatially separate sources

of structural damage in the brain, usually separated in time) occur

near each other and create a larger connected region of lesion

tissue. Depending on the level of lesion burden, confluent lesions

can range from 2 overlapping lesions with a single connecting

edge to dozens of connected lesions spanning large stretches of

white matter. The existence of such confluent tissue can make it

difficult or impossible to estimate the number of distinct lesions

in the brain at any given visit. A patient must be scanned regularly,

with temporality of appearance serving to separate spatially con-

fluent lesions, to obtain accurate lesion counts. However, MR

imaging scans are extremely costly, which can make regular fol-

low-up visits infeasible. Additionally, in patients with a great deal

of disease activity, even monthly or bimonthly scans can produce

multiple new lesions that overlap in space.10,11 These consider-

ations render lesion counts unavailable or inaccurate in most clin-

ical settings in which patients are typically scanned yearly or twice

yearly.

To address this issue, the current study introduces a statistical

analysis technique for obtaining valid and reliable estimates of

lesion counts from a single cross-sectional MR imaging study.

This fully automated method uses cutting-edge statistical models

for segmenting lesion tissue and well-demonstrated mathematic

methods for quantifying texture to obtain the number and loca-

tion of temporally distinct white matter lesions. Additionally, this

study provides evidence that the derived lesion counts are associ-

ated with clinical measures of disease severity, independent of

total lesion volume.

MATERIALS AND METHODS
Proposed Lesion-Count Algorithm
To obtain the lesion-count estimate in a given subject, we per-

formed the following steps: First, a map of lesion probability at

each voxel in the brain was obtained using preprocessed and

coregistered MR imaging volumes from a single visit. Depend-

ing on the automated segmentation method used, a combina-

tion of T1-weighted, fluid-attenuated inversion recovery, T2-

weighted, and proton density volumes would be required for

probability estimation. A threshold was then applied to the prob-

ability map to create a binary mask of regions considered lesion

tissue.

With the probability map, the texture of the lesion tissue was

quantified to find regions that exhibited the properties expected

of the center of a single lesion. Texture was quantified using the

eigenvalues of the Hessian matrix. The Hessian matrix was calcu-

lated for the intensity of the lesion probability map at every voxel

in the lesion mask, with a gradient window of 1 voxel in each

direction. In the context of a 3D image, the Hessian matrix de-

scribes the second-order variation in image intensity in the local

neighborhood around a voxel. When applied to a lesion probabil-

ity map, the eigenvalues of the Hessian matrix at each voxel rep-

resent the 3 primary directions of change in lesion probability at

that voxel.

Thus, voxels in the center of a lesion would be expected to have

a negative eigenvalue, implying a decrease in probability, in all

directions. This follows from the commonly accepted pathology

of MS lesions, in which initial damage to a vein causes residual

inflammation to spread outward from the vein in a relatively

ovoid fashion, with less damage occurring around the periphery

of the visible lesion.12 Therefore, voxels are eliminated if any of

the 3 eigenvalues are positive; the elimination indicates that the

voxel is less likely to be a lesion than its surroundings in at least 1

direction. The remaining voxels with 3 negative eigenvalues are

clustered by location, and connected clusters (operationalized as

the centers of distinct lesions) are counted. Figure 1 provides an

example of this technique.

Data and Preprocessing

Validation and Clinical-Radiologic Association. Sixty subjects di-

agnosed with MS were scanned between 2000 and 2008 monthly

for �5.5 years (mean, 2.2 � 1.2 years) as part of a natural history

study at the National Institute of Neurological Disorders and

Stroke in Bethesda, Maryland. The subjects ranged from 18 to 60

years of age, with a mean age of 38 � 9 years. Of the 60 subjects, 38

were women and 22 were men. Most subjects (n � 44) were di-

agnosed with relapsing-remitting MS; 13 had secondary-progres-

sive MS; 1 had primary-progressive MS; and 2 were unspecified.

Each subject was either untreated or treated with a variety of dis-

ease-modifying therapies during the observation period, includ-

ing both FDA-approved (various preparations of interferon-�)

and experimental therapies.

Details of the image acquisition and preprocessing have been

previously published13 and are briefly summarized in this section.

Whole-brain 2D FLAIR, proton density, T2, and 3D T1-weighted

volumes were acquired on a 1.5T MR imaging scanner (Signa

Excite HDxt; GE Healthcare, Milwaukee, Wisconsin). The 2D

FLAIR, proton density, and T2 volumes were acquired using fast-

spin-echo sequences, and the 3D T1 volume was acquired using a

gradient-echo sequence. All scanning parameters were clinically

optimized for each acquired image. Each subject was scanned over

multiple visits, and subjects’ images at each visit were rigidly

coregistered longitudinally and across sequences to a template

space.14

All images were N4 bias– corrected, and FLAIR, T2, and pro-

ton density volumes for each subject were interpolated and rigidly

coregistered to the T1 volume in isotropic 1-mm3 space.15 Extra-
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cerebral voxels were removed using the T1 volume via a skull-

stripping procedure,16 and intensity normalization17 of the vol-

umes based on z scoring was applied. Studies were manually

quality-controlled by a researcher with �5 years’ experience with

structural MR imaging, and studies with analysis-limiting motion

or other artifacts were removed. Following preprocessing and

quality control, automatic lesion segmentation was performed on

coregistered T1, T2, FLAIR, and proton density volumes using the

Automated Statistical Inference for Segmentation (OASIS)

model18 to produce a lesion probability map for each subject. A

conservative threshold of 30% was applied to the probability

maps to create binary lesion masks.

Reliability. To test reliability, also referred to as repeatability, we

analyzed data from a 45-year-old man diagnosed with clinically

stable relapsing-remitting MS. This patient was imaged at 7 sites

in the United States as part of a pilot study for the North American

Imaging in Multiple Sclerosis (NAIMS) Cooperative. He was

characterized as having mild-to-moderate physical disability,

which was stable between the first and last visits, and had no

clinical relapses or radiologic changes during the study.19

Details of the image acquisition have been previously pub-

lished19 and are briefly summarized in this section. Whole-brain

3D high-resolution FLAIR, T2, and T1-weighted volumes were

acquired on 7 3T MR imaging scanners across the United States (4

Skyras, 2 Tim Trios, 1 Verio; Siemens, Erlangen, Germany). A

standardized high-resolution scanning protocol was developed

through a consensus agreement in the NAIMS Cooperative and

was used to the extent possible (allowing for different scanner

types and software versions) for each scan. The participant was

scanned twice on the same day at each site and was removed and

repositioned between scan and rescan.

All images were N4 bias–corrected, and the subject’s images at

each scan were rigidly coregistered across sequences to the T1 volume

in isotropic 1-mm3 space.15 Extracerebral voxels were removed using

the T1 volume via a skull-stripping procedure,20 and intensity nor-

malization17 of the volumes based on z scoring was applied. Fol-

lowing preprocessing, automatic lesion segmentation was per-

formed on coregistered T1, T2, and FLAIR volumes using an

extension of the OASIS model21 to produce a lesion-probability

map for each scan session. A conservative threshold of 30% was

applied to the probability maps to create binary lesion masks.

Statistical Analysis

Validation. Using the longitudinal nature of the data, we devel-

oped a criterion standard count of lesions that appeared during

the study for validation. A state-of-the-art technique for segment-

ing new lesions since a previous visit22 was applied at each visit

after baseline, resulting in the number and location of new lesions

at each visit for every patient. For the criterion standard count,

segmented regions containing lesions separated in space or time

FIG 1. Visualization of the performance of the proposed count. A, An example of a region with confluent lesion tissue. B, Connected-
components method finds 1 confluent lesion in the highlighted region. C, The proposed method finds 6 distinct lesion centers in the highlighted
region on the visualized axial slice. D–F, Maps of the 3 Hessian eigenvalues used to quantify lesion texture and find distinct lesion centers (red
represents positive eigenvalues; blue represents negative eigenvalues).
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were considered distinct. For example, if a large contiguous re-

gion at the end of a study consisted of 1 lesion that appeared at the

sixth visit and 1 lesion that appeared at the eighth visit, these

would be considered 2 lesions in the criterion standard count.

The criterion standard count, henceforth referred to as CG,

was compared with 2 counts obtained cross-sectionally at the final

observation for each patient. The first, CP, is the count based on

the technique proposed in this study. CP was obtained by applying

the algorithm described in the “Proposed Lesion-Count Algo-

rithm” section to the images obtained at each patient’s final visit,

then restricting the count to the number of lesion centers con-

tained in the lesion voxels determined to have appeared during

the study. Most important, this restriction means that CP repre-

sents a subset of the total number of lesions in a subject’s scan and

is distinct from the full lesion count later described in the context

of the clinical-radiologic analysis. This limitation was imple-

mented to make direct comparison between CP and CG possible

because a criterion standard count can only be obtained for le-

sions that appeared during the study.

The second cross-sectional count, CC, refers to a count based

on the standard connected-components technique. CC was ob-

tained by performing lesion segmentation on the images obtained

at each patient’s final visit, thresholding at a probability of 30%,

and labeling lesions as distinct if they were separated in space. CC

was then restricted to the number of unique lesion labels con-

tained in the lesion voxels known to have appeared during the

study, to facilitate comparison with CP and CG.

Comparison among CG, CC, and CP occurred in 2 ways: First,

to compare the linear correspondence between the criterion stan-

dard and the different counting techniques, we compared the cor-

relation between CG and CP with that of CG and CC. Then, to

determine whether the counts themselves differed meaningfully

from the criterion standard, paired t tests were run for CG and CP,

as well as CG and CC.

Reliability. Determination of the reliability of the proposed

counting method was based on the coefficient of variation (CV) of

the counts obtained from the 14 repeat scans. Because the typical

connected-components technique for counting automatically or

manually segmented lesions yields a stable-but-invalid estimate of

the true count, there is no current criterion standard CV for a

lesion count. Thus, the CV of the proposed count was compared

with a commonly used outcome measure for MS: total cerebral

lesion volume (“lesion load”).

This comparison took place in 2 contexts. The first repre-

sented a fully automated version of the proposed count, in which

variation may arise from false-negatives in the segmentation

mask, false-positives in the segmentation mask, thresholding of

the segmentation mask, and changes in the Hessian structure of

the segmentation mask. This coefficient was compared with the

CV of the automated lesion load, as determined by the segmenta-

tion method.

The second context represented a manually supplemented

version of the count, in which a mask of lesion tissue was provided

by an expert rater19 and the count was obtained using the segmen-

tation probability map within the manual lesion tissue mask. In

this case, variation in the count arises solely due to changes in the

Hessian structure of the segmentation mask and changes in the

manual segmentation. This coefficient was compared with the CV

of the manually obtained lesion load.

Clinical-Radiologic Association. Because the Expanded Disability

Status Scale score is known to be noisy, a more stable measure of

neurologic disability was created by averaging the EDSS scores

over all visits for each subject in the National Institute of Neuro-

logical Disorders and Stroke longitudinal study,13 hereby referred

to as the EDSSavg. One subject had no EDSS information across all

follow-ups and was excluded from this analysis. Using the OASIS

lesion probability maps,18 we obtained the lesion load at the final

visit for each subject using a probability threshold of 30%. Then,

using the lesion-count technique described in the “Proposed Le-

sion-Count Algorithm” section, we obtained a full count of white

matter lesions at the final visit for each subject. Most important,

the counts obtained for the clinical-radiologic analysis are distinct

from the CP measure described in the “Validation” section be-

cause these counts represent the application of the proposed

method to the entire brain, while CP represents the application of

the proposed method to only lesion tissue that appeared during

the longitudinal study.

To determine the clinical relevance of the proposed lesion

count independent of other potentially confounding variables, we

created a linear regression model for EDSSavg, with age, lesion

load, and lesion count as predictors. The added statistical contri-

bution of the lesion count was quantified using a Wald test, which

is inferentially identical to a likelihood ratio test in this context,

and its added clinical contribution was quantified by the increase

in the adjusted R2 of the model. In this context, R2 gives the

amount of variation in EDSSavg explained by the model. Addi-

tionally, the Pearson correlations with EDSSavg were calculated

for lesion load and lesion count and a new variable we refer to as

“average lesion size” (defined as lesion load divided by lesion

count).

RESULTS
Validation
The temporally informed criterion standard count of new lesions

appearing during the study, CG, ranged from 0 to 75 among the 60

subjects, with a median of 4 (interquartile range, 1–12). The con-

nected-components count, CC, ranged from 0 to 14 with a median

of 2 (interquartile range, 1–5). The proposed count, CP, ranged

from 0 to 60 with a median of 4 (interquartile range, 1–15). Figure

2 provides an example of these counting techniques.

The correlation between CP and CG was 0.97, compared with

the correlation of 0.67 between CC and CG. Figure 3 shows the

scatterplots for the 2 linear associations, along with the line dem-

onstrating a 1-to-1 relationship. The paired t test comparing CC

and CG yielded a highly significant result (t59 � 4.19, P � .001),

with CG being 6.9 lesions larger than CC on average (95% CI,

3.6 –10.2). The paired t test comparing CP and CG did not find a

significant difference between the counts (t59 � �.83, P � .41),

with CP being 0.4 lesions larger than CG on average (95% CI,

�1.3– 0.5).

Reliability
For the fully automated count, the coefficient of variation was

0.19, compared with a CV of 0.22 for the automated lesion load.
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Using the manual segmentation as a mask, we reduced the CV for

the lesion count to 0.12, compared with a CV of 0.10 for the

manual lesion load. In 1 case, automated lesion segmentation was

discovered to have failed; this failure created a probability map

with a drastically different Hessian structure and large regions of

false-positive segmentation. With this scan removed, the CV

of the fully automated lesion count remained at 0.19 and the CV

of the manual segmentation-based lesion count dropped to

�0.06, suggesting that the proposed count has equivalent or

lower variability than the current clinical standard of lesion load.

Clinical-Radiologic Association
If we accounted for lesion load and age, the proposed lesion count

was negatively associated with EDSSavg (t58 � �2.73, P � .01);

this finding suggests that for a given lesion load and age, a higher

count is associated with lower disease severity. The inclusion of

lesion count in the model explains an additional 10% of the vari-

ance in EDSSavg compared with a model with only age and lesion

load, providing support to the hypothesis that the proposed count

contains disease information independent of other commonly

used measures.

The Pearson correlation between lesion load and EDSSavg was

small and did not reach significance (r � 0.10, P � .44); the same

was true of the correlation between lesion count and EDSSavg (r �

�.12, P � .36). However, average lesion size was significantly

correlated with EDSSavg (r � 0.35, P � .01); this correlation indi-

cated that larger lesions were associated with higher disability.

DISCUSSION
In this article, we introduce a novel technique for obtaining cross-

sectional counts of pathologically distinct lesions and demon-

strate it to be a valid, reliable, and clinically meaningful biomarker

for MS disease status. Using information contained in the Hessian

structure of lesion probability maps produced by automated seg-

mentation methods, this technique counts distinct lesions by

identifying regions that resemble the physiologic traits of distinct

lesion centers.

The validity of this measure was established by comparing

counts obtained at a single time point with criterion standard

counts that incorporated temporal information on lesion devel-

opment. The proposed count had a correlation of 0.97 with the

criterion standard count, indicating the very strong validity of this

measure. A count obtained using the connected-components

method had only a 0.67 correlation with the criterion standard and

appeared to strongly underestimate the number of lesions in individ-

uals who developed �1 or 2 lesions per year during the study. This

underestimation manifested in a highly significant difference be-

tween the connected-components counts and the criterion standard

counts in a paired t test, whereas no difference was found between the

FIG 2. Example of the lesion counts in a region with 4 apparently distinct lesions, 2 of which develop with observable temporal separation. A–D,
Development of 2 new and temporally distinct lesions. E and F, The performance of a connected-components count and the proposed count,
respectively. The connected-components method finds 1 confluent lesion in the visualized space (connected in an adjacent plane), and the
proposed method finds 4 distinct lesion centers. Days from scan in A: 28 days (B); 91 days (C); 252 days (D–F).
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proposed counts and the criterion standard counts. These findings

demonstrate that the proposed technique yields a count consistent

with the natural history of lesion formation.

Reliability was considered using a rich set of data from the

NAIMS Cooperative.19,23 In the NAIMS pilot study,24 a clinically

and radiologically stable subject was scanned 2 times at each of 7

different sites across the United States. The lesion count was ob-

tained for all 14 scans of this subject, and the coefficient of varia-

tion of the counts was compared with that of lesion load in 2

contexts, to judge the reliability of the proposed measure. In the

fully automated comparison, lesion count had a slightly lower CV

than lesion load. This finding indicates that across repeat scans of

the same brain, automated lesion count is a less variable measure

than automated lesion load. In the manually supplemented com-

parison, lesion count had a slightly higher CV than lesion load,

implying that manually obtained lesion load is a slightly less

variable measure than semiautomated lesion count. On in-

spection, there appeared to be 1 scan in which automated le-

sion segmentation failed, producing an abnormal Hessian

structure within the manually segmented lesion mask. With

this scan removed, the CV of the semiautomated lesion count

dropped to slightly more than half that of the manual lesion

load. This result suggests that when automated lesion-segmen-

tation methods perform as expected, the semiautomated lesion

count is appreciably more reliable than the manual lesion load,

a widely used measure of disease severity.

Clinically, the lesion-count measure appears to be a poten-

tially important addition to commonly used radiologic biomark-

ers for MS. In a model accounting for lesion load and age, lesion

count was highly significantly associated with EDSS. Most inter-

esting, this association was negative, indicating that for subjects

who have similar lesion loads, better outcomes are associated with

more (and smaller) lesions rather than fewer (and larger) lesions.

This finding lends support to the idea that neither the number of
lesions nor the amount of tissue damage alone captures all rele-
vant clinical information and instead suggests that they should
be considered together. One way to conceptualize the combina-
tion of these metrics is average lesion size, which taps into the

degree to which the brain can halt the growth of lesions and

encourage lesional recovery13,25,26 after incidence.
To investigate this concept more directly, we created a mea-

sure of average lesion size by dividing lesion load by lesion count.

Pearson correlations with EDSS were then compared for the 3

biomarkers: lesion load, lesion count, and average lesion size.

These findings provided further support for the combined impor-

tance of lesion load and lesion count, with both showing small and
nonsignificant associations with EDSS. However, average lesion

size showed a significant positive association with EDSS, con-

sistent with the notion that the ability of the brain to slow or stop

lesion growth is clinically relevant. These findings point to the

importance of considering lesion count in MS research and pro-

vide further evidence of the validity of the proposed counting

technique.

A limitation of the current study is the possibility of alternate

explanations of confluence that are not accounted for in the de-

sign of the proposed count. It has been hypothesized that conflu-

ent lesions may occasionally occur as a result of the growth of

older lesions or the expansion of pathologic processes. Future

research should consider the degree to which this technique does

or does not characterize these types of confluence as pathologi-

cally distinct lesions. Additionally, the current analyses do not

account for the possibility of vascular comorbidity, which is a

common and notable occurrence in patients with MS. Future

work should investigate the performance of this algorithm in the

presence of vascular lesions.

The lesion-count method presented in this article has several

appealing features, including its low computational burden and

its easy and flexible implementation. Computationally, the

counting algorithm takes less than a minute to run once proba-

bility maps are obtained. The speed of the full technique varies

depending on the lesion-segmentation method used but took

approximately 25 minutes per subject as presented in this

study. In terms of implementation, this method can be quickly

and easily coded in any program capable of calculating the

Hessian structure of a 3D image, a feature included in most

image-processing packages. It can also be used with any lesion-

segmentation method that yields a probability map; thus, it

may be added to almost any pipeline regardless of the preferred

segmentation algorithm.

CONCLUSIONS
This article introduces a novel and reliable fully automated

method for counting pathologically distinct lesions using images

obtained at a single time point, allowing an accurate reconstruc-

tion of the natural history of lesion formation without longitudi-

nal data. Lesion count was found to be significantly associated

with EDSS, independent of potential confounders such as lesion

load and age, and the results suggest that individuals with more

FIG 3. Scatterplot for the comparison between the criterion stan-
dard count and the connected-components count and the compar-
ison between the criterion standard count and the proposed count.
The diagonal line represents a 1-to-1 relationship, red points represent
the connected-components count, and blue points represent the
proposed count.
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small lesions may have better clinical outcomes than those with

fewer large lesions. This study also demonstrates the importance

of obtaining both lesion count and lesion load by using them to

construct a new MS biomarker, average lesion size, and showing

that average lesion size has a significantly larger association with

EDSS than both lesion load and lesion count. With further study,

this technique and the findings it produces could set the stage for

new lesion-level considerations in research and treatment of MS.
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