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ARTICLE OPEN

Functional brain rewiring and altered cortical stability in
ulcerative colitis
Hao Wang 1,2, Jennifer S. Labus1, Fiona Griffin 1, Arpana Gupta 1, Ravi R. Bhatt 3, Jenny S. Sauk1, Joanna Turkiewicz4,
Charles N. Bernstein5, Jennifer Kornelsen5 and Emeran A. Mayer 1✉

© The Author(s) 2021

Despite recent advances, there is still a major need to better understand the interactions between brain function and chronic gut
inflammation and its clinical implications. Alterations in executive function have previously been identified in several chronic
inflammatory conditions, including inflammatory bowel diseases. Inflammation-associated brain alterations can be captured by
connectome analysis. Here, we used the resting-state fMRI data from 222 participants comprising three groups (ulcerative colitis
(UC), irritable bowel syndrome (IBS), and healthy controls (HC), N= 74 each) to investigate the alterations in functional brain wiring
and cortical stability in UC compared to the two control groups and identify possible correlations of these alterations with clinical
parameters. Globally, UC participants showed increased functional connectivity and decreased modularity compared to IBS and HC
groups. Regionally, UC showed decreased eigenvector centrality in the executive control network (UC < IBS < HC) and increased
eigenvector centrality in the visual network (UC > IBS > HC). UC also showed increased connectivity in dorsal attention,
somatomotor network, and visual networks, and these enhanced subnetwork connectivities were able to distinguish UC
participants from HCs and IBS with high accuracy. Dynamic functional connectome analysis revealed that UC showed enhanced
cortical stability in the medial prefrontal cortex (mPFC), which correlated with severe depression and anxiety-related measures.
None of the observed brain changes were correlated with disease duration. Together, these findings are consistent with
compromised functioning of networks involved in executive function and sensory integration in UC.

Molecular Psychiatry (2022) 27:1792–1804; https://doi.org/10.1038/s41380-021-01421-6

INTRODUCTION
Ulcerative colitis (UC) is an inflammatory bowel disease (IBD)
characterized by chronically recurring episodes of inflammation of
the colon’s mucosal lining followed by variable periods of remission.
Symptoms during flares vary in degree and frequency and include
abdominal pain, fatigue, weight loss, diarrhea, and bloody stools [1].
The pathophysiology of UC is incompletely understood, but current
disease models are restricted to a primary gut-related mechanism,
including an aberrant immune response to shifts in the gut
microbiome in genetically prone individuals [2]. In contrast, irritable
bowel syndrome (IBS) is a disorder of brain-gut interactions that is
characterized by chronically recurring abdominal pain and altered
bowel habits in the absence of gastrointestinal (GI) inflammation
[3, 4]. Both gut disorders often show comorbid symptoms of anxiety
and depression, and symptom flares are often triggered by
psychosocial stress, suggesting that both diseases share dysregula-
tion in the brain-gut axis [4–6].
Despite the presence of recurrent GI mucosal inflammation, UC

patients consistently report less abdominal pain than IBS,
suggesting differences in sensory processing and endogenous
pain modulation [7]. Abnormalities of perceptual responses

between IBS and UC, along with brain imaging studies document-
ing discrepancies in pain modulating brain regions, have
prompted studies investigating differences in the central proces-
sing of chronic visceral pain between the two diseases. Compared
to IBS, UC patients in clinical remission show greater corticolimbic
inhibition associated with reduced perceptual responses to acute
rectal balloon distention [7]. Even though the altered brain
responses were observed in response to an acute aversive rectal
stimulus, one may speculate that these alterations may also play a
role in reduced perception of pain during chronic inflammation.
Consistent with these observations, increased functional connec-
tivity in corticolimbic regions involving the bilateral middle frontal
gyrus, anterior cingulate cortex (ACC), and the left caudate nucleus
has been reported in UC patients with active inflammation [2]. In
addition to differences in brain function, morphometric differ-
ences in the gray matter have also been reported in UC [8]. UC
participants compared to either IBS or HC were found to have a
greater thickness in cingulate cortex subregions and primary
somatosensory cortex but reduced thickness in the orbitofrontal
cortex involved in executive functioning and the posterior insula,
the primary interoceptive cortex [8]. Using diffusion tensor
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imaging (DTI) and graph theory network analyses, we recently
reported white matter connectivity alterations primarily in brain
regions of the visual and somatosensory networks, which were
correlated with clinical symptoms of anxiety and depression in UC
patients compared to IBS and healthy control participants [9].
Further support for alterations in brain function in UC comes

from several studies which have demonstrated a decline in
cognitive function in IBD patients [10–12] and patients with other
chronic inflammatory diseases [13–15]. A recent epidemiological
study demonstrated a significantly increased risk for developing
Alzheimer’s disease (AD) in patients with longstanding UC [11]. The
link between chronic peripheral inflammation and brain alterations
has been attributed to neuroplastic brain changes secondary to
neuroinflammation [14]. Together, these findings suggest that
chronically recurring gut inflammation may alter morphological,
structural, and functional brain features in patients with UC related
to both sensory processing and cognitive function.
In the current study, we hypothesized that a history of recurrent

colon inflammation is associated with extensive changes in the
functional brain connectome, which may explain previously
reported perceptual, emotional [16, 17], and cognitive alterations
in UC patients [10–12]. To test this hypothesis, we assessed the
static and dynamic functional connectome in largely asympto-
matic individuals with a history of intestinal inflammation and
compared them to two control groups without a history of colon
inflammation, with (IBS) without symptoms (HCs). We aimed to
identify alterations in global and local network properties which
may explain differences in clinical symptoms.

METHODS AND MATERIALS
Participants
A total of 222 right-handed individuals participated in the current study,
comprising 74 UC (39 female, median age 30 years, range: 18–60 years;
median disease duration 11 years, range: 1–50 years), 74 IBS (39 female,
median age= 30.5 years, range: 18–57 years; median disease duration: 12
years, range 1–51, and 74 age- and sex-matched HC participants (39 female,
median age= 31 years, range: 18–57 years). Participants were recruited
from the University of California Los Angeles (UCLA), the wider Los Angeles
community, and the University of Manitoba (UM). IBS and HCs were age and
sex-matched to UC. All participants were right-handed. UCLA participants
were recruited through advertisements circulated through online social
media websites, local newspapers, university, and hospital community list
serve and mailing lists, and flyers were posted in the greater Los Angeles
area and on the UCLA campus. The UM participants were recruited through
the UM IBD Research Registry, a population-based registry of individuals in
Manitoba with IBD. Individuals in the Registry agree to be contacted about
research initiatives, but participation is voluntary. All participants provided
written informed consent before the beginning of the experiment. The MRI
imaging data were scanned from July 2010 to April 2018. All procedures
complied with the principles of the Declaration of Helsinki, and all UCLA
participants were approved by the Institutional Review Board at UCLA’s
Office of Protection for Research Participants and UM participants by the
University of Manitoba Health Research Ethics Board.

Exclusion criteria
Exclusion criteria included extreme strenuous exercise (more than 8 h per
week of continuous exercises such as marathon runners or triathlon
athletes), substance abuse or tobacco dependence (smoked half a package
of cigarettes or more daily), current regular use of analgesic drugs
(including narcotics, opioids, and α2-δ ligands), abdominal surgery
(appendectomies, hysterectomies, or cholecystectomies), active corticos-
teroid use, claustrophobia, metal implants, medical or neurological
conditions, and presence of past or current psychiatric disorders, as
determined by the Mini International Neuropsychiatric Interview [18].

Clinical and psychosocial assessments
Demographic, clinical, and psychosocial assessments, including age, sex,
education, and body mass index (BMI) [19], were obtained. UC and IBS
participants were administered the Bowel Symptom Questionnaire (BSQ)

[20], a validated questionnaire assessing self-reported symptom severity of
GI symptoms, bloating, and abdominal pain in the past week on a scale
from 0–20. A score of zero denotes no complaints, and the highest score
refers to severe symptom experience. Other relevant measures include the
age of symptom onset, flare frequency, and how long the patient is usually
symptom-free. The Powell Tuck Index (PTI) score was used to measure
symptom severity in UC participants, with scores increasing with symptom
severity. A PTI < 5 was used as a measure of remission [21]. In addition,
several measures of self-reported symptom severity were assessed,
including the Abdominal Symptom Intensity and Unpleasantness (24 h);
the Visceral Sensitivity Index (VSI) [22], a useful self-report measure of the GI
symptom-specific anxiety of patients; the Perceived Stress Scale (PSS) [23] is
the most widely used psychological tool for measuring stress perception.
Several measures of mood, mental and physical functioning, and

attribution framework were assessed. These included the Pennebaker
Inventory of Limbic Languidness (PILL) questionnaire [24], which was used
to measure general sensory perception, including visceral and somatic
sensations; The State-Trait Anxiety Inventory (STAI) [25], one of the most
frequently used measures of anxiety in applied psychology, is a 20-item
tool with a wider range of scores from 20–80 and scores > 40 were
considered clinical cases (clinical diagnosis of generalized anxiety
disorder); The Hospital Anxiety and Depression Scale (HADS) [26] was used
to assess depression and anxiety in the past week; The 12-item Short-Form
Health Survey (SF12) [27] is a generic health rating scale developed to
reproduce the physical component scores (PCS) and mental component
scores (MCS) of a longer survey, higher values indicate better health.

MRI data acquisition, quality control, and preprocessing
All participants were scanned using a 3 T Siemens Magnetom Trio at UCLA
and 3 T Siemens Magnetom Verio at UM. A high-resolution T1 structural
image was acquired with an MPRAGE sequence (TR: 2200ms, TE: 3.26ms, TA:
5min 12 sec, flip angle: 9˚, slice thickness: 1mm, 176 slices, 256 × 256 voxel
matrix, 1mm voxel size). A 10min resting-state functional connectivity (RSFC)
scan was also acquired (TR: 2000ms, TE: 28ms, TA: 10min 4 sec, flip angle:
77˚, slice thickness: 4mm, voxel resolution: 3.44 × 3.44 × 4mm, the field of
view: 240 × 240mm, 300 volumes). During the data acquisition, participants
were asked to lie quietly in the scanner with their eyes closed. Preprocessing
for all modalities was completed in SPM12 (https://www.fil.ion.ucl.ac.uk/spm/
software/spm12/). Functional images were preprocessed by first performing
transformation from DICOM into NIFTI, realignment and unwarping the data
accounting for motion correction (movement-by-distortion interaction),
followed by slice-time correction for interleaved slice acquisition, co-
registration of structural and functional images using affine registration,
segmentation (bias field correction of SPM ‘s unified segmentation) of the
structural image gray matter, white matter and cerebrospinal fluid (CSF), and
normalization of the images to the MNI152 template with a 4th-degree b-
spline interpolation (2 × 2 × 2mm). All structural images passed quality
control assessment based on compliance with the acquisition protocol, full
brain coverage, minimal motion, absence of Gibbs ringing, absence of flow/
zipper, and minor atrophy/vascular degeneration. Frame-wise displacement
(FD) and mean FD (mFD) were obtained for participant exclusion [28].
Subjects with high levels of motion defined by mFD > 0.55mm were
excluded [29, 30]. There were no differences in mFD or the standard
deviation of FD between the three groups (See Supplementary Fig. S1).
Functional images were then denoised using the CONN toolbox (https://web.
conn-toolbox.org/) in MATLAB R2019a. Principal components analysis, i.e.,
aCompCor [31] was used to derive multiple nuisance signals from white
matter and CSF. Linear regression was applied to remove the effects of noise
components from white matter and cerebrospinal fluid (five principal
components each), estimated subject-motion parameters, the effect of rest,
and root-mean-square (RMS) values. A temporal band-pass filter between
0.01–0.08 Hz after regression was used to minimize the influence of
physiological, head motion, and other noise sources. The CONN toolbox
uses SPMs Fast-Fourier Transformation for band-pass filtering. The denoised
images were used for subsequent network analyses. No smoothing was
applied to the data.

Analysis workflow overview
Figure 1 depicts the analysis pipeline. We applied graph theory to
construct and compare functional brain networks among three age- and
sex-matched groups (HC, IBS, UC). First, we constructed static functional
brain networks for each participant and examined group differences in the
global and regional network topology. Next, network-based statistics were
applied to identify subnetworks within the larger network that show group
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differences. We then assessed the utility of using the mean pairwise
connectivity from the discriminative brain subnetworks for predicting
participant diagnosis. Finally, dynamic functional analysis was used to
assess group differences in cortical stability and investigate the correlation
between altered cortical stability and clinical scores (Fig. 1).

Static functional connectome
Regions of interest were defined by the Schaefer (17 networks, 400 parcels, 2
mm) atlas [32]. The connectivity between the regions was calculated by
computing the Pearson correlation between average BOLD time series
signals across all voxels within each region. This resulted in a 400 × 400 RSFC
matrix for each participant, where regions represent the nodes of the
network, and the correlations reflect the weighted edges linking the network
nodes. This weighted connectivity matrix was thresholded to suppress
negative or anti-correlation to zero. Next, each participant’s brain network’s
backbone structure was extracted by using Primm’s minimal spanning tree
algorithm [33] to keep the graph fully connected, with no isolated nodes.
Given the interest in the strongest connections, the matrix weights (i.e.,
correlations) were inverted, and a maximum spanning tree approach was
applied, resulting in a binarized (unweighted) functional matrix comprising
400 nodes and 399 edges. Then, additional edges were added in descending
order based on their weight (i.e., correlation) until 10% sparsity was achieved
[34]. As a final step, this binarized network matrix is multiplied by the original
weighted connectivity network to obtain a weighted connectivity matrix with
10% sparsity, a network with 400 regions, and 7980 connections. These
subject-specific matrices were then used to examine group differences in
global and regional functional network topology.

Computation of global and regional network topology. To identify the
differences in global functional connectivity, the mean functional
connectivity (i.e., mean value across all edges within the network) was
computed for each participant. To determine the differences in brain
connectivity distances among the three groups, the edges were
categorized as short-range (anatomical distance ≤ 45mm), middle-range
(45mm < anatomical distance < 75mm), and long-range (anatomical
distance ≥ 75mm) connections [35]. The proportion of short-, middle-, and
long-range connections was then calculated for each participant. Next, the
global efficiency and network modularity reflecting the functional

integration and segmentation of the network were calculated. Global
efficiency denotes the efficiency of information exchange in a parallel
system in which all nodes are capable of concurrently exchanging
information. Modularity quantifies the capacity of the network to separate
into modules or subsystems. High modularity implies dense connections
within modules and sparser connections between modules, while
decreased modularity indicates a decreased number of edges within
modules and a greater number of edges across different modules [36]. The
modularity was calculated using the Newman algorithm [37]. At the
regional level, we calculated the nodal eigenvector centrality, which
measures the quantity and quality of a node’s connections and accounts
for both the degree of the given node and the degree of its neighbors.
Computation of network metrics was performed using the Brain
Connectivity Toolbox [38] (RRID: SCR_004841).

Network-based statistic (NBS). This approach was applied to identify
subnetworks or clusters of regions showing differential connections within
the larger network that show group differences [39]. Briefly, the network
edges (i.e., pairwise connectivity between regions) from the weighted
unthresholded connectivity matrix were compared between groups using the
two-sample t-test resulting in a matrix of t statistics. The t matrix was then
thresholded at P< 0.0001, resulting in a set of suprathreshold edges. NBS was
then applied to identify the number of supra-thresholded edges that form
connected components (i.e., subnetworks in which all pairs of nodes are
connected by paths or edges) and determine their size (i.e., number of links).
Permutation testing with 10,000 random iterations was used to determine the
significance of the identified subnetworks based on their size. Here, P
adjusted < 0.01 (based on the Permutation test) was used to determine the
significance of the subnetworks. For the NBS, the null hypothesis is always
rejected at the component level, not at the edge level. Strictly speaking, it is
only valid to make inferences about the connected components (subnetwork)
as a whole. The NBS analysis was performed by the GRETNA toolbox [40]
(RRID: SCR_009487). All statistical analyses were performed in the MATLAB
R2019a toolbox. Visualization of brain results was performed using a network
surface representation from BrainNet Viewer [41] (RRID: SCR_009446).

Predictive modeling. Predictive modeling using logistic regression was
applied to further investigate the significant group differences in the
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Fig. 1 Workflow and overview of analysis in current study. Graph theory was applied to construct and compare functional brain networks. a
Three age- and sex-matched groups (74 HC, 74 IBS, and 74 UC). b Demographic, clinical, and psychosocial assessments were obtained, and
statistical analysis was applied to detect the differences among three groups in the measures. c Static functional brain network was
constructed for each participant, and analysis of covariance (ANCOVA) was applied to examine group differences in the global and regional
network topology. Correlation analysis to link the abnormal topological features with each other and clinical scores in UC. The network-based
statistic was applied to identify subnetworks within the larger network that show group differences. d Dynamic functional analysis was
computed using the intraclass correlation coefficient using 120 sliding windows (sliding-window length of 62 repetition times (TR) and 2 TR
steps) to assess group differences in cortical stability and investigate the correlation between altered cortical stability and clinical scores in UC.
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subnetworks (UC < HC, UC > HC, UC > IBS). First, a subject-specific subnet-
work connectivity index was derived by computing the mean functional
connectivity of the identified subnetworks showing group differences.
Next logistic regression (MATLAB R2019a, Classification Learner App, the
built-in function: fitglm) was used to determine whether the derive mean
subnetwork connectivity indices could discriminate between the UC and
IBS or UC and HC. Five-fold cross-validation was used to decide the validity
of the model. Specifically, the data was split into five subsets of roughly
equal size, randomly chosen. One subset of the data is used to validate/test
the model, which is trained using the remaining four subsets. Each subset
is validated exactly once, as this process is repeated five times. The
predictive accuracy and the area under the receiver operating character-
istic (ROC) curve were reported.

Dynamic functional connectome
The functional connectome is not static but instead evolves over time. To
further evaluate the dynamic characteristic of the functional connectome
across time, a sliding-window approach was applied to construct a
dynamic functional connectome for each participant [42]. A sliding-
window length of 62 TR and 2 TR steps were selected, yielding 120-time
windows for each subject. For each time window, the connectivity
between the regions was calculated by computing the Pearson correlation
between average BOLD time series signals across all voxels within each
region, yielding 120 subject-specific functional connectivity networks
represented in dynamic functional connectivity matrix (i.e., = 400 × 400 ×
120) for each participant. Next, for each subject, cortical stability for each
region with other regions’ connection across the 120-time windows was
computed by the intraclass correlation across (ICC) [43]. See Fig. 1d for
details. Cortical stability reflects the variability of functional connectivity or
inflexibility, and higher stability indicates lower variability of functional
connectivity and lower flexibility.

Statistical analysis
Group differences. All demographic, clinical, and symptom scores were
examined with the nonparametric Kruskal–Wallis test. Categorical data
were analyzed with a chi-square test. Group differences in global and
regional functional network topology derived from static functional
connectivity analysis and the ICC value from the dynamic functional
connectome analysis were determined using analysis of covariance
(ANCOVA) was performed to control the age and sex as confounding
factors. NBS analysis was used to identify subnetworks within the larger
network that show group differences. As described previously (see section
Predictive modeling), logistic regression was used to determine how well
the mean functional connectivity of pairwise associations comprising the
identified subnetworks could classify/discriminate UC vs. IBS and UC vs. HC.
False discovery rate (FDR) correction was performed for multiple
comparisons using a 5 percent false discovery rate, i.e., q < 0.05.

Association between network metrics and clinical scores. Across all groups,
partial correlation analysis, controlling age and sex, was performed to
detect the association between significantly altered network parameters
[i.e., global (connected distance and modularity), regional (eigenvector
centrality) metrics, cortical stability, and the subnetwork connectivity index
scores based on the NBS analysis. For the UC group, the association of
these network parameters with mood and psychosocial measures (i.e., PILL,
PSS, VSI, HADS, STAI, SF12) was computed. A 5% FDR correction was
applied to determine the significance within each network parameter.

Sensitivity analysis. The effect of motion on resting-state fMRI can be
attenuated by regression motion parameters but not completely removed
[29, 44, 45]. Therefore, to examine the effect of head motion on the
robustness of our results, we included mean FD as a covariate in models
examining group differences in the distance metrics (i.e., short-, middle-,
and long-range connections) and correlations between cortical stability of
the mPFC with clinical measures. These analyses indicated the results were
robust to the inclusion of this covariate. Details and results from these
analyses are present in Supplementary Fig. S2, Supplementary Tables S1–2.

RESULTS
Demographic and clinical characteristics
The median disease duration in UC was 11 years (range 1–50
years) and in IBS 12 years (range 1–51). Nineteen IBS participants

were constipation-predominant, 32 were diarrhea-predominant,
and the remaining 23 participants experienced mixed constipa-
tion and diarrhea. In UC, 23% had pancolitis, 5% had subtotal
colitis, 32% had left-sided, 21% had rectal or rectosigmoid disease,
and in the remaining 19%, the information was not available. Of
the UC participants, 14 were on immunosuppressive therapies (10
on thiopurines, 6 on anti-TNF). Of the six participants on anti-TNF,
two were also on thiopurines. Thus, a total of 14 participants were
on various forms of immunosuppressive therapy). 43 participants
were on anti-inflammatory medications (mesalamine or steroids)
without additional immunosuppressive meds. The remaining 17
participants were analgesic, herbal meds, or other. All UC
participants had a history of steroid use, but none were on
steroids at the time of enrollment or during the study. Seventeen
UC participants were taking analgesics, compared to seven IBS
participants. The median PTI score was three for UC participants
(range 0–11). No differences in age or BMI were observed among
UC, IBS, and HCs. Kruskal–Wallis tests revealed significant
differences in symptoms and clinical scores among the three
groups (all P-values < 10−5). Compared to IBS, UC participants
reported lower intensity and unpleasantness of symptoms during
the past 24 h, and lower state and trait anxiety (all P-values < 0.05),
as well as higher (improved) mental component scores on the
SF12 (P= 0.004). Overall, the UC and IBS groups show more severe
symptoms than HC, see Table 1 for details.

Global topological organization of the functional connectome
ANCOVA and post-hoc tests revealed that UC participants showed
higher global functional connectivity strength than both the IBS
(P= 0.0005, Cohen’s d= 0.617) and HC groups (P= 0.036, Cohen’s
d= 0.373), while no difference was observed between HC and IBS
participants. No significant group differences were observed for
Global Efficiency. Analysis of network modularity showed a
significant effect among the three groups (F= 5.846, P= 0.003),
and post-hoc analysis showed UC participants had significantly
lower modularity compared with both IBS (P= 0.007, Cohen’s d=
0.480) and HC (P= 0.015, Cohen’s d= 0.445) groups (Fig. 2). UC
participants exhibited a significantly decreased proportion of
short-range connections (P= 0.016, Cohen’s d= 0.449) and an
increased proportion of middle-range connections (P= 0.007,
Cohen’s d= 0.536) compared with IBS, while no significant
differences were observed for long-range connections (Fig. 2e-
g). See Supplementary Table S3 for details. Correlation analysis
across all participants indicated that the proportion of long-range
distance was negatively correlated with the proportion of short-
range (r=−0.835, P < 10−6) and middle-range distances (r=
−0.486, P < 10−6), see Fig. 2h-j.

Regional topological organization of the functional
connectome
Nine brain regions showed a significant main effect for group on
nodal eigenvector centrality (all raw P-values < 0.001, FDR-
corrected, q < 0.05). These regions were primarily located in the
salience/ventral attention (orbitofrontal cortex), visual (superior
and inferior peripheral extrastriate), and executive control (lateral
ventral and lateral dorsal prefrontal cortex) networks (Table 2).
Post-hoc comparations revealed that eigenvector centrality
showed an increasing pattern (FDR-corrected, q < 0.05) from HC
to IBS to UC in the visual network (HC < IBS < UC) and a decreasing
pattern (HC > IBS > UC) in salience/ventral attention and control
networks. No significant correlation between eigenvector central-
ity and clinical characteristics within these nine brain regions was
observed (Fig. 3).

Subnetworks differences
Network-based statistics identified two subnetworks that differed
between UC and HC participants. (Fig. 4a-d). One subnetwork (UC
< HC) was comprised primarily of default mode network, dorsal
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attention, salience ventral attention, and control network and was
less connected (i.e., disconnected) in the UC compared with the
HC group. The second subnetwork (UC > HC) was comprised
mainly of somatomotor and attention network regions. This
‘somatomotor-dorsal attention’ network was more connected in
the UC compared to the HC group [P < 0.01, corrected] (Fig. 5a-d).
For the comparison of UC and IBS, one subnetwork, comprised
primarily somatomotor, dorsal attention, and visual networks, was
identified and was more connected in UC compared to IBS [P <
0.01, corrected] (Fig. 6a-d). No significant subnetwork differences
were identified between the IBS and HC groups.

Average subnetwork connectivity indices predict diagnostic
status
Logistic regression indicated that the average functional con-
nectivity of the identified NBS-identified subnetworks distin-
guished UC participants from HC and UC from IBS. As shown in
Fig. 4, the mean functional connectivity of the ‘default mode’
subnetwork discriminated UC from HC with an accuracy of 77%
(AUC= 0.83). The average connectivity of the somatomotor-
attention subnetwork discriminated the UC group from the HCs
with an accuracy of 88% (AUC= 0.88, Fig. 5). Finally, the mean
connectivity of the somatomotor-dorsal attention-visual subnet-
work predicted UC or IBS status with an accuracy of 86% (AUC=
0.92, Fig. 6).

Dynamic functional connectivity analysis reveals alterations in
cortical stability
ANCOVA analysis revealed a significant effect for the left mPFC (L-
DefaultA-PFCm-1) regions (MNI coordinate: x=−5, y= 55, z=−10;
F(2217) = 10.395, P= 4.89 × 10−5) and post-hoc tests revealed that
the HC group showed lower cortical stability than the IBS (P= 0.020,
delta=−0.045) and UC groups (P= 1.58 × 10−5, delta=−0.077).
Overall, the mPFC exhibited an increasing trend of cortical stability
across three groups (HC < IBS < UC).

Association among network parameters
Correlation analysis controlling for sex and age indicated that the
proportion of short-range connections was positively associated
with modularity (r(220) = 0.270, P= 3 × 10−5), with age and sex as
covariates. The modularity was negatively correlated with the
proportion of middle-range connections (r(220) = −0.191, P=
0.005) and long-range connections (r(220) = −0.130, P= 0.053).
The latter correlation did not survive FDR correction. Several
subnetworks were correlated with the cortical stability of the left
mPFC. The UC < HC subnetwork was negatively correlated with
the cortical stability of left mPFC (r(72) = −0.463, P= 0.00004), the
enhanced subnetwork UC > HC was positively correlated with
the cortical stability of left mPFC (r(72) = 0.340, P= 0.0003), and the
enhanced subnetwork UC > IBS was positively correlated with the
cortical stability of left mPFC (r(72) = 0.285, P= 0.015).

Clinical correlates of network parameters
Dynamic functional connectome analysis revealed that increases
in the cortical stability of left mPFC in UC group were significantly
correlated with increased perceived stress (r(72) = 0.316, P=
0.009), depression (r(72) = 0.333, P= 0.013), STAI state- (r(72) =
0.281, P= 0.017) and trait anxiety (r(72) = 0.377, P= 0.002), and
lower scores on the SF-12 mental component (r(72) = −0.403, P=
6 × 10−4). All p-values survived after FDR-corrected (q < 0.05), see
Fig. 7 for details.
For UC participants, no statistically significant correlations

between disease duration and mean functional connectivity (FC),
global efficiency, and modularity Q were observed at the global
level or with the nine nodal eigenvector centrality values at the
nodal level. In addition, no significant correlations between disease
duration were identified for the left DefaultA-PFCm-1 (mPFC)
cortical stability (results show in Supplementary Fig. S3). In addition,
we performed the same analysis for IBS participants, which also did
not reveal any significant correlations at the global, nodal, and
cortical stability levels (shown in Supplementary Fig. S4).

Table 1. Demographic and clinical characteristics.

Parameter HC participants (n= 74) IBS participants (n= 74) UC participants (n= 74) P-value

Age(y) 31(18–57) 30.5(18–57) 30(18–60) 0.944

Sex 1

No. of men 35 35 35

No. of women 39 39 39

BMI 25(19.05–43.59) 23.45(16.29–36.62) 23.80(16.90–37.70) 0.171

Disease duration NaN 12(1–51) 11(1–50) 0.593

Abdominal symptom intensity 24 h 0(0–5) 9(1–17) 4(0–14) < 10−11*†‡

Abdominal symptom unpleasantness 24 h 0(0–4) 7.5(0–14) 3(0–13) < 10−11*†‡

PILL score 3.5(0–21) 14(3–37) 12(1–32) < 10−13*†

PSS score 9(0–23) 18(1–32) 14(0–29) < 10−8*†

PTI score NaN NaN 3(0–11)

VSI score 0(0–17) 35.5(2–74) 25(0–59) < 10−27*†

HADS anxiety 3(0–13) 7(0–16) 6(1–13) < 10−10*†

HADS depression 0(0–14) 2(0–11) 2(0–13) < 10−7*†

STAI state anxiety 40(34–70) 49.5(35–70) 43.5(34–74) < 10−5*†‡

STAI trait anxiety 42(33–71) 57(36–82) 47(33–70) < 10−8*†‡

SF12 MCS 55.33(38.46–60.92) 44.57(16.16–58.27) 52.70(23.28–61.57) < 10−7*†‡

SF12 PCS 56.42(46.42–61.98) 52.56(28.33–61.40) 52.81(24.46–65.40) < 10−8*†

Table 1 Legend. Unless otherwise indicated, data are median values with ranges (minimum to maximum values) in parentheses. We performed the
nonparametric test as values were not normally distributed in at least one group (according to the Lilliefors test). The sex differences were analyzed with the
chi-squared test. Other statistical comparisons were performed with Kruskal–Wallis test.
*Post-hoc comparisons indicated significant differences between the HC group and patients with IBS.
†Post-hoc comparisons indicated significant differences between the HC group and patients with UC.
‡Post-hoc comparisons showed significant differences between patients with UC and those with IBS.
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To determine possible differences in medication usage for
brain findings, we performed an ANCOVA, controlling for age
and sex, to compare the differences in brain cortical network
changes among these three treatment groups (immunosup-
pressive, anti-inflammatory, and other), including global and
nodal properties, and cortical stability. Statistically significant
group differences (F(269) = 5.578, P= 0.006) were found
for global efficiency. As shown in Supplementary Fig. S5A,
post-hoc tests revealed that the anti-inflammatory group had
lower global efficiency when compared both with the immu-
nosuppressive group (P= 0.038) and with the group neither
on immunosuppressive nor anti-inflammatory medications
(P= 0.015). No statistically significant differences in mean FC
and modularity (Supplementary Fig. S5B-C) were found. For the
nodal level and cortical stability, no statistically significant
differences were observed (all P values > 0.05).
Results from correlation analysis between anxiety and depres-

sion scores and other network parameters (including the global

and regional topological organization, connectivity distance, and
subnetwork connectivity index) for the UC group did not survive
after FDR correction (results shown in Supplementary Materials).

DISCUSSION
This study aimed to test the general hypothesis that a long-
standing history of recurrent gut inflammation is associated with
extensive changes in the functional brain connectome affecting
sensory, emotional, and cognitive function. Confirming our
hypothesis, we found converging evidence from several different
analyses of alterations in the functional networks linked to
executive functioning, including the control network involved in
high-level cognitive processing and the dorsal attention and
salience/ventral attention involved in goal-directed executive
control processes and salience evaluations [46]. These changes,
which were not related to disease duration, included greater
global resting-state FC, lowered modularity, reduction of
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short-range brain coupled with increased middle-range connec-
tions, and decreased eigenvector centrality in executive control
regions. Additionally, network-based statistics revealed differences
in default mode network and somatomotor-dorsal attention
subnetworks in UC compared to HC, and a somatomotor-dorsal
attention-visual subnetwork in UC compared to IBS. These findings
expand our knowledge about the effect of chronic systemic

inflammation on the brain and cognitive function, in particular
regions of the executive control and somatomotor networks
[47–49].
Greater global functional connectivity. UC participants exhibited

higher global functional connectivity strength compared to both
control groups, consistent with altered whole-brain network
structures found in chronic pain, several neurological diseases,

Table 2. Nine brain regions show differences in nodal eigenvector centrality.

MNI centroid
coordinates

Name of Schaefer-400 parcellation Subnetworks ANCOVA

x y z HC IBS UC P value F

−48 35 10 L-ContA-PFClv-1 Control 0.033 0.023 0.015 0.00046† 7.964

−42 38 22 L-ContA-PFClv-2 Control 0.036 0.021 0.018 0.00039*† 8.156

39 33 38 R-ContB-PFCld-1 Control 0.041 0.023 0.018 0.00003*† 11.093

34 15 56 R-ContB-PFCld-4 Control 0.048 0.029 0.026 0.00048*† 7.914

27 59 3 R-ContB-PFClv-4 Control 0.039 0.023 0.020 0.00076*† 7.424

−14 −57 1 L-VisPeri-ExStrInf-5 Visual 0.033 0.054 0.067 0.00003*† 10.776

18 −45 −3 R-VisPeri-ExStrInf-5 Visual 0.035 0.052 0.064 0.00034*† 8.283

16 −66 19 R-VisPeri-ExStrSup-1 Visual 0.039 0.052 0.065 0.00091† 7.230

−27 49 −14 L-SalVentAttnB-OFC-1 Salience/ ventral attention 0.012 0.009 0.004 0.00106† 7.073

Table 2 Legend. Nine regions in the control [Cont], visual [Vis], and salience/ventral attention [Sal/VentAttn] network showed significant differences in nodal
eigenvector centrality. For the control network, a pattern of HC > IBS > UC was observed, while for the visual network, the observed pattern was HC < IBS < UC.
Also, see Fig. 3 for illustration.
*Post-hoc comparisons indicated significant differences between HC and IBS group.
†Post-hoc comparisons indicated significant differences between HC and UC group.
Abbreviations: PFClv Lateral ventral prefrontal cortex; PFCld Lateral dorsal prefrontal cortex; ExStrInf Inferior peripheral extrastriate; ExStrSup Superior peripheral
extrastriate; OFC Orbitofrontal cortex; MNI Montreal Neurological Institute; UC Ulcerative colitis; IBS Irritable bowel syndrome; HC Healthy controls; L Left
hemisphere; R Right hemisphere.
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and disorders associated with abnormal sensory processing of
pain, information processing, and transmission between brain
networks [50–52].
UC participants show alteration in functional brain wiring and

modularity. Functional brain rewiring refers to the reconfiguration
or plasticity of the brain on a global scale in response to a disease
state. Previous brain mapping studies have suggested abnormal
brain wiring is associated with high-cost brain components in
neurological disorders, like mild cognitive impairment [35] and
global network reconfiguration as a result of a disease’s state [53].
In comparison to IBS and HC groups, UC participants exhibited
reduced short-range connections and increased middle-range
connections. Neural connections in the brain impose metabolic
energy costs such as wiring and oxidative stress, with long
distance connections requiring more energy to sustain and higher
metabolically expensive networks more susceptible to disruption
[54]. Our findings suggest that the functional brain wiring of UC
participants is less efficient, implying that it may require a higher
metabolic cost compared to the two control groups. Moreover, we
observed that alterations in short- and middle-range connections
were associated with increased anxiety scores, suggesting a
possible link between alterations in functional brain wiring in UC
with psychological symptoms.
The brain’s capacity to separate into subnetworks is represented

by modularity. Modularity quantifies the extent of subnetwork (or
module) division and is an index of cognitive flexibility and neural
plasticity [55]. Modular network organization is disrupted in both
healthy older individuals and individuals with executive function-
ing deficits, including cognitive control, attention, and working
memory deficits [56–62]. In the current study, UC participants

showed significantly lower modularity compared to IBS and HCs.
Furthermore, lower modularity was associated with the proportion
of short and middle-range connections, suggesting the lower
modularity in UC may be driven by the observed differences in
functional wiring distances. Together with the link between
altered connectivity distance and anxiety, these results suggest
that alterations in the proportion of connectivity distance
and modularity are associated and may underlie anxiety
symptoms in UC.
Reduction in eigenvector centrality in the executive control

network regions. To further explore the regional changes among
the three groups, we examined the degree of intraregional brain
activity between UC, IBS, and HC groups. Brain regions that are
more trafficked are identified as nodes with higher values of
centrality, while a reduction in the share of network traffic in a
particular brain region is indicated by a lowered eigenvector
centrality [63]. Assessing the relative connectedness of brain
regions accounts for the influence of the measured node on
neighboring regions, a property referred to as eigenvector
centrality [64]. UC participants showed decreased eigenvector
centrality in five regions within the executive control network (HC
> IBS > UC), suggesting less traffic within the executive control
network. These alterations could represent functional topographi-
cal evidence of the reduction in executive functioning, which has
been reported in patients with IBD [2], chronic pain [65], and other
chronic inflammatory conditions [49, 66]
Reduced flexibility of mPFC. The human ability to flexibly

alternate between tasks is a central component of cognitive
control. Cognitive flexibility [67, 68] has been identified as a
complex interaction of several mechanisms integrating task
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demands and sensorimotor aspects and is believed to originate
partly from alterations in networks involving both medial and
lateral PFC [69–71]. Cognitive flexibility is anticorrelated with
cortical stability, a measure of FC variability. In this study, the UC
group exhibited greater cortical stability (e.g., lower flexibility)
in the medial PFC, and this was significantly associated with a
lower modularity index in this sample. Medial PFC plays a
crucial inhibitory role in affective brain regions, and mPFC
dysfunction has been identified in affective disorders [72–74].
This is consistent with the current findings that showed that the
lower cortical flexibility of the mPFC in UC was significantly
correlated with increased State-Trait Anxiety Inventory (STAI)
state- and trait anxiety, depression, and a worse mental
component score in UC.

Subnetwork differences in UC
Compared to HCs, the UC group showed reduced connection
strength between a default mode subnetwork with the dorsal
attention, salience/ventral attention, executive control networks, a
finding also observed in patients with mild cognitive impairment
[35], AD patients [75], and cognitively normal elderly with elevated
brain amyloid [76]. In early AD, resting-state functional connectiv-
ity of the precuneus (a key region of the default mode network)
with the visual cortex was significantly increased [77, 78]. In
addition to findings in AD, disruptions in the functioning of the
default mode network have previously been reported in patients
with chronic pain conditions, including chronic back pain,
complex regional pain syndrome, and knee osteoarthritis, all of
which show decreased connectivity of the PFC to subnetworks of

the DMN [79]. In IBD, changes in the default mode network have
been implicated in the altered processing of homeostatic stimuli
and emotional stimuli [80–82].
UC participants also showed enhanced connections between

the dorsal attention and somatomotor subnetwork, compared to
HCs, and these enhanced subnetwork connections (UC > HC and
UC > IBS) were associated with the reduced flexibility of left mPFC
in the UC group. The link between the lower cortical flexibility of
left mPFC and enhanced subnetwork connectivity (dorsal atten-
tion and somatomotor) may reflect a reduced ability to disengage
from hypervigilance to somatic sensations in UC compared to IBS
and HC. Converging evidence suggests that the enhanced FC
between attentional and somatomotor networks observed in the
current study in UC participants has also been associated with
aging [83].
The current study demonstrates enhanced FC among somato-

motor, dorsal attention, and visual networks. UC participants also
displayed a greater eigenvector centrality in three regions within
the visual network (UC > IBS > HC), representing enhanced regio-
nal interactions in the visual network and cortical areas. This
finding is consistent with previous studies showing structural and
functional alterations in the visual network in individuals with
chronic inflammation [84–86], including IBD [87], and in patients
with chronic pain symptoms, including migraine and chronic low
back pain [85]. In addition, an increased visual cortical activation
was found in a cognitive decline group in a task fMRI study [88].
Even though the precise role of alterations in the visual network in
chronic pain, inflammation, and cognitive function remains to be
determined, currently available data suggest it is part of an
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Fig. 5 Significant increased connected component in UC group compared with HC group. a The circular plot showing the connected brain
regions by the network, different networks were colored by different colors and b Surface plot of the increased connected component in UC
compared to HC, revealed by NBS analysis. c Number of network-to-network connections of the increased connected component, there are 67
edges between the somatomotor and dorsal attention regions, there are 24 edges within the DMN regions. d Increased connected
component mainly includes 39 somatomotor regions and 32 dorsal attention regions. Vis: visual; som: somatomotor; dor: dorsal attention; s/v.att:
salience/ventral attention; lim: limbic; con: control; def: default; tem: temporal parietal. e The logistic regression reveals good performance in
distinguishing the UC group from the HC group using the increased connected component, ROC curve (AUC= 0.88), TPR True-positive rate;
FPR False-positive rate. f The confusion matrix and classification accuracy: 0.818, TPR True-positive rate; FNR False-negative rate. HC Healthy
control; UC Ulcerative colitis.

H. Wang et al.

1800

Molecular Psychiatry (2022) 27:1792 – 1804



0.2

0.4

0.6

0.8

C
or

tic
al

 s
ta

bi
lit

y 
L-

D
ef

au
ltA

-P
F

C
m

-1
U

C
 C

or
tic

al
 s

ta
bi

lit
y 

L-
D

ef
au

ltA
-P

F
C

m
-1

0 10 20 30

PSS-Score

0.2

0.4

0.6

0.8

r = 0.316  
P = 0.008589

0 5 10 15

HAD-Depression

0.2

0.4

0.6

0.8

r = 0.333  
P = 0.012914

40 50 60 70

STAI-S Anxiety

0.2

0.4

0.6

0.8

r = 0.281  
P = 0.016646

40 50 60 70

STAI-T Anxiety

0.2

0.4

0.6

0.8

r = 0.377  
P = 0.001675

30 40 50 60

SF12-MCS

0.2

0.4

0.6

0.8

r = -0.403  
P = 0.000598

HC IBS UC

a b c

d e f

* ***

Fig. 7 Significant altered cortical stability and correlation with clinical scores. a The UC group shows increased cortical stability in left
DefaultA-PFCm-1 (mPFC) compared to HC and IBS group. b These changes in UC are correlated with PSS-Score (r= 0.316), c with HAD-
Depression (r= 0.333), d with SATI-S Anxiety (r= 0.281), e with SATI-T Anxiety (r= 0.377), f with SF12-MCS (r=−0.403). Dashed lines are linear
fits, solid lines are local polynomial regression fits (LOESS fits), yellow color indicates positive correlation; purple color indicates negative
correlation. PSS Perceived Stress Scale; HAD Hospital Anxiety and Depression Scale; STAI State-Trait Anxiety Inventory; SF12 12-item Short-
Form Health Survey; *P < 0.05; **P < 0.01; ***P < 0.005.

vis
som

dor
s/v.att

lim
con

def
tem

vis
som

dor
s/v.att

lim
con

def
tem

UC > IBSa b

dc

L-
Vi
sC
en
t-E
xS
tr-
9

L-
Vi
sC
en
t-E
xS
tr-
3

R
-V
is
Pe
ri-
Ex
St
rS
up
-2

R
-V
is
C
en
t-S
tri
at
e-
1

R
-V
is
Pe
ri-
Ex
St
rIn
f-3

R
-V
is
Pe
ri-
Ex
St
rIn
f-2

L-
Vi
sP
er
i-E
xS
trI
nf
-4

L-
Vi
sP
er
i-E
xS
trI
nf
-5

L-
Vi
sP
er
i-E
xS
trS
up
-4

L-
Vi
sP
er
i-E
xS
trS
up
-5

L-
Vi
sP
er
i-E
xS
trS
up
-3

R-
Vi
sP
er
i-E
xS
trS
up
-1

L-
Vi
sP
er
i-S
triC
al-
1

R-
Vi
sP
er
i-S
triC
al-
1

L-V
isC
en
t-E
xS
tr-
10

L-V
isP
eri
-E
xS
trIn
f-2

R-
Vis
Pe
ri-E
xS
trIn
f-4

L-V
isP
eri
-Ex
Str
Su
p-1

L-V
isP
eri
-St
riC
al-
2

R-V
isP
eri-
ExS
trIn
f-5

R-V
isP
eri-
Str
iCa
l-2

L-S
omM

otA
-15

R-S
omM

otA-
13

L-So
mMo

tA-13

L-So
mMo

tB-Ce
nt-4

R-Som
MotA-

3

L-Som
MotA-1

6

L-SomM
otA-14

L-SomMotA
-19

R-SomMotA-10

L-SomMotA-1
R-SomMotA-17
R-SomMotA-19
R-SomMotA-6L-SomMotB-Cent-5L-SomMotA-2R-SomMotA-15R-SomMotB-Aud-2

R-SomMotB-S2-3
R-SomMotA-14
L-SomMotA-9
R-SomMotA-9
R-SomMotB-S2-8

R-SomMotB-Cent-3

L-SomMotA-7

L-SomMotB-Aud-3

R-SomMotA-8

R-SomMotA-1

R-SomMotB-Aud-1

L-SomMotB-Aud-1

L-DorsAttnA-SPL-6

L-DorsAttnB-PostC-7

L-DorsAttnB-PrCv-1

L-DorsAttnB-PostC-1

L-DorsAttnB-FEF-2

L-DorsAttnA-Tem
pO
cc-1

L-DorsAttnB-PostC-9

R
-D
orsAttnB-PostC

-8

R
-D
orsAttnB-PostC

-3

R
-D
orsAttnB-PostC

-6

R
-D
orsAttnB-FEF-1

L-D
orsAttnA-ParO

cc-1

L-D
orsAttnA-SPL-4

R
-D
or
sA
ttn
A-
Te
m
pO
cc
-1

R
-D
or
sA
ttn
A-
Pa
rO
cc
-3

R
-D
or
sA
ttn
B-
Po
st
C
-1

R
-D
or
sA
ttn
A-
SP
L-
1

L-
D
or
sA
ttn
A-
Pa
rO
cc
-2

R
-D
or
sA
ttn
A-
Te
m
pO
cc
-2

L-
D
or
sA
ttn
B-
FE
F-
3

L-
Do
rs
At
tn
A-
Te
m
pO
cc
-3

L-
Do
rs
At
tn
B-
Po
st
C-
6

R-
Do
rs
At
tn
B-
Po
st
C-
5

R-
Do
rs
At
tn
B-
Po
st
C-
7

R-
Do
rs
At
tn
A-
SP
L-
2

R-
Do
rs
At
tn
B-
Te
m
pO
cc
-1

R-
Do
rsA
ttn
A-
SP
L-
6

L-
Do
rsA
ttn
B-
Po
stC
-8

R-
Do
rsA
ttn
A-
SP
L-5

R-
Sa
lVe
ntA
ttn
A-
FrM
ed
-3

R-
Sa
lVe
ntA
ttn
A-P
arM
ed
-3

L-S
alV
en
tAt
tnA
-Fr
Me
d-1

L-S
alV
ent
Att
nB
-OF
C-1

L-S
alV
ent
Attn
A-F
rMe
d-3

R-S
alV
ent
Attn

B-P
FCm

p-2

L-S
alVe

ntA
ttnA

-Pa
rOp
er-2

R-S
alVe

ntAt
tnB-

PFC
lv-1L-Lim

bicA-
Temp

Pole-
6

L-Lim
bicA-T

empP
ole-7L-Limb

icB-OF
C-2

R-ContC-pC
un-4

L-ContB-PFClv-2
R-ContC-Cingp-2
L-ContB-Temp-1
L-ContC-pCun-3

R-ContA-PFCl-1

R-ContA-PFCl-2

L-ContB-Temp-2

R-ContB-PFCld-3

L-ContB-PFClv-1

R-ContB-PFClv-2

L-ContA-IPS-4

R-ContA-IPS-4

R-DefaultA-pCunPCC-5

L-DefaultA-PFCd-2

L-DefaultA-pCunPCC-6

L-DefaultA-pCunPCC-7

L-DefaultA-IPL-2

L-DefaultC-PHC-2

L-DefaultA-pCunPCC-5

L-DefaultB-Temp-2

L-DefaultA-PFCd-3

L-DefaultA-PFCm-1

L-DefaultB-PFCv-3

R-DefaultB-AntTem
p-1

L-DefaultB-Tem
p-5

R-Tem
pPar-10

L-Tem
pPar-5

L-Tem
pPar-6

R
-Tem

pPar-1
R
-Tem

pPar-5
L-Tem

pPar-4
R
-Tem

pPar-2
L-Tem

pPar-1

21
29 29

3
8

13 13
7

0

20

40

60

80
visual

somatomotor
dorsal attention

salience/ventral attention
limbic

control
default

temporal parietal

0

1

10

0

8

0

0

1

2

1

2

16

9

10

14

5

1

0

1

3

10

1

5

0

0

0

0

2

0

2

1

0

0

1

0

0

8

16

0

0

1

0

2

1

0

9

1

0

0

2

5

0

0

10

3

2

0

1

0

0

24 31

24

31

123 regions
149 edges

N
um

 o
f r

eg
io

ns

AUC = 0.92

   (0.16,0.88)

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

e f

Predicted class

Accuracy = (65+62)/148
                 = 0.858

T
ru

e 
cl

as
s IBS

IBS TPR FNR

UC

UC

87.8% 

12 62

65 9 12.2%

83.8% 16.2%

FPR(1-Specificity)
T

P
R

(S
en

si
tiv

ity
)

ROC Curve for 
Logistic Regression

Current classifier

Fig. 6 Significant increased connected component in UC group compared with IBS group. a The circular plot showing the connected brain
regions by network, different networks were colored by different colors and b Surface plot of the increased connected component in UC
compared to IBS, revealed by NBS analysis. c Number of network-to-network connections of the increased connected component, there are
24 edges between the dorsal attention regions and visual regions, there are 31 edges between the dorsal attention regions and somatomotor
regions, and there are 16 edges between the somatomotor regions and the control regions. d Increased connected component mainly
including 29 somatomotor, 29 dorsal attention, and 21 visual regions. Vis: visual; som: somatomotor; dor: dorsal attention; s/v.att: salience/ventral
attention; lim: limbic; con: control; def: default; tem: temporal parietal. e The logistic regression reveals outstanding performance in distinguishing
the UC group from IBS group using the increased connected component, ROC curve (AUC= 0.92), TPR True-positive rate; FPR False-positive
rate. f The confusion matrix and classification accuracy: 0.858, TPR True-positive rate; FNR False-negative rate. IBS Irritable bowel syndrome; UC
Ulcerative colitis.
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integrative convergence zone receiving and processing multi-
sensory input, which may play a role in multisensory hypersensi-
tivity. To our knowledge, this is the first study that demonstrates
the greater centrality of regions within the visual network of UC
participants in comparison to IBS.
The clinical diagnosis was predicted by group differences

between the average FC of subnetworks with high accuracy. These
findings suggest that alterations of average FC of regional
subnetworks may help differentiate between inflammatory and
functional intestinal diseases which present with similar clinical
symptoms.

Limitations
This study was a cross-sectional analysis comparing brain features
in participants with a chronic history of recurring colon
inflammation with two non-inflammatory control groups. It was
not aimed at identifying brain changes associated with acute gut
inflammation, nor can it answer questions about causality
between chronic gut inflammation and brain changes consistent
with altered cognitive function and sensory modulation. Even if
the observed brain changes are associated with inflammation, it’s
not possible to determine whether these changes reflect
maladaptive or compensatory processes in UC. The goal of the
study was to test the hypothesis that a longstanding intermittent
exposure of the brain to inflammatory mediators from recurrent
colon inflammation results in distinct functional brain changes
which may be related to previously reported sensory, cognitive,
and emotional clinical features. Because of our specific hypothesis,
we did not assess the presence of mucosal inflammation through
analysis of fecal calprotectin levels in the UC participants. We
cannot answer the question of how long colon inflammation has
to be present before brain changes are detectable. However,
correlational analyses between observed brain alterations and
disease duration did not reveal statistically significant correlations.
UC participants were on different medications at the time of the
study, 14 taking immunosuppressive and 43 anti-inflammatory
medications. It is conceivable that the immunosuppressive group
(a) represented a more severe spectrum of disease with greater
brain changes, (b) that the more aggressive therapy resulted in
fewer brain changes, or (c) that the immunosuppressive medica-
tions themselves contributed to the observed brain changes.
While global efficiency, a measure of enhanced capacity for brain
communication was higher in the immunosuppressive group, it
was similar to the participants without specific therapies, and
there was no difference in disease severity when compared to the
other groups. These findings argue against the first hypothesis but
do not allow us to differentiate between the others. Another
limitation was the lack of visual or cognitive assessments
performed in our subjects, as the main hypotheses were
disease-related brain alterations in sensory and emotional brain
networks. Even though UC participants reported a median disease
duration of 11 years, based on PTI and BSQ scores, UC participants
were only mildly symptomatic at the time of the study, and we
were unable to perform correlational analyses of brain changes
with abdominal symptoms.

CONCLUSIONS AND CLINICAL IMPLICATIONS
Even though we were not able to correlate brain findings with
potential clinical implications, our findings are most consistent
with functional brain alterations related to executive functioning
and sensory integration. We found the cortical stability of left
mPFC was correlated with clinically relevant measures of anxiety
and depression. The identification of reorganization of the default
mode, somatomotor/dorsal attention, and visual networks identi-
fied in UC may have implications for interventions [89] aimed at
reducing the risk of development in cognitive decline in
vulnerable individuals.

CODE AVAILABILITY
The fMRI data were preprocessed by SPM12 and CONN toolbox (https://web.conn-
toolbox.org/); Graph theory analysis were performed by Brain Connectivity Toolbox
(https://sites.google.com/site/bctnet/). The NBS analysis was performed by GRETNA
toolbox (https://www.nitrc.org/projects/gretna/). Visualization of brain results was
performed by BrainNet Viewer (https://www.nitrc.org/projects/bnv/). Custom codes
are not currently provided or deposited in a public repository. Analysis code is
available from the authors upon request.
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