
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Modeling and Simulation Methods for VLSI Interconnect Reliability Focusing on Time
Dependent Dielectric Breakdown

Permalink
https://escholarship.org/uc/item/966241xk

Author
Peng, Shaoyi

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/966241xk
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Modeling and Simulation Methods for VLSI Interconnect Reliability Focusing on
Time Dependent Dielectric Breakdown

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Electrical Engineering

by

Shaoyi Peng

March 2021

Dissertation Committee:

Dr. Sheldon Tan, Chairperson
Dr. Hyoseung Kim
Dr. Daniel Wong

Copyright by
Shaoyi Peng

2021

The Dissertation of Shaoyi Peng is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I wish to thank many people who gave me the support and help through the journey of my

PhD studies.

First and foremost, I want to express my gratitude to my knowledgeable advisor,

Dr. Sheldon Tan, without whose help, I would not have been here. His experience and

mentorship is beyond helpful while I was carrying out my research, and also while publishing

my research. Our discussions about work and career are invaluable to me.

I would also like to thank my committee members Dr. Hyoseung Kim and Dr.

Daniel Wong for their guide to my research, especially during my first year when I started

to explore the areas of research.

I am also grateful to all my fellow labmates. Especially, I want to thank Taeyoung

Kim, Hengyang Zhao, Chase Cook, Zeyu Sun, Han Zhou, Sheriff Sadiqbatcha, Wentian

Jin, Jinwei Zhang, Shuyuan Yu and Yibo Liu. The mentorship and discussions we had are

treasurous during these years of study. Furthermore, I cannot imagine going through these

years without your company. You are the family of mine in this country.

The content of this thesis is reprinted or rewritten from these published materials:

• Shaoyi Peng, Han Zhou, Taeyoung Kim, Hai-Bao Chen, and Sheldon X-D Tan.

“Physics-based compact TDDB models for low-k beol copper interconnects with time-

varying voltage stressing”. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 2017 (Chapter 2)

iv

• Shaoyi Peng, Ertugrul Demircan, Mehul D. Shroff, and Sheldon X-D. Tan. “Full-

chip wire-oriented back-end-of-line TDDB hotspot detection and lifetime analysis”.

Integration, 2020 (Chapter 3)

• Shaoyi Peng, Wentian Jin, Liang Chen, and Sheldon X-D Tan. “Data-Driven Fast

Electrostatics and TDDB Aging Analysis”. Proceedings of the 2020 ACM/IEEE

Workshop on Machine Learning for CAD (Chapter 4)

• Shaoyi Peng, and Sheldon X-D. Tan. “GLU3.0: Fast GPU-based Parallel Sparse LU

Factorization for Circuit Simulation”. IEEE Design & Test, 2020 (Chapter 5)

v

To my parents for all the love and support.

vi

ABSTRACT OF THE DISSERTATION

Modeling and Simulation Methods for VLSI Interconnect Reliability Focusing on Time
Dependent Dielectric Breakdown

by

Shaoyi Peng

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, March 2021

Dr. Sheldon Tan, Chairperson

Time dependent dielectric breakdown (TDDB) is one of the important failure

mechanisms for Copper (Cu) interconnects that are used in VLSI circuits. This reliability

effect becomes more severe as the space between wires is shrinking and low-k dielectric

materials (low electrical and mechanical strength) are used. There are many studies and

theories focusing on the physics of it. However, there is limited research from the electronics

design automation (EDA) perspective on this topic, aiming to evaluate, or alleviate it from

the perspective of designing a VLSI chip. This thesis compiles several studies into evaluating

TDDB on the circuit level, and engineering methods that help the evaluation. The first

work extends the study of a published physics model on simplified yet practical cases. It

simplifies the calculation of lifetime by deriving an analytic solution and applying fitting

methods. The second study proposes a new way to evaluate lifetime of a chip by extending

the models of simple interconnect structures to the complete chip. This method is more

robust as it focuses more on a complete chip. However, heavy dependence of finite element

method (FEM) makes the flow very slow. The third study adopts machine learning methods

vii

to accelerate this slow evaluation process. The proposed method is also applicable to other

similar electrostatics applications. Last but not least, the fourth study focuses on a GPU

based LU factorization algorithm, which, on a broader aspect, is a universal numerical

algorithm used in many different simulation applications, which can be helpful to TDDB

evaluations as it can be used in FEM.

viii

Contents

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Time Dependent Dielectric Breakdown for VLSI Interconnect 1
1.2 Sparse LU factorization . 3
1.3 Related works . 4

1.3.1 TDDB . 4
1.3.2 Sparse LU factorization . 5

1.4 Contributions . 6
1.5 Organization of this thesis . 8

2 Fast TDDB analysis with EPG model 9
2.1 Review of physics-based TDDB EPG model for low-k BEOL interconnects . 10
2.2 Faster TDDB analysis flow with the EPG model 13

2.2.1 Analytic solution of ion concentration in the IMD 17
2.2.2 TDDB time to failure estimation . 18
2.2.3 Study of the relationship between TTF and electric field 20

2.3 Equivalent DC stressing voltage analysis of EPG model 23
2.4 Experimental results and discussions . 25
2.5 Summary . 29
2.6 Appendix . 29

2.6.1 Derivation of the analytic solution for the ion diffusion equation . . 29
2.6.2 Derivation of analytic form for time to failure 32

3 Full-Chip Wire-Oriented TDDB Analysis 34
3.1 Overview . 35
3.2 Length-aware TDDB model . 37

3.2.1 Review of
√
E and other TDDB models 37

3.2.2 TDDB damage model of interconnect wires 38
3.2.3 Lifetime of chip . 41

ix

3.3 Layout partition-based TDDB wire damage analysis 42
3.3.1 Layout partition . 43
3.3.2 Solving E and TDDB damage in each tile 45
3.3.3 Integral of long wires for final results 46

3.4 Numerical results . 49
3.4.1 Comparison on three structures . 49
3.4.2 Validation of the partition-based method 51
3.4.3 Analysis of an example layout . 58

3.5 Summary . 61

4 Data-Driven Fast Electrostatics and TDDB Aging Analysis 62
4.1 Overview . 63
4.2 Related works . 64
4.3 Preliminaries of Electrostatics and TDDB 65
4.4 The proposed data-driven electrostatic analysis 67

4.4.1 Problem formulation . 67
4.4.2 Structure of the neural network . 70

4.5 Numerical results and discussions . 71
4.5.1 Data preparation and training . 73
4.5.2 Results of electric potential analysis 76
4.5.3 Results of electric field analysis . 77
4.5.4 Results of TDDB aging analysis . 77
4.5.5 Simulation efficiency study . 81
4.5.6 Discussion of network structure . 82

4.6 Summary . 83

5 GLU3.0: Fast GPU-based Parallel Sparse LU Factorization Solver 84
5.1 Overview and related works . 85
5.2 Review of LU factorization and CUDA . 86

5.2.1 The left-looking method . 87
5.2.2 The column-based right-looking method used in GLU 90
5.2.3 Additional data dependency in GLU: the fix in GLU2.0 93
5.2.4 Enhancements to GLU2.0 . 97
5.2.5 Review of GPU Architecture and CUDA programming 97

5.3 New GPU based sparse LU solver: GLU 3.0 99
5.3.1 Relaxed data dependency detection method for GLU 99
5.3.2 New GPU kernels . 103

5.4 Numerical results and discussions . 110
5.5 Summary . 116

6 Conclusions 118
6.1 Fast TDDB analysis with EPG model . 118
6.2 Full-Chip Wire-Oriented TDDB Analysis 119
6.3 Data-Driven Fast Electrostatics and TDDB Aging Analysis 120
6.4 GLU3.0: Fast GPU-based Parallel Sparse LU Factorization Solver 121

x

Bibliography 122

xi

List of Figures

1.1 Structure of two copper interconnect wires and the IMD, where TDDB occurs 2

2.1 Dielectric modeled by resistor chain and the corresponding ion concentration 11
2.2 Distribution of ion concentrations in one pattern. 12
2.3 Current-voltage leakage changes for different voltage (TDDB) stresses mod-

eled by EPG model, compared with experimental data from [61], courtesy of
[33]. 14

2.4 Two example patterns with the same minimum distance (50nm) studied in
FEM analysis using COMSOL. 14

2.5 TTF against different stressing voltages (VDD) under different temperatures. 22
2.6 Comparison between RSM results with COMSOL results on different param-

eters. 28

3.1 FEM analysis result showing higher electric field around tips 36
3.2 The three key steps of the analysis flow . 42
3.3 Full layout of M3 and the partition scheme 44
3.4 An example of a wire crossing a tile boundary, with two tiles and three wires

in total . 47
3.5 Comb structures in designs . 50
3.6 Three structures analyzed: (a) comb (b) parallel line (c)twisted line 52
3.7 Electric field distribution of the three structures analyzed 53
3.8 The layout tile used to validate the partition-based approach 54
3.9 Distribution of Error1 and Error2 of R among all wires 56
3.10 Distribution of R among all wires . 59
3.11 Full M1 layer view with most vulnerable wire highlighted 60

4.1 Encoding a layout tile into image . 69
4.2 An example of encoded tile image of and its corresponding solution of potential 69
4.3 Structure of the used neural network . 72
4.4 The split of the dataset from layout (M3 shown here) 74
4.5 Training curves . 75
4.6 Distribution of RMSE over the test set . 75

xii

4.7 The test sample with the largest RMSE. The tile is shown using the same
color convention as in Fig. 4.2a . 76

4.8 Results of electric potential of sample tiles (left) from COMSOL (middle)
and the proposed method (right) . 78

4.9 Results of electric field of sample tiles from COMSOL and the proposed
method. The unit of electric field is MV/cm. 79

5.1 The example matrix . 87
5.2 The two update iterations completing factorization of the 7th column (j = 7)

(a) update using the 4th column (k = 4) (b) update using the 6th column
(k = 6) . 90

5.3 Subcolumns and submatrix column 3. All highlighted elements compose the
submatrix, which include elements being read and elements being updated. 91

5.4 An example of double-U dependency originated from element (6,7) 95
5.5 Complete flow of GLU2.0 . 96
5.6 Diagram of NVIDIA TITAN X and the streaming multiprocessor. (SP is

short for streaming processor, L/S for load/store unit, and SFU for Special
Function Unit.) . 98

5.7 The programming model of CUDA. 99
5.8 Comparison of left looking and up looking, left looking is able to detect

double-U dependency. 101
5.9 Dependency graph generated from 3 methods: (a) GLU1.0: incorrect result

(b) GLU2.0: correct result (c) This work: the relaxed data dependency . . 102
5.10 Number of columns and subcolumns of different levels 107
5.11 Comparison of the concurrency layout for one column in different kernels:

(a) Small block mode (b) Large block mode (c) Stream mode 110
5.12 Performance of GPU kernel with different stream mode threshold settings . 116

xiii

List of Tables

2.1 Parameters and constants used . 14
2.2 Statistics of TTFs in different patterns with the same minimum distance

(50nm) . 15
2.3 TTF results after changing D0 or Ea . 15
2.4 Statistics of TTFs in different patterns with the same minimum distance

(20nm) . 16
2.5 Fitted coefficients of the power law model 20
2.6 Results of ion concentration derived from two methods 26
2.7 TTF from different methods, the calculation times and speedup over FEM . 26
2.8 Parameters for 3 tests . 28

3.1 Results of E at points marked “×” under different setups. Unit is V/m.
Error is defined as (E − E0)/E0. 56

3.2 Results of R of marked wires marked “©” under different problem setups.
Error is defined as (R−R0)/R0. 56

3.3 Analysis results of all layers . 58

4.1 Integral results in capacitance and aging analysis of sample wires, calculated
using the proposed method and COMSOL 81

4.2 Result discrepancy achieved with different network structures 83

5.1 Solver runtimes of GLU3.0 vs previous works, where nz stands for number
of nonzeros before fill-in, and nnz stands for number of nonzeros after fill-in 112

5.2 Levelization runtimes . 113
5.3 GPU kernel runtimes without enabling all 3 kernel modes, compared to case

1 where small block mode is disabled, and case 2 where stream mode is disabled.114

xiv

Chapter 1

Introduction

1.1 Time Dependent Dielectric Breakdown for VLSI Inter-

connect

Time Dependent Dielectric Breakdown (TDDB) is the physical phenomenon that

dielectric breaks down with time when the dielectric deposited under a field becomes weaker

than the material breakdown strength. It creates a short circuit and is thus fatal to the VLSI

circuit. TDDB has become a serious dielectric reliability concern and failure mechanism

for back end of line (BEOL) interconnects, so accurate and fast modeling and estimation

of TDDB failure become important.

Traditionally, TDDB is a major concern only for the gate oxide of CMOS devices.

With the advances of technology scaling, middle-of-line (MOL) TDDB and BEOL TDDB

have also become important reliability mechanisms. MOL TDDB is breakdown between

the gate and contact and is often modeled together with gate oxide TDDB as they can be

1

(a) The cross-section of copper/low-
k dielectric structure

(b) The cross-section SEM image af-
ter TDDB failure, courtesy of [60]

Figure 1.1: Structure of two copper interconnect wires and the IMD, where TDDB occurs

modeled by extra resistors connecting transistor nodes [70, 8]. However, with aggressive

technology scaling accompanied by the employment of new low-k and even porous mate-

rials [17], TDDB becomes a serious reliability concern and failure mechanism for BEOL

interconnects [47, 34, 5, 67]. The dielectric breakdown is caused by the conducting path

formation through the inter-metal dielectric (IMD) oxide between metal wires from electron

tunneling current. Finally, a significant large leakage current occurs and results in the chip

operation failure. This is shown in the SEM image in Fig. 1.1, along with a descriptive

figure showing the structure of the two metal wires and the IMD in between. For BEOL,

TDDB effects can be seen at the inter-layer dielectric (ILD) between two metal layers and

also IMD between metal wires in the same layer of the low-k dielectrics. In general, due to

the fact that ILD space is larger than that of IMD, TDDB in IMD is more likely to occur

so more research focus is put on it.

Many researches have been done about the physics of TDDB, and thus many

TDDB models have been proposed based on different proposed breakdown mechanisms,

2

the most well known ones being E, 1/E, and E1/2 models. The E-model models TDDB

as a weak bond breakage due to thermochemical heating [44]. The 1/E-model models it as

high energy hole injection induced failure [9]. These models were initially introduced for

gate oxides and later examined for the extension to the copper/low-k interconnects. The

difference between gate oxides model and low-k BEOL dielectrics is the existence of metal

ions in the former’s interior. The E1/2-model has been firstly proposed for metal-SiN-metal

capacitors [2] and later examined in the low-k TDDB by assuming that the copper ion plays

an important role in the dielectric breakdown [6, 60]. These studies use simple interconnect

structures such as serpentine-comb or comb-comb to test the life time of test structures [67].

Recently some studies show that the migration of copper ions is not significant

due to the existence of copper barrier (i.e. Ta). Instead, the barrier ions play an important

role in ion migration [37, 43, 33]. Moreover, the breakdown depends on the conducting path

formation between the two metal wires. This leads to the development of the electric path

generation (EPG) model [33].

1.2 Sparse LU factorization

LU factorization represents the routine to factorize a full-rank square matrix A into

the product of two triangular matrices: the lower triangular matrix L and upper triangular

matrix U such that A = LU .

Sparse matrix is a special type of matrix, in which most of the elements are zero.

Sparse matrices appear in many engineering and scientific computing applications, such as

circuit simulation and finite element method (FEM), which itself is an important method

3

in TDDB analysis. The core of the computing or dominant computing of these applications

is to solve the linear algebraic system, Ax = b, where matrix A and vector b are given and

x is a vector to be solved. LU factorization is an important way to solve such problem.

After finding the triangular matrices L and U through LU factorization, the solution x is

then obtained by solving the two triangular matrices sequentially, which only has linear

time complexity and is much cheaper than LU factorization.

1.3 Related works

1.3.1 TDDB

Besides the works on the physics of TDDB mentioned above, there also exists some

other works focusing on evaluating the BEOL TDDB lifetime of a chip, which is the time a

chip can function before a TDDB failure. They are more related to the studies conducted

in this thesis.

A chip-scale TDDB lifetime simulator is proposed in [3]. In this work, interconnect

geometries are grouped by spacing between wires and the total run length of each group is

extracted. Next, lifetime of each group is scaled by total length based on experimental data

of dielectrics of the same spacing. Furthermore, practical considerations such as variation

in spacing and different temperature across the chip are also done. [4] extends this work

to include other reliability effects such as electromigration (EM) and stress-induced voiding

(SIV).

Besides proposing the EPG model, [33] also introduces a method based on a look-

up table of high-risk interconnect shape patterns. The look-up table is built by simulating

4

the TDDB failures on the patterns. Also, fitting methods are used to cover different kinds

of wires such as power, ground and signal.

The work presented in [35] models BEOL TDDB as additional resistors across

dielectrics. The device level model is then used for the higher circuit and system level

modeling and simulations.

1.3.2 Sparse LU factorization

There exists many earlier researches targeting sparse LU factorization. For in-

stance, SuperLU MT [22] is the multi-threaded parallel version of SuperLU for multi-core

architectures. However, it is not easy to form super-node in some sparse matrix such as

circuit matrix. KLU [20], which is specially optimized for circuit simulation, adopts Block

Triangular Form based on Gilbert-Peierls (G/P) left-looking algorithm [27] and has become

one of the standard algorithms in circuit simulation applications. The original KLU runs

on single CPU core only. NICSLU [12, 13, 11] implements its parallel version on multi-core

architecture by exploiting the column-level parallelism. UMFPACK [64] is implemented

based on a multifrontal algorithm. PARDISO [57] is developed based on a left-right-looking

algorithm.

Existing GPU based parallel LU factorization solvers mainly focus on dense ma-

trices including [25]. There also exists a few sparse matrix LU factorization methods on

GPU [14, 26]. But these works mainly convert the sparse matrices into many dense sub-

matrices (blocks) and then solve them by dense matrix LU factorizations. However, such

strategy may not work well for circuit matrices, which hardly have dense submatrices.

5

Parallel G/P left-looking algorithm on GPU has been explored first in [54, 10]. It

exploits the column-level (called task-level) parallelism due to sparse nature of the matrix

and vector-level parallelism in the sparser triangular matrix solving in the G/P method.

However, the two loops in triangular matrix solving can’t be completely parallelized (from

line 4-8 in Algorithm 3) thus the G/P method is difficult for fine grain parallelization.

To mitigate this problem, He et. al proposed a hybrid right-looking sparse LU fac-

torization on GPU, called GLU (GLU1.0) [30]. GLU keeps the benefits of the left-looking

method for column-based parallelism and uses the same symbolic analysis routine. The

difference is that it performs the submatrix update once one column is factorized, which is

similar to the traditional right-looking LU method. However, GLU1.0 used a fixed scheme

to allocate the GPU threads and memory, which limits its parallelism. Furthermore, the

right-looking feature of GLU actually introduces new data dependency (called double-U

dependency in this paper), which has been reported in GLU2.0 and [39]. Double-U depen-

dency can lead to inaccurate results for some test cases. Detection of double-U dependency

was added into GLU2.0 to fix this issue, which, however, incurred some performance degra-

dation compared to GLU1.0. Recently, Lee et al. proposed an enhanced GLU2.0 solver [39],

which considers the column count difference in different level, and exploits some advanced

GPU features such as dynamic parallelism to further improve the GLU kernel efficiency.

However, the fixed GPU threads and memory allocation method from GLU2.0 for each

kernel launch is still used and limiting performance.

6

1.4 Contributions

The work presented in this thesis presents several contributions in the area of

TDDB analysis for VLSI interconnect, and GPU based sparse LU factorization:

• The recently proposed physics based EPG model for interconnect TDDB is further

studied. It is shown that the simplified 1D case can represent most cases pretty well.

The analytic solution of the PDE of the model is derived. Then it is shown that the

location of the minimum concentration, which is a key factor in this TDDB model, can

be determined by the dominant terms and the TTF can be computed by using a few

dominant terms. Furthermore, fitting methods are adopted to extend the proposed

method to time-varying DC stressing voltages.

• A full chip TDDB lifetime and hotspot evaluation flow is proposed based on a new

concept called TDDB Damage. It takes into account the layout effect brought by

complex wire geometries and the length of the wires and dielectric. By partitioning

the chip into smaller tiles, FEM can be used to calculate the strength of electric field

under stressing conditions, and the electric field is used to further calculate TDDB

Damage and the lifetime of wires and the chip.

• A machine learning based method is proposed to speed up the electrostatics solving

process, which aims to solve the electric field in TDDB analysis. After layout partition,

each layout tile can be encoded as an image and thus an encoder-decoder network is

employed to mimic the FEM solving process. High accuracy along with speedup of

two orders are achieved.

7

• GLU3.0 introduces two main improvements to the previously developed GPU based

sparse LU factorization solver GLU. First, a new leveling algorithm is developed,

which brings the complexity of the preprocessing stage back to normal. Second, three

new modes of GPU kernels are developed, which takes advantage of the data pattern

in typical sparse LU factorization and helps better utilize the computing resources of

GPU.

1.5 Organization of this thesis

The rest of this thesis is organized as follows. Chapters 2, 3 and 4 introduce the

three TDDB analysis works. Chapter 5 introduces GLU3.0. Each chapter begins with an

overview, and the related published paper is listed, followed by details of the work and

results. Finally, chapter 6 summarizes the thesis.

8

Chapter 2

Fast TDDB analysis with EPG

model

The work presented in this chapter focuses on the EPG model [33], which is based

on the breakdown concept of electric path generation. However, determination of the time-

to-failure from this model includes time-consuming finite element method (FEM). The work

presented in this chapter tries to mitigate this problem by developing fast time to failure

(TTF) evaluation method based on the analytic solution of the ion diffusion partial dif-

ferential equations. It is shown that the location of the minimum concentration can be

determined by the dominant terms with sufficient accuracy and the TTF can also be com-

puted with a few dominant terms. On top of this, time-varying stressing voltages are also

considered, which are commonly seen in practical VLSI chips. An equivalent DC stressing

voltage is computed for given time-varying stressing voltages such that both voltages will

lead to the same TTF for the same wire structure. The developed equivalent DC stressing

9

voltage is parameterized in terms of amplitude, duty cycle, and period for periodic stressing

voltage waveforms using regression-based method. The proposed analytic TDDB concen-

tration and TTF formula, and the equivalent DC stressing voltage compact model are all

validated against the results of FEM analysis using COMSOL. Numerical results further

show the new compact TDDB model can lead to three orders of magnitude speedup with

less than 1% error against the existing FEM results. This work is published in [53]

2.1 Review of physics-based TDDB EPG model for low-k

BEOL interconnects

The EPG model views dielectric breakdown as a complementary combination of

electric current path generation by means of diffusing metal ions and field-based hopping

conductivity of the current carriers. Different from the more widely accepted across-layout

electrostatic field based TDDB models (i.e. E, 1/E, and E1/2 models), TTF in the EPG

model is determined by the kinetics of the electric current path generation, which is con-

trolled by a time-dependent minimum metal ion concentration in IMD. Also, in this model,

it is assumed that the barrier metal ions are injected into the dielectrics based on the recent

observation [37].

Specifically, 2D diffusion of the metal ions along the cap/IMD interface between

the oppositely charged metal wires (as shown in Fig. 1.1a) is considered because experiments

demonstrate that TDDB failures take place mostly at this interface [71, 24].

10

(a) Resistors in IMD along (0, d) (b) Distribution of corresponding ion concen-
tration

Figure 2.1: Dielectric modeled by resistor chain and the corresponding ion concentration

As stated, electric conductivity is represented by electron jumps between neighbor-

ing centers (hoping conductivity). The local conductivity is proportional to the probability

of the electron jumping between the neighbor centers, which exponentially depends on the

distance between the centers [58]:

σij ∼ Γij = γ0ijexp

{
−2rij

a
− εij
kBT

}
(2.1)

where rij is the distance between centers marked i and j, a is the radius of electron local-

ization at this type of centers (analog of the Bohr’s radius), which can reach 100Å, εij is

the energy barrier between centers, and kBT is the thermal energy. All connected centers

form a resistor network, with the resistor between i and j centers being

Rij = R0
ijexp

{
2rij
a

+
εij
kBT

}
(2.2)

In a 2D system, the distance rij is determined by: rij = C(x, y, t)−
1
2 , where C(x, y, t) is

the ion concentration at the considered interface. Fig. 2.1 shows the schematic of the distri-

11

Figure 2.2: Distribution of ion concentrations in one pattern.

bution of ion concentration and corresponding resistor network at an arbitrary instance in

time in IMD along a path (0, d) connecting metal electrodes. It is clear that electrons mov-

ing from the cathode to anode will meet the biggest resistor at the locations characterized

by the largest distance between centers. Since the resistance grows exponentially with the

distance, it is reasonable to conclude that the total resistance of the path (0, d) depends on

the largest resistor, and its corresponding minimum ion concentration. Fig. 2.2 shows the

COMSOL [1] FEM analysis result of the distribution of ion concentration for the pattern

in Fig.2.1a under some time of stressing, which is a 2D version of Fig. 2.1b.

The distribution of the normalized ion concentration Cnorm(x, y, t) = C(x, y, t)/C0

is governed by the diffusion of ions in an electric field [29]:

∂Cnorm

∂t
= −∇J, where J = −D∇Cnorm + vdCnorm (2.3)

subject to the following boundary conditions:

Cnorm(x = 0) = Cnorm(x = d) = 1

12

where J is the metal flux, D = D0exp(−Ea/kBT) is the diffusion coefficient, vd = E Dq
kBT

is the metal ion drifting velocity, Ea is the activation energy for metal ion diffusion, kB is

the Boltzmann constant, T is the temperature, q is the electric charge and E is the electric

field.

The developed model of the electric path generation and evolution allows derivation

of the formalism of the leakage current evolution. As mentioned above, the neighboring ions

characterized by the largest separation provides the largest “resistance” for the electrons

hopping between metal ions. Assuming that the potential barriers between neighboring

centers do not depend on the distance between them (εij = ε), and adopting the Poole-

Frenkel mechanism of the field-induced barrier lowering, the expression for the current

density evolution can be derived:

j(t) = j0Eexp

{
− 2

a
√
Cmin
norm(t) · C0

−
ε− q

√
qE/(πεperm)

kBT

}
(2.4)

where εperm is the dielectric dynamic permittivity. The total leakage current can be obtained

by integral of leakage current density over the whole shape contour. It was shown in [33]

that the EPG model agrees with some observed experimental results in terms of breakdown

leakage currents over time as shown in Fig. 2.3.

2.2 Faster TDDB analysis flow with the EPG model

This section presents a faster way to analyze ion concentration and TTF in EPG

model based on the solution of the ion diffusion equation (2.3). Before proceeding, we show

13

stress time (s)
0 1000 2000 3000 4000

le
a

k
a

g
e

 c
u

rr
e

n
t

(A
)

10
-12

10
-11

Proposed model

Experiment

(a) Constant voltage stress

voltage (V)
0 50 100 150 200

le
a

k
a

g
e

 c
u

rr
e

n
t

(A
)

10
-14

10
-12

10
-10

10
-8

Proposed model

Experiment

(b) Ramped voltage stress

Figure 2.3: Current-voltage leakage changes for different voltage (TDDB) stresses modeled
by EPG model, compared with experimental data from [61], courtesy of [33].

Figure 2.4: Two example patterns with the same minimum distance (50nm) studied in FEM
analysis using COMSOL.

Table 2.1: Parameters and constants used

Paras Value Paras Value

D0 2.24× 10−11m2/s Ea 0.8eV

εperm 2.9 kB 1.38× 10−23J/K

T 370K VDD 1V

14

Table 2.2: Statistics of TTFs in different patterns with the same minimum distance (50nm)

TTF(s) Count Percentage

360000 42 7.61%

370000 269 48.73%

380000 194 35.14%

390000 34 6.16%

400000 11 1.99%

410000 2 0.04%

Table 2.3: TTF results after changing D0 or Ea

Test cases TTF(s)

Original case 363426

D0 increased by 10% 327083

D0 decreased by 10% 399767

Ea increased by 10% 6113735

Ea decreased by 10% 21604

that the minimum distance between metal wires is the dominant factor in determining the

TTF as this is the starting point of this work.

FEM analysis of equation (2.3) using COMSOL has been done to simulate TTFs

of 552 different patterns. In all these patterns, there are two metal wires and the minimum

distance between them are the same. Two example patterns are shown in Fig. 2.4, where the

two gray lines represent metal wires, one connected to VDD (supply voltage), and the other

connected to GND (ground), and the white area is the dielectric in between. Cx = 0.95

is employed as the threshold normalized minimum concentration leading to failure. The

parameters and constants used in the FEM analysis are shown in Table 2.1. The diffusion

coefficient D0 and activation energy Ea are obtained from fitting the experimental results

in [61] as shown in Fig. 2.3.

15

Table 2.4: Statistics of TTFs in different patterns with the same minimum distance (20nm)

TTF(s) Count Percentage

58000 23 4.17%

59000 159 28.80%

60000 219 39.67%

61000 78 14.13%

62000 30 5.43%

63000 12 2.17%

64000 18 3.26%

65000 13 2.36%

First, a test is done with patterns with minimum distance of 50nm. The results

are listed in Table 2.2, where Count means the number of patterns with the corresponding

TTF value. It is shown that the TTFs for most cases are in the range between 360000s

and 41000s for the minimum spacing of 50nm. Note that D0 and Ea have huge impacts on

the TTFs of TDDB as they determine the diffusion speeds of the barrier metal ions. We

changed the two parameters and the results are shown in Table 2.3.

Table 2.4 shows the TTF range is between 58000s and 65000s for a second test

with the minimum spacing of 20nm. The precision of this range is limited by the timestep

set in COMSOL. It shows that the layer pattern has some impact on the TTF values, and

this impact gets more significant for smaller minimum spacing. However, for both 50nm

and 20nm minimum spacings, the impact on TTF is quite small for the majority of the

patterns. It is also observed that the minimum spacing dominant effect becomes more

obvious when the length of the wires is sufficiently long (compared to the spacing between

them). Based on this observation, as a first-order approximation, the original problem can

still be simplified to the one-dimensional problem with two parallel metal wires separated

16

by the minimum distance like the one shown in Fig. 2.1a, which is the starting point of this

work.

2.2.1 Analytic solution of ion concentration in the IMD

The normalized concentration Cnorm(x, t) is simplified as C(x, t) for the sake of

better presentation. Then equation (2.3) can be rewritten as

D∇2C =
qD

kBT
∇(C · E) +

∂C

∂t
(2.5)

with boundary condition:

C(at the edge of dielectric) = 1 (2.6)

and initial condition:

C(t = 0, within the dielectric) = 0 (2.7)

Equation (2.5) can be further simplified to one-dimensional form given the previous

discussion as follows:

D
∂2C

∂x2
=
qDE

kBT
· ∂C
∂x

+
∂C

∂t
(2.8)

with boundary condition:

C(x = 0) = C(x = L) = 1 (2.9)

and initial condition:

C(x, t) = 0, 0 < x < L, t = 0 (2.10)

Further define X, T ′, λ, and L as

X =
x

L
, T ′ =

Dt

L2
, λ =

Pe
2

=
qE

2kBT
L =

qVDD
2kBT

(2.11)

17

Equation (2.8) can be written as

∂2C

∂X2
= Pe

∂C

∂X
+
∂C

∂T ′
(2.12)

The solution of (2.12) can be found by using Laplace transformation based method

as shown below. The detailed derivation of the solution can be found at the Appendix

section.

C(X,T ′) = 1− 2π
∞∑
n=1

n sin(nπX)

(n2π2 + λ2)
e−(n

2π2+λ2)T ′ ·
[
eλX − (−1)neλX−λ

]
(2.13)

Note that equation (2.13) is an exact analytic solution without any approximation.

2.2.2 TDDB time to failure estimation

This section introduces three different methods to estimate TTF based on differ-

ent approximation of equation (2.13). An easy yet inaccurate method is first introduced,

followed by an accurate but inefficient version. Finally, a combined method of these two

that is both accurate enough and efficient is introduced.

Before proceeding, it is worthwhile to note that the goal here is to find TTF, which

is the time whenmin [C(X,TTF)] reaches the threshold normalized minimum concentration

CX for 0 < X < 1.

As equation (2.13) contains an infinite series, it is not possible to get an analytical

result of TTF. However, numerical methods are still feasible. First, it is natural to consider

using first term approximation because of its simplicity. The first term approximation of

equation (2.13) is:

C1(X,T
′) = 1− 2π sin (πX)

λ2 + π2
e−(λ2+π2)T ′

(
eλX + eλX−λ

)
(2.14)

18

This equation can be used to derive where the minimum concentration locates

(labeled by Xfail) by calculating the partial derivative of concentration with respect to X

and solve for the zero points. Then, a fixed Xfail which does not change with T ′ can be

derived:

Xfail = 1− 1

π
arctan

(π
λ

)
(2.15)

This Xfail can be used back in equation (2.14) to solve for TTF, which gives the result:

TTF =
L2

D(λ2 + π2)
ln

2π2
(
eλ−(λ/π) arctan(π/λ) + e−(λ/π) arctan(π/λ)

)
(1− CX) (λ2 + π2)3/2

(2.16)

The details of this derivation can be found at the Appendix section. This is the

first method to evaluate TTF. However, the results from above equation (2.16) are not

accurate as shown in Section 2.4.

The second method which is quite accurate contains two iterative phases, namely

X and T ′ phases. First, in order to conduct sufficiently accurate approximation of equa-

tion (2.13), it is preferred to use a large number of terms (10000 terms are used in exper-

iments) of the infinite series. Then, because the concentration is monotonically increasing

with respect to T ′, so the bisection method can be used to numerically find TTF efficiently

on condition that X is fixed. This is the T ′ phase, which is named because it solves T ′ with

X fixed. Issues about Xfail can be tackled by the fact that there exists only one minimum

value of concentration with respect to X. Therefore in X phase Xfail can be searched step

by step with a fixed T ′ from the previous T ′ phase. In detail, X is adjusted with a small

enough Xstep in each searching step until the minimum concentration at Xfail is found.

Then, a new T ′ phase may be started for more accurate TTF. The final result can be found

by performing two phases iteratively for only a few times.

19

Table 2.5: Fitted coefficients of the power law model

Temperature(K) B(T) N

370 exp(12.839) -0.928

390 exp(11.612) -0.914

410 exp(10.508) -0.9

This is the most accurate yet most complicated method. In fact, the previous two

methods can be combined together to get an accurate and simple method.

As discussed above, the bisection method can be used to numerically find TTF if

we use 3 or 5 terms for approximation. Note that an odd number of terms is used because

the function of concentration has to be monotonic. At the same time, Xfail given by

equation (2.15) can be directly used so the X phase can be skipped. The latter Section 2.4

shows that results derived from this simple method are quite accurate. In short, the X min

in equation (2.15) can be used and then the 3 terms approximation based bisection method

can be employed to numerically derive an accurate enough TTF.

A pseudocode describing this evaluation flow through bisection method is listed

in Algorithm 1. Cmin(T ′) stands for the ion concentration calculated through a certain

approximation of equation (2.13) (for example, 3-terms approximation), with X = Xfail

from equation (2.15).

2.2.3 Study of the relationship between TTF and electric field

This section focuses on the relationship between the TTF and stressing electric

filed or voltage for the EPG TDDB model. It is shown that EPG model shows similar

20

Algorithm 1 Evaluation of TTF

1: Set parameters such as spacing L, stressing voltage VDD

2: Calculate Xfail from equation (2.15)

3: Set initial T ′ = 1, result error tolerance eps

4: while Cmin(T ′) < CX do

5: T ′ = T ′ ∗ 2

6: end while

7: a = 0, b = T ′, c = (a+ b)/2

8: while b− a < eps do

9: if (Cmin(a)− CX) ∗ (Cmin(c)− CX) < 0 then

10: b = c, c = (a+ b)/2

11: else if (Cmin(b)− CX) ∗ (Cmin(c)− CX) < 0 then

12: a = c, c = (a+ b)/2

13: else

14: break

15: end if

16: end while

17: T ′fail = c

21

VDD(V)
0 0.5 1 1.5

T
T
F
(s
)

×10
6

0

1

2

3

4
TTF

exp(12.839)*Vdd
-0.928

(a) 370K

VDD(V)
0 0.5 1 1.5

T
T
F
(s
)

×10
5

0

2

4

6

8

10
TTF

exp(11.612)*Vdd
-0.914

(b) 390K

VDD(V)
0 0.5 1 1.5

T
T
F
(s
)

×10
5

0

1

2

3
TTF

exp(10.508)*Vdd
-0.9

(c) 410K

Figure 2.5: TTF against different stressing voltages (VDD) under different temperatures.

relationship between TTF and electric field of the power law model [43, 68]:

TTF = B(T)V N (2.17)

To illustrate this, TTF is calculated with the most accurate method introduced in Sec-

tion 2.2.2 over different electric fields. The pattern studied is still the same pattern used

above. Only supply voltage VDD is sweeped so that electric field can be changed. Fitted

coefficients of the power-law model under different temperatures are shown in Table 2.5.

Furthermore, Fig. 2.5 show the TTF predicted by the fitting power law models against our

EPG models under different temperatures.

The fitted voltage exponent N is around 0.9 for different temperature, which is

quite smaller than other power law models with N ranging from 40 to 48 [43] or even

24-36 [68]. In addition, the recent experimental data from the published BEOL TDDB

power law models show that the exponent N is around 20-24 [16, 46]. However, in the

EPG model, the material (Ta) and structure (confined copper with Ta as the barrier layer

and low-k dielectrics) are totally different with those experiment settings. The underlying

22

breakdown physics is also different. As a result, the fitted exponent, N , can be significant

different than the existing power law models.

2.3 Equivalent DC stressing voltage analysis of EPG model

In the previous discussion, it is assumed that two metal wires in the pattern are

connected to VDD and GND respectively. In real digital ICs, this scenario does not apply

to every two neighboring wires, as there are other kinds of wires such as clock net and signal

net. However, it is still feasible to assume that the voltages on both wires can be modeled

as DC or a square wave. With this being said, it is obvious that the electric field within

the IMD can be modeled as a square wave. For simplicity, it is assumed to be unipolar and

it covers the cases where voltage of one metal wire is constant. Three parameters can be

used to define this unipolar square wave: amplitude, period, and duty cycle. With them, a

function can be fitted to convert any unipolar square wave to the equivalent DC stressing

voltage provided that they result in the same TTF. Other cases resulting in bipolar square

wave can be treated with the same method, but with one more parameter.

Before moving on, we first review the response surface method (RSM), which is

used in this study. RSM, consisting of a group of mathematical and statistical techniques,

explores the relationships between several input variables and one or more responses. Based

on a set of designed experiments, an optimal response can be obtained [48]. Specifically

in RSM, input parameters are called independent variables and performance measure is

considered as a response. Response y depends on input independent variables (ξ1, ξ2, . . . , ξk)

y = f(ξ1, ξ2, . . . , ξk) + ε (2.18)

23

where f is the true response function which is unknown and could be very complicated

and ε is an error of the model. Usually, a low-order polynomial in some relatively small

region of the independent variable space is appropriate. First order model or second order

model are the most commonly used models in RSM. In this article, second order model with

relatively good accuracy is employed. A second-order response y depending on variables

(x1, x2, . . . , xk) can be written as:

y = β0 +
k∑
j=1

βjxj +

k∑
j=1

∑
i≤j

βijxixj + ε (2.19)

Let xk+1 = x1x1, xk+2 = x1x2, . . . , xk(k+3)/2−1 = xk−1xk, xk(k+3)/2 = xkxk and βk+1 =

β11, βk+2 = β12, . . . then equation (2.19) can be expressed as

y = β0 +

q∑
j=1

βjxj + ε (2.20)

which is a linear regression model for coefficients (β0, β1, . . . , βq), where q = k(k+ 3). With

equation (2.20), least square method is employed to estimate the regression coefficients in

the multiple linear regression model.

We assume that there are n observed responses y = (y1, y2, . . . , yn) and for each

yi, there are corresponding parameters xi = (xi1, xi2, . . . xiq). So equation (2.20) can be

written in matrix notation as follow:

y = Xβ + ε (2.21)

To solve β in a least square minimization sense, QR decomposition on X is applied.

It is shown that Rβ = QT y. After solving the linear equations, estimated coefficient vector

β̂ can be calculated. In this work, the input variables xi are normalized parameters, which

include amplitude, period, and duty cycle.

24

The TTFs for DC stressing voltage are calculated using methods introduced in

Section 2.2.2. A formula has been fitted to quickly find the equivalent DC voltage with the

given TTF. TTFs for different square wave stressing voltage are derived using COMSOL.

Because of the limitation of timestep in FEM analysis, the period of square wave

must be very long compared to practical cases.

2.4 Experimental results and discussions

This section shows the numerical results and comparisons for the new TDDB

analysis flow. All programs run on a workstation with Xeon E5-2698 CPU and 128GB

memory.

The first experiment is to test the accuracy of the derived analytic solution in

equation (2.13) by comparing it with the results from COMSOL FEM analysis. The results

are shown in Table 2.6. The data is based on the pattern shown in Fig. 2.1a, in which

the distance between two metal wires is 50nm, and temperature is 370K. The metal wire

at x = 0 is connected to VDD and the wire at x = 50 is connected to GND. As shown

in the table, the proposed closed form expression give very accurate results compared to

COMSOL simulations.

The second experiment is about the accuracy and calculation CPU time of different

methods for TTF based on the same pattern above. Cx = 0.95 as the threshold normalized

minimum concentration leading to failure in the experiment. For the comparison, the result

using 10000 terms and the resulting changes in Xfail is used as the golden results. The

comparison results are shown in Table 2.7. In the last four rows, Xfail from equation (2.15)

25

Table 2.6: Results of ion concentration derived from two methods

Time(s) x(nm) FEM Results Error (%)
from (2.13)

1×105 35.97 0.01377 0.01363 1.03%

1×105 46.56 0.11680 0.11485 1.68%

2×105 11.67 0.99512 0.99527 0.01%

2×105 33.62 0.66238 0.66012 0.34%

3×105 20.49 0.99691 0.99754 0.06%

3×105 42.83 0.85763 0.85553 0.24%

Table 2.7: TTF from different methods, the calculation times and speedup over FEM

Method TTF(s) Error (%) Time(s) Speed-up

10000 terms w- 363426 - 8.702 4.94
ith exact Xfail

FEM 370000 1.81% 43.000 –

10000 terms 363221 0.06% 3.468 12.40

5 terms 363221 0.06% 0.013 3.31E3

3 terms 366562 0.86% 0.009 4.78E3

1 term 412568 13.52% 0.004 1.08E4

is used instead of more accurate Xfail for the sake of simplicity. Column Error(%) is the

relative error compared to the golden. Times(s) is the CPU times and column Speed-up

is the speedup against FEM.

The table shows that if 5 terms are used, the result is sufficiently accurate compared

to 10000 terms as they can give almost the same results. If only 3 terms are used, the results

can be very accurate as well. In terms of CPU time and speedup, the speedup ranges from

15 to 1.08×104. Results from 3-terms show a good compromise between accuracy and speed,

which gives about 0.86% accuracy, and the speedup more than three order of magnitude

(4.78× 103).

26

The same experiment with the spacing of 20nm is also done using 3-terms method.

The result of TTF is 58650s. Basically, the analytic solution (2.13) shows that if only spacing

changes, then it holds that TTF ∝ L−2.

Last but not least, the RSM fitted results are tested by calculating the equivalent

DC stressing voltage for different stressing voltages and comparing the results of TTF from

COMSOL. The fitted function to calculate equivalent voltage when T = 370K is:

Veq =0.4794 + 0.1606X1 + 0.4675X2 + 0.0185X3

+ 0.0075X2
1 + 0.1563X1X2 + 0.0133X1X3

− 0.0323X2 − 0.0252X2X3 − 0.0031X2
3

(2.22)

where

X1 =
Amplitude(V)− 0.9

0.3
X2 =

Duty cycle− 0.54

0.46
X3 =

Period(s)/1000− 120

80

Some tests with parameters given in Table 2.8 have been done to test the correct-

ness of this function. All these test cases are not used in building the RMS function. Each

time only one of the three parameters is changed so a graph showing the impact of this vari-

able can be drawn. The graphs are shown in Fig. 2.6. In the graphs, the COMSOL results

are derived by searching for equivalent DC voltages based on TTF results from COMSOL. It

can be seen that these graphs prove that RMS gives a good result for evaluating equivalent

DC voltage.

It is worth mentioning that in the cases with the changeable distance between

two metal wires, this result can still be used in that the distance L does not appear in

equation (2.13). The only thing it can affect is the relationship between T ′ and t, as is

27

Table 2.8: Parameters for 3 tests

Amplitude(V) Duty cycle Period(s)

0.9 0.25∼0.85 100000

0.9 0.45 25000∼175000

0.5∼1.3 0.65 140000

Duty cycle
0 0.5 1E

q
u
iv
al
en
t
D
C

v
ol
ta
g
e(
V
)

0

0.5

1

RSM fitted results
COMSOL results

Period(s) ×105
0 1 2E

q
u
iv
al
en
t
D
C

v
ol
ta
g
e(
V
)

0

0.2

0.4

0.6

0.8

1 RSM fitted results
COMSOL results

Amplitude(V)
0 0.5 1 1.5E

q
u
iv
al
en
t
D
C

vo
lt
ag
e(
V
)

0.2

0.4

0.6

0.8

1

1.2
RSM fitted results
COMSOL results

Figure 2.6: Comparison between RSM results with COMSOL results on different parame-
ters.

28

introduced in equation (2.11). So distance does not change the function of equivalent DC

voltage at all.

2.5 Summary

The work presented in this chapter introduces a fast way to evaluate TDDB life

time based on the EPG TDDB model. It is based on the analytic solution of the ion diffusion

partial differential equation. It is shown that the location of the minimum concentration

can be determined by the dominant terms and the TTF can be computed by using a few

dominant terms. On top of this, the method is extended to cover time-varying stressing

voltage, which is commonly seen in practical VLSI chips. The equivalent DC stressing

voltage, parameterized by amplitude, duty cycle, and period for periodic stressing voltage

waveforms, is calculated using regression based method. Numerical experiments validate

that the proposed analytic TDDB concentration and TTF formula and the equivalent DC

stressing voltage compact model against the results from FEM analysis using COMSOL. It

is further shown that the new compact TDDB model can lead to three orders of magnitude

speedup with less than 1% error.

2.6 Appendix

2.6.1 Derivation of the analytic solution for the ion diffusion equation

In this section, we give the detailed mathematical derivation of the formulas for

the proposed TDDB compact model. For the completeness of this section, the metal ion

29

diffusion equation (2.5) is rewritten as follows:

D∇2C =
qDE

kBT
∇C +

∂C

∂t
(2.23)

with the boundary conditions:

C(at the edge of dielectric) = 1 (2.24)

In the one dimensional case, (2.23) can be written as

D
∂2C

∂x2
=
qDE

kBT
· ∂C
∂x

+
∂C

∂t
(2.25)

subject to boundary conditions:

C(x = 0) = C(x = L) = 1 (2.26)

C(x, t) = 0, 0 < x < L, t = 0 (2.27)

Define:

X =
x

L
T ′ =

Dt

L2
Pe =

qE

kBT
L =

qVdd
kBT

(2.28)

It gives:

∂2C

∂X2
= Pe

∂C

∂X
+
∂C

∂T ′
(2.29)

After the Laplace transformation, it gives

d2Ĉ

dX2
= Pe

dĈ

dX
+ pĈ (2.30)

subject to boundary conditions:

Ĉ(0, p) = Ĉ(1, p) =
1

p
(2.31)

30

where p is the Laplace domain variable. For the differential equation (2.30) , its solution

would appear in this following general form:

Ĉ = r1e
p1X + r2e

p2X (2.32)

where p1 and p2 are the roots for equation x2 = Pex+ p. As a result, it gives p1,2 = Pe
2 ± a,

a =

√
P 2
e
4 + p with the following boundary conditions

r1 + r2 = 1
p

r1e
a+Pe/2 + r2e

−a+Pe/2 = 1
p

(2.33)

By solving for r1 and r2, one can obtain the solution in Laplace domain as

Ĉ(p) =
ePeX/2 sinh [a(1−X)]

p sinh(a)
+
ePe(X−1)/2 sinh(aX)

p sinh(a)
(2.34)

Inverse Laplace transform on (2.34) is then done to obtain the solution in the time domain.

First take a look at the first part of (2.34), which is

Ĉ1 =
ePeX/2 sinh [a(1−X)]

p sinh(a)

A property of Laplace transform as this is used here:

L−1
{
Ĉ(X, p+ b)

}
= e−bT

′L−1
{
Ĉ(X, p)

}
Then it gives

C1 = eλX−bT
′ · L−1

{
sinh

[
p1/2(1−X)

]
(p− b) sinh(p1/2)

}
(2.35)

where b = P 2
e
4 . Assume λ = b1/2 = Pe

2 . The inverse transform can be derived by adding

residues at all poles, in this case there is a pole at p = b, and poles at p1/2 = nπi, n =

31

0,±1,±2 . . . , or equally p = −n2π2, n = 0, 1, 2 . . .

L−1
{

sinh
[
p1/2(1−X)

]
(p− b) sinh(p1/2)

}
=

∫
C

sinh
[
p1/2(1−X)

]
(p− b) sinh(p1/2)

epT
′
dp

=
sinh [λ(1−X)]

sinh(λ)
eλ

2T ′ − 2π
∞∑
n=1

n sin(nπX)

(n2π2 + λ2)
e−n

2π2T ′
(2.36)

The second part can be treated in the same way. After the inverse transformation,

two parts are combined. With some additional algebraic operations the final result is

obtained:

C(X,T ′)

= eλX

{
sinh [λ(1−X)]

sinh(λ)
− 2π

∞∑
n=1

n sin(nπX)

(n2π2 + λ2)
e−(n

2π2+λ2)T ′

}

+ eλX−λ

{
sinh(λX)

sinh(λ)
+ 2π

∞∑
n=1

(−1)nn sin(nπX)

(n2π2 + λ2)
e−(n

2π2+λ2)T ′

}

=
eλX sinh [λ(1−X)] + eλX−λ sinh(λX)

sinh(λ)

− eλX2π

∞∑
n=1

n sin(nπX)

(n2π2 + λ2)
e−(n

2π2+λ2)T ′

+ eλX−λ2π
∞∑
n=1

(−1)nn sin(nπX)

(n2π2 + λ2)
e−(n

2π2+λ2)T ′

= 1− 2π
∞∑
n=1

n sin(nπX)

(n2π2 + λ2)
e−(n

2π2+λ2)T ′
[
eλX − (−1)neλX−λ

]

(2.37)

2.6.2 Derivation of analytic form for time to failure

As approximation, let’s take the first term of the analytic solution C(X,T ′) as

C1(X,T
′):

C1(X,T
′) = 1− 2π sin (πX)

λ2 + π2
e−(λ2+π2)T ′

(
eλX + eλX−λ

)
(2.38)

32

To get the minimum concentration, the derivative of C1(X,T
′) is set to zero:

∂C1 (X,T ′)

∂X
= 0

=
2πe−(λ2+π2)T ′

λ2 + π2
eλX

(
1 + e−λ

)
[λ sin (πX) + π cos (πX)]

(2.39)

The solution of this equation gives a fixed Xfail which does not change with T ′ as

Xfail = 1− 1

π
arctan

(π
λ

)
(2.40)

Then at Xfail, define C (Xfail, T
′) = Cfail as the minimum concentration that

triggers the dielectric failure

Cfail = 1− 2πe−(λ2+π2)T ′

λ2 + π2
sin [π − arctan (π/λ)] ·(

eλ−(λ/π) arctan(π/λ) + e−(λ/π) arctan(π/λ)
)

(2.41)

= 1− 2π2e−(λ2+π2)T ′

(λ2 + π2)3/2
·

(
eλ−(λ/π) arctan(π/λ) + e−(λ/π) arctan(π/λ)

)
(2.42)

The resulting time to failure can be found by solving:

Cfail = CX

T ′fail =
1

λ2 + π2
ln

2π2
(
eλ−(λ/π) arctan(π/λ) + e−(λ/π) arctan(π/λ)

)
(1− CX) (λ2 + π2)3/2

(2.43)

tfail =
L2

D(λ2 + π2)
ln

2π2
(
eλ−(λ/π) arctan(π/λ) + e−(λ/π) arctan(π/λ)

)
(1− CX) (λ2 + π2)3/2

(2.44)

33

Chapter 3

Full-Chip Wire-Oriented TDDB

Analysis

The simplified TDDB evaluation method introduced in chapter 2 focuses on the

spacing of IMD. For simplicity, the method treats all interconnect structures with same

distance as parallel structures. This, however, ignores the complicated geometries of all

the layout patterns, which is related to TDDB lifetime. Also, the results of TTF in fact

represent the probability of failure. The breakdown can happen anywhere in the IMD

analyzed. As a result, for more practical and accurate results, the overall probability of

failure of the given IMD should take in consideration the length and shape of it [3].

Based on this idea, the work presented in chapter proposes a full-chip TDDB

failure analysis methodology to evaluate lifetime and identify TDDB hotspots in VLSI

layouts, which are essentially interconnect wires that have high failure risk due to TDDB.

The proposed method features three new techniques compared to existing methods. First,

34

a partition based scheme is developed to deal with the vast scale of full-chip analysis by

partitioning the full chip layout into smaller tiles. Second, for each tile, a newly-introduced

TDDB failure metric called TDDB Damage is calculated for all wires. Such a wire-oriented

TDDB analysis is the first of its kind and is very amenable for physical design as the

wires can be easily adjusted or re-routed for TDDB-aware optimization. Third, the new

method considers the impact of the non-uniform electric field calculated using the finite

element method (FEM), which significantly improves the accuracy of TDDB risk evaluation.

Experimental results show that the proposed new TDDB analysis method is more accurate

than a recently proposed full-chip TDDB analysis method in which electrical field is treated

as a constant value. Additionally, the proposed method can analyze a practical VLSI layout

in a few hours. This work is published in [50].

3.1 Overview

As stated, simple interconnect leakage test structures such as serpentine-comb or

comb-comb have been typically used in the studies of BEOL TDDB [67]. In contrast, very

little work has been done to develop a framework for assessing BEOL TDDB risk in practical

and actual circuit layout geometries, which this work focuses on. The difference between

the two are two folds. First, the probability of failure of IMD grows with its length. Second,

complicated layout geometries can also play an important role.

The effect of layout geometries can be seen in a simple simulation. The results

through FEM analysis of electric field in a small piece of a synthesized layout shown in

Fig. 3.1 reveals that with a voltage difference between neighboring wires, the electric field

35

Figure 3.1: FEM analysis result showing higher electric field around tips

at “corners” or “tips” of wires can actually differ greatly from that along longer, straight-

line segments, leading to the so called “layout effects’ [32]. The higher electric field at tips

can substantially reduce the lifetime of such wires, making the results scaled from test data

optimistic and inaccurate. Thus, more applicable methods considering such layout effects

are required if experimental data is to be used in practical lifetime analysis.

Because this method is based on solving electric field, unlike [3], it covers the

non-uniform electrical field and cover local field enhancement effects, which leads to more

accurate TDDB lifetime estimation. Additionally, the proposed methods can be applied to

all the existing electric field-dependent TDDB models such as E, 1/E, power-law, and
√
E

models. Numerical results show that the proposed method can identify the TDDB hotspots

for a practical VLSI layout in a reasonable amount of time. It is further shown that M1

(Metal1) typically has the shortest lifetime because of the highest metal density.

There are three recent publications focusing on full-chip BEOL TDDB assessment.

A chip-scale TDDB lifetime simulator is proposed in [3]. Using data from tests with same

wire space makes the evaluation process straightforward, which however also means that

the layout effect is not considered, making the results scaled from test data optimistic and

36

inaccurate. Thus, it is not sufficient to evaluate lifetime purely by extracting spacings

and scaling from test data assuming a uniform electrical field. Another limitation of [3]

is that all horizontal wire segments and vertical ones are considered separately. In reality,

one particular interconnect wire can have horizontal and vertical parts at the same time.

Hence, they should not be analyzed separately.

The same problem of layout effect also applies to the work presented in chap-

ter 2 [53]. It is based on different TDDB equations, so accuracy is compromised when the

assessment is simplified to focus on spacing between wires alone.

The simulator introduced by [33] is built on a look-up table of high-risk intercon-

nect shape patterns. Although local field enhancement is considered in preparation of the

look-up table, the effect of length scaling of wires is not covered.

3.2 Length-aware TDDB model

This section first briefly reviews several TDDB models, especially the
√
E model

that is used in this work, then the equations are derived to evaluate TDDB lifetime and

failure rate based on the
√
E model. Note that although

√
E model is used throughout

this study, any other electric field dependent model can be used in the same way with the

proposed analysis flow.

3.2.1 Review of
√
E and other TDDB models

Various models have been proposed based on different assumptions of the physics

of BEOL TDDB. Some commonly discussed models are
√
E, power-law, E, 1/E, and impact

37

damage model [67]. All of them can fit the measured data obtained at high-E field stressing

conditions well. However, they differ substantially when extrapolated to the practical low-E

use conditions. As some further experimental results have shown [40],
√
E model performs

relatively better in fitting measured results under both high-E field and low-E field stressing

conditions in conventional dielectrics. Thus,
√
E model is used in this work. However, the

specific choice of model does not limit the applicability of the this work, as all models are

based on the electric field, and electric field is solved in the proposed analysis flow.

The
√
E model indicates that TDDB lifetime can be described in the following

general form [18, 6]:

TTF = K exp (−γ
√
E) exp (

Ea
kT

) (3.1)

where TTF is the time to failure or lifetime, K is a fitting constant, γ is the electric field

acceleration factor, E represents the electric field, Ea is the Arrhenius activation energy, k

is the Boltzmann constant, and T is the absolute temperature. The
√
E dependence comes

from the assumption that Poole-Frenkel [60] or Schottky Emission injection [6] plays the

primary role in electron conduction, and they both have a
√
E dependence.

3.2.2 TDDB damage model of interconnect wires

In studies validating the
√
E model [5], coefficients in (3.1) were fitted based

on measurements carried out on a large set of identical interconnect test structures and

geometries, under different stressing conditions.

However, for practical VLSI layouts, the study shows that the TDDB failure is also

wire length-dependent [3]. Besides length, there exist significant differences in the shape of

38

interconnect wires in VLSI layouts, and thus the wire length and shape should be accounted

for when the equation is used to estimate TDDB lifetime of wires in practical VLSI layouts.

In [69], the reciprocal of the Weibull shape factor β is used as the area scaling factor for

gate oxides. Thus, time to failure is proportional to A
− 1
β for the same stressing conditions,

where A is the area of the dielectric. Based on this observation, in this work β is used as

the length scaling factor for interconnect wires. This scaling approach has also been used

in other BEOL TDDB lifetime analysis publications [3]. Note that scaling is applied to

perimeter length instead of area because it is safe to assume that the interconnect thickness

is relatively constant, and thus the area scaling term reduces to a length scaling term with

an appropriate adjustment to the fitting constant. As a result, in this work, the following

TDDB lifetime formula considering the length effect or scaling is used, which is shown

below [69]:

TTF = K ′ exp (−γ
√
E) exp (

Ea
kT

)L
− 1
β (3.2)

where K ′ is a new fitting constant.

A new metric called TDDB Damage (D) of wires is further defined here on top

of (3.2) by multiplying the reciprocal of TTF , which is used as a reference of lifetime

consumed. It is defined as an accumulative factor with a derivative:

dD =
dt

TTF
=

1

K ′
exp (γ

√
E) exp (

−Ea
kT

)L
1
β dt (3.3)

It is obvious that by comparing (3.2) and (3.3), the maximum TDDB damage D

an interconnect wire accumulates before failure is Dmax = D(t = TTF) = 1 under this def-

inition. The rationale behind (3.3) is that TDDB of the interconnect wire can be presented

by a linear accumulation of ‘TDDB Damage’ along the wire, and that the accumulated

39

TDDB damage exceeding a certain threshold leads to failure of the interconnect. Note that

similar simplification of linear ‘damage accumulation’ is widely used in reliability analysis

works [42, 36].

Note that E is usually non-uniform along the perimeter of interconnect wires due

to layout effects and IR drops, and E can even be time-variant. Furthermore, the same

applies to T as well. So the layout-dependent TDDB damage for an interconnect wire in

such complicated cases should be calculated through an integral on the perimeter (L) of

the wire over time:

Dwire =
1

K ′
L

1
β
−1
∫ t

0

∮
L

exp (γ
√
E(l, t)) exp (

−Ea
kT (l, t)

)dldt (3.4)

In order to locate TDDB hotspots, which are interconnect wires with high failure

risk, it is sufficient to assess the TDDB damage accumulated over a set of all interconnect

wires. To simplify the problem further, static E is assumed as the more complicated time-

variant E-induced failure can be mapped to static E through measurements as done in

[3, 33]. Similarly, steady-state or worst-case temperature is considered as TDDB is a long-

term failure effect. As a result, the constant terms in (3.4) can be removed for a simplified

metric Damage rate (R):

R = L
1
β
−1
∮
L

exp (γ
√
E(l)) exp (

−Ea
kT (l)

)dl (3.5)

It is also assumed that temperature is uniform across the layout for simpler cal-

culation. For non-uniform temperature, the later introduced partition based approach can

be used to mitigate this assumption, in which constant temperature is assumed in one

40

partition.

R = L
1
β
−1
∮
L

exp (γ
√
E(l))dl (3.6)

The most vulnerable wires would therefore be identified by calculating and com-

paring this metric for each wire.

3.2.3 Lifetime of chip

As lifetime of each wire has a Weibull distribution with shape parameter β. The

survival rate S (chance of not failing) and lifetime TTF of a wire are [55]:

S(t)wire = exp[−(t/γ)β]

TTFwire = γ · Γ(
1

β
+ 1)

Given the lifetimes of individual interconnect wires, the lifetime of the full chip can be

derived by multiplying the reliability of each wire based on the assumption that failure of

any single wire results in a short circuit and thus failure of the entire chip. Therefore, the

reliability of the chip is:

S(t)chip =
∏
i

S(t)wire i = exp[−
∑
i

(
t

γi
)β]

By comparing the relationship between S and TTF , lifetime of the chip in terms of BEOL

TDDB is derived [3]:

TTFchip = (
∑
n

1

TTF βn
)
− 1
β (3.7)

Note that the assumption that one failed wire fails the chip is made for simplicity. If

redundancy is used in design, the calculation of S can be adjusted accordingly to incorporate

the redundancy.

41

Read and partition the layout; set

up FEM problems for each tile

Solve FEM problems for E

across the interconnect layer

Calculate damage of each wire

by integral along the perime-

ter; perform final calculations

Figure 3.2: The three key steps of the analysis flow

3.3 Layout partition-based TDDB wire damage analysis

This section introduces in detail the proposed approach to solving electric field

across the layout, calculating the TDDB damage accumulation rate of interconnect wires,

and locating the TDDB hotspots. An overview of the three key steps of the analysis flow

is given in the flowchart in Fig. 3.2.

Basically, the proposed full-chip TDDB analysis flow first partitions the layout

into many smaller tiles and records which tile each interconnect wire belongs to. After this,

FEM problems for each tile are set up with the appropriate boundary conditions and solved

for the electrical field distributions. Then, the TDDB damage accumulation rate described

by (3.6) can be calculated. Finally the wires with maximum TDDB damage accumulation

rate can be found and marked as the hotspot wires. Furthermore, lifetime of the chip can

be calculated using (3.7).

42

In the following, additional details of each step are given.

3.3.1 Layout partition

As (3.6) shows, magnitude of electric field is required across the full layout in

order to evaluate the damage accumulation rate for each interconnect wire. As discussed

previously, 3D geometries are simplified to 2D for this work, and thus different layers are

analyzed separately. However, it is still too computationally expensive to conduct FEM

analysis of a full interconnect layer. Therefore, it is impractical to solve electric field over

an entire interconnect metal layer in one FEM problem. One important point that is helpful

for simplifying the problem is that in each metal layer, most interconnect wires are mainly

routed in the same direction. For example it is horizontal for M3, and vertical for M4. As a

result, the voltage applied on one wire is unlikely to contribute to the electric field several

channels away as there will be a high likelihood of other interconnect wires in between,

‘blocking’ the electric field lines. This makes it reasonable to partition a big layout into

smaller tiles, solve FEM problems in these tiles of much smaller size, and combine the results

at the end. Fig. 3.3 is an example showing this idea. All the blue lines are interconnect

wires of M3 in the layout. Details about this layout will be further discussed in Section 3.4.

The dashed yellow lines in the figure show the partition of the layout into much smaller

tiles. Electric field in each tile would be solved as if there is no other wire outside the tile.

Through experimentation (explained further in Section 3.4), it is discovered that

the electric field solved in the center area of the tile is accurate. This is reasonable as all

surrounding wires which influence the electric field at the point of interest are included in

the tile and thus the results are expected to be correct. However, in some cases, electric

43

Figure 3.3: Full layout of M3 and the partition scheme

field around the boundaries of the tile is inaccurate as the adjacent wires in neighboring

tiles are not included in the tile. This issue can be solved by enlarging the tiles. This idea

is also shown in Fig. 3.3, where the yellow solid rectangle at the lower left corner represents

the first tile after enlargement. Basically, the area analyzed for each tile is enlarged and

the original tile is now the region where results are deemed as valid (the ‘effective area’).

The tile perimeter expansion ratio can be small since only close-range adjacent wires are

required to be included in the extended area. Wires that are farther than, for example, 10

times the feature size or pitch can be safely ignored as they are unlikely to contribute to

the electric field inside the tile. In comparison, the size of the effective area would be much

larger than that of the feature size. Thus, enlarging the tiles is not expected to significantly

affect the analysis runtime.

44

A library called python-gdsii [45] is used to collect geometry information of all wires

on each layer. Once the size of each tile is defined, geometry of wires in each tile is extracted

for the next step. At the same time, it is recorded which tile each wire is located in to assist

step 3. One challenge is that the wires are broken into segments in the gdsii file, and there is

no information indicating which segments each wire should be composed of. In other words,

wires in complicated shapes need to be built back by locating and concatenating segments in

simpler shapes such as rectangles. To accomplish this, an algorithm determining segments

overlaps and union find [23] are used. Note that LVS (Layout versus Schematic) could also

be used to analyze the connectivity for all wire segments initially, thus saving the time for

running the union find algorithm.

3.3.2 Solving E and TDDB damage in each tile

In this step, both the geometry information for the wires inside each tile and the

voltages on them are needed to set up the FEM problem. The geometry information is

available after the first step. The voltages are set arbitrarily in order to simulate the worst

case: all wires in horizontally-routed layers are sorted by their y-coordinates, while those

in vertically routed layers are sorted by their x-coordinates. The wires are then alternately

set to VDD and GND. Although the electric field computed in this manner would be higher

than would be expected in real applications, this approach is sufficient to identify vulnerable

wires. Essentially, a wire is vulnerable to TDDB failure due to sustained high electric fields

produced by higher voltage, higher temperature, narrower space, longer length, or over

time. Hence, the worst-case electric field can be used to find the wires at risk. Note that

if this evaluation flow can be implemented in standard sign-off flow, where signal pattern

45

for each network is available, more realistic boundary conditions of voltage can be applied,

resulting in more trustworthy results and a more accurate determination of time to failure.

In [33], similar work has been done and it shows that the worst case time to failure is about

half of the realistic one for wire pairs with 50% duty cycle. Thus, if given more voltage

information, simply adding a coefficient like 2 to lifetimes of wires of different groups can

result in a more accurate estimate of time to failure.

In this work, all wire segments are treated as straight lines, so the line roughness

effect (or equivalently, the variation of spacing) has been ignored. Note that this problem

can be solved by adding a coefficient to the final result of time to failure as is done in [65].

COMSOL is used to set up and solve the FEM problems. TDDB damage accumu-

lation rate of each wire as described in (3.6) is calculated through an integral in COMSOL.

At the same time, the length of each wire in the tiles is also recorded for the next step.

Thus, the results obtained in this step for each tile are the damage accumulation rate R

and length L of each wire in the tile.

Note that all these calculations are done within the scope of one tile, so calculations

in different tiles can be carried out in parallel.

3.3.3 Integral of long wires for final results

As indicated previously, there may exist long wires that span more than one tile.

In the previous step, the length and damage accumulation rate for these wires are available

separately for each tile that they span. Another step of merging the integral results from

different tiles is needed to get the final R values. Then the damage accumulation rates for

46

Figure 3.4: An example of a wire crossing a tile boundary, with two tiles and three wires
in total

all wires are available and thus, so one can identify the most vulnerable ones. In Fig. 3.4,

an example is given to show how long wires are dealt with in the simple case where there

are only two tiles and three wires. Wire 1 lies completely within the left tile and wire 2 lies

completely within the right tile. Wire 3 lies across both tiles. Note that the temperature

is different in the two tiles so (3.5) shall be used to calculate R. Solving electric field

distribution and calculating integral of damage accumulation rate R gives results of R1, R31

in the left tile, and R2, R32 in the right tile. R1, R2 are final results of the corresponding

wire as they lie in only one tile. However, there is an additional step needed to get R3:

R3 = (
R31

L
1
β
−1

1

+
R32

L
1
β
−1

2

) ∗ (L1 + L2)
1
β
−1

(3.8)

in which L1, L2 denotes the length of the part of wire 3 in each tile respectively, with L1+L2

being the total length.

Note that if there are errors due to electrical field accuracy, E, as shown later in

Table 3.1, this error is not accumulative across partitions. The reason is that in (3.8), the

damage rates computed from each partition Rx are added to together to compute the final

47

damage rate. As a result, if each partition has 2% error (larger or smaller), then the total

error in damage rate will be smaller than 2% as errors will not be amplified along different

partitions.

To conclude, Algorithm 2 lists the details of the three steps discussed.

Algorithm 2 Full analysis flow

1: Step 1 (Section 3.3.1):

2: for all Tiles do

3: Find wire segments in tile Merge segments back to wire Record long wires Set voltage

on wires

4: end for

5: Step 2 (Section 3.3.2):

6: for all Tiles do

7: Initialize FEM problem Solve FEM problem for E Compute R and length of each

wire with (3.6)

8: end for

9: Step 3 (Section 3.3.3):

10: for all Long wires do

11: Merge R from different tiles with (3.8)

12: end for

13: Compare R of all wires for hotspot wire

14: Compute chip lifetime with (3.7)

48

3.4 Numerical results

Three sets of simulations are done to validate the proposed analysis flow: the first

analyzing a comb structure and a twisted line structure with (3.6) to show the layout effect,

the second validating the accuracy of electric field and damage of wires calculated with

the layout partition-based approach, and the last demonstrating the analysis flow on an

example layout.

A CPU test chip is synthesized for the latter two sets of simulations using a 32nm

educational technology. The size of the layout is 193µm by 193µm. Further information

about the layout is provided in the second part of the simulation in Table 3.3.

For numerical analysis, the electric field acceleration factor γ used in the equation

is 20 if the unit of E is MV/cm, which is fitted based on published experimental data [18].

The Weibull shape factor β is 0.6, which is obtained from 30nm half-pitch test vehicles [18].

Temperature is assumed to be constant. The additional constant K ′ exp (EakT) in (3.4) is

required when evaluating lifetime. The value 1s/cm
1
0.6 is used, which is an assumed number

for the purpose of demonstrating the lifetime calculation.

3.4.1 Comparison on three structures

In this subsection, the proposed method is compared against other full-chip TDDB

methods on two wire structures and show that the electric field calculation is necessary

for lifetime prediction. The simulated target is three different layout structures: a comb

structure, a parallel line structure, and a twisted line structure. Comb structures usually

appear in lower levels of interconnects for the purpose of saving area of logic gates. The two

49

(a) A NAND gate, courtesy
of [66]

(b) A delay cell, courtesy of [33]

Figure 3.5: Comb structures in designs

examples are shown in Fig. 3.5. Multiple comb structures exist between the VDD power

rail and signal nets.

The parallel line structure and twisted line structure usually appear at higher

metal levels, as the router typically routes interconnect wires in one primary direction for

each layer. Fig. 3.8, from the synthesized layout, contains many examples of parallel lines

and a few twisted line structures. As shown in Fig. 3.6, the line widths and space between

wires are both 60nm, and the total dielectric channel length is 1000nm for both (excluding

the corner part in (a) and (c), consistent with the method in [3]). Specifically, the first

two structures are simplified from the two commonly-used structures in studies of TDDB

physics, namely serpentine-comb and comb-comb structures [7].

In [3], the time to failure (TTF) of a vulnerable wire with length Lv is scaled from

the measured test wire structure under same stressing conditions with wire length Lt as

50

follows:

TTFv = TTFt(
Lt
Lv

)1/β (3.9)

where Lv is the only input of this method, which is 1000nm for all three examples (shaded

area), so the three structure will have the same lifetime as the wire length are same.

The method introduced by [33] can identify vulnerable spots, which does lead to

the correct result that comb structure and twisted line structure fail faster than the parallel

line structure. However, length effect is not considered in this method. If the length of

stressed dielectric doubles, this method will still give the same result for TTF .

The proposed method takes both layout effect and length effect into consideration.

In the proposed method, the electric field in the three structures (shown in Fig. 3.7), R of

three wires using (3.6), and obtained the lifetime, are computed, with the help of COMSOL.

It turns out that the lifetimes of the comb structure and twisted line structure are only 0.89×

and 0.7× that of the parallel line structure respectively. Furthermore, studies [32, 7] show

that comb structures are indeed more vulnerable to TDDB failures due to the increased

electric field at the tips. Therefore, the proposed method is more accurate than the full chip

TDDB method proposed in [3] and it is indeed necessary to base the analysis on electric

field distributions for improved accuracy.

3.4.2 Validation of the partition-based method

As discussed in Section 3.3.1, partitioning the layout might lead to some inaccuracy

around boundaries as information in neighboring tiles is missing. To reduce loss of accuracy

51

Figure 3.6: Three structures analyzed: (a) comb (b) parallel line (c)twisted line

in the electric field analysis, it is proposed to enlarge the tile. The second set of simulations

is conducted to verify the effectiveness of this approach.

The simulations are conducted on an extracted small tile from the synthesized

layout, as shown in Fig. 3.8. Wires in M3 layer of this region are represented by lines in

the figure. The size of the entire tile is 1.6µm by 1.6µm. The green square is the enlarged

tile to be analyzed, with an edge length of 1.2µm, and the red square is the effective area

of the tile, with an edge length of 1µm.

Three simulations with different setups are done. All results are collected within

the red square in the figure, which is the effective tile. At first, electric field is solved across

the entire extracted tile (the complete Fig. 3.8) and damage accumulation rate of wires is

calculated within the scope of the red square. The electric field and damage accumulation

rate results obtained in this phase are denoted by E0 and R0 respectively. These are the

52

(a)

(b)

(c)

Figure 3.7: Electric field distribution of the three structures analyzed

53

Figure 3.8: The layout tile used to validate the partition-based approach

54

reference results used to compare with in the other two simulations. Secondly, with the

same voltage settings on the wires, the scope of the FEM problem is reduced to the red

square. Results from this step are compared with E0 or R0 and errors are calculated and

denoted by Error1. As there is no enlargement of the tile being analyzed, the results in this

step are expected to show significant discrepancies. Finally, a third analysis is done with

FEM problem set to the green square, enlarging the red tile. Similarly, errors of results in

comparison with E0 or R0 are calculated and denoted by Error2.

To compare the results precisely, six locations are chosen to evaluate the electric

field. They have been marked by red “×” symbols with indices in Fig. 3.8 along the wires

of interest. Points 1 and 2 are in the center of the tile, while points 3 through 6 are near the

boundary of the effective tile area. They are chosen arbitrarily in order to cover as many

variations as possible. Table 3.1 lists E, Error1 and Error2 at these points. As can be seen

from the table, only points 3 and 6 show significant errors. However, the electric fields at

these two points are much lower than the other four points. According to (3.6), the damage

accumulation rate of a wire is mainly determined by high E locations along its perimeter.

Therefore, the errors at low E points are not expected to influence the final results of the

damage accumulation rate. The reason for the large Error1 values of points 3 and 6 is

that the default boundary condition in FEM makes the results around the boundary less

accurate. Fortunately, enlarging the tile leads to a significant improvement in the accuracy

for these cases, as Error2 turns out to be much smaller than Error1.

55

Table 3.1: Results of E at points marked “×” under different setups. Unit is V/m. Error
is defined as (E − E0)/E0.

Point E0 Error1(%) Error2(%)

1 4.032E6 0.00% 0.00%

2 1.671E6 -0.24% -0.33%

3 4.006E4 47.62% -6.11%

4 3.261E6 0.30% 0.40%

5 3.815E6 5.70% -0.03%

6 6.471E3 278.37% -2.51%

−0.6 −0.4 −0.2 0.0 0.2
Error1

0

5

10

15

20

25

30

35

Nu
m

be
r o

f w
ire

s

−0.10 −0.05 0.00 0.05 0.10
Error2

0

5

10

15

20

25

Nu
m

be
r o

f w
ire

s

Figure 3.9: Distribution of Error1 and Error2 of R among all wires

Table 3.2: Results of R of marked wires marked “©” under different problem setups. Error
is defined as (R−R0)/R0.

Wire R0 Error1(%) Error2(%)

A 1.552E-10 -0.24% -0.11%

B 7.574E-11 0.33% -0.05%

C 5.599E-11 -0.06% -0.14%

D 4.538E-11 -63.06% 0.88%

E 1.038E-12 -39.60% 0.00%

F 1.973E-13 -37.72% 0.80%

G 1.198E-13 0.09% -8.43%

H 2.679E-13 6.50% -2.87%

I 3.931E-12 1.26% 1.51%

56

Comparisons on E on several points are not enough, as there are a very large

number of points. The accuracy of R of wires is more important for getting the right

evaluation of lifetime. As a result, another comparison is done for the R computed in

the two cases. The nine evaluated wires are marked by red “©” along with indices in

Fig. 3.8. First, histograms of errors in R of all wires are plotted in Fig. 3.9. The definition

of Error1 and Error2 is same as that in the previous comparison of E. It can be seen that

enlarging the tile has greatly decreased the overall errors. Second, several extreme examples

in Table 3.2 are listed as done with the comparisons of E. Wires A to C are wires with

the highest damage accumulation rate. These wires are the ones of most interest and the

table shows that the results for them are well-matched between all approaches. Wires D

through F are wires with largest errors for setup 2 (FEM done in the red square). These

significant errors are due to the fact that the nearby wires that are in the green square but

not in the red square are missing in the FEM analysis. More importantly, R of wire D is

not small, which means it can be a potential hotspot wire and thus the discrepancy on this

wire is unacceptable. This further proves the necessity of enlarging the tile. Finally, wires

G to I are wires with largest errors for setup 3 (FEM done in the green square). Note that

the damage accumulation rates for all these wires are comparatively small, indicating that

they are not the vulnerable wires that one is most interested in.

In conclusion, the proposed partition-based method, which is the last setup in the

simulation, has achieved high accuracy on high-E spots, and high-R interconnect wires,

which are the objects of interest in this work.

57

Table 3.3: Analysis results of all layers

Layer Number Max R Lifetime Runtime
of wires (yr) (h)

M1 53756 3.73E-7 118 11.8

M2 26576 3.47E-8 376 7.17

M3 15977 1.64E-8 1570 4.75

M4 5093 2.65E-8 4110 1.32

M5 2225 1.07E-8 1.49E4 0.87

M6 929 8.73E-9 1.08E5 0.38

M7 480 6.96E-9 1.32E5 0.30

M8 173 2.37E-9 3.42E6 0.12

M9 77 2.28E-9 1.85E6 0.10

3.4.3 Analysis of an example layout

Hotspot detection and full-chip lifetime analysis were carried out with the partition-

based scheme on all interconnect metal layers. The number of wires and the damage accu-

mulation rate of the most vulnerable wire in each layer is given in Table 3.3. Computation

time for each layer is also listed in the table. FEM analysis takes most of the time for

each layer. Lifetimes of each layer calculated with (3.7) are also listed. The lifetime of this

synthesized chip calculated with (3.7) is 39.76 years.

M1 turns out to have the shortest lifetime, as opposed to upper metal layers in [3].

This is reasonable as there are many power delivery rails which are long and DC stressed.

They are stressed with relatively higher electric fields because of narrower spaces in M1

and higher wire density. Additionally, M1 also has dielectric materials with the lowest

dielectric constants, while upper metal layers with large space use more robust materials.

Furthermore, the more complicated geometries compared with other layers make the lifetime

58

10−13 10−12 10−11 10−10 10−9 10−8 10−7

Damage

0

2000

4000

6000

8000

10000

Nu
m

be
r o

f w
ire

s

Figure 3.10: Distribution of R among all wires

even shorter because of the aforementioned layout effect. Hence, M1 is expected to have

the shortest lifetime in all layers.

As to hotspot detection, Fig. 3.10 shows the distribution of R values of all wires.

There are 733 wires with R ranging from 10−8 to 10−7, and only 74 with R ranging from

5× 10−8 to 10−7, which means the analysis flow has identified a small number of hotspots

wires from all 105286 wires. These wires would be the first ones that a designer would

address in order to improve the BEOL TDDB reliability of the chip. Furthermore, it is

possible that these 74 hotspot wires are composed of not only power delivery network

wires, but also clock tree wires and signal wires. The latter two categories may be treated

differently due to the lower duty factor, which would further reduce the number of serious

hotspots.

59

Figure 3.11: Full M1 layer view with most vulnerable wire highlighted

As an example, a wire in M1 is identified as the most vulnerable in all wires across

the chip. The full layer of M1 with this wire highlighted is shown in Fig. 3.11. It can be

seen that the wire is actually a long power rail and spans a significant extent of the layout.

Results of other interconnect layers also show that the most vulnerable wires are long wires.

This is logical as (3.2) has introduced length scaling so that long wires are likely to be more

vulnerable under similar stressing conditions. As the wire density in neighboring area along

this wire is comparatively high, the integral in (3.6) is comparable to that of other wires,

so its longer length contributes to its greater vulnerability.

60

3.5 Summary

A layout partition-based interconnect TDDB analysis flow has been proposed in

this paper. Time to failure is evaluated by a newly-defined metric called TDDB Damage

defined on each interconnect wire, and by comparing damage accumulation rates, hotspots

(vulnerable) wires at high risk of TDDB failure) are identified. Based on electric fields

analyzed from FEM, calculation of damage accumulation rate is conducted in each parti-

tioned tile, and final results are obtained by merging and comparing intermediate results

from small tiles. Since the approach is based on solving for electric fields, it can cover

various electric field acceleration models commonly used and can also account for the non-

uniformity of electric field in all layout patterns. The new method compares favorably in

terms of accuracy against a recently proposed full chip TDDB method. This allows a better

determination of risk and helps avoid overly pessimistic designs due to larger-than-required

interconnect spacing.

61

Chapter 4

Data-Driven Fast Electrostatics

and TDDB Aging Analysis

A significant shortcoming of the method introduced in chapter 3 is the long compu-

tation time required to solve the FEM problems. They are set up from partitioned layout

tiles with identical boundary conditions; they conform to the same physics law, and go

through the same solving process. As data-driven deep learning approaches provide new

perspectives for learning the physics-law and representations of the physics dynamics from

the data, this inspires the use of machine learning to speed up the solving process.

The work presented in this chapter aims to accomplish this. A data-driven learning

based approach for fast 2D analysis of electric potential and electric fields based on DNNs

(deep neural networks) is introduced. Originally aimed to speed up the FEM solving process

in TDDB analysis, the proposed method is essentially solving electrostatics problems under

certain fixed boundary conditions. It is applicable to problems involving electrostatics other

62

than TDDB. The proposed method is based on the observation that the synthesized VLSI

layout with multi interconnect layers can be viewed as layered images. Image transformation

techniques via CNN (convolutional neural network) are adopted for the analysis. Once

trained, the model is applicable to any synthesized layout of the same technology. Training

and testing are done on a dataset built from a synthesized CPU chip. Results show that

the proposed method is around 138x faster than the conventional numerical methods based

software COMSOL, while keeping 99% of the accuracy on potential analysis, and 97% for

TDDB aging analysis. This work is published in [51].

4.1 Overview

Electrostatics is an important subject of study as it is pivotal in many VLSI

modeling applications. The goal is to compute electric potentials and electric fields with

some given voltage and current sources (boundary conditions). In the back-end of VLSI

chips, strong electric field can induce failure of the dielectrics, which is known as TDDB [44].

Simulation of this aging effect requires electrostatics. Also, several methods of parasitic

extraction involve electrostatics simulations in the chip layouts [15, 72]. Furthermore, global

placement is also proposed to be modeled as electrostatic problem recently [41].

Traditionally, electrostatics is primarily solved by numerical methods, with spatial

discretization of the governing equation. Such numerical methods typically require a mesh

of the complicated layout or geometry, which can be computationally prohibitive for large

designs.

63

Recently, machine learning, especially deep learning has revolutionized fields such

as image, text, and speech recognition [38]. These fields require statistical approaches

which can model nonlinear dynamic functions very well. Deep learning has shown potential

and promise in practice for such tasks. But using DNN to learn the spatial and temporal

dynamics in physics laws is a less explored field. Some early works have been proposed

recently [62, 63, 73] to solve the partial differential equation based on supervised learning.

However, the problems those methods solve are too small to be practically significant.

Inspired by these observations, this work proposes a new data-driven learning

based approach for fast analysis of electric potential and electric fields, based on which

TDDB aging analysis can also be done efficiently.

4.2 Related works

In convention, electrostatics problems are solved using discretization methods such

as FEM or finite difference method (FDM) [72]. Results from commercial tools based on

FEM such as COMSOL are usually deemed golden. However, the speed of these methods is

limited. In conclusive words, FEM first discretizes the domain to be solved by a mesh. The

mesh and the shape function chosen together define a function space. Any function in the

mesh can be approximated by linear combinations of the shape functions with appropriate

expansion coefficients. A numeric solution to the original PDEs can be then found by

searching in this function space for the one that best fits the original equations. This is

done by setting up and solving a linear system from the original PDEs, with the expansion

coefficients to be solved. Typically, the final linear system is composed of tens of thousands

64

of unknowns, known as DOF (degree of freedom). Solving a problem of this scale is not

very expensive, yet is still significant in a longer routine.

Recently, deep learning is gaining a lot of attention and has been explored in some

practical simulation problems, mainly because of its speed once the model is well trained.

Tang et al. [62] proposed to solve Poisson’s equation, specifically in the case of electrostatics,

using modern CNN-based model. The setup of the problem is similar to this work, where the

PDEs (partial differential equations) remain unchanged (Poisson’s equation), and the input

variables are locations of excitation sources and distribution of permittivity (a coefficient in

the PDE). Error was reported as low as 3%. However, the problem size is relatively small

(the grid size is 64×64 with no extension). The similar method was also used by Zhang et

al. [73], where charge distribution and boundary condition (voltage) are used as the inputs of

the neural network. A regular grid is used in all these works. Tompson et al. [63] try to deal

with a more complicated time-dependant fluid flow problem. Yet convolutional network is

used to speed up some steps in the overall simulation instead of solving the whole problem

on its own.

This work also aims to use CNN-based network to solve electrostatics. The prob-

lem size is comparatively larger, and it can be further expanded through layout partition.

4.3 Preliminaries of Electrostatics and TDDB

Electrostatics studies the distribution of electric potential and field in cases where

the charges are static, i.e., there is no electric current. Electric potential is governed by the

65

first equation of the Maxwell’s equations, also known as Gauss’s law:

∇2u =
−ρ
ε

(4.1)

where u is electric potential, ρ is static charge density, and ε is the permittivity.

The equation usually comes with the following Dirichlet and Neumann boundary

conditions:

u = f(x), x ∈ ΓD,

∇u · ~n = g(x), x ∈ ΓN ,

(4.2)

where ΓD is the part of the boundary where Dirichlet (voltage) boundary conditions are

given, ΓN is the part of the boundary where Neumann (electric field or current) boundary

conditions are given, u is the unknown potential to be solved, f(x), and g(x) are given

voltage sources and electric field (or current sources) at the boundaries.

In cases where static charge is absent, which this work focuses on, (4.1) becomes

Laplace equation:

∇2u = 0 (4.3)

With the solution of u, distribution of electric field is usually obtained by calcu-

lating the gradient as per its definition:

~E = −∇u (4.4)

With the solution of ~E available, one can calculate the TTF of wires by taking the

reciprocal of the equation of reliability (3.6):

TTF ∝
∮
L

exp (−γ
√
E(l))dl (4.5)

66

where γ is a coefficient fitted from experiment data, and L is the perimeter of the wire. By

finding the wire with the minimum TTF, the hotspot of the designed layout can be picked

out for further optimization.

Note that in this application concerning electric fields, it is sufficient that only two

voltages are involved: VDD and GND. VDD is set to 1V for the ease of computation.

4.4 The proposed data-driven electrostatic analysis

This section introduces the encoding scheme of the electrostatics problem, along

with the training and test data generation process, and details of the neural network used.

4.4.1 Problem formulation

As introduced above, this work aims to solve the distribution of electric potential

and electric field in dielectrics in the VLSI back-end-of-line. Typical VLSI designs have

dimensions in the order of hundreds of micrometers to millimeters. Interconnect wires that

are as wide as only nanometers form complex geometries in such large area. This problem

size poses the first challenge to feed this problem into a neural network. A typical input

image in modern machine learning research [59] has a size of 224 pixels by 224 pixels, which

is far coarser than the required complexity of VLSI back-end-of-line.

Layout partition, introduced in section 3.3.1, helps reduce the complexity of the

problem. The layout is partitioned into smaller tiles and each tile is analyzed separately,

also as shown in Fig. 3.3.

67

Another challenge is to encode the tiles so that it fits machine learning. The chip

layout is originally stored in gdsii format, in which the shapes and positions of elements are

stored in a binary format. An easy approach is to convert it into images. In our problem,

there are two sets of inputs, namely geometry information of the interconnect wires and

the voltage boundary conditions. Note that in the two targeted electrostatics applications

introduced previously in Section 4.3, two voltages, VDD and GND, are sufficient for the

analysis. Also, the routine used in reliability analysis introduced in chapter 3 that VDD and

GND are set alternately on wires is followed here. An important result is that every wire

is set a voltage. Consequently, the locations of VDD wires and GND wires are sufficient

to describe the problem, as the locations where voltages are set indicate the existence of

wires. Also, the lifetime analysis is done on a worst case scenario. A simple value of 1V

can be assumed for VDD as more complicated cases involving duty cycles and other voltage

values can be simply scaled by adding coefficients [33]. The two sets of boundary conditions

(VDD and GND) are encoded in different channels in the encoded image. For each pixel,

the value of a channel is set to 1 if the corresponding voltage boundary condition is set at

this pixel, and 0 if not. The corresponding size of a pixel can be set to the pitch size of

the technology (60nm in this work), as it is basically the unit length in the geometry. The

results of electric potential distribution can also be displayed as images, using the same

method. This encoding is demonstrated with an example shown in Fig. 4.1 and Fig. 4.2.

68

Figure 4.1: Encoding a layout tile into image

(a) VDD wires: red; GND wires: blue

0.0

0.2

0.4

0.6

0.8

1.0

(b) Solution of electric potential (unit: V)

Figure 4.2: An example of encoded tile image of and its corresponding solution of potential

69

4.4.2 Structure of the neural network

The overall architecture of the neural network is shown in Fig. 4.3. The hyper

parameters are listed in the figure as well. Also, the output tensor sizes of each layer

are listed in square brackets. The number of channels are listed last in the tensor sizes.

The structure is very similar to autoencoders [28] as well as U-Net [56]. It is composed

of a contracting network, called encoder, and an expansive network, called decoder. Skip

connections [31] are added between the encoder and decoder layers that have same output

size, shown as dashed lines.

First, the encoded layout tiles are expanded to 256×256 pixels sized square images

by padding zeros on four sides. Then they are sent into the first convolutional layer,

composed of four convolution kernels with sizes of 3×3, 5×5, 7×7, 9×9 respectively. They

are used to capture features nearby, however in different distances. The four feature maps

are concatenated and sent to the next layer. The following convolutional layers use single

5×5 convolutional kernels. All convolutional layers are followed by max pooling layer to

down-sample the tensor. Through the encoder network, the image is down-sampled to

1×1×512 vector, which can be seen as latent features of the layout tile extracted by the

encoder. Then, the remaining part of the network, namely the decoder, reversely up-samples

the latent feature vector to the output image, which is the solution of electric potential, or

u.

Instead of traditional transposed convolutional layers, the decoder uses resize-

convolution blocks [49] to up-sample the latent vector, which helps avoid checkerboard

artifacts in the final image and thus increases the accuracy.

70

Another technique used in the network is adding six skip connections [31] between

the encoder and decoder layers that have same output size, shown as dashed lines in Fig. 4.3.

The intuition of adding such connections is that u always decrease gradually from VDD

wires to GND wires in studied problems. In other words, the final voltage map is highly

related the known voltages that are set on wires. So the information extracted by the first

convolutional layer, which should include whether a VDD or a GND wire is nearby, is a

strong deciding factor to the final output. The outputs from the first convolutional layer

are used as a founding ”big picture” of the final voltage map. The remaining layers of

the autoencoder are then expected to learn to calculate more intricate details of the result.

They help increase the model accuracy and accelerate convergence in training. Performance

of the skip connections will be further discussed in detail in Section 4.5.

Overall, once trained, the network is expected to work like a finite difference

method based solver, which is able to output the electric potential distribution from the

given interconnect geometry and voltage. Since all layouts synthesized with the same tech-

nology have the same pitch size, they can all be analyzed efficiently with the trained model.

In other words, the model is universal as it applies to any layout of this technology.

4.5 Numerical results and discussions

The aforementioned neural network has been implemented with TensorFlow 2.0

and Python 3.7. All the following experiments are run on a Linux server equipped with 2

Intel Xeon E5-2698v3 2.3GHz processors and a Nvidia Titan X GPU.

71

,QSXW

>���î���î�@

&RQY�'��î��

0D[3RRO

>���î���î��@

&RQY�'��î��

0D[3RRO

>���î���î��@

&RQY�'��î��

0D[3RRO

>���î���î�@

&RQY�'��î��

0D[3RRO

>���î���î�@

&RQFDW

>���î���î��@

&RQY�'��î��

0D[3RRO

>��î��î���@

&RQY�'��î��

0D[3RRO

>��î��î���@

&RQY�'��î��

0D[3RRO

>��î��î���@

&RQY�'��î��

0D[3RRO

>�î�î���@

&RQY�'��î��

0D[3RRO

>�î�î���@

&RQY�'��î��

0D[3RRO

>�î�î���@

5HVL]H

&RQY�'���î��

>���î���î��@

5HVL]H

&RQY�'���î��

>��î��î���@

5HVL]H

&RQY�'��î��

>��î��î���@

5HVL]H

&RQY�'���î��

>��î��î���@

5HVL]H

&RQY�'���î��

>�î�î���@

5HVL]H

&RQY�'���î��

>�î�î���@

5HVL]H

&RQY�'���î��

>�î�î���@

&RQY�'��î��

0D[3RRO

>�î�î���@

5HVL]H

&RQY�'���î��

>���î���î�@

�2XWSXW�

�

�

�

�

�

�

(

Q

F

R

G

H

U

'

H

F

R

G

H

U

Figure 4.3: Structure of the used neural network

72

4.5.1 Data preparation and training

This work is done with an example layout synthesized with a 32nm educational

technology. The size of the layout is 200µm×200µm, and the interconnect layers are parti-

tioned into tiles of 12µm×12µm. As a result, the grid size is 60nm (12000nm÷ 200). This

value is chosen as the pitch length (minimum distance between interconnect wires) is 60nm.

Example tiles are extracted from two interconnect layers, specifically M3 (Metal 3)

and M4, as they have horizontal and vertical routing directions respectively. In total about

12000 tiles are collected as data samples for training and testing the model. COMSOL is

used to simulate electrostatics on them for distributions of electric potential and electric

field.

As tiles are highly overlapped with each other, it is not reasonable to randomly

divide the dataset into training, validation and test set. Otherwise, for any tile from the

test set, it is highly possible that there is another tile that is highly overlapped with it in

another, say training set, thus defying the test. To overcome this problem, the dataset is

divided by region. As shown in Fig. 4.4, the test set is composed of the layout tiles that

come from 0≤y≤36µm, the validation set is composed of those from 36µm≤y≤72µm, and

the training set includes all the remaining tiles. Furthermore, tiles that cross the dividing

horizontal lines y=36µm and y=72µm are dropped from the dataset to avoid the overlap

problem between data sets. Overall, 18% of the tiles are used as validation set, another

18% are used as test set, and the rest are training set.

73

Figure 4.4: The split of the dataset from layout (M3 shown here)

In training, the root-mean-square error (RMSE) is used as the loss function:

RMSE =

√∑W
x=1

∑H
y=1[u(x, y)− u0(x, y)]2

W ×H
(4.6)

where u and u0 are output electric potential and golden result simulated with FEM respec-

tively, W and H dimension are sizes of the tile. Adam optimizer with the learning rate of

0.00001 is used. The training runs for 350 epochs. Progress of training and validation losses

are shown in Fig. 4.5. There is no sign of over-fitting till the end of training. This training

process takes in total 12 hours.

The final model after 350 epochs of training are tested with the test set. The

RMSE of all test samples is illustrated as histogram in Fig. 4.6. The average RMSE across

the whole test set is 0.01, As the range of potential is 0V to 1V in this problem, so the RMSE

value is equivalent to error in percentage, which means the average error of the model is

74

0 50 100 150 200 250 300 350

Epochs

0.02

0.04

0.06

0.08

0.10

0.12

L
o
s
s
e
s

Training

Validation

Figure 4.5: Training curves

0.00 0.02 0.04 0.06 0.08 0.10

RMSE

0

200

400

600

800

1000

1200

1400

C
o
u
n
ts

Figure 4.6: Distribution of RMSE over the test set

75

Tile u (COMSOL) u (proposed)

0.0

0.5

1.0

Figure 4.7: The test sample with the largest RMSE. The tile is shown using the same color
convention as in Fig. 4.2a

1%. This is very close to the accuracy achieved in training and validation. The maximum

RMSE is 10.4%. Only 5 out of all 1760 test samples have errors larger than 5%. It is worth

noting that these 5 samples turn out all to be extreme cases. The sample of largest RMSE

is shown in Fig. 4.7. It can be seen that this is an extreme case where wires only exist in

corners, and it is the other empty areas that contribute to the error. However, these empty

areas are actually not studied, as all electrostatic problems focus on wires and their nearby

dielectrics. Furthermore, these test samples of extreme cases would not appear in practical

applications if layout partition is used, because the related wires would already have been

solved in neighboring tiles that have these wires located away from the tile boundaries and

thus can achieve more accurate results.

4.5.2 Results of electric potential analysis

To further demonstrate the potentials calculated using the trained model, 4 sam-

ples, 2 from M3 and 2 from M4, have been randomly picked from the test set. The calculated

distributions of potential are plotted and compared against COMSOL simulation results,

76

in Fig. 4.8. The tiles are also shown in the figure. The RMSE of these samples are 0.011,

0.013, 0.008, and 0.007 respectively. It can be seen that the electric potential calculated

by the proposed method matches the golden results very well for the given four example

samples.

4.5.3 Results of electric field analysis

With the solution of potential, electric field can be easily derived by numerically

calculating gradients depicted by equation (4.4). In practice, it is calculated through the

gradient function from the numpy library. The calculated results are plotted and compared

with COMSOL results, shown in Fig. 4.9. The same 4 samples from test set are used for

comparison. The largest RMSE of the eight plots are 0.01276MV/cm, with the range being -

0.0818 to 0.0825MV/cm, so the error is equivalent to 7.8%. Although the overall distribution

is matched well as shown in the figure, it is obvious the results derived using the proposed

method appear noisier. Furthermore, it can be seen that the values at corners of wires show

some discrepancies. The reason of this is mainly that the gradient at such positions is in

fact singular in problems of Poisson’s equation. Thus, its value is highly related to the mesh

used. In spite of the mentioned problems, the overall error, as mentioned, is within 8%.

4.5.4 Results of TDDB aging analysis

The derived solutions of electric field are used to analyze TDDB aging using equa-

tion (4.5).

77

Tile u (COMSOL) u (proposed)

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

Figure 4.8: Results of electric potential of sample tiles (left) from COMSOL (middle) and
the proposed method (right)

78

Figure 4.9: Results of electric field of sample tiles from COMSOL and the proposed method.
The unit of electric field is MV/cm.

79

Two sample wires are chosen from each sample tile used in the previous compar-

ison, one set to VDD and one set to GND, and the integral results on them are again

compared to those from COMSOL. Table 4.1 lists these results. Note that they are direct

integral results so they are expected only to be proportional to the final capacitance values

or lifetimes. The differences are calculated with COMSOL results treated as golden refer-

ence. The differences between results from the proposed method and from COMSOL are

are all within 6.71%, and the average of their absolute values are 2.57%, which is equivalent

to 97.43% accuracy.

It is worth noting that COMSOL uses a finer mesh in the simulation, which can

help improve the accuracy of numerical integrals, which is similar to the cause of discrepancy

in electric fields themselves. Furthermore, the proposed method approximates the geometry

of wires with coarse grid meshes. Compared with the original layout that has a few elements

that have lengths that are not multiples of the technology pitch size (60nm in this work),

mostly because of synthesized vias, the proposed method approximates them onto the closest

multiple of the technology pitch size. This is another significant factor leading to errors in

the final results of integrals.

Despite all the simplifications and comparatively larger errors in electric field anal-

ysis results, the proposed method is still able to achieve around 97% accuracy for the ap-

plication of TDDB aging analysis.

80

Table 4.1: Integral results in capacitance and aging analysis of sample wires, calculated
using the proposed method and COMSOL

COMSOL Proposed Diff

Wire1 3.486e-5 3.492e-5 0.19%

Wire2 1.093e-4 1.162e-4 6.28%

Wire3 5.864e-6 5.804e-6 -1.03%

Wire4 1.581e-5 1.543e-5 -2.39%

Wire5 1.058e-5 1.080e-5 2.11%

Wire6 1.019e-5 1.008e-5 -1.08%

Wire7 1.221e-4 1.140e-4 -6.71%

Wire8 3.750e-5 3.725e-5 -0.66%

4.5.5 Simulation efficiency study

As the model is trained on synthesized layout tiles, the trained model can be used

to find the electric potential distribution for any layout with the discussed method, as long

as the layout is synthesized with the same technology.

The runtime of the proposed method is tested with the batch size set to 100,

on average it takes 34ms to complete one inference, which means 34ms per simulation. In

comparison, it takes COMSOL 2 seconds to finish one simulation, which means the proposed

method achieves 58x speedup. Both times include data pre-processing and moving to or

from GPU, but do not include the library set-up time.

Another major drawback of COMSOL is that the architecture of this software is so

well designed that the potential of parallelism in multiple simulations is limited. Normally,

one machine can only run one COMSOL simulation at a time as it is already multi-threaded.

This parallelism is crucial for the applications discussed as the layout is partitioned into

a lot of tiles so running simulations in parallel would be of great help. The proposed

method, on the other hand, can easily handle this level of parallelism by encoding simulation

81

problems into batches. This can further increase the advantage of the proposed method

over COMSOL as all previous tests are done with batch size set to 1. Although it would

take about 2 seconds to load the Tensorflow libraries and the saved neural network, this

time can be neglected or amortized if there is a large number of problems to be solved,

again because of the large number of tiles generated from layout partition.

Following this idea, the batch size is set to 100 for the model and the time to cal-

culate electrostatics and TDDB lifetime for the complete M3 shown in Fig. 4.4 is compared.

It takes 175 seconds with the proposed method. However, it takes COMSOL 6.7 hours.

This means 138x speed up. Although COMSOL supports larger tiles, it takes longer to

compute each tile and the total time would not reduce significantly.

4.5.6 Discussion of network structure

Besides the proposed network, two other network structures have also been trained

in the experiment. The first one is a simple CNN based network, however without the max

pooling or resize-convolutional layers for down/up sampling. Without down sampling, the

resulting large feature maps greatly increase FLOPs (floating point operations), and thus

slow down both training and inference. Consequently, the depth of the network is chosen

to be 8, same as the decoder part of the proposed network. The other network tested is

similar to the proposed network, except that all skip connections are removed.

Two metrics are used when testing the networks: accuracy of electric potential

and TDDB aging analysis. The results are listed in Table 4.2, which are all displayed by

difference in percentage against results from COMSOL, as in the tables above. The results

of TDDB aging are from the same 8 wires used in the previous experiment. It can be seen

82

Table 4.2: Result discrepancy achieved with different network structures

Potential TDDB analysis

Proposed 1.0% 2.6%

Simple CNN 31.4% 73.4%

No-skip 15.4% 18.4%

that the proposed structure achieves the best result. For the simple CNN based network,

it is greatly under-fitting and thus results in poor accuracy, which proves the necessity of a

deeper network. Furthermore, it proves that the proposed network structure is able to well

encode the electrostatics problem, and use the encoded information to derive the potential

distribution. For the other network without skip connections, it starts to show over-fitting

after 50 epochs. Eventually after 200 epochs, the training loss drops to 5%. However, the

loss on test set is 15.4%, much higher than the proposed network. This proves that the skip

connections are of key importance in solving the electrostatics problems.

4.6 Summary

This work proposes a method to use machine learning, specifically a CNN based

neural network to solve electrostatics problems. The proposed method first encodes the

electrostatic problem to be solved into an image. Taking it as input, the neural network then

solves the problem through inference and outputs an image of electric potential distribution.

Training and testing are done on a dataset from a synthesized CPU chip. Once trained,

the model is applicable to any synthesized layout of the same technology. Compared to the

conventional FEM based solver, the proposed method achieves 138x speedup, while keeping

99% of the accuracy on potential analysis, and 97% for TDDB aging analysis.

83

Chapter 5

GLU3.0: Fast GPU-based Parallel

Sparse LU Factorization Solver

LU factorization of sparse matrices plays an important role in many engineering

and scientific computing problems such as circuit simulation. But parallelizing LU factor-

ization with the Graphic Processing Units (GPU) still remains a challenging problem due

to high data dependency and irregular memory accesses. Recently the GPU-based hybrid

right-looking sparse LU solver, called GLU (1.0 and 2.0), has been proposed to exploit

the fine grain level parallelism of GPU. However, a new type of data dependency (called

double-U dependency) introduced by GLU slows down the preprocessing step. Further-

more, GLU uses fixed GPU thread allocation strategy, which limits the parallelism. This

chapter introduces an updated sparse LU factorization method, called GLU3.0, which solves

the aforementioned problems. First, it introduces a much more efficient data dependency

detection algorithm. Second, it is observed that the potential parallelism is different as

84

the matrix factorization goes on. Based on this, three different modes of GPU kernel are

developed which adapt to different stages to accommodate the computing task changes in

the factorization.

Experimental results on circuit matrices from University of Florida Sparse Matrix

Collection (UFL) show that GLU3.0 delivers 2-3 orders of magnitude speedup over GLU2.0

for the data dependency detection. Furthermore, GLU3.0 achieve 13.0 × (arithmetic mean)

or 6.7× (geometric mean) speedup over GLU2.0 and 7.1× (arithmetic mean) or 4.8 ×

(geometric mean) over the recently proposed enhanced GLU2.0 sparse LU solver on the

same set of circuit matrices. This work is published in [52].

5.1 Overview and related works

A new version of GPU-based sparse LU factorization solver, called GLU3.0, is

introduced in this chapter. It is based on existing GLU1.0/2.0 using hybrid right-looking

LU factorization algorithm. The main improvements of GLU3.0 are summarized as follows:

• To mitigate the slow process to detect the new double-U data dependency in existing

GLU2.0, GLU3.0 introduces a new dependency detection algorithm. It uses a relaxed

principal to find all required dependencies, plus some redundant ones. The efficiency

is a lot higher than the previous solution with little impact on performance.

• Based on the circuit matrices analyzed, a pattern of potential parallelism is observed,

as the matrix factorization goes on. Basically, the number of columns and its asso-

ciated subcolumns (updates) of each column, which is an important unit of parallel

computing tasks, are inversely correlated. As a result, the number of columns can be

85

used as a good metric for resource allocation. Three different modes of GPU kernel

have been developed that adapt to different stages to accommodate the computing

task changes. As a result, GLU3.0 can dynamically allocate GPU threads and memory

based on the number of columns in a level to better balance the computing demands

and resources during the LU factorization process.

Numerical results on circuit matrices from University of Florida Sparse Matrix

Collection (UFL) show that the GLU3.0 can deliver 2-3 orders of magnitude speedup over

GLU2.0 for the data dependency detection. Furthermore, GLU3.0 consistently outperforms

both GLU 2.0 and the recently proposed enhanced GLU2.0 sparse LU solver on the same

set of circuit matrices. Furthermore, GLU3.0 achieve 13.0 × (arithmetic mean) or 6.7 ×

(geometric mean) speedup over GLU 2.0 and 7.1 × (arithmetic mean) or 4.8 × (geometric

mean) over recent proposed enhanced GLU2.0 on the same set of circuit matrices.

5.2 Review of LU factorization and CUDA

This section briefly reviews the traditional G/P left-looking method for sparse

matrices LU factorization [27] and the recently proposed hybrid right-looking algorithm

used in GLU1.0, GLU2.0 and a recent GLU enhancement work [39]. The GPU architectures

and NVIDIA CUDA programming system is also reviewed.

An example matrix is used for illustrating important concepts and algorithms in

the following discussions. The matrix is shown in Fig. 5.1, where the colored spots stand

for nonzero elements.

86

Figure 5.1: The example matrix

5.2.1 The left-looking method

Traditional Gaussian elimination based LU factorization method (also called right-

looking method) solves one row for U matrix and then one column for L matrix in each

iteration. While the G/P left-looking method computes one column in one iteration for

both L and U instead, which is achieved by solving a lower triangular matrix. It also allows

the symbolic fill-in analysis of L and U matrices before the actual numerical computing. As

a result, G/P left-looking method shows better performance for sparse matrices, especially

those from circuit simulations [19].

Algorithm 3 lists the detailed implementation of G/P left-looking LU factoriza-

tion [27]. The input of this algorithm As is the nonzero filled-in matrix of A after symbolic

analysis. The final result is As = L + U − I, where I is identity matrix. The matrix As

87

is factorized column by column (the outer j loop), and factorizing each column for both L

and U contains two steps. The first step (lines 4-9) is to solve a triangular matrix. In each

k loop, element-wise multiply-and-accumulate (MAC) operation is done (line 6-8) for the

partial column vector As(k + 1 : n, j). As(i, k) are the elements in the factorized columns

on the left of current column j. This is the reason why it is named left-looking LU method.

Then the second step (lines 10-13) is a much simpler loop that finishes the factorization of

this column. Triangular matrix solving (lines 4-9) is the most essential and computationally

expensive step in this algorithm.

88

Algorithm 3 The Gilbert-Peierls left-looking algorithm

1: /* Scan each column from left to right */

2: for j = 1 to n do

3: /*Triangular matrix solving */

4: for k = 1 to j − 1 where As(k, j) 6= 0 do

5: /*Vector multiple-and-add (MAC) */

6: for i = k + 1 to n where As(i, k) 6= 0 do

7: As(i, j) = As(i, j)−As(i, k) ∗As(k, j)

8: end for

9: end for

10: /*Compute column j for L matrix*/

11: for i = j + 1 to n where As(i, j) 6= 0 do

12: As(i, j) = As(i, j)/As(j, j)

13: end for

14: end for

Fig. 5.2 gives a complete example of this step. In this example, column 7 is being

factorized, meaning j = 7 in Algorithm 3. Only two k’s satisfy As(k, j) 6= 0 (line 4), which

are 4 and 6 (as As(4, 7) 6= 0 and As(6, 7) 6= 0). The two sub-figures show these two iterations

respectively. In (a), k = 4, so column 4 is used to update column 7. The update operation

refers to lines 6-8 of Algorithm 3, where two elements of column 7 (As(6, 7) and As(8, 7))

are updated by MAC operations with the red elements in column 4 multiplying As(4, 7).

89

5HDG 8SGDWHG��ZULWH�DIWHU�UHDG�

�D� �E�

� � � � � � � �

�

�

�

�

�

�

�

�

� � � � � � � �

�

�

�

�

�

�

�

�

Figure 5.2: The two update iterations completing factorization of the 7th column (j = 7)
(a) update using the 4th column (k = 4) (b) update using the 6th column (k = 6)

(b) shows the next iteration, where k = 6, column 3 is used to further update column 7,

which can be explicitly written as As(8, 7)← As(8, 7)−As(8, 6) ∗As(6, 7).

5.2.2 The column-based right-looking method used in GLU

As elaborated in [30], the G/P left-looking sparse LU factorization has one limita-

tion that it fails to parallelize the two loops in triangular matrix solving process (lines 4-8

of Algorithm 3). It can only work on (write) one column (current column j) at a time as

indicated in line 7. To mitigate this problem, He et al. proposed the hybrid column-based

right-looking LU factorization algorithm for GLU [30]. The algorithm is hybrid because it

still keeps the column-based parallelism in the left-looking algorithm while updates columns

on the right during factorization. Similar symbolic analysis is still applied in advance as

well.

90

� � � � � � � �

�

�

�

�

�

�

�

�

&XUUHQW

FROXPQ

6XEFROXPQV

5HDG

8SGDWHG

Figure 5.3: Subcolumns and submatrix column 3. All highlighted elements compose the
submatrix, which include elements being read and elements being updated.

The hybrid right-looking LU factorization algorithm is listed in Algorithm 4. Sim-

ilarly, the current column under computing is indexed by j. For each column, the first step

is to compute the L part of the current column (lines 4-6), which is equivalent to lines 10-12

of Algorithm 3. Then, it looks right to find all columns k (k > j) that meet As(k, j) 6= 0,

and uses the currently factorized column j to update these columns (lines 8-12). For the

sake of presentation convenience without confusion, these columns are named subcolumns

of column j. Note that these subcolumns are not part of the column j. Furthermore, this

step of updating all subcolumns is called submatrix update, where all elements being read or

updated form a submatrix. Fig. 5.3 gives an example illustrating these two concepts. In the

figure, j = 3, its subcolumns are column 5 and 8, because As(3, 5) and As(3, 8) are nonzero

elements. Corresponding this to the execution of Algorithm 4, during iteration j = 3, two

k’s meet the condition of line 8, which are 5 and 8.

91

Algorithm 4 The hybrid column-based right-looking algorithm for GLU1.0/2.0

1: /* Scan each column from left to right */

2: for j = 1 to n do

3: /*Compute column j of L matrix*/

4: for k = j + 1 to n where As(k, j) 6= 0 do

5: As(k, j) = As(k, j)/As(j, j)

6: end for

7: /*Update the submatrix for next iteration*/

8: for k = j + 1 to n where As(j, k) 6= 0 do

9: for i = j + 1 to n where As(i, j) 6= 0 do

10: As(i, k) = As(i, k)−As(i, j) ∗As(j, k)

11: end for

12: end for

13: end for

92

The key difference between this right-looking algorithm and the left-looking one

is that submatrix update completes the equivalent jobs of triangular matrix solving (lines

4-9 of Algorithm 3) in advance. In the example shown in Fig. 5.2, both update operations

are completed while j = 7. However, in the case of the right-looking algorithm, the update

in (a) is done while j = 4, and update in (b) is done while j = 6. As will be discussed

in detail in the following section, this difference enables exploiting parallelization between

subcolumns.

5.2.3 Additional data dependency in GLU: the fix in GLU2.0

Data dependency is an important issue in parallel computing or general high per-

formance computing. It puts hard requirements in the orders of operations. In SuperLU [22]

and NICSLU [12], elimination tree has been used to resolve this issue.

For GLU, in order to factorize several columns in parallel, data dependency be-

tween columns needs to be detected in the first place. With complete information of de-

pendency, columns can be grouped into levels, where all columns in the same level are

independent of each other and can thus be factorized in parallel. Such process deriving

information about levels is called levelization, which is a similar method to elimination tree.

In the left-looking LU factorization method, levelization is done by studying the sparsity

pattern of the U matrix. Any U(i, j) 6= 0, i < j results in column j being dependent on

i because of the triangular matrix solving (lines 4-9 in Algorithm 3). This dependency

detection algorithm was also used in GLU1.0. Algorithm 5 lists the complete flow of this.

93

Algorithm 5 Column dependency detection algorithm used in GLU1.0

1: for i = 1 to n do

2: /* Look up for all nonzeros in column i of U */

3: for j = 1 to i− 1 where As(j, i) 6= 0 do

4: if Column j of L is not empty then

5: Add j to i’s dependency list

6: end if

7: end for

8: end for

However, as reported in GLU2.0 and [39], the hybrid right-looking algorithm used

in GLU leads to a new column dependency named double-U dependency, originating from

the read-write hazard during parallel submatrix updates. An example of this can be found

in columns 4 and 6 of the example matrix, with the details highlighted in Fig. 5.4. In (a),

As(6, 7) is updated by column 4: As(6, 7)← As(6, 7)−As(6, 4)∗As(4, 7). In (b), As(6, 7) is

used to update column 7: As(8, 7)← As(8, 7)−As(8, 6)∗As(6, 7). In the scheme of GLU1.0,

both updates are executed in parallel. However, As(6, 7) is written in (a) and read in (b),

which forms a read-write hazard when they are executed in parallel. To ensure correctness,

the write operation in (a) must finish before the read operation in (b). As a result, an

additional dependency between columns 4 and 6 needs to be introduced undesirably.

Such read-write dependency is called double-U dependency in GLU2.0 as it orig-

inates from two overlapped U-shaped dependencies as shown in Fig. 5.4. To detect this

new dependency, GLU2.0 introduced a different dependency detection process as shown in

94

�D� �E�

� � � � � � � �

�

�

�

�

�

�

�

�

� � � � � � � �

�

�

�

�

�

�

�

�

'RXEOH�8�GHSHQGHQF\�5HDG 8SGDWHG

Figure 5.4: An example of double-U dependency originated from element (6,7)

Algorithm 6. This algorithm directly looks for double-U dependency. Suppose k is found for

given i, t and j, As(t, k) is updated by As(t, i), while it is also used to update As(j, k). As

a result a double-U dependency exists between columns i and t. In the example of Fig. 5.4,

i = 4, t = 6, j = 8, and k = 7 respectively.

However, this detection algorithm can be quite expensive because of the three

nested loops that have O(n3) complexity. In comparison, there are only two for loops

in the U matrix pattern based dependency detection algorithm. It leads to performance

degradation compared to GLU1.0.

Besides dependency detection and levelization, some preprocessing and symbolic

analysis needs to be done on CPU ahead of factorization. The preprocessing includes

MC64 and AMD (Approximate minimum degree) algorithms in order to reduce the number

95

Algorithm 6 Double-U dependency detection algorithm used in GLU2.0

1: for i = 1 to n do

2: Store all non-zero indices of row i in Ii

3: for t = i to n where As(t, i) 6= 0 do

4: for j = t to n where As(j, t) 6= 0 do

5: Store all non-zero indices of row j in Ij

6: if ∃k, k ∈ Ii, k ∈ Ij , k > t then

7: Add i to t’s dependency list

8: end if

9: end for

10: end for

11: end for

,QLWLDOL]H
0&��

$0'

)LOO�LQ

/HYHOL]DWLRQ

1XPHULFDO�)DFWRUL]DWLRQ

3UHSURFHVV 6\PEROLF�$QDO\VLV

&38

*38

Figure 5.5: Complete flow of GLU2.0

96

of final nonzero elements, as is done in NICSLU [12]. Symbolic analysis includes fill-in and

levelization. Combining all this, we have the complete flow of GLU2.0 shown in Fig. 5.5.

5.2.4 Enhancements to GLU2.0

Recently, Lee et. al proposed a method to enhance GLU2.0[39]. In detail, three dif-

ferent kernels were proposed, namely cluster mode, batch mode and pipeline mode. Modes

are selected based on different number of columns in levels. In batch mode and pipeline

mode, overlapped execution of different levels is achieved to some extent, which contributes

to the speed-up. Besides this, kernel launches are managed by a small kernel instead of

CPU, which is called dynamic parallelism enabled by CUDA compute capability 3.0. Com-

bining these techniques, the enhanced GLU has achieved 1.26× (geometric mean) speedup

over GLU2.0.

5.2.5 Review of GPU Architecture and CUDA programming

CUDA, short for Compute Unified Device Architecture, is the parallel program-

ming model for NVIDIA’s general-purpose GPUs. The architecture of a typical CUDA-

capable GPU is consisted of an array of highly threaded streaming multiprocessors (SM)

and comes with a huge amount of DRAM, referred to as global memory. Take the GTX

TITAN X GPU for example. It contains 24 SMs, each of which has 128 streaming multi-

processors (SPs, or CUDA cores called by NVIDIA), 8 special function units (SFU), and its

own shared memory/L1 cache. The architecture of the GPU and streaming multiprocessors

is shown in Fig. 5.6.

97

*OREDO�0HPRU\

*38

63

60

6)8

6KDUHG�0HPRU\�/��&DFKH

636)8

63 6)8636)8

63 6)8636)8

««

,QWHUFRQQHFW�1HWZRUN

:RUN�'LVWULEXWLRQ

+RVW�,QWHUIDFH

60��««60� 60�

Figure 5.6: Diagram of NVIDIA TITAN X and the streaming multiprocessor. (SP is short
for streaming processor, L/S for load/store unit, and SFU for Special Function Unit.)

As the programming model of GPU, CUDA extends C into CUDA C and sup-

ports such tasks as threads calling and memory allocation, which makes programmers able

to explore most of the capabilities of GPU parallelism. In CUDA programming model,

illustrated in Fig. 5.7, threads are organized into blocks; blocks of threads are organized as

grids. CUDA also assumes that both the host (CPU) and the device (GPU) maintain their

own separate memory spaces, which are referred to as host memory and device memory

respectively. For every block of threads, a shared memory is accessible to all threads in

that same block. The global memory is accessible to all threads in all blocks. Developers

can write programs running millions of threads with thousands of blocks in parallel. This

massive parallelism forms the reason that programs with GPU acceleration can be much

faster than their CPU counterparts. CUDA C provides its extended keywords and built-in

variables, such as blockIdx.{x,y,z} and threadIdx.{x,y.z}, to assign unique ID to all

blocks and threads in the whole grid partition. Therefore, programmers can easily map the

data partition to the parallel threads, and instruct the specific thread to compute its own

98

7KUHDG 7KUHDG 7KUHDG

����� ����� �����

7KUHDG 7KUHDG 7KUHDG

����� ����� �����

%ORFN%ORFN

�����

*ULG��

%ORFN

�����

%ORFN

�����

%ORFN

�����

%ORFN

�����

*ULG��

%ORFN

�����

%ORFN

�����

%ORFN

�����

'HYLFH

.HUQHO��

.HUQHO��

+RVW

Figure 5.7: The programming model of CUDA.

responsible data elements. Fig. 5.7 shows an example of 2-dim blocks and 2-dim threads in

a grid, the block ID and thread ID are indicated by their row and column positions.

5.3 New GPU based sparse LU solver: GLU 3.0

As introduced above, the work flow of factorizing a sparse matrix with GLU can

be divided into two parts: the preprocessing and symbolic analysis on CPU and the numeric

factorization on GPU. The second part on GPU might be repeated for many times when

solving a nonlinear equation with Newton-Raphson method in circuit simulation applica-

tions. GLU3.0 significantly improves both the symbolic analysis and numeric factorization.

5.3.1 Relaxed data dependency detection method for GLU

As mentioned in Section 5.2.3, the prior dependency detection algorithm intro-

duced to cover double-U dependency slows down the factorization a lot. This work solves

99

this problem with a better dependency detection algorithm, named relaxed column de-

pendency detection method, which can reduce the process down to two loops. The new

algorithm is based on the observation that a necessary condition for such additional depen-

dency is the existence of nonzero elements on the left of diagonal element in the L matrix.

In the example in Fig. 5.4, such dependency exists between columns 4 and 6. The nonzero

element As(6, 4) on the left of diagonal element As(6, 6) is the necessary condition that col-

umn 6 depending on column 4, as it is the reason that As(6, 7) gets updated, and As(6, 7)

is the very element that induces the double-U dependency.

Based on this observation, the new method simply just look for nonzero elements

on the left of diagonal element, which can be called simply as “left looking”, to find such

new dependency. It is very similar to the “up looking” in the U matrix based dependency

detection method employed in the left-looking factorization algorithm. Fig. 5.8 compares

the result of them by applying both methods to column 6. As there is no nonzero element

in column 6 of U matrix, “Looking up” from As(6, 6) will find no depended column of

column 6. On the other hand, “looking left” from the same element, a nonzero element in

column 4 can be seen, which is interpreted as the new dependency between columns 4 and

6 that is the double-U dependency as expected. The complete algorithm incorporating the

new dependency detection method is listed in Algorithm 7. Lines 8-11 are the additional

“left looking” part that is added to the original dependency detection algorithm listed in

Algorithm 5.

In order to compare the aforementioned three dependency detection methods,

they are applied to the example matrix from Fig. 5.2 and the results are shown in Fig. 5.9

100

! " # $ % & ' (

!

"

#

$

%

&

'

(

)*$+&,-.+

/010230240

256730604603

)*&+$,8.+

/010230240

30604603

Figure 5.8: Comparison of left looking and up looking, left looking is able to detect double-
U dependency.

respectively. An edge x→ y indicates that that column x depends on column y. Comparing

(a) and (b), the extra dependencies 1→ 2 and 4→ 6 (marked by blue line) are the double-

U dependencies. Further comparing (b) and (c), one can see that the proposed method is

able to detect all required column dependencies, plus a few redundant ones marked by red.

Despite the redundant dependencies, the result of levelization is exactly the same, which

means the same numerical performance on GPU can be expected. This example shows

that the redundant dependencies have minor, if none, impacts on parallelism exploration

of GLU. The reason why this dependency detection method is called relaxed is that it does

not detect the exact set of dependencies, but a sufficient one possibly with some redundant

dependencies. More examples about this will be reported later in Section 5.4.

101

� �

�

�

�

� �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�D� �E� �F�

�

�

�

Figure 5.9: Dependency graph generated from 3 methods: (a) GLU1.0: incorrect result (b)
GLU2.0: correct result (c) This work: the relaxed data dependency

Algorithm 7 The proposed relaxed column dependency detection method

1: for k = 1 to n do

2: /* Look up for all nonzeros in column k of U */

3: for i = 1 to k − 1 where As(i, k) 6= 0 do

4: if Column i of L is not empty then

5: Add i to k’s dependency list

6: end if

7: end for

8: /* Look left for all nonzeros in row k of L */

9: for i = 1 to k − 1 where As(k, i) 6= 0 do

10: Add i to k’s dependency list

11: end for

12: end for

102

5.3.2 New GPU kernels

Before going on to discuss the new GPU kernels, it is good to first review the

submatrix update in GLU, which is a key step in Algorithm 4.

The submatrix update revisited

The submatrix update is explicitly listed in Algorithm 8 below. Specifically, we

Algorithm 8 The submatrix update in GLU

1: /*Update the submatrix for next iteration*/

2: for k = j + 1 to n where As(j, k) 6= 0 do

3: for i = j + 1 to n where As(i, j) 6= 0 do

4: As(i, k) = As(i, k)−As(i, j) ∗As(j, k)

5: end for

6: end for

can write the submatrix to be updated as

Asub =


As(j + 1, j + 1) · · · As(j + 1, n)

...
. . .

...

As(n, j + 1) · · · As(n, n)

 (5.1)

103

where the size of the submatrix is N×N , with N = n−j. The submatrix update operation

can be further represented in the following format:

Asub ← Asub

−


As(j + 1, j)

...

As(n, j)

 · [As(j, j + 1), · · · , As(j, n)] (5.2)

where the size of the two vectors are N × 1, and 1×N . Both two vectors and Asub matrix

are sparse. From (5.2), we can see that the submatrix update consists of two operations: (a)

vector tensor multiplication (the second item on the right hand side); (b) matrix addition.

In the implementation of GLU, the submatrix update

Asub −


As(j + 1, j)

...

As(n, j)

 · [As(j, j + 1), · · · , As(j, n)]

is done in a column-wise way as depicted in (5.3):

~As(j + 1 : n, i)− ~As(j + 1 : n, j) ·As(j, i), for i = [j + 1, · · · , n] (5.3)

where

~As(j + 1 : n, i) = [As(j + 1, i), . . . , As(n, i)]
T

~As(j + 1 : n, j) = [As(j + 1, j), . . . , As(n, j)]
T .

As can be seen, the submatrix update consists of vector operations or subcolumn

update. Each time, we can update one subcolumn i as shown in (5.3). This can be parallelized

104

in GPU where each resulting element can be computed using one thread, where the operation

is multiply-accumulate (MAC) operation. There are two levels of parallelism: namely (a)

the vector operations (or subcolumn updates) for different vectors as shown in (5.3) and

(b) element-wise MAC operations in each vector or subcolumn. In contrast, the left-looking

algorithm only has element-wise MAC operation parallelism in the triangular matrix solving

process.

New adaptive GPU kernel

GLU1.0/2.0 used fixed resource allocation strategy in the GPU kernel. However,

as the matrix size grows, the fixed resource allocation strategy will significantly restrict the

potential parallelism in GPU.

Before going into details, it is helpful to first define several terms for the ease

of discussion. All columns in the same level that can be factorized in parallel referred to

as parallelizable; the size of a level is the number of parallelizable columns in this level.

In other words, a large level has many parallelizable columns, while a small level has few

columns.

As defined, all columns in one level are parallelizable, and each column has many

associated parallelizable subcolumns. This two-level parallelism distinguishes GLU from

other parallel sparse matrix LU factorization algorithms. Two metrics can be used to de-

scribe the potential parallelism respectively, namely the size of one level, and the maximum

number of subcolumns for all columns in one level, because they are the basic units that

get parallelized. The first one is self-explanatory, and the second one is based on the fact

that updating the submatrix with more subcolumns generally involves more calculations.

105

The potential parallelism keeps changing across the levels, which is the key reason

of the fixed resource allocation strategy being inefficient. The trend of potential parallelism

is shown in Fig. 5.10, which shows the size of each level and maximum number of sub-

columns of the corresponding level from matrix ASIC100ks [21]. Note that although the

number of subcolumns are different for each column in one level, the difference is very small.

Consequently, it is easier to use the maximum number of subcolumns to represent that of

one level. An important observation is that levels generally fall into three categories, which

are also labeled in the figure. Type A levels in the beginning stage of factorization have huge

number of parallelizable columns, while each column has very few associated subcolumns.

For higher throughput, parallelizing columns should be prioritized for this type of levels.

Type C levels, in contrast, have limited number of columns, while each column generally

has large number of subcolumns until very end of the factorization process. As a result

parallelizing subcolumns is more important for this type of levels. Type B levels, in the

transitional stage, have great numbers of columns, and at the same time columns also have

many subcolumns. So parallelism should be naturally balanced between them.

Furthermore, the second important observation is that the number of parallelizable

columns and their associated subcolumns are inversely correlated in general. As a result,

the size of a level can be used as a good estimation of the associated subcolumn numbers to

dynamically allocate the computing resources to further improve the GPU kernel computing

efficiency. Based on this observation, three computing modes of GLU kernels are developed,

which are chosen based on the level sizes in a progressive way to accommodate the three

types of levels.

106

0 200 400 600 800 1000 1200 1400 1600
Level

100

101

102

103

104
Si

ze
 o

f l
ev

el

A B C
0

200

400

600

800

M
ax

im
um

 n
um

be
r o

f s
ub

co
lu

m
ns

(a) Level versus its size and the maximum number of subcolumns

0 25 50 75 100 125 150 175
Level

0

5

10

15

20

25

30

35

40

Si
ze

 o
f l

ev
el

A B C 0

100

200

300

400

500

600

M
ax

im
um

 n
um

be
r o

f s
ub

co
lu

m
ns

(b) Zoomed in view

Figure 5.10: Number of columns and subcolumns of different levels

107

1. Small block mode: This mode is designed for type A levels. A convention followed

from GLU for this mode is that one block takes care of a column, and one warp

is assigned to a subcolumn. In this mode, as shown in Fig. 5.11(a), fewer warps

are assigned to a CUDA block, which is why it is named small block mode. As

the total number of warps is fixed for a given GPU, more blocks, or equivalently the

factorization of more columns, can be carried out in parallel, which fits the requirement

of type A levels: huge number of columns with a few subcolumns. Another important

observation from Fig. 5.10 is that the number of subcolumns is gradually increasing,

and the level size is decreasing quickly. In order to adapt to this change, the number

of warps assigned to a block is gradually increased, assisting the growing number of

subcolumns and trying to make full use of available warps at the same time. The

number of warps assigned to a block grows from 2 to 4, 8, and eventually to 32, which

is the number in the next mode. The exact number of warps assigned to a block is

determined by number of columns in a level using following expression:

W =
Total number of warps

Level size
(5.4)

where W is the number of warps assigned to each block.

Another factor limiting the number of possible parallel columns is memory. Because

the columns being factorized are stored as a dense form in global memory, too many

columns from a big level can overflow the memory. Specifically, during factorization

of each column, an array of size n is allocated for caching. As a result, the maximum

parallelizable columns N can be calculated as:

N =
Max global memory allowed

n ∗ sizeof(float)
(5.5)

108

where n is the number of rows of the matrix.

2. Large block mode: This mode takes care of type B levels, and it is similar to the

kernel used in previous GLU versions. Same as the small block mode, each block

takes care of one column and each warp is assigned to a subcolumn. In this mode,

the number of subcolumns still keep growing, the number of threads each subcolumn

gets (32, one warp) becomes insufficient. However, the maximum number of a thread

block (1024) prohibits any further increase in this number.

3. Stream mode: To tackle maximum warp size (32) problem, Stream mode is proposed

for type C levels in this work. In this mode, blocks instead of warps are assigned to

each subcolumn, and therefore kernel calls instead of blocks are assigned to each

column, and a block is assigned to each subcolumn now, as is shown in Fig. 5.11(c).

To fully exploit parallelism within the same level, CUDAStreams are used, which

allows parallel kernel execution through streams in a GPU. Although the number of

CUDAStreams could also be dynamically, it has been observed that creating more

CUDAStreams sometimes has a negative effect in performance. As a result, the

number of CUDAStreams has been set to a fixed number, 16. This number is able

to produce optimal results based on the experimental results which will be discussed

later. Accordingly, this mode begins as long as the level size drops to 16.

Remark that the three GPU kernel modes proposed are quite different than then

three modes proposed in [39]. First, the proposed approach is based on the observation

of both parallelizable column count and associated subcolumn count change with different

levels, while Lee’s work is only based on the column count in each level. Second, the

109

&XUUHQW

FROXPQ

YY

6XEFROXPQV

%
OR
FN
��

%
OR
FN
��

0RUH

WKUHDGV

&XUUHQW

FROXPQ

YYY

6XEFROXPQV

:
DU
S
��

:
DU
S
��

:
DU
S
��
�

��

WKUHDGV

&XUUHQW

FROXPQ

YY

6XEFROXPQV

:
DU
S
��

:
DU
S
��

��

WKUHDGV

Y

Y

%
OR
FN
�Q

Y

�D� �E� �F�

Figure 5.11: Comparison of the concurrency layout for one column in different kernels: (a)
Small block mode (b) Large block mode (c) Stream mode

proposed approach dynamically allocates GPU computing resources (different number of

warps and threads in each blocks etc) based on those information, while Lee’s work exploits

some advanced GPU features such dynamic kernel launch. Third, Lee’s work focus more on

exploit parallelism between different levels, while GLU 3.0 focus on dynamically changing

parallelisms in one level over the course of factorization process.

5.4 Numerical results and discussions

The proposed GLU3.0 is implemented in C++ and CUDA-C, and compiled with

optimization level 3 (-O3). The tests were run on a server equipped with Intel(R) Xeon(R)

CPU E5-2698 v3, 128GB RAM, and NVIDIA GTX TITAN X (3072 CUDA cores, 12GB

GDDR5 memory, Maxwell architecture). The test matrices come from the University of

Florida Sparse Matrix Collection [21], and the same ones tested in [39] are used for the

sake of comparison. Single precision floating point is used for computation as the Maxwell

110

architecture does not support atomic operations for double precision. On newer GPU plat-

forms that allow double atomic operations, the performance of GLU with double precision

is expected on average 30% slower compared to that of the single precision version [39].

First the new relaxed data dependency detection method proposed in Section 5.3.1

is tested. It is applied to the test matrices to perform levelization. The results of levelization

are presented in Table 5.2. More details of test matrices such as number of non-zeros can

be found in Table 5.1.

Two observations can be drawn from this table. First, the number of additional

levels resulting from the new dependency detection method are just a few or even zero.

As the number of levels is the most decisive parameter of runtime of the GPU kernel, this

means the proposed new leveling algorithm would have marginal impacts on the runtime

of numerical factorization on GPU. Second, the runtime of levelization (Algorithm 7) has

improved dramatically on all test matrices compared to the existing method. The previous

method of levelization used in GLU2.0 (Algorithm 6) has to explicitly find all double-U

dependency, which has O(n3) complexity and thus makes the runtime of preprocessing non-

negligible (compared to the LU factorization time). However, with an average speed-up ratio

of 8804.1 (arithmetic average) or 3145.8 (geometric mean), the proposed new method is able

to reduce the preprocessing runtime back into the similar time frame of the preprocessing

time in the plain left-looking based method.

Then the performance of GPU kernels of GLU3.0 is tested and compared with

GLU2.0 and NICSLU [12]. 32 threads are used when testing the performance of NICSLU.

The results are presented in Table 5.1. The speed-up ratio of the proposed work over [39]

111

T
a
b

le
5
.1

:
S

ol
ve

r
ru

n
ti

m
es

o
f

G
L

U
3
.0

v
s

p
re

v
io

u
s

w
or

k
s,

w
h

er
e

n
z

st
an

d
s

fo
r

n
u

m
b

er
of

n
on

ze
ro

s
b

ef
or

e
fi

ll
-i

n
,

an
d

n
n

z
st

an
d

s
fo

r
n
u

m
b

er
o
f

n
on

ze
ro

s
a
ft

er
fi

ll
-i

n

M
a
tr

ix
N

u
m

b
er

o
f

ro
w

s
n

z
n

n
z

C
P

U
ti

m
e

(m
s)

N
u

m
er

ic
al

fa
ct

or
iz

at
io

n
ti

m
e

(m
s)

G
L

U
3.

0
G

L
U

2.
0

G
L

U
3.

0
G

L
U

2.
0

N
IC

S
L
U

S
p
ee
d
-u
p

S
p
ee
d
-u
p

S
p
ee
d
-u
p

(G
P

U
)

(G
P

U
)

(C
P
U
)
[1
2
]

o
v
er

G
L
U
2
.0

o
v
er

[3
9
]

o
v
er

[1
2
]

ra
ja

t1
2

18
7
9

1
29

2
6

1
3
94

8
3.

99
9

13
.9

98
2.

23
7

2.
44

88
3

3.
99

1.
1

1.
0

1.
78

ci
rc

u
it

2
45

1
0

2
11

9
9

3
2
67

1
7.

99
8

59
.9

91
4.

14
4

8.
36

30
1

6.
66

2.
0

1.
9

1.
61

m
em

p
lu

s
17

7
5
8

1
26

1
5
0

1
2
61

52
15

.9
97

37
7.

94
3

6.
67

2
6.

90
43

2
26

.9
1

1.
0

0.
9

4.
03

ra
ja

t2
7

20
6
4
0

9
97

7
7

1
4
34

38
21

.9
97

40
4.

93
9

10
.5

39
23

.8
67

3
34

.4
4

2.
3

2.
0

3.
27

o
n

et
o
n

e2
36

0
5
7

2
27

6
2
8

1
3
06

24
5

35
3.

94
6

36
72

9.
4

60
.9

64
55

0.
59

8
43

2.
69

9.
0

8.
3

7.
10

ra
ja

t1
5

37
2
6
1

4
43

5
7
3

1
6
97

19
8

42
3.

93
6

18
46

1.
2

71
.1

35
45

8.
61

1
35

6.
90

6.
4

6.
1

5.
02

ra
ja

t2
6

51
0
3
2

2
49

3
0
2

3
4
34

97
76

.9
88

20
11

.6
9

32
.3

66
10

4.
12

88
.7

7
3.

2
4.

2
2.

74

ci
rc

u
it

4
80

2
0
9

3
07

6
0
4

4
3
86

28
29

5.
95

5
46

62
.2

9
68

.9
44

39
4.

99
5

11
8.

23
5.

7
9.

1
1.

71

ra
ja

t2
0

86
9
1
6

6
05

0
4
5

2
2
04

55
2

21
90

.6
7

12
12

07
24

1.
82

2
25

38
.2

4
24

5.
63

10
.5

8.
8

1.
02

A
S

IC
10

0
k
s

99
1
9
0

5
78

8
9
0

3
6
38

75
8

20
52

.6
9

31
69

98
21

5.
49

3
26

52
.7

9
35

7.
53

12
.3

14
.1

1.
66

h
ci

rc
u

it
10

5
6
76

5
13

0
7
2

6
3
06

66
67

.9
9

62
79

.0
5

46
.9

96
24

3.
84

6
22

1.
50

5.
2

9.
5

4.
71

R
a

j1
26

3
7
43

1
30

2
4
64

7
2
87

72
2

72
40

.9
14

00
08

84
5.

18
9

79
69

.0
5

82
5.

38
9.

4
8.

7
0.

98

A
S

IC
32

0
k
s

32
1
6
71

1
82

7
8
07

4
8
38

82
5

23
36

.6
4

41
06

79
21

6.
51

7
56

32
.8

76
5.

35
26

.0
21

.3
3.

53

A
S

IC
68

0
k
s

68
2
7
12

2
32

9
1
76

4
9
57

17
2

17
47

.7
3

68
64

21
21

0.
69

7
11

77
1.

7
61

4.
75

55
.9

18
.4

2.
92

G
3

ci
rc

u
it

15
8
5
47

8
4
62

3
1
52

3
6
69

93
36

97
28

.5
2

17
64

58
0

87
8.

15
3

38
78

0.
9

92
32

.6
18

44
.2

8.
2

10
.5

1

A
ri

th
m

et
ic

m
ea

n
13

.0
7.

1
3.

51

G
eo

m
et

ri
c

m
ea

n
6.

7
4.

8
2.

81

112

Table 5.2: Levelization runtimes

Matrix
Number of levels Levelization Time (ms)

GLU2.0 this work GLU2.0 this work speed-up

rajat12 37 39 3.048 0.035 87.1

circuit 2 101 102 17.187 0.074 232.3

memplus 147 147 345.568 0.234 1476.8

rajat27 123 125 272.216 0.32 850.7

onetone2 1213 1213 4009.51 1.589 2523.3

rajat15 968 968 3680.02 2.224 1654.7

rajat26 157 158 1703.92 0.711 2396.5

circuit 4 228 229 5053.39 0.944 5353.2

rajat20 1216 1219 15931.2 3.389 4700.9

ASIC 100ks 1626 1626 36388.8 5.301 6864.5

hcircuit 144 145 6122.57 1.206 5076.8

Raj1 1594 1595 56580.9 11.102 5096.5

ASIC 320ks 1669 1669 168979 8.573 19710.6

ASIC 680ks 1450 1450 530478 10.642 49847.6

G3 circuit 652 688 1741860 66.508 26190.2

Arithmetic mean 8804.1

Geometric mean 3145.8

is calculated based on its reported speed-up ratio against GLU2.0 using the same testing

matrices. The runtime measured includes the time completing memory copy. CPU time

that comprises of preprocessing and symbolic analysis is compared as well. As can be seen

from the table, despite slightly more levels as reported in Table 5.2, the proposed new GPU

kernel still demonstrates a steady speedup over the kernels from GLU2.0 and the improved

version from [39]. At least 5x speed-up can be achieved on average. Furthermore, more

significant improvement can be expected when it comes to bigger matrices, starting from

circuit 4 with a row number of 80209. The reason is that the computational tasks of small

matrices are so light that the GPU still allows more parallelizable tasks. On the other

hand, when factorizing larger matrices, the limited GPU computation power will throttle

113

Table 5.3: GPU kernel runtimes without enabling all 3 kernel modes, compared to case 1
where small block mode is disabled, and case 2 where stream mode is disabled.

Matrix
GPU time (ms) Level distribution

GLU3.0 Case 1 Case 2 A B C

rajat12 2.237 2.776 2.158 2 4 33

circuit 2 4.144 4.871 4.650 1 10 91

memplus 6.672 9.364 7.187 4 3 140

rajat27 10.539 13.069 10.665 6 23 96

onetone2 60.964 66.126 173.863 14 33 1166

rajat15 71.135 82.677 163.947 11 96 861

rajat26 32.366 43.697 35.330 8 36 114

circuit 4 68.944 170.49 103.515 7 9 213

rajat20 241.822 571.95 1019.12 11 41 1167

ASIC 100ks 215.493 246.84 1047.78 13 56 1557

hcircuit 46.996 59.103 47.761 10 14 121

Raj1 845.189 2611.12 2115 29 223 1343

ASIC 320ks 216.517 311.778 1094.78 14 50 1605

ASIC 680ks 210.697 279.784 721.589 14 55 1381

G3 circuit 878.153 783.592 877.444 104 327 257

full parallelization in the GLU. In these cases, the proposed adaptive kernels can utilize the

GPU in a better way so that more parallelism and shorter runtime is achieved.

To further validate the improvement from the proposed three modes of kernels,

another experiment is conducted, where either one of the two newly proposed modes (small

block mode and stream mode) are disabled, to show the degradation of performance without

them. The results are listed in Table 5.3. In case 1, small mode is disabled. While in case

2, stream mode is disabled. The number of three different types of levels are also listed.

Comparing GLU3.0 with case 1, we can see that small block mode benefits most matrices

except G3 circuit. Although the number of type A levels is generally small, small block

mode can still lead to decent improvement. The reason of G3 circuit being slower without

small block mode is probably that the number of blocks assigned in small block mode is less

114

than optimal because the limitation of (5.5). In this case, more warps should be assigned

to a block as the total number of blocks is limited. Then comparing GLU3.0 with case

2, a more significant improvement can be seen from stream mode. Furthermore, stream

mode tend to benefit all matrices, as the results of GLU3.0 are either much faster or at

worst equivalent. Especially, the improvement is more significant for large matrices such as

ASIC 100ks and Raj1.

It is mentioned in Section 5.3.2 that stream mode starts when level size decreases

to 16. This number is also selected based on experiment. The results can be found in

Figure 5.12. For the purpose of making the figure more clear, instead of using all matrices

used in previous experiments, only the ones that benefit significantly from stream mode are

selected. In the figure, N stands for the threshold of level size where stream mode begins,

and the values plotted are GPU kernel runtimes with different N compared with that with

N = 5. It can be seen that the runtime keeps reducing until N = 16. Except matrix Raj1,

experiments with all other matrices show slower or equivalent results for larger N , which

proves that N = 16 is a good choice.

According to profiling results, there being unused warps is the main challenge for

this problem. Actually the newly proposed three modes of kernels have greatly improved

utilization of threads in SM, despite some remaining mismatch due to unpredictable sparsity

pattern of the matrix. This hurts the performance of stream mode most significantly. As

in other modes the warp occupancy is as high as 80%, while in stream mode the average

is 40%. However, it is also worth noting that in the ending stage of factorization, as the

submatrix size is decreasing, warp occupancy would drop naturally.

115

ìXò

ìXó

ìXô

ìXõ

í

íXí

íXî

íXï

íXð

íXñ

íXò

ñ íì íò îñ ïî ñì

�
}
u
�
�
��
�
��
}
�E
A
ñ

dZ���Z}o��}(������u�u}���~E�

}v��}v�î ��i��íñ �]��µ]�zð ��i��îì

�^/�zíììl� Z�ií �^/�zïîìl� �^/�zòôìl�

Figure 5.12: Performance of GPU kernel with different stream mode threshold settings

Note that driver overhead is also significant in many of the tests. Take ASIC 100ks

as an example, the first cuda function call (including invisible set-up works) takes 40% of

all GPU time (215ms). For larger matrices, this problem should be less severe for larger

matrices or in real simulation scenarios where the factorization kernel is called repeatedly.

5.5 Summary

A new sparse LU solver on GPU for general scientific computing is developed. The

new sparse LU solver, called GLU3.0 has two main improvements. First, a more efficient

data dependency detection algorithm is introduced. Second, three different kernel operation

modes are developed based on different number of columns in a level, as the LU factorization

progresses. They enable dynamic allocation of GPU blocks to better balance the computing

demands and resources during the LU factorization process. Numerical results on the set

of typical circuit matrices from University of Florida Sparse Matrix Collection (UFL) have

116

shown that GLU3.0 can deliver 2-3 orders of magnitude speedup over GLU2.0 for the data

dependency detection. Furthermore, GLU3.0 achieves 13.0 × (arithmetic mean) or 6.7 ×

(geometric mean) speedup over GLU2.0 and 7.1 × (arithmetic mean) or 4.8 × (geometric

mean) over recent proposed enhanced GLU2.0 sparse LU solver on the same set of circuit

matrices.

117

Chapter 6

Conclusions

Interconnect TDDB remains one of the important reliability issues for VLSI chips.

Although there are a lot of existing works focusing on the physics of TDDB, the application

of these physics models to practical TDDB evaluation in the scale of VLSI chip remains

an open problem. This thesis introduces three related studies focusing on circuit level

TDDB lifetime evaluation, and one study on GPU based LU factorization solver, which has

broader applicability and is helpful to general TDDB simulation and evaluation flows. The

contributions of each study is summarized in this chapter.

6.1 Fast TDDB analysis with EPG model

This work introduces a fast way to evaluate TDDB lifetime based on the EPG

TDDB model. It is based on the observation that the minimum distance between wires is the

most important factor of TDDB lifetime, and thus the simplified case of parallel wires can

be used to evaluate other cases with the same minimum distance. By deriving the analytic

118

solution of the EPG model, several accelerated methods of calculating lifetime are proposed

and tested. One method that best balances speed and accuracy is based on the observation

that the location of the minimum concentration can be determined by the dominant terms

and the TTF can be computed by using a few dominant terms. On top of this, the method

is extended to cover time-varying stressing voltage, which is commonly seen in practical

VLSI chips. The equivalent DC stressing voltage, parameterized by amplitude, duty cycle,

and period for periodic stressing voltage waveforms, is calculated using regression based

method. Numerical experiments validate the proposed analytic TDDB concentration and

TTF formula and the equivalent DC stressing voltage compact model against the results

from FEM analysis using COMSOL. It is further shown that the new compact TDDB model

can lead to three orders of magnitude speedup with less than 1% error.

6.2 Full-Chip Wire-Oriented TDDB Analysis

This work proposes a interconnect TDDB analysis flow based on a newly-defined

metric called TDDB Damage for each wire. This method takes into account complex ge-

ometries of the layout and the length effect of wires. Lifetime of wires and the chip can be

easily derived from TDDB Damage. To calculate TDDB Damage, electric field needs to be

evaluated, and FEM is used to get the strength of electric field across the layout. To miti-

gate the challenge that the complete layout is too large, the layout is partitioned into much

smaller tiles and analyzed separately, which is the proposed method called layout partition.

Since the approach is based on solving for electric fields, it can cover various electric field

acceleration models commonly used and can also account for the non-uniformity of elec-

119

tric field in all layout patterns. The new method compares favorably in terms of accuracy

against a recently proposed full chip TDDB method. This allows a better determination

of risk and helps avoid overly pessimistic designs due to larger-than-required interconnect

spacing.

6.3 Data-Driven Fast Electrostatics and TDDB Aging Anal-

ysis

This work proposes a method to use machine learning, specifically a CNN based

neural network to solve TDDB analysis targeted electrostatics problems, and is thus very

helpful to the TDDB lifetime analysis method proposed in the previous work. The proposed

method first encodes the electrostatic problem to be solved into an image. The neural

network mimics the much slower FEM solver. Taking the encode image as input, it outputs

an image of electric potential distribution which is the inferred result. Training and testing

are done on a dataset from a synthesized CPU chip. Once trained, the model is applicable to

any synthesized layout of the same technology. Compared to the conventional FEM based

solver, the proposed method achieves 138x speedup, while keeping 99% of the accuracy on

potential analysis, and 97% for TDDB aging analysis.

120

6.4 GLU3.0: Fast GPU-based Parallel Sparse LU Factoriza-

tion Solver

This work introduces GLU3.0, which is an update to GLU, a GPU based sparse

LU solver for general scientific computing. GLU3.0 improves GLU mainly in two factors.

First, a more efficient data dependency detection algorithm is introduced, which drastically

improves the complexity of the preprocessing phase. Second, the GPU kernel that does

the work of numerical factorization is updated. Three different kernel operation modes

are developed based on different number of columns in a level, as the LU factorization

progresses. They enable dynamic allocation of GPU blocks to better balance the computing

demands and resources during the LU factorization process. Numerical results on the set

of typical circuit matrices from University of Florida Sparse Matrix Collection (UFL) have

shown that GLU3.0 can deliver 2-3 orders of magnitude speedup over GLU2.0 for the data

dependency detection. Furthermore, GLU3.0 achieves 13.0 × (arithmetic mean) or 6.7 ×

(geometric mean) speedup over GLU2.0 and 7.1 × (arithmetic mean) or 4.8 × (geometric

mean) over recent proposed enhanced GLU2.0 sparse LU solver on the same set of circuit

matrices.

121

Bibliography

[1] Comsol multiphysics reference manual, version 5.3a, 2017. http://www.comsol.com.

[2] K.-H. Allers. Prediction of Dielectric Reliability From I-V Characteristics: Poole-
Frenkel Conduction Mechanism Leading to

√
E Model for Silicon Nitride MIM Capac-

itor. Microelectronics Reliability, 44(3):411–423, 2003.

[3] M. Bashir, Dae Hyun Kim, K. Athikulwongse, Sung Kyu Lim, and L. Milor. Backend
Low-k TDDB Chip Reliability Simulator. In IEEE Int. Reliability Physics Symposium
(IRPS), pages 2C.2.1–2C.2.10, 2011.

[4] C. C. Chen and L. Milor. Microprocessor aging analysis and reliability modeling due
to back-end wearout mechanisms. IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, 23(10):2065–2076, Oct 2015.

[5] F Chen, M Shinosky, B Li, J Gambino, S Mongeon, P Pokrinchak, J Aitken, D Badami,
M Angyal, R Achanta, et al. Critical ultra low-k tddb reliability issues for advanced
cmos technologies. In Reliability Physics Symposium, 2009 IEEE International, pages
464–475. IEEE, 2009.

[6] Fen Chen, O. Bravo, Kaushik Chanda, Paul S. McLaughlin, Timothy D. Sullivan, Jason
Gill, James R. Lloyd, Rick Kontra, and John M. Aitken. A Comprehensive Study of
Low-k SiCOH TDDB Phenomena and Its Reliability Lifetime Model Development. In
Proceedings of the 44th International Reliability Physics Symposium, IRPS ’06, pages
46–53, New York, NY, Mar. 2006. IEEE Press.

[7] Fen Chen, Carole Graas, Michael Shinosky, Chad Burke, Kai D Feng, Craig Bocash,
and Ramachandran Muralidhar. A method for rapid screening of various low-k tddb
models. In Reliability Physics Symposium (IRPS), 2015 IEEE International, pages
3A–1. IEEE, 2015.

[8] Fen Chen, Carole Graas, Michael Shinosky, Chuck Griffin, Roger Dufresne, Ronald Bo-
lam, Cathryn Christiansen, Kai Zhao, Shreesh Narasimha, Chunyan Tian, et al. New
breakdown data generation and analytics methodology to address beol and mol dielec-
tric tddb process development and technology qualification challenges. In Reliability
Physics Symposium, 2014 IEEE International, pages 3A–1. IEEE, 2014.

122

[9] I. C. Chen, S. Holland, and C. Hu. A Quantitative Physical Model for Time-Dependent
Breakdown in SiO2. In IEEE Int. Reliability Physics Symposium (IRPS), pages 26–28,
1985.

[10] Xiaoming Chen, Ling Ren, Yu Wang, and Huazhong Yang. GPU-accelerated sparse
LU factorization for circuit simulation with performance modeling. IEEE Trans. on
Parallel and Distributed Systems. http://doi.ieeecomputersociety.org/10.1109/
TPDS.2014.2312199.

[11] Xiaoming Chen, Yu Wang, and Huazhong Yang. An adaptive lu factorization algorithm
for parallel circuit simulation. In 17th Asia and South Pacific Design Automation
Conference, pages 359–364. IEEE, 2012.

[12] Xiaoming Chen, Yu Wang, and Huazhong Yang. NICSLU: An adaptive sparse ma-
trix solver for parallel circuit simulation. IEEE Trans. on Computer-Aided Design of
Integrated Circuits and Systems, 32:261–274, February 2013.

[13] Xiaoming Chen, Wei Wu, Yu Wang, Hao Yu, and Huazhong Yang. An escheduler-
based data dependence analysis and task scheduling for parallel circuit simulation.
IEEE Transactions on Circuits and Systems II: Express Briefs, 58(10):702–706, 2011.

[14] D Yu Chenhan, Weichung Wang, and Dan’l Pierce. A cpu–gpu hybrid approach for
the unsymmetric multifrontal method. Parallel Computing, 37(12):759–770, 2011.

[15] Tai-Yu Chou and Zoltan J Cendes. Capacitance calculation of ic packages using the
finite element method and planes of symmetry. IEEE transactions on computer-aided
design of integrated circuits and systems, 13(9):1159–1166, 1994.

[16] K. Croes, P. Roussel, Y. Barbarin, C. Wu, Y. Li, J. Bömmels, and Z. Tőkei. Low field
TDDB of BEOL interconnects using ¿40 months of data. In 2013 IEEE International
Reliability Physics Symposium (IRPS), pages 2F.4.1–2F.4.8, April 2013.

[17] K. Croes, C. Wu, D. Kocaay, Y. Li, Ph. Roussel, J. Bommels, and Zs. Tokel. Current
Understanding of BEOL TDDB lifetime Models. ECS Journal of Solid State and
Technology, 4:N3094–N3097, 2015.

[18] Kristof Croes, Ph Roussel, Yohan Barbarin, Chunlin Wu, Yunlong Li, Juergen
Bömmels, and Zs Tőkei. Low field tddb of beol interconnects using ¿ 40 months of
data. In Reliability Physics Symposium (IRPS), 2013 IEEE International, pages 2F–4.
IEEE, 2013.

[19] T. A. Davis. Direct Methods for Sparse Linear Systems. SIAM, Philadelphia, 2006.

[20] T. A. Davis and E. Palamadai Natarajan. Algorithm 907: KLU, a direct sparse solver
for circuit simulation problems. ACM Trans. Mathematical Software, pages 36:1–36:17,
September 2010.

[21] Timothy A. Davis and Yifan Hu. The University of Florida Sparse Matrix Collection.
ACM Transactions on Mathematical Software, 2011.

123

http://doi.ieeecomputersociety.org/10.1109/TPDS.2014.2312199
http://doi.ieeecomputersociety.org/10.1109/TPDS.2014.2312199

[22] James W. Demmel, John R. Gilbert, and Xiaoye S. Li. An asynchronous parallel
supernodal algorithm for sparse gaussian elimination. SIAM J. Matrix Analysis and
Applications, 20(4):915–952, 1999.

[23] ERIC EATON. Data structures and algorithms. 1983.

[24] Martin Gall, Kong Boon Yeap, and Ehrenfried Zschech. Advanced Concepts for TDDB
Reliability in Conjunction with 3D Stress. In Proc. AIP Conference, pages 79–88, 2014.

[25] N Galoppo, N.K Govindaraju, M Henson, and D Manocha. LU-GPU: Efficient Algo-
rithms for Solving Dense Linear Systems on Graphics Hardware. In 2005 Proceedings
of the ACM/IEEE Supercomputing (SC) Conference, page 3, 2005.

[26] Thomas George, Vaibhav Saxena, Anshul Gupta, Amik Singh, and Anamitra R Choud-
hury. Multifrontal factorization of sparse spd matrices on gpus. In 2011 IEEE Inter-
national Parallel & Distributed Processing Symposium, pages 372–383. IEEE, 2011.

[27] J. R. Gilbert and T. Peierls. Sparse partial pivoting in time proportional to arithmetic
operations. SIAM J. Sci. Statist. Comput., pages 862–874, 1988.

[28] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.
http://www.deeplearningbook.org.

[29] A. S. Grove. Physics and Technology of Semiconductor Devices. Wiley, 1967.

[30] K. He, S. X.-D. Tan, H. Wang, and G. Shi. GPU-accelerated parallel sparse LU factor-
ization method for fast circuit analysis. IEEE Trans. on Very Large Scale Integration
(VLSI) Systems, 24(3):1140–1150, March 2016.

[31] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 770–778, 2016.

[32] Changsoo Hong, Linda Milor, and MZ Lin. Analysis of the Layout impact on Electronic
Fields in Interconnects Structures using Finite Element Method. Microelectronics Re-
liability, 44:1867–1871, 2004.

[33] X. Huang, V. Sukharev, Z. Qi, T. Kim, and S. X.-D. Tan. Physics-based full-chip tddb
assessment for beol interconnects. In Proc. Design Automation Conf. (DAC), pages
1–6. IEEE, June 2016.

[34] International technology roadmap for semiconductors (ITRS) interconnect, 2015 edi-
tion, 2015. http://public.itrs.net.

[35] Dae-Hyun Kim, Shu-Han Hsu, and Linda Milor. Optimization of experimental designs
for system-level accelerated life test in a memory system degraded by time-dependent
dielectric breakdown. IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, 27(7):1640–1651, 2019.

124

http://www.deeplearningbook.org
http://public.itrs.net

[36] Taeyoung Kim, Xin Huang, Hai-Bao Chen, Valeriy Sukharev, and Sheldon X-D Tan.
Learning-based dynamic reliability management for dark silicon processor considering
em effects. In Proceedings of the 2016 Conference on Design, Automation & Test in
Europe, pages 463–468. EDA Consortium, 2016.

[37] Jeffrey C. K. Lam, Maggie Y. M. Huang, Tsu Hau Ng, Mohammed Khalid Bin Da-
wood, Fan Zhang, Anyan Du, Handong Sun, Zexiang Shen, and Zhihong Mai. Evidence
of Ultra-Kow-k Dielectric Material Degradation and Nanostructure Alteration of the
Cu/Ultra-Low-k Interconnects in Time-Dependent Dielectric Breakdown Failure. Ap-
plied Physics Letters, 102(2):022908, 2013.

[38] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436–
444, May 2015.

[39] Wai-Kong Lee, Ramachandra Achar, and Michel S Nakhla. Dynamic gpu parallel
sparse lu factorization for fast circuit simulation. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, (99):1–12, 2018.

[40] EG Liniger, SA Cohen, and G Bonilla. Low-field tddb reliability data to enable accurate
lifetime predictions. In Reliability Physics Symposium, 2014 IEEE International, pages
BD–4. IEEE, 2014.

[41] Jingwei Lu, Pengwen Chen, Chin-Chih Chang, Lu Sha, Dennis Jen-Hsin Huang, Chin-
Chi Teng, and Chung-Kuan Cheng. Eplace: Electrostatics-based placement using fast
fourier transform and nesterov’s method. ACM Trans. Des. Autom. Electron. Syst.,
20(2), March 2015.

[42] Zhijian Lu, Wei Huang, John Lach, Mircea Stan, and Kevin Skadron. Interconnect
lifetime prediction under dynamic stress for reliability-aware design. In Proceedings of
the 2004 IEEE/ACM International conference on Computer-aided design, pages 327–
334. IEEE Computer Society, 2004.

[43] J. W. McPherson. Time Dependent Dielectric Breakdown Physics - Models Revisited.
Microelectronics Reliability, 52(9):1753–1760, 2012.

[44] J.W. McPherson and H.C. Mogul. Underlying Physics of the Thermochemical E Model
in Describing Low-Field Time-Dependent Dielectric Breakdown in SiO2 Thin Films.
Journal of Applied Physics, 84(3):1513–1523, 1998.

[45] Eugeniy Meshcheryakov. python-gdsii 0.2.1, 2011.
https://pypi.python.org/pypi/python-gdsii/.

[46] R. Muralidhar, E. Wu, T. Shaw, A. Kim, B. Li, P. Mclaughlin, J. Stathis, and
G. Bonilla. A stochastic model for impact of LER on BEOL TDDB. In 2017 IEEE In-
ternational Reliability Physics Symposium (IRPS), pages DG–4.1–DG–4.4, April 2017.

[47] S.P. Murarka, M. Eizenberg, and A.K. Sinha. Interlayer Dielectric for Semiconductor
Technologies. Elsevier, Boston, 2003.

125

[48] R. H. Myers and D. C. Montgomery. Response Surface Methodology: Process and
Product Optimization Using Designed Experiments. Wiley-Interscience, 2002.

[49] Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checkerboard
artifacts. Distill, 2016.

[50] Shaoyi Peng, Ertugrul Demircan, Mehul D Shroff, and Sheldon X.-D. Tan. Full-chip
wire-oriented back-end-of-line tddb hotspot detection and lifetime analysis. Integration,
2019.

[51] Shaoyi Peng, Wentian Jin, Liang Chen, and Sheldon X.-D. Tan. Data-driven fast elec-
trostatics and tddb aging analysis. In Proceedings of the 2020 ACM/IEEE Workshop
on Machine Learning for CAD, MLCAD ’20, pages 71–76, New York, NY, USA, 2020.
Association for Computing Machinery.

[52] Shaoyi Peng and Sheldon X-D Tan. Glu3. 0: fast gpu-based parallel sparse lu factor-
ization for circuit simulation. IEEE Design & Test, 37(3):78–90, 2020.

[53] Shaoyi Peng, Han Zhou, Taeyoung Kim, Hai-Bao Chen, and Sheldon X-D Tan. Physics-
based compact tddb models for low-k beol copper interconnects with time-varying
voltage stressing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
26(2):239–248, 2018.

[54] Ling Ren, Xiaoming Chen, Yu Wang, Chenxi Zhang, and Huazhong Yang. Sparse LU
factorization for parallel circuit simulation on GPU. In Design Automation Conference
(DAC), 2012 49th ACM/EDAC/IEEE, pages 1125–1130, June 2012.

[55] Horst Rinne. The Weibull distribution: a handbook. Chapman and Hall/CRC, 2008.

[56] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. In International Conference on Medical image
computing and computer-assisted intervention, pages 234–241. Springer, 2015.

[57] O. Schenk, A. Waechter, and M. Hagemann. Matching-based Preprocessing Algorithms
to the Solution of Saddle-Point Problems in Large-Scale Nonconvex Interior-Point Op-
timization. Journal of Computational Optimization and Applications. Journal of Com-
putational Optimization and Applications, 36(2-3):321–341, 2007.

[58] B. I. Shklovskii and A. L. Efros. Electronic Properties of Doped Semiconductors.
Springer-Verlag, 1984.

[59] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. In 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015.

[60] N. Suzumura, S. Yamamoto, D. Kodama, K. Makabe, J. Komori, E. Murakami, S. Mae-
gawa, and K Kubota. A new TDDB degradation model based on Cu ion drift in cu
interconnect dielectrics. In IEEE Int. Reliability Physics Symposium (IRPS), pages
26–30, 2006.

126

[61] T. L. Tan, C. L. Gan, A. Y. Du, and C. K. Cheng. Effect of Ta Migration from Side-
wall Barrier on Leakage Current in Cu/SiOCH Low-k Dielectrics. Journal of Applied
Physics, 106(4):043517, 2009.

[62] Wei Tang, Tao Shan, Xunwang Dang, Maokun Li, Fan Yang, Shenheng Xu, and Ji Wu.
Study on a poisson’s equation solver based on deep learning technique. In 2017 IEEE
Electrical Design of Advanced Packaging and Systems Symposium (EDAPS), pages 1–3.
IEEE, 2017.

[63] Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Acceler-
ating eulerian fluid simulation with convolutional networks. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70, pages 3424–3433. JMLR.
org, 2017.

[64] UMFPACK. http://www.cise.ufl.edu/research/sparse/umfpack/.

[65] M Vilmay, D Roy, C Monget, F Volpi, and JM Chaix. Copper line topology impact
on the sioch low-k reliability in sub 45nm technology node. from the time-dependent
dielectric breakdown to the product lifetime. In 2009 IEEE International Reliability
Physics Symposium, pages 606–612. IEEE, 2009.

[66] Neil HE Weste and David Harris. CMOS VLSI design: a circuits and systems perspec-
tive. Pearson Education India, 2015.

[67] Terence KS Wong. Time dependent dielectric breakdown in copper low-k interconnects:
Mechanisms and reliability models. Materials, 5(9):1602–1625, 2012.

[68] E Y Wu and J Sune. On Voltage Acceleration Models of Time to Breakdown—Part
II: Experimental Results and Voltage Dependence of Weibull Slope in the FN Regime
. IEEE Transactions on Electron Devices, 2009.

[69] Ernest Y Wu, WW Abadeer, Liang-Kai Han, Shin-Hsien Lo, and Gary R Hueckel.
Challenges for accurate reliability projections in the ultra-thin oxide regime. In Reli-
ability Physics Symposium Proceedings, 1999. 37th Annual. 1999 IEEE International,
pages 57–65. IEEE, 1999.

[70] Kexin Yang, Taizhi Liu, Rui Zhang, and Linda Milor. A comprehensive time-dependent
dielectric breakdown lifetime simulator for both traditional cmos and finfet technology.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, (99):1–13, 2018.

[71] K. B. Yeap, M. Gall, Z. Liao, C. Sander, U. Muehle, P. Justison, O. Aubel,
M. Hauschildt, A. Beyer, N. Vogel, and E. Zschech. In Situ Study on Low-k Intercon-
nect Time-Dependent-Dielectric-Breakdown Mechanisms. Journal of Applied Physics,
115(12):124101, 2014.

[72] Wenjian Yu and Xiren Wang. Advanced field-solver techniques for RC extraction of
integrated circuits. Springer, 2014.

127

[73] Zhongyang Zhang, Ling Zhang, Ze Sun, Nicholas Erickson, Ryan From, and Jun Fan.
Solving poisson’s equation using deep learning in particle simulation of pn junction. In
2019 Joint International Symposium on Electromagnetic Compatibility, Sapporo and
Asia-Pacific International Symposium on Electromagnetic Compatibility (EMC Sap-
poro/APEMC), pages 305–308. IEEE, 2019.

128

	List of Figures
	List of Tables
	Introduction
	Time Dependent Dielectric Breakdown for VLSI Interconnect
	Sparse LU factorization
	Related works
	TDDB
	Sparse LU factorization

	Contributions
	Organization of this thesis

	Fast TDDB analysis with EPG model
	Review of physics-based TDDB EPG model for low-k BEOL interconnects
	Faster TDDB analysis flow with the EPG model
	Analytic solution of ion concentration in the IMD
	TDDB time to failure estimation
	Study of the relationship between TTF and electric field

	Equivalent DC stressing voltage analysis of EPG model
	Experimental results and discussions
	Summary
	Appendix
	Derivation of the analytic solution for the ion diffusion equation
	Derivation of analytic form for time to failure

	Full-Chip Wire-Oriented TDDB Analysis
	Overview
	Length-aware TDDB model
	Review of E and other TDDB models
	TDDB damage model of interconnect wires
	Lifetime of chip

	Layout partition-based TDDB wire damage analysis
	Layout partition
	Solving E and TDDB damage in each tile
	Integral of long wires for final results

	Numerical results
	Comparison on three structures
	Validation of the partition-based method
	Analysis of an example layout

	Summary

	Data-Driven Fast Electrostatics and TDDB Aging Analysis
	Overview
	Related works
	Preliminaries of Electrostatics and TDDB
	The proposed data-driven electrostatic analysis
	Problem formulation
	Structure of the neural network

	Numerical results and discussions
	Data preparation and training
	Results of electric potential analysis
	Results of electric field analysis
	Results of TDDB aging analysis
	Simulation efficiency study
	Discussion of network structure

	Summary

	GLU3.0: Fast GPU-based Parallel Sparse LU Factorization Solver
	Overview and related works
	Review of LU factorization and CUDA
	The left-looking method
	The column-based right-looking method used in GLU
	Additional data dependency in GLU: the fix in GLU2.0
	Enhancements to GLU2.0
	Review of GPU Architecture and CUDA programming

	New GPU based sparse LU solver: GLU 3.0
	Relaxed data dependency detection method for GLU
	New GPU kernels

	Numerical results and discussions
	Summary

	Conclusions
	Fast TDDB analysis with EPG model
	Full-Chip Wire-Oriented TDDB Analysis
	Data-Driven Fast Electrostatics and TDDB Aging Analysis
	GLU3.0: Fast GPU-based Parallel Sparse LU Factorization Solver

	Bibliography

