
UC Berkeley
Working Papers

Title
Advances in Fuzzy Logic Control for Lateral Vehicle Guidance

Permalink
https://escholarship.org/uc/item/9648g94m

Authors
Hessburg, Thomas
Tomizuka, Masayoshi

Publication Date
1994-03-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9648g94m
https://escholarship.org
http://www.cdlib.org/

This paper has been mechanically scanned. Some
errors may have been inadvertently introduced.

CALIFORNIA PATH PROGRAM
INSTITUTE OF TRANSPORTATION STUDIES
UNIVERSITY OF CALIFORNIA, BERKELEY

Advances in Fuzzy Logic Control
for Lateral Vehicle Guidance

Thomas Hessburg
Masayoshi Tomizuka

California PATH Working Paper

UCB-ITS-PWP-94-04

This work was performed as part of the California PATH Program of
the LJniversity of California, in cooperation with the State of California
Business, Transportation, and Housing Agency, Department of Trans-
portation; and the United States Department Transportation, Federal
Highway Administration.

The contents of this report reflect the views of the authors who are
responsible for the facts and the accuracy of the data presented herein.
The contents do not necessarily reflect the official views or policies of
the State of California. This report does not constitute a standard,
specification, or regulation.

March 1994

ISSN 1055-1417

Advances in Fuzzy Logic Control for Lateral Vehicle Guidance

Thomas Hessburg and Masayoshi Tomizuka

PATH Research Report, MOU 89

Fiscal year 1993/94

Abstract

A candidate for intelligent control for lateral guidance of a vehicle is a fuzzy logic
controller (FLC). The details of the most recent FLC with a rule base derived from
heuristics and designer insight to the problem at hand, as well as a method for estimating a
projected lateral displacement are presented along with simulation results. The structure
of this FLC is suited to incorporate human knowledge about the steering operation by its
choice of inputs and outputs of the FLC which are natural to human steering operation. In
addition, a method that makes use of preview information regarding upcoming road
curvature is developed and simulated based on human steering operation. This method
projects an estimate of the lateral error relative to the reference track at a specified
look-ahead time. Simulations imply that there exists an optimal look-ahead time. Too
short a time does not make full use of the preview information, while too long a time
results in inaccurate estimates of future lateral error, degrading the performance. Success
of the FLC strongly depends on the set of rules provided by the designer. It is extremely
important to have methodologies for rule development. Therefore, a methodology is
considered for automatically generating a fuzzy rule base controller, specifically, a
Neural-Network Driven Fuzzy Logic Controller (NNDFLC). This process automates the
design of control parameters and uses a clustering technique to cluster the space of inputs
to the controller in order to take advantage of local characteristics in the reasoning of the
control outputs. Given enough input/output data to train the neural networks involved,
simulations show its success. However, this method requires the generation of a complete
set of training data, covering the entire space of inputs to the controller. This is an
important factor in the design of the NNDFLC with regard to the convergence of control
parameters in the learning process and for taking advantage of the clustering features of
the controller.

Table of Contents

Abstract .. 1

2 Fuzzy Logic Controller (Manual Tuning) ... 5

4 Conclusions ... 19

Appendix B: Data Clustering .. 22
Appendix C: Neural Network Structure and Training .. 23
Nomenclature .. 27
References ... 28

1 Introduction .. 3

3 Neural Network Driven Fuzzy Logic Controller ... 13

Appendix A: Membership Function and Singleton Definitions for the FLC 20

2

1 Introduction

An important component in Intelligent Vehicle Highway Systems (IVHS) is the lateral
motion control of a vehicle in lane following maneuvers as well as lane change maneuvers.
This report focuses on lane following, where the objective is to track the center of a lane
with smooth ride quality under a range of operating conditions such as vehicle speed, wind
gusts, and road conditions. The referencehensing system consists of discrete magnetic
markers embedded in the roadway, forming a predetermined path [6, 151. Magnetometers
are mounted on the front of the vehicle. A computer algorithm computes the lateral
displacement from the horizontal and vertical components of the magnetic field signal.

The present effort complements the study on investigating the use of a FLC to control the
lateral motion of a vehicle [5]. There are many features of lateral guidance of a vehicle
which motivate the use of a FLC. They include the substantial nonlinearities found in
vehicle dynamics, especially in the tire characteristics. Also, information is available
regarding human expertise on steering maneuvers of a vehicle. In addition, a FLC has
great flexibility on the use of inputs and outputs. The results of the FLC can be compared
to a linear lateral guidance controller using the frequency shaped linear quadratic (FSLQ)
and preview theory, which has been developed and successfully implemented on a Toyota
Celica [121.

A FLC for vehicle lateral control was proposed in [5] . The rule base was developed based
on engineering judgment. The parameters of the FLC, which define membership functions
and the consequent expressions, were tuned manually. The theme of this FLC was to
formulate inference rules based on PID (proportional, integral, and derivative) control
techniques. Therefore, the inputs to the FLC were chosen to be the lateral error between
a sensor mounted on the vehicle and the center of the road, y, change in the lateral error
between measurement samples, cy, and the summation of the lateral error taken at each
measurement sample, Cy. The output of the FLC was the absolute command for the front
wheel steering angle, 6,. In addition, preview information regarding road curvature was

used as input for generating feedforward control action. This feedforward control tenn is
based on a steady state estimate of front wheel steering angle derived from an expression
obtained in [111. This steering term was gndually implemented at curve transitions based
on human observations obtained in [4] as well as observations of the preview steering term
developed using preview control theory [12]. Specifically, the implementation of the
preview steering angle was a ramp from zero (at a prescribed time hefore the curve

transition) to the calculated steady state preview steering angle (at a prescribed time ufter
the curve transition). Although the simulation results showed good performance, the
rule base was somewhat unnatural from the viewpoint of human expertise. For example,
inferring the absolute front wheel steering angle, 6,, from y, the time derivative of y, and
the time integral of y, is not natural for human drivers.

A different approach to developing a FLC based on engineering judgment is proposed in
section 2 of this report. The theme of this FLC is to use rules which are more natural to
human driving maneuvers. The inputs to this FLC are y, j and the measured yaw rate

relative to the desired yaw rate, (E - E d) , where E d depends on the velocity, v, of the

vehicle and the radius of curvature, p, of the reference track such that E(, = v/p. The

output is the rate of change in the comtnand to the front wheel steering angle, 6=. In

addition, an alte,rnative method of incorporating the road curvature preview information is
developed.

Another issue that needs to be addressed is the automation of tuning the parameters that
define a FLC. This is a very active topic in current FLC research. Manual tuning may be
inefficient when considering the number of different vehicles involved in an automated
highway. Some methods developed include gradient descent [1, lo], neural networks
[8, 141, and genetic algorithms [9]. In section 3 we investigate a neural network approach
to automate membership function generation and consequent expressions to form a K C
with a rule base which has a trade-off between automation and an intuitive feel. This
approach is similar in structure to the ellipsoidal learning technique developed by
Dickerson and Kosko [2, 31, used in longitudinal control of vehicles.

4

2 Fuzzy Logic Controller (Manual Tuning)

The basic fuzzy algorithm detailed in [5] is used to develop a FLC based on inference rules
with linguistic variables LE (lateral error), CLE (change in lateral error with respect to
time), and YWR (yaw rate relative to desired yaw rate) in the antecedents and CA (change
in front wheel steering angle command with respect to time) in the consequents. The
choice of linguistic variables is based on human steering intuition. For example, given a
state of the vehicle relative to the current road geometry, a human driver reasons how
much to change the front wheel steering angle as opposed to reasoning what the absolute
front wheel steering angle should be. Also, lateral error is critical for reasoning how to
track a lane, while the change in lateral error and yaw rate of the vehicle are used to
reason how to realize a comfortable ride.

The rule base is made up of rules taking the fonn:

IF L E is A , AND CLE is A , AND YWR is A,, THEN CA is A,,

where Ai represents linguistic values of linguistic variable, i.

ALE E (N B , N S , NIL, PS, P B } ,
ACE E (N B , N S , NIL , PS, P B } ,
A W R E { N E G , NIL, P O S } ,
A , E (N H , N B , N M , N S , NIL, PS, P M , P B , PH)

(for example: N B = Negative Big and NH E Negative Huge)

The linguistic values of the antecedents are defined precisely by membership functions,
after manual tuning, in Appendix A. Also, the consequent parts of the rules are defined by
singletons (see Appendix A). Note that the number of fuzzy subsets of LE (i.e. the
number of different linguistic values of LE) is 5. That of CLE and YWR are 5 and 3,
respectively. Therefore, there are 5 x 5 ~ 3 = 75 rules in the rule base.

5

The block diagram of the closed loop system is seen in Fig. 2.1. The control law is
executed at a constant time sample, t,. Therefore, y and y are assutned to be available as

estimates, and is measurable at any time, including the time in between markers.

Figure 2.1: Closed Loop Block Diagram

Fig. 2.2 shows a simulation, using a nonlinear model [111, of a straight section of roadway
where the vehicle started with an initial condition of 0.3 meters of lateral displacement.
Conditions are nominal as stated in [SI. The closed loop block diagram becomes a
regulation system in a straight roadway as the quantities y d , j,,and k d are all zero.

Steering

(degrees)
Angle

- 0.1
0 2 4 6 a 1 0

Time (seconds)

Figure 2.2: Straight Roadway Simulation; Nominal Conditions

The steering command, F,, exhibits slightly more oscillation as compared to the FSLQ

controller [111. This can be attributed to the fact that the FLC infers 6,, as opposed to 6,,

6

which has the effect of adding an order to the closed loop system. In addition, this FLC
has a slower response in comparison to the FSLQ controller in terms of rise time, t,, which
we define to be the time required for the lateral displacement of the closed loop system to
go from 0.3 meters to 0.03 meters. For the FSLQ, t,= 0.9 seconds, and for this FLC,
t,= 2.0 seconds.

Next we consider how to utilize road curvature preview infomation. The preview
information provided is the radius of curvature on the roadway and the location of the
starting and ending points of the curvature. The idea is to estimate the lateral position of
the vehicle at a time, t,, in the future. This estimate is then subtracted from an estimated
desired lateral position derived from the preview information. The result is used as the
lateral error in the FLC rule base.

This preview method is explained in detail by referring to Fig. 2.3. For the derivation, t, is
denoted as the current time. The controller has access to road curvature information for

t E [tc (tc + t ,)] . The first step is to estimate jj,, (t ,) , the lateral error of the vehicle at time

tl after the current time with respect to a line tangent to the line of the reference path taken
at its current position (see Fig. 2.3).

Figure 2.3: Schematic of Preview Method

This estimation uses the current state of the vehicle, y(t ,) , j(t,),and E(tc). A vehicle with

a constant yaw rate, E , will travel at a radius of curvature of v/E, where v is the

7

longitudinal velocity. Thus, the lateral acceleration, v2/p, is approximately vE.

Integrating the acceleration twice with respect to time over a time interval [f c (f c + f l)] ,

we get

The second step is to estimate the desired lateral error, ~ ~ , , ~ (f ~) , of the vehicle at time f l

after the current time with respect to a line tangent to the reference path taken at its

current position. This estimate, yd,,, (f c) , is a function of the radius of curvature of the

roadway, p, provided by preview infortnation. Suppose the vehicle is at the start of the
curvature at time fc . The travel distance ahead is f p . Therefore, given p, the following

expression can be obtained:

Approximating cos(x) by (1 -x%!) (using the first two terms of the Taylor's series

expansion and assuming f,v << p), we get

In general the fonnulation of ~ ~ , , ~ (f ~) should be derived when f , does not occur at the

beginning of the curve. For simplification, we assume that the radius of curvature, p,
remains constant over every curved section. This implies that our preview time window,
f r , contains at most two radii of curvature, p, and p,, the current and next radii of
curvature, respectively (see Fig. 2.4).

8

V b

Figure 2.4: Preview Concept

If we define a term, t2, as the time at which the vehicle will reach the next curve transition
or t,, whichever is smaller, then we can generalize Eqn. (2.3) as

The quantities (f l ! (t,) - Y ~ , ~ , (t ,)) and (& - &Li), where E d = v/p, , are used as the base

variables for LE and YWR membership functions, respectively. Figure 2.5 shows a
simulation of curved roadway with a radius of curvature of 300 meters and a vehicle speed
of 20 (metershecond). The look-ahead time, t,, is 0.5 seconds, which yielded the best
results in simulation. The road is straight for the first 2 seconds, curved for the next 5
seconds, and ends off straight for the remaining time.

The largest deviation from the center of the roadway is 5 centimeters. As the vehicle
approaches the beginning of the curve, the vehicle begins to turn inside the curve to nearly
1 centimeter, and then the vehicle slides outside the curve about 5 Centimeters.

9

Lateral
Error
(meters)

0.02

0

-0.02

-0.04

-0.06 I 1
0 2 4 6 e 10

Time (seconds)

Figure 2.5: Curved Roadway Simulation, tl = 0.5 seconds; Nominal Conditions

Figure 2.6 shows the effect of a longer preview time , t, = 1.0 seconds. At the response
time of 1 second the vehicle starts to steer inside the curve, 0.5 seconds earlier than the
simulation of Fig. 2.5. Unlike the smooth steering action from the straight roadway to the
steady state steering angle of the curved section seen in Fig. 2.5, the simulation with
tl = 1.0 seconds has an oscillation. In addition, the case of t, = 1.0 seconds has an initial
lateral error of 15 Centimeters and takes nearly 3 seconds to reduce the lateral error to 2
centimeters.

The existence of the optimal preview time length in the present FLC scheme is contrasted
to the optimal preview theory in Peng [12], which suggests that the performance is
improved as the preview time length is increased. In the present FLC scheme the
predicted error is based on the extrapolation of the lateral position, lateral velocity, and
yaw rate (see Eqn. (2.1)) over the preview time span. In fact the lateral velocity and yaw
rate are not fixed quantities over the preview time span. Thus, this estimation scheme
becomes more inaccurate if the preview length is increased. In the optimal preview theory
time variations of the lateral velocity and yaw rate are taken into consideration.

10

0.8,

Lateral
Error
(meters)

Figure 2.6: Curved Roadway Simulation, t, = 1.0 seconds; Nominal Conditions

Figure 2.7 shows the effect of a shorter preview time , t , = 0.3 seconds. In comparison to
the simulation of tr = 0.5 seconds (Fig. 2.5), the simulation with the shorter preview length
steers the vehicle less inside the curve (less than 1 centimeter), but slides further outside
the curve to nearly 15 centimeters.

1.5

Time (seconds)

0.2 1

Lateral
Error
(meters)

-0.2 ' I
0 2 4 6 a 1 0

Time (seconds)

Figure 2.7: Curved Roadway Simulation, t, = 0.3 seconds; Nominal Conditions

11

In the case of using feedback control without preview information or with preview lengths
less than t, = 0.3 seconds, this FLC could not track the curved section, as the time
response of the lateral displacement exhibited unstable oscillations of increasing amplitude.

12

3 Neural Network Driven Fuzzy Logic Controller

The Neural-Network Driven Fuzzy Logic Controller (NNDFLC) method of fuzzy rule
development addresses several issues that plague the design of a manually tuned fuzzy
logic controller. These include the lack of a systematic way of generating membership
functions. The NNDFLC is capable of generating general, highly nonlinear membership
functions. In addition, the NNDFLC addresses the issue of incorporating a method of
learning into the control system, a desirable feature of neural-networks. The NNDFLC is
essentially a rule base controller that has key elements enhanced by utilizing
neural-networks. However, a drawback of the NNDFLC is the requirement of training
data for the neural networks.

To begin with we use a single neural network, NN,, to provide a way of automating the
design of general, highly nonlinear membership functions. NN, is a function map from the
inputs to the controller to the degrees of membership that these inputs have to each rule.
This is in contrast to the conventional design approach which uses engineering judgment
to denote a membership function with two or three parameters such as a triangle or
trapezoid, and whose membership functions are based on one input variable at a time. In
NNDFLC we assign values to membership functions based on the forward propagation of
NN,. In addition, the membership functions may depend on more than one input variable
as will be observed in the following discussion. Also, being a neural network, NN, has the
capability of learning from desired training data and realizing highly nonlinear in
calculating membership functions.

Several methods have been proposed for the specification of the consequent part of fuzzy
rules, for example using fuzzy subsets, using singletons, and using a linear combination of
the input variables. We propose incorporating neural networks in the phase of consequent

evaluation, as well. These neural networks are denoted as NN,", where s = 1. 2. ... nr, and

n, is the total number of rules.

We want to show the feasibility of this method (i.e. the capability of tuning the NNDFLC)
by generating training data (TRD) from an existing controller. We begin with a simple
case of a PD controller. Fixing the velocity of the vehicle, a proportional and derivative
(PD) controller was designed such that the closed loop poles of a discretised simplified
linear model of the system were inside the unit circle. This PD controller acts as a teacher

13

for the NNDFLC. The TRD for the NNDFLC can be generated by uniformly covering a

reasonable range of the space of inputs to the controller made up of elements, x = [y j] ' .

The corresponding 6, can be determined from the PD control law, Thus, our TRD

consists of a 2 dimensional input to the controller, x = [y j]' and a one dimensional

output, 6,.

The general idea is to take the set of TRD and partition it into clusters, each one
representing an inference rule. This is done by a clustering method performed on only the
input of the TRD. The next step is to identify the antecedents (the IF part) which amounts
to training NN, to infer the n, membership functions, which measure the degree to which
the input vector, x, belongs to each of the clustered regions. The final step is to identify

the consequent parts (the THEN part). This is done by training each NN,", for s = 1. 2. ...

nr.

The general form of the rule base is as follows:

IF X is A , THEN 6: = NN: (x) for s = 1. 2. ... 12, (3.1)

where:
X is the linguistic variable of the vector x
As is the linguistic value representing the s-th region in the input space.

6: is the front wheel steering angle inferred by NN;.

Here, the methodology is detailed step by step.

Step 1: A clustering method is performed on the input, x, of the TRD to create a
clustering dendrogram (see Appendix B). We denote the total number of TRD as n,. The
best number of partitions of the input set is detennined by judging the distances between
clusters in this clustering dendrogram. Once the number of partitions is chosen, we denote
each partition as Rs for s = 1. 2. ... 12,. Note that this is a hard cluster so each xi in the
TRD must belong to one and only one R,. The number n r is the number of inference rules
that the NNDFLC will have.

14

Step 2: NN, is trained to identify the antecedents of Eqn. (3.1). The number of
input cells to NN,, is equal to the number of input variables, in our case, two. NN, is a
multilayered neural network and takes the form of Fig. 3.1, in our simple example of using
y and 3 as inputs to the controller. Note that the “1” values input to nodes in the input

and hidden layers are a standard feature of multilayered neural networks to allow the
neuron computations to have a bias tenn.

1

2

n r

Figure 3.1: Structure of NN,

This neural network has an input layer, a hidden layer whose number of cells depends on
the complexity needed by the specific problem, and an output layer with the number of
cells equal to the number of inference rules, n,. The values of the outputs are equal to the
degree that x belongs to As for s = 1. 2. ... n,, which we denote as the membership

function, pq(x). The matrices V’ and V’ represent weight parameters of the neural

network. The role of these weights and the back propagation method of training neural
networks [131 is detailed in Appendix C.

Included in the TRD are values for the input to NN,, but we must specify the desired

output NN,. Considering Step 1, we denote the desired output of NN, as w,!, where

w.=(1; xi E R,) for i = l , n , ; s = l , n, (3.2)
‘ 0; xi P R,

Thus, the final weights of the trained NN, are used in the evaluation of the antecedents of

the NNDFLC.

15

Step 3: A total of n, neural networks (NN; for s = 1. 2. ... n,) are trained,

identifying the consequents of Eqn. (3.1). The training of the s-th neural network uses

only data pairs (xi,Ff) such that xi E Rs. Like NN,,, the number of input cells to NNS is

equal to the number of input variables. Each NN," has a similar structure to NN,, as seen in
Fig. 3.2.

Figure 3.2: Structure of NN,"

Note that each NN; has only one output cell, the front wheel steering angle that NN,"

infers from the input, denoted as 8:. The matrices U1s and U2s are the weight parameters

for NN,".

Let us consider, as a sub-training set of data (STRD,), only those xi in the TRD that

belong to R,, and the corresponding desired controller output, 8;. We use STRD, to train

NN;, for s = 1. 2. ... n,, to infer the front wheel steering angle.

Step 4: A weighted average method is used for defuzzification. The final
command for the front wheel steering angle, FC, becomes:

At this point, the final weights of the trained neural networks can be used to implement the
NNDFLC.

16

When all training is complete, the NNDFLC is implemented according to Fig. 3.3.

i
Figure 3.3: Block Diagram of the NNDFLC

Figure 3.4 shows a simulation of a PD controller on a straight roadway. Figure 3.5 shows
the results of using training data from the PD control law to generate a NNDFLC, with
five clusters.

- 0.1 I
0 2 4 6 e I

1 0
Time (seconds)

Figure 3.4: PD Control Simulation; Nominal Conditions

17

(meters)

O t
-0.1 ' I

0 2 4 6 5 1 0

Time (seconds)

Figure 3.5: NNDFLC Control Simulation; Nominal Conditions

The results of the NNDFLC are nearly identical to that of the PD controller. In fact, a
simulation of the NNDFLC with one cluster is also in agreement with the PD controller.
This is not surprising since it is not difficult for a neural network to closely approximate a
globally linear mapping such as PD control.

A set of training data generated by human drivers was also used to design a NNDFLC.
This data consisted of twelve trails of dnving on the same track used for lateral control
experiments at the Richmond Field Station. This data was highly inconsistent and very
non-uniform in the space of inputs to the controller. Thus, the neural networks associated
with the NNDFLC had very poor convergence properties leading to the conclusion that
human training data must be conditioned somehow in order to properly design a
NNDFLC.

18

4 Conclusions

A new manually tuned fuzzy logic controller (FLC) was developed based on a rule base
derived from engineering judgment and heuristics. Preview information was incorporated
into the control in a way natural to human driving operation by using road curvature
information to compare the estimated projected position of the vehicle and to a desired
projected position of the vehicle, and using this information as input to the FLC. The
simulation results of this preview scheme appears to show the existence of an optimal
preview time span. Some limitations of this manually tuned FLC design method are the
time required to tune the control parameters by trial and error and the lack of a method to
relate these parameters to some performance expression of the vehicle. An alternative and
perhaps more consistent method to incorporate preview action is suggested and
successfully implemented in [7] based on preview control theory for a vehicle [121.

An approach using a neural network driven fuzzy logic controller (NNDFLC) was
considered to automate the tuning process of the controller. This method requires a set of
training data which maps the states of the vehicle to a control action in terms of front
wheel steering angle. Data from human vehicle operation is a logical choice of the
generation of the training data. However, the inconsistent nature of such data resulted in
very poor learning performance of the neural networks associated with the NNDFLC. As
a proof of concept, existing controllers were considered to generate training data.
However, the global nature of these controllers removed the advantage of the clustering
aspect of the NNDFLC. Thus, the method works, but the generation of the training data
must be carefully considered in order to take advantage of the clustering characteristics of
the NNDFLC. An area of future research will consider the possibility of blending the
NNDFLC and a conventional controller. The NNDFLC will be used in the regions of the
input space where a sufficient amount of training data is available, while the other regions
would use a control law from a conventional control design such as PID. In addition
methods other than NNDFLC will be considered to automate the rule base development.

19

Appendix A: Membership Function and Singleton Definitions for the FLC

This appendix defines precisely the membership functions and singletons used for the
manually tuned FLC. The following graphs show the membership functions for the
linguistic variables of the antecedents, LE, CLE, and YWR.

Latenl Error (meters)

Figure A.l: Membership Functions for LE

Lateral Velocity (meters/second)

Figure A.2: Membership Functions for CLE

20

-0.1 0 0 . 1
Yawrate (radims/second)

Figure A.3: Membership Functions for YWR

The linguistic values associated with the linguistic output, CA, are singleton values in
radians. They are defined as follows (in radiandsecond):

NH = -0.02
N B = -0.015
NM = -0.01
NS = -0.005
NIL = 0.0
PS = 0.005
PM = 0.01
PB = 0.015
PH = 0.02

21

Appendix B: Data Clustering

This appendix describes the method of clustering data. The purpose is to take a set of n,
data points and group them into reasonable regions. The tasks are 1) to do bookkeeping
to note which points should be grouped together as we iterate from n, clusters to 1 cluster,
and 2) to choose the number of clusters which appropriately group the input data. The
method is as follows:

1) Create a Cluster Dendrogram
2) Choose Number of Clusters

A cluster dendrogram is a tree structure which displays a distance measure between
cluster centers. In our case the distance measure used is the Euclidean norm. To create a
cluster dendrogram for n, data points, we start with / I , clusters with cluster centers equal to
the data point values. In the fiist iteration, the two cluster centers with the smallest
distance measure between them are grouped to a single cluster and the average of these
data points is used as the center of this new cluster. The total number of clusters is now
n, - 1. This process is iterated a total of 12 , - 1 times, keeping track of the distance
measures at each iteration. The final iteration will correspond to a single cluster
containing all the data points.

The next step is to choose the appropriate number of clusters. This is done by observing
the distance measures at each iteration step. For example, if a two dimensional data space
has three groups of data (i.e. each data point is close to one of three points in the data
space), then the distance measures will be relatively small from the beginning of the
iteration steps of creating the cluster dendrogram until the last two distance measures,
which will be relatively large. Therefore, the iteration step where a large change in the
relative distance measures occurs will provide the logical choice of the number of clusters.
In this simple example, the large change in distance measures occurs between iteration
step n, - 2 and n, - 3, which means that we should choose 3 clusters.

22

Appendix C: Neural Network Structure and Training

This appendix details the structure and training of the multilayered neural networks used in
the NNDFLC. A neural network is a function approximator. Given an input vector, a
neural network can approximate the appropriate output vector by the proper choice of
weights which parameterize the neural network. In order for a neural network to
approximate a specific function, a set of training data is needed. This training data
consists of several input/output pairs. To properly adjust the neural network we define a
squared error term between the output vector of the neural network and the output vector
of the training data for the corresponding input vector of the training data. The training of
the neural network is the method of adjusting the weights of the neural network to
minimize the squared error term.

We will detail the structure and training of NN, and note that NN," will be similar. Figure

C.1 shows the multilayered neural network structure of NN,.

Figure C.1: Structure of NN,

23

The matrices V1 and V2 represent weight parameters of the neural network. The circles
represent nodes, and the lines represent a connection between nodes and have weights
associated with them. For example, the line between the i-th input node and the j-th

hidden node has a weight denoted as vf (the ij-th element of the matrix VI). An isolated

node, thej-th hidden node for example, has a structure as seen in Fig. C.2.

Figure C.2: The Input and Output Structure of thej-th Node of the Hidden Layer

The output of the j-th node is S(vb, +yvi; +jvi,), where S(.) is called an activation

function. The activation function is essentially a smooth threshold function, and we chose
to define this function as

1
1 + e-x

S(x) = -

S(x) approaches 1 as x approaches 00, approaches 0 as x approaches - 00, and S(x) = .5
when x = 0. Note that the input layer (as well as the hidden layer) has a node of input

value 1 (Fig. C.1). Thus, the negative of the weight v;, represents the threshold of

yv:, + jv2,. Referring to Fig. C. 1, we can use the above definitions to propagate forward

through the neural network. If we let the outputs of the hidden layer nodes be h, and let nh
be the number of hidden nodes which receive information from the input layer, we have

1

1 ; j = O
= i s (v:; + p i ; +jv:;) ; j = 1,2,...n,1 1

24

Noting that n, is the number of rules and thus, the number of outputs NN,, we continue
propagating through the neural network to get

P A S
for s = 1,2, ... n,

Thus, Eqn. (C.2) and (C.3) smoothly map (i.e. the mapping is differentiable) the input

[y jIT to the output of NN,, {P~ , }~ ' , parameterized by the weights denoted by the

elements of the matrices VI and V2.
s-1

The next step is to adapt these weights such that the output of NN, approaches the output
of a set of training data. The training data for NN, is obtained after clustering a set of n,

data points, [y j I i , of the input space into pzr regions, Rs for s = 1, 11,. We denote the

n, dimensional output vector of the training data for NN, as ws, where

T

1; xi E R,
0; xi E R,

for i = 1, 1 2 , ; s = 1, n, (C.4)

For example, if the input point [y y]T belonged to R,, the corresponding output vector for

the training data would be w, = [0 1 0 ... O]T.

In order to make the output vector of NN,, denoted as p,. , approach the output vector of

the training data, w,, we use the back propagation method to adjust the weights of NN, to

minimize the Euclidean norm of the error between these two terms. Given a data point, *,
we denote the quantity to be minimized as

Our objective is to minimize J with respect to the weights of NN,. Noting that the vector,
w,, is not a function of the weights of NN,, we find the gradient of J with respect to each

of the weights, for example, v). The gradient is

25

Since S (*) is smooth, this gradient exists and can be found by propagating backwards

through NN,. The weight, v;., can be adjusted by

JJ vb(t+l)=v\(t)-a-
av;.

where a is the training rate and t is the iteration step of training.

The neural networks, N N : , have the sane lnultilayered neural network structure and back

propagation training method.

26

Nomenclature

y: lateral error from magnetic sensor to the center of the road
y : lateral velocity with respect to the center of the road
6,: front wheel steering angle command

6, : change in front wheel steering angle command

i : yaw rate of vehicle
E d : desired yaw rate

t,: current time

t2: time that the vehicle will reach the next curvature transition
t,: look-ahead preview time

j i l (t,>: estimate of y , at time t, ahead of the current time, t,

Y d J 1 (t c 1 : desired lateral error at time t, ahead of the current vehicle position
p: radius of curvature of the roadway
n: subscript denoting the next curve
C: subscript denoting the currerlt curve
v: longitudinal velocity
LE: linguistic variable for lateral error, y
CLE: linguistic variable for change in lateral error, cy

YWR: linguistic variable for yaw rate relative to desired yaw rate, (E - E,)

CA: linguistic variable for change in front wheel steering angle cotntnand, 6,

n,: number of rules
a,: total number of training data (TRD)

x: input vector to NNP and NN:
X: linguistic variable for x

6 ; : the front wheel steering angle of the i-th training data (TRD) point,

this is used for target data for NN,"
6: : the front wheel steering angle colnlnand inferred by NN,"
ws: the i-th target data point for s-th output of NN,

27

References

Araki, S., Nomura, H., Hayashi, I., "Self-generating Method of Fuzzy Inference Rules",
International Fuzzy Engineering Symposium (IFES'92), 1992, pp. 1047.
Dickerson, J.A., Kosko, B., "Ellipsoidal Learning and Fuzzy Throttle Control for Platoons of
Smart Cars", Book Chapter of An Introduction to Fuzzv Lopic Applications in Intelligent
Svstems, edited by Yager, R., and Zadeh, L.A., Klewer Academic Press, 1992.
Dickerson, J.A., Kosko. B., "Fuzzy Longitudinal Control for Car Platoons", Modern Tools for
Manufacturing Systems; Proc. of the International Wurkshop on Emerging Technologies for
Factory Automation, 1992.
Godthelp, H., "Vehicle Control During Curve Driving", Human Factors, Vol. 28, No. 3, 1986.
Hessburg, T., Tomizuka, M., "A Fuzzy Rule Based Controller for Lateral Vehicle Guidance",
Publication of PATH project, ITS, UC Berkeley, UCB-ITS-PRR-91-18, August 1991.
Hessburg, T., Peng, H., Tomizuka, M., Zhnng, W., "An Experimental Study on Lateral Control
of a Vehicle", Publication of PATH project, ITS, UC Berkeley, UCB-ITS-PRR-91-17, August
1991.
Hessburg, T., Tomizuka, M., "Experimental Results of Fuzzy Logic Control for Lateral Vehicle
Guidance", to appear as a Publication of PATH project, ITS, UC Berkeley.
Jang, R., "Self-Learning Fuzzy Controllers Based on Temporal Back Propagation", IEEE
Transactions on Neural Networks, Vol. 3, No. 5, 1992.
Lee, M., and Takagi, H., "Integrating Design Stages of Fuzzy Systems using Genetic
Algorithms", Proc. of IEEE 2nd Int'l Conference on Fuzzy Systems (FUZZ-IEEEt93), Vol. 1,
1993, p. 612.
Nomura, H., Hayshi, I., and Wakami, N., "A Self-tuning Method of Fuzzy Control by Descent
Method", 4th IFSA Congress, Vol. Engineering, July, 1991, pp. 155.
Peng. H., Tomizuka, M., "Vehicle Lateral Control for Highway Automation", 1990 American
Control Conference, San Diego, CA, pp. 788.
Peng, H., Tomizuka, M., "Optimal Preview Control for Vehicle Lateral Guidance", Publication
of PATH project, ITS, UC Berkeley, UCB-ITS-PRR-91-16, August 1991.
Rumelhart, D. E., Hinton, J. E., Williams, R. J., "Learning Internal Representations by Error
Propagation", Paralld Distributed Processing (Rumelhart, D. E. and McClelland, J. L. editors),
MIT Press, Cambridge, MA, 1986, pp. 3 18.
Takagi, H., Hayashi, I., "NN-driven Fuzzy Reasoning", Int~rnationrd Journal of Approximale
Reasoning (Special Issue of IIZUKA '88), Vol. 5 , NO. 3, 1991, pp. 191.
Zhang, W., Parsons, B., West, T., "Intelligent Roadway Refcrence System for Vehicle Lateral
Guidance/Control", 1990 American Control Conference, San Diego, CA.

28

	Abstract
	2 Fuzzy Logic Controller (Manual Tuning)
	3 Neural Network Driven Fuzzy Logic Controller
	4 Conclusions
	Appendix A: Membership Function and Singleton Definitions for the FLC
	Appendix B: Data Clustering
	Appendix C: Neural Network Structure and Training
	Nomenclature
	References

