Search for the rare charmless hadronic decay $B^+ \rightarrow a_0^+ \pi^0$
SEARCH FOR THE RARE CHARMLESS HADRONIC DECAY ...

PHYSICAL REVIEW D 77, 011101(R) (2008)

31 Imperial College London, London, SW7 2AZ, United Kingdom
32 University of Iowa, Iowa City, Iowa 52242, USA
33 Iowa State University, Ames, Iowa 50011-3160, USA
34 Johns Hopkins University, Baltimore, Maryland 21218, USA
35 Universität Karlsruhe, Institut für Experimentelle Kernphysik, D-76021 Karlsruhe, Germany
36 Laboratoire de l’Accélérateur Linéaire, IN2P3/CNRS et Université Paris-Sud 11, Centre Scientifique d’Orsay, B. P. 34, F-91898 ORSAY Cedex, France
37 Lawrence Livermore National Laboratory, Livermore, California 94550, USA
38 University of Liverpool, Liverpool L69 7ZE, United Kingdom
39 Queen Mary, University of London, E1 4NS, United Kingdom
40 University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
41 University of Louisville, Louisville, Kentucky 40292, USA
42 University of Manchester, Manchester M13 9PL, United Kingdom
43 University of Maryland, College Park, Maryland 20742, USA
44 University of Massachusetts, Amherst, Massachusetts 01003, USA
45 Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
46 McGill University, Montréal, Québec, Canada H3A 2T8
47 Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
48 University of Mississippi, University, Mississippi 38677, USA
49 Université de Montréal, Physique des Particules, Montréal, Québec, Canada H3C 3J7
50 Mount Holyoke College, South Hadley, Massachusetts 01075, USA
51 Università di Napoli Federico II, Dipartimento di Scienze Fisiche e INFN, I-80126, Napoli, Italy
52 NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
53 University of Notre Dame, Notre Dame, Indiana 46556, USA
54 Ohio State University, Columbus, Ohio 43210, USA
55 University of Oregon, Eugene, Oregon 97403, USA
56 Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
57 Laboratoire de Physique Nucléaire et de Hautes Energies, IN2P3/CNRS, Université Pierre et Marie Curie-Paris6, Université Denis Diderot-Paris7, F-75252 Paris, France
58 University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
59 Università di Perugia, Dipartimento di Fisica and INFN, I-06100 Perugia, Italy
60 Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
61 Prairie View A&M University, Prairie View, Texas 77446, USA
62 Princeton University, Princeton, New Jersey 08544, USA
63 Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
64 Università Rostock, D-18051 Rostock, Germany
65 Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
66 DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
67 University of South Carolina, Columbia, South Carolina 29208, USA
68 Stanford Linear Accelerator Center, Stanford, California 94309, USA
69 Stanford University, Stanford, California 94305-4060, USA
70 State University of New York, Albany, New York 12222, USA
71 University of Tennessee, Knoxville, Tennessee 37996, USA
72 University of Texas at Austin, Austin, Texas 78712, USA
73 University of Texas at Dallas, Richardson, Texas 75083, USA
74 Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
75 Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
76 IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
77 University of Victoria, Victoria, British Columbia, Canada V8W 3P6
78 Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
79 University of Wisconsin, Madison, Wisconsin 53706, USA
80 Yale University, New Haven, Connecticut 06511, USA

(Received 9 August 2007; published 7 January 2008; publisher error corrected 31 January 2008)

8 Deceased
1 Now at Tel Aviv University, Tel Aviv, 69978, Israel
2 Also with Università di Perugia, Dipartimento di Fisica, Perugia, Italy
3 Also with Università della Basilicata, Potenza, Italy
4 Also with Universitat de Barcelona, Facultat de Fisica, Departament ECM, E-08028 Barcelona, Spain
We present a search for B decays to a charged scalar meson a_0^+ and a π^0 where the a_0^+ decays to an η meson and a π^+. The analysis was performed on a data sample consisting of 383×10^6 BB pairs collected with the BABAR detector at the PEP-II asymmetric-energy B Factory at SLAC. We find no significant signal and set an upper limit on the product branching fraction $\mathcal{B}(B^+ \to a_0^+ \pi^0) \times \mathcal{B}(a_0^+ \to \eta \pi^+)$ of 1.4×10^{-6} at the 90% confidence level.

The structure of scalar mesons is a subject of some debate [1,2]. Proposed models include two-quark or four-quark states with potential contributions from glueballs or a molecular admixture of KK meson pairs. Measurement of the branching fraction for the mode $B^+ \to a_0^+ \pi^0$ [3] is expected to provide an effective test of the two- and four-quark models [4]. The Feynman diagrams for the decay in the two-quark case are shown in Fig. 1. Those for the four-quark case are similar except for an $s\bar{s}$ pair produced from the vacuum internal to the a_0^+ meson. The color-allowed electroweak tree diagram shown in Fig. 1(a) is suppressed for all a_0^+ models since the W^+ is constrained to decay to states of even G-parity (a generalization of C symmetry to cover particle multiplets) within the standard model, whereas the a_0^+ has odd G-parity [5]. This diagram is also suppressed due to vector current conservation considerations. Therefore, the color-suppressed tree diagram in Fig. 1(b) and the helicity-suppressed electroweak annihilation diagram in Fig. 1(c) become important. The gluonic penguin process in Fig. 1(d) is highly suppressed and is therefore not expected to contribute significantly.

The amplitudes for the above diagrams depend on the a_0^+ model used; in particular, the annihilation diagram is heavily suppressed in a four-quark model. Hence measurement of the branching fraction provides the potential for model discrimination. In the two-quark case, the predicted branching fractions go as high as 2×10^{-7} [4,6]. However, in the four-quark case the prediction for the branching fraction is an order of magnitude lower.

The branching fraction for the result quoted below will be given in terms of the product $\mathcal{B}(B^+ \to a_0^+ \pi^0) \times \mathcal{B}(a_0^+ \to \eta \pi^+)$ since the branching fraction $\mathcal{B}(a_0^+ \to \eta \pi^+)$ is not well measured, although it is thought to be approximately 85% [1].

The analysis presented in this paper is based on 347 fb$^{-1}$ of data collected at the Y(4S) resonance with the BABAR detector at the PEP-II asymmetric-energy e^+e^- collider located at the Stanford Linear Accelerator Center. This corresponds to $(383 \pm 4) \times 10^6$ BB pairs.

The BABAR detector has been described in detail previously [7]. Track parameters of charged particles are measured by a combination of a 5-layer double-sided silicon vertex tracker and a 40-layer drift chamber (DCH), both operating in the 1.5 T magnetic field of a superconducting solenoid. Photons and electrons are identified using a CsI(Tl) electromagnetic calorimeter. Further charged particle identification (PID) is provided by measurements of the average energy loss (dE/dx) in the tracking devices and by an internally-reflecting, ring-imaging Čerenkov detector (DIRC) covering the central region.

The analysis focuses on a_0^+ mesons produced from the decay $B^+ \to a_0^+ \pi^0$, followed by $a_0^+ \to \eta \pi^+$, where the η meson subsequently decays to $\gamma \gamma$ or $\pi^+ \pi^- \pi^0$ final states. The π^0 mesons used are reconstructed via the decay $\pi^0 \to \gamma \gamma$. The selections used for the analysis are the result of an optimization procedure based on ensemble Monte Carlo (MC) studies for which a negligibly small signal branching fraction is assumed. In these studies, a sample of MC candidates is produced for given selection criteria by generating randomly from probability density function (PDF) distributions defined with the selection applied. By refitting to the data sets for each set of selection criteria it is possible to select the set that yields the maximum sensitivity to signal. This is done independently for each decay mode considered. In both cases a_0^+ candidates are required to satisfy $0.8 < m_{\eta \pi} < 1.2$ GeV/c^2 with the η candidates satisfying $0.51 < m_{\gamma \gamma} < 0.57$ GeV/c^2 or $0.540 < m_{3\pi} < 0.555$ GeV/c^2. The π^0 produced from the $\eta \to \pi^+ \pi^- \pi^0$ decay is required to satisfy $0.10 < m_{\varphi} < 0.16$ GeV/c^2. The π^0 daughter of the B candidate is required to satisfy $0.115 < m_{\varphi} < 0.150$ GeV/c^2. This selection is tighter than for the π^0 produced from the η meson since it is of significantly higher energy and therefore has a better reso-

FIG. 1. The Feynman diagrams contributing to the process $B^+ \to a_0^+ \pi^0$ in the two-quark model. (a) is the external (color-allowed) tree, (b) the internal (color-suppressed) tree, (c) the annihilation process, and (d) the gluonic penguin process.
lution. The charged track from the a_0^+ candidate decay is required not to satisfy DIRC- and DCH-based PID criteria consistent with a kaon hypothesis. This PID selection has been measured to be more than 80% efficient for tracks with momenta up to 4 GeV/c with a pion misidentification rate lower than 10% over the same range.

A B meson candidate is characterized kinematically by the energy difference $\Delta E = E_B - \frac{1}{2} \sqrt{s}$ and energy-substituted mass $m_{ES} \equiv \frac{1}{2} (s - p_B^2)^{1/2}$, where s is the square of the center-of-mass energy of the colliding beams, (E_B, p_B) is the candidate B meson 4-momentum and all values are expressed in the $Y(4S)$ frame. Signal events peak around zero for ΔE, and at the B meson mass for m_{ES}. The resolutions for ΔE and m_{ES} are approximately 30 MeV and 3 MeV/c^2, respectively. We require $|\Delta E| \leq 0.35 \text{ GeV}$ and $5.20 \leq m_{ES} \leq 5.29 \text{ GeV}/c^2$ as an input for the fit used to extract signal and background parameters (described below) in order to maximize the available statistics.

The principal source of background in the analysis arises from random combinations in continuum $e^+e^- \rightarrow q\bar{q}$ ($q = u, d, s, c$) events. These contributions are reduced in part by placing a selection on the variable $|\cos(\theta_{TB})|$, where θ_{TB} is the angle between the thrust axis of the B candidate and the thrust axis of the rest of the event calculated in the $Y(4S)$ frame. Candidates formed in jetlike $q\bar{q}$ events will peak at $|\cos(\theta_{TB})|$ values approaching 1, whereas signal B decays will follow an almost flat distribution as they are isotropic in this angle. We require $|\cos(\theta_{TB})| < 0.7$ for both η channels. The final variable used in the analysis is a linear Fisher discriminant F that consists of the angles of the B momentum and B thrust axis [in the $Y(4S)$ frame] with respect to the beam axis, and the zeroth and second Legendre moments of the energy flow.

The fit model is constructed in order to extract signal candidates effectively from a sample where multiple reconstruction hypotheses exist for each event. The M fit components are the signal and continuum candidates separately as well as charged and neutral charmed B meson decays. There are then 12 components modeling individual charmless modes which were found to contribute a background to the signal. The yields for all B background components are held fixed in the final fit using values calculated from the latest branching fraction estimates [9], whereas the signal and continuum background yields are allowed to vary.

The fit model is constructed in order to extract signal candidates effectively from a sample where multiple reconstruction hypotheses exist for each event. The signal MC events have an average candidate multiplicity of 1.4 for both η decay modes.

In this analysis separate PDFs were used to discriminate between correctly and incorrectly reconstructed signal

TABLE I.	The results of the fit to the full data set, and other values required for calculating the branching fraction. All B background yields were held fixed. The upper limit is shown first with only the statistical error and then with the total error.	
Required quantity/result	$\eta \rightarrow \gamma \gamma$	$\eta \rightarrow \pi^+ \pi^- \pi^0$
Candidates to fit	103,054	31,626
Fixed B background (candidates)	1,640	942
Signal yield (candidates)	-8 ± 19	13 ± 13
Continuum yield (candidates)	$101,400 \pm 300$	$30,700 \pm 200$
ML fit bias (candidates)	5.2 ± 3.0	-2.0 ± 1.3
Efficiencies and BFs		
Efficiency (%)	16.3 ± 0.1	10.2 ± 0.1
$\mathcal{B}(\eta \rightarrow X)$ (%)	39.4 ± 0.3	22.6 ± 0.4
Branching fraction ($\times 10^{-6}$)	$-0.6^{+0.4}_{-0.3}$ $(\text{stat})^{+0.6}_{-0.3}$ (syst)	$1.7^{+1.6}_{-1.4}$ $(\text{stat})^{+0.3}_{-0.3}$ (syst)
Combined mode results		
Branching fraction ($\times 10^{-6}$)	$0.1^{+0.7}_{-0.3}$ $(\text{stat})^{+0.3}_{-0.3}$ (syst)	
Significance	0.1σ $(\text{stat} + \text{syst})$	
Upper limit 90% C.L. ($\times 10^{-6}$)		<1.3 (statistical error only)
Upper limit 90% C.L. ($\times 10^{-6}$)		<1.4 (total error)
candidates in MC. The method was developed so as to reduce the uncertainty introduced by the use of imperfect MC information to distinguish the candidates. This was achieved by initially using MC information to separate the signal MC candidates into an almost pure sample of correctly reconstructed candidates and a sample consisting mainly of incorrectly reconstructed candidates. By iteratively fitting the separate PDFs to each sample in turn, a consistent set of PDFs for the two cases was obtained. The component for correctly reconstructed candidates was then taken to model signal candidates in the final fit to data. The fraction of events in the MC that were identified as correctly reconstructed by the fit was approximately 62% for both η channels. The signal candidate yield resulting from the fit to MC was verified to be consistent with that expected. The shapes of the distributions for incorrectly reconstructed signal were observed in the MC to be similar to continuum background. No explicit contribution for these candidates was included in the fit and hence they were absorbed into the yield associated with the continuum PDF.

Modeling signal candidates in this way was shown using ensemble MC studies to provide better sensitivity to signal than other methods. As a final test, the method was validated using ensemble MC studies to show that it introduced no bias into the final fit result.

Any continuum and $B\bar{B}$ backgrounds that remain after the event selection criteria have been applied are identified and modeled using Monte Carlo simulation based on the full physics and detector models [10]. Charmless B decays providing a background to the signal are identified by analyzing the MC candidates passing selection from a large mixed sample of standard model B decays. Charged and neutral charmed B decays are modeled separately and individual components are included for each charmless B decay mode found to contribute. The PDF parameters for each B background component are obtained from MC samples and held fixed in the final fit to data. Those for the continuum background shape are left free in the final fit. The contributions from two charmless backgrounds with the same final state as signal, those for $B^+ \rightarrow a_0(1450)^+ \pi^0$ and nonresonant $B^+ \rightarrow \eta \pi^+ \pi^0$, are estimated using fits to the relevant regions of the Dalitz plane. Any potential quantum mechanical interference effects were neglected since the fits gave no significant yields for these modes.

The total PDFs are modeled as products of the PDFs for each of the four fit variables. The signal shapes in ΔE, $m_{\eta\pi}$, $m_{\eta\pi}$, and f are modeled with a Novosibirsk [11] function, the sum of two independent Gaussians, a Breit-Wigner, and an asymmetric Gaussian, respectively. The signal parameters used for the a_0^+ line shape are a Breit-Wigner peak value of 983 MeV/c^2 with a width of 79 MeV/c^2. These were used in the MC simulation and are consistent with previous analyses [12], although the width is considered to be uncertain over a conservative range of 50–100 MeV/c^2 in the evaluation of systematic error. Slowly varying background distributions in f and $m_{\eta\pi}$ are modeled with Chebychev polynomials of the appropriate order. Such polynomials are also used for ΔE in the charmless B and continuum background cases. For these components $m_{\eta\pi}$ is modeled with an ARGUS [13] threshold function. In the case of charmless B backgrounds, ΔE and $m_{\eta\pi}$ are modeled 2-dimensionally using nonparametric PDFs [14], so as to model correlations between the two variables. Studies of the MC samples for each mode have shown that these correlations can be as high as 29%.

The results of the analysis are presented in Table I. The statistical errors on the signal yields are defined using the change in the central value when the quantity $-2\ln L$ increases by one unit from the minimum. The significance is taken as the square root of the difference between the value of $-2\ln L$ for zero signal and the value at the minimum (including additive systematics).

For the purposes of the branching fraction calculation we assume that the $Y(4S)$ decays with an equal rate to both $B^+ B^-$ and $B^0 \bar{B}^0$ [15]. The fit bias is measured using an ensemble MC study based on a parameterization taken from the fit to data with all yield values taken from data. Where a negative yield is found a value of zero is used for the study. The branching fraction results from the two η decay modes are combined by forming the product of the likelihood functions, after their maxima have been shifted to account for fit bias. The functions themselves are defined by computing the likelihood values for signal yields around the maximum. Systematic errors are included at the required stages in the calculation depending on correlations between the two η channels.

We find no significant signal in either η decay mode and thus quote upper limits on the branching fraction at the 90% confidence level (C.L.), taken to be the branching fraction below which lies 90% of the total of the likelihood integral in the positive branching fraction region.

In Fig. 2 we show projections of each of the four fit variables for both the $\eta \rightarrow \gamma \gamma$ and $\eta \rightarrow \pi^+ \pi^- \pi^0$ decay modes. To enhance the visibility of a potential signal, the candidates in these figures have been required to satisfy the condition that the likelihood ratio $L_{\text{sig}}/\left(L_{\text{sig}} + \Sigma L_{\text{bkg}}\right)$ for any candidate be greater than 0.6. Here L_X is the likelihood for a given event being described by either the signal or background model. The likelihoods are calculated for each figure separately, excluding the variable being plotted. As can be seen there is no significant signal peak for either mode.

The largest sources of systematic uncertainty in the analysis arise from poor knowledge of the a_0^+ line shape and from the error in the estimated background contributions. By varying the width of the a_0^+ Breit-Wigner between 50 and 100 MeV/c^2 we predict an uncertainty of approximately +5 and −4 candidates for $\eta \rightarrow \gamma \gamma$ and
null
[3] Throughout this paper, charged-conjugate decays are also implied.
[11] The Novosibirsk function is defined as \(f(x) = A_x \exp(-0.5(\ln^2[1 + \Lambda \tau(x - x_0)]/\tau^2 + \tau)) \) where \(\Lambda = \sinh(\tau/\ln4)/(\sigma\tau/\ln4) \), the peak is \(x_0 \), \(\tau \) is the tail parameter and \(A_x \) is a normalization factor.
[13] H. Albrecht et al. (ARGUS Collaboration), Phys. Lett. B 241, 278 (1990); Function defined as \(f(x) = N_x[(1 - (x/E_{\text{beam}})^2) \exp[p(1 - (x/E_{\text{beam}})^2)]^{1/2}, \) where \(N \) is a normalization factor, \(p \) a shape parameter, and \(E_{\text{beam}} \) is 50% of the center-of-mass energy of the colliding beams.