
Identifying Sources of Intractability in Cognitive Models:
An Illustration using Analogical Structure Mapping

Iris van Rooij (i.vanrooij@nici.ru.nl)
Nijmegen Institute for Cognition and Information

6525 HR Nijmegen, The Netherlands

Patricia Evans (pevans@unb.ca)
Faculty of Computer Science

New Brunswick, E3B 5A3 Canada

Moritz Müller (moritz.muller@math.uni-freiburg.de)
Department of Mathematics
79104 Freiburg, Germany

Jason Gedge (gedge@cs.mun.ca) and Todd Wareham (harold@cs.mun.ca)
Department of Computer Science
St. John’s, NL A1B 3X5 Canada

Abstract

Many computational models in cognitive science and artifi-
cial intelligence face the problem of computational intractabil-
ity when assumed to operate for unrestricted input domains.
Tractability may be achieved by restricting the input domain,
but some degree of generality is typically required to model
human-like intelligence. Moreover, it is often non-obvious
which restrictions will render a model tractable or not. We
present an analytical tool that can be used to identify sources
of intractability in a model’s input domain. For our illustra-
tion, we use Gentner’s Structure-Mapping Theory of analogy
as a running example.

Keywords: computational complexity; intractability; parame-
terized complexity; analogy; structure mapping

Introduction
Computational intractability is a problem that plagues many
models of human and artificial intelligence. If such models
are assumed to apply to inputs of real-world size and com-
plexity, then they require more computational resources (e.g.,
time or memory) than can be reasonably attributed to any
computing machine, whether human or artificial. The prob-
lem seems to often arise from the rich, combinatorial struc-
ture of the representations posited by our theories of cogni-
tion, but typically it is hard to tell what it is exactly about
the structure that makes the computations defined over these
structures computationally so expensive. If cognitive mod-
elers have a means of identifying structural properties that—
either combined or in isolation—are responsible for a model’s
intractability, then they could use this knowledge for coming
up with informed hypotheses of how an intractable cognitive
theory can be rendered tractable.

Take, for example, the influential theory of Dedre Gentner
(1983) of analogy, called Structure-Mapping Theory (SMT).
According to this theory, humans form analogies by map-
ping relations in one predicate structure (the base) to rela-
tions in another (the target). One can think of predicate struc-
tures as directed acyclic graphs with the nodes in the graph

labelled by predicates and objects, and arcs directed from
higher-order predicates to the lower-order predicates and ob-
jects that are their arguments (see Figure 1 for an illustra-
tion). Because both the base and the target can have many
nodes and arcs, with complex connectivity, there exist many
possible mappings to choose from. To be precise, if both

base and target have n nodes, then there exist
n

∑
k=0

(
n
k

)2

· k!

possible mappings. For networks with 6 nodes this already
leads to 13,327 possible mappings and for networks with 18
or more nodes the number of mappings exceed the seconds
since the birth of the universe. Exhaustively searching such
a (super-polynomially sized) search space is unfeasible even
for intermediate problem sizes. Yet the proposal that SMT
may model the human ability for analogizing—as well as the
desire to emulate this ability in artificial systems—raises the
question if there exist algorithms that can find the right map-
ping without having to perform such an exhaustive search.

A finding that seems to bear on this question is that
structure-mapping as defined by SMT is an NP-hard problem
(Evans, Gedge, Müller, van Rooij, & Wareham, 2008; Veale
& Keane, 1997). This means that all algorithms solving the
problem are of super-polynomial complexity.1 It also means
that there is only one way to ensure SMT is a computationally
feasible model of analogy-making:2 The structure-mapping

1This interpretation of the NP-hardness of SMT holds under the
assumption that P �= NP, a mathematical conjecture that is unproven
but has strong empirical support. The interested reader is referred to
Garey and Johnson (1979) and Arora and Barak (in press) for more
details.

2The problem of intractability is so familiar that many cognitive
scientists may instantaneously have ideas about how this problem
could be solved, but the fact of the matter is that all such solutions
either restrict the domain of inputs for which the theory is believed
to hold or the theory is revised so as to allow for (slightly) different
outputs than the one specified by the original theory (van Rooij, in
press). Since our purpose is to present analytical tools for identifying
sources of intractability in a given theory, we focus on the first option

915

processes must be assumed to operate for a restricted domain
of input structures, where those structures have special prop-
erties that can be exploited in the tractable computation of
analogies.

How can we find out what these special properties are?
One way of approaching this question (though not one that
we recommend) is to implement an algorithm that computes
structure-mappings and investigate how long it runs for dif-
ferent input structures (e.g., Falkenhainer, Forbus, & Gentner,
1989). By systematically varying structural aspects of the in-
put one may then discover that even though the algorithm runs
slow for many input structures, it runs relatively fast for some.
By comparing the “easy” and “hard” inputs one may observe
that they differ in several respects, e.g., certain structural as-
pects may be relatively small, relatively large, or otherwise
special in the “easy” inputs. One may then be led to believe
that it is the absence of these special properties in the “hard”
inputs that makes structure-mapping hard in general.

Granting that such an approach may overcome the practical
obstacle that a systematic search of the space of inputs is it-
self computationally expensive (to our knowledge, so far only
unsystematic searches have been performed for SMT), the
more important theoretical obstacle remains that we cannot
infer from the slow running of an algorithm that the structure-
mapping problem is intractable for the same domain of in-
puts. There could always exist a different algorithm for the
structure-mapping problem that runs fast for those same in-
puts.3 In other words, an algorithmic simulation approach can
perhaps tell us something about the computational efficiency
of particular structure-mapping algorithms, but it need not tell
us anything about the complexity inherent in the structure-
mapping problem. It is for this reason that we propose to use
a different approach.

The approach that we investigate in this paper adopts the
analytical tools of computational complexity theory. We will
first explain how these tools can be used to identify what we
call ‘sources of complexity’ in an intractable problem (i.e.,
problem aspects that can confine the super-polynomial time
complexity inherent in a problem). We then use these tools
to test if aspects that have been proposed to be responsible
for the intractability of structure-mapping are indeed sources
of complexity in SMT. We show that none of the conjectured
aspects are—by themselves or in combination—responsible
for the intractability of SMT. We furthermore show that some
previously unidentified aspects are so responsible. The non-
obvious nature of these theoretical results illustrates the util-
ity of the analytical tools that we describe.

here (but see Hamilton, Müller, van Rooij, and Wareham (2007) and
van Rooij and Wright (2006) for discussions of the second option).

3In general, if A1 and A2 are two algorithms that compute in-
tractable problem P : I → O. Then there can exist two distinct input
domains I1, I2 ⊂ I such that A1 is a tractable algorithm for I1 but not
for I2, and A2 is a tractable algorithm for I2 but not for I1. If so, then
the problem P is computationally tractable for I1 ∪ I2.

Cause

Greater Attracts Revolve

And

Cause

Mass Mass

sun planet

Cause

Opposite−Sign Greater Attracts RevolveGravity

nucleus electron

ChargeCharge

b)a)

c)

Greater Attracts Revolve

Mass Mass

planet

Greater Attracts Revolve

nucleus electron

ChargeCharge

sun

listener listenership composer orchestra percussion drum

PartOf Affect Control PartOf PartOf

PartOf Affect Control PartOf PartOf

civilian artillery cannonarmysociety general

d)

Figure 1: Illustrations of graph representations of predicate-
structures and analogy-mappings as defined by SMT. (a) So-
lar system predicate-structure. (b) Rutherford atom predicate-
structure. (c) Analogy-mapping between (a) and (b). (d)
Analogy-mapping between Composer and General predicate-
structures. Parts (a) and (b) are adapted from (Falkenhainer
et al., 1989, Fig. 9) and part (d) is adapted from (Veale et al.,
1999, Fig. 8).

A Method for Identifying Sources of
Complexity

Computational complexity theory actually refers to a whole
family of mathematical theories developed with the purpose
of classifying problems according to their inherent complex-
ity. Of particular relevance for our purposes is a relatively re-
cent variant called parameterized complexity theory, founded
by Downey and Fellows in the 90s and currently the topic of
many new complexity results and techniques (see the special
issue edited by Downey, Fellows, & Langston, 2008). Param-
eterized complexity theory is motivated by the observation
that many NP-hard problems can be computed by algorithms
whose running time is polynomial in the overall input size n
and non-polynomial only in one or more small aspects of the
input. These aspects are called parameters. As the main part
of the input contributes to the overall complexity in a “good”
way, and only the parameters contribute to the overall com-
plexity in a “bad” way, the problem is well-solved even for

916

large inputs provided only that the parameters remain small.
This intuitive characterization is captured by the formal no-
tion of fixed-parameter tractability (see also Downey & Fel-
lows, 1999).

Definition 1. Fixed-parameter tractability. Let P :
I → O be a problem with input parameters k1,k2, ...,km.
Then P is said to be fixed-parameter tractable for pa-
rameter set K = {k1,k2, ...,km} if there exists at least one
algorithm that computes P for any input of size n in time
f (k1,k2, ...,km)nc, where f (.) is an arbitrary computable
function and c is a constant. If no such algorithm exists
then P is said to be fixed-parameter intractable.

We note the following observation, which follows from Defi-
nition 1.

Observation 1. If P is fixed-parameter intractable
for parameter set K then P is also fixed-parameter in-
tractable for any subset of parameters K′ ⊂ K. If P is
fixed-parameter tractable for parameter set K then P is
also fixed-parameter tractable for any superset of param-
eters K′′ ⊃ K.

Given the notion of fixed-parameter (in)tractability and Ob-
servation 1 we can derive a natural candidate for what defines
a source of complexity in an intractable problem (see also
van Rooij, Stege, & Kadlec, 2005; van Rooij & Wareham, in
press).

Definition 2. Source of complexity. Let P : I → O
be an intractable problem. Then parameter set K =
{k1,k2, ...,km} is said to be a source of complexity in P,
if P is fixed-parameter tractable for parameter set K and
fixed-parameter intractable for all subsets K′ ⊂ K.

In other words, a parameter set K is considered a source of
complexity in an intractable problem if it is sufficient for cap-
turing the non-polynomial complexity inherent in the prob-
lem and it does not contain any unnecessary elements. The
notion of a source of complexity, so defined, expresses the
intuitive idea that a parameter is a source of complexity if,
all else being equal,4 high values of the parameter cause the
problem to be hard, and low values of the parameter cause
it to be easy. In accordance, we judge an input aspect (in
this case, elements of K being large) to be responsible for
the intractability of the problem if its absence (in this case,
elements of K being small) renders the problem tractable.

It remains to be explained how one can determine if a prob-
lem P is fixed-parameter (in)tractable for some parameter

4We add the phrase ‘all else being equal’ because there may ex-
ist some other parameter set K′ distinct from K for which P may
also be fixed-parameter tractable. If parameters in that set are small,
then even if the elements of K are large, P will be tractable. This
means that a problem P need not have one unique source of com-
plexity. We believe that this does not undermine the intuitive inter-
pretation of large values for parameters in K being responsible for
the intractability in P, even if large values for parameters in K′ are
as well.

set K. Proving fixed-parameter tractability may be techni-
cally challenging but is conceptually straightforward: It suf-
fices to produce just one algorithm that computes the problem
in fixed-parameter tractable time (see, e.g., Sloper & Telle,
2008, for a review of generic techniques for building such al-
gorithms). Fixed-parameter intractability can be established
by proving the problem W[1]-hard (the parameterized analog
of NP-hard).5 To prove this it suffices to construct a parame-
terized reduction from a known W[1]-hard problem P′ to the
problem P.

Definition 3. Parameterized reduction. Let P1 : I1 →
O1 and P2 : I2 → O2 be two problems with parameter set
K1 and K2 respectively. Then a parameterized reduction
from P1 to P2 consist of two algorithms, Ai and Ao, that
are fixed-parameter tractable relative to K1, such that

– Ai transforms any input i1 ∈ I1 (with associated values
for parameters in K1) into an input i2 ∈ I2 (with the
elements in K2 bounded by some computable function
of K1), and

– Ao transforms any output o2 = P2(i2) into an output
o1 = P1(i1).

Note that if there exists a parameterized reduction from a
problem P′ to another problem P, then P is fixed-parameter
tractable only if P′ is too. After all, in that situation P′ can be
computed in fixed-parameter tractable time by first transform-
ing its input into the corresponding input for P, using algo-
rithm A1, then solving P, and finally transforming the output
of P back to the corresponding output for P′ using algorithm
Ao. This implies that, if P′ is fixed-parameter intractable, then
so is P.

Candidate Sources of Complexity in
Structure-mapping

The structure-mapping problem can be informally stated as
follows (see Evans et al. (2008) for a formalization of this
definition).

STRUCTURE-MAPPING

Input: Two directed acyclic graphs G1 = (V1,A1) and
G2 = (V2,A2), each encoding a predicate structure.
Output: The best of all structurally consistent mappings from
G1 to G2.

Here a mapping from G1 and G2 is structurally consistent if
the following two conditions are met: (1) a vertex in V1 is
mapped to at most one vertex in V2 and (2) for every predi-
cate v ∈ V1 that is mapped to a predicate v2 ∈ V2 also all the
arguments of v1 are mapped to the arguments of v2. Further,
a mapping m1 is considered better than another mapping m2

5We will work under the assumption W[1] �= FPT (here FPT
the class of fixed-parameter tractable problems). Like P �= NP, this
mathematical conjecture is unproven but has strong empirical sup-
port. The interested reader is referred to Downey and Fellows (1999)
and Flum and Grohe (2006) for more details.

917

if m1 maps relatively more higher-order predicates than m2.
SMT defines the order of a predicate to be the maximum or-
der of its arguments plus 1, with objects being order 0.

Now note that every instance of the structure-mapping
problem will have values for specific problem parameters,
each such parameter constituting a potential source of com-
plexity. Table 1 lists the parameters considered in this paper.
For simplicity, in the remainder of this paper we will drop the
subscript for a parameter xi and write x to refer to either x1 or
x2 (depending on which happens to be largest).

Our choice of parameters is motivated in part by specu-
lations in the literature about aspects of predicate structures
that may be responsible for the computational intractability
of SMT.

Based on the finding that their implemented structure-
mapping algorithm ran slower for the Composer-General ex-
ample than for the Rutherford example, Falkenhainer et al.
(1989) conjectured that the complexity of structure-mapping
may depend not so much on the number of vertices (n), but
more on the height (h) of the predicate structures. Specifi-
cally, these researchers suggested that worst-case times occur
when relatively ‘flat’ predicate structures (i.e., structures with
minimal or no predicate-nesting (see also Veale & Keane,
1997, p. 1). To investigate this possibility using our pro-
posed tool of parameterized complexity analysis, we need to
define a parameter that is large for ‘flat’ predicate structures
and prove that it is fixed-parameter (in)tractable. We propose
to use n

h as a measure of the relative ‘flatness’ of the input
structures. With this measure we intend to capture the idea
that flatness (n

h) is large when height (h) is small, relative to
the overall size of the graphs (n).

We noticed that the Composer-General predicate struc-
tures, besides being relatively flat, also have relatively many
root predicates r and relatively many objects o, especially
when compared to the Rutherford example. To investigate
if they could serve as alternative explanations of the apparent
hardness of Structure mapping for these types of predicate
structures we included these parameters in our analysis. For
completeness, we also include the total number of predicates
(p) and the number of non-root predicates (s) in our analy-
sis, to investigate if possibly they could be responsible for the
intractability of Structure mapping for other types of inputs.

It has also been proposed that the “performance [of algo-
rithms for SMT] is more a function of representation and
repetitiveness rather than . . . size [of the predicate structures]”
(Falkenhainer et al., 1989, p. 47). One possible measure
of repetitiveness is the number of occurrences of the same
predicate (f) in a given predicate structure. To investigate if
this form of repetitiveness indeed is a cause for difficulties
for Structure-mapping algorithms we included f in the set of
considered parameters.

Lastly, we included arity of predicates (a) in our analy-
sis, because there exists empirical evidence that this param-
eter is naturally kept small in human mental representations
by cognitive processing (e.g., working memory) limitations

Table 1: Overview of parameters for structure-mapping, with
the corresponding value of each parameter in the Rutherford
example in Figure 1a/b, and the Composer-General example
in Figure 1d. Without loss of generality, we assume that G1

is larger than G2.

Name Definition Fig. Fig.
1a/b 1d

n1 number of vertices in G1 11 11

n2 number of vertices in G2 9 11

h1 maximum order 4 1
of predicates in G1

h2 maximum order 3 1
of predicates in G2

n1
h1

measure of ‘flatness’ of G1 2.75 11

n2
h2

measure of ‘flatness’ of G2 3 11

p1 number of predicates in G1 9 5

p2 number of predicates in G2 7 5

r1 number of root predicates 2 5
in G1

r2 number of root predicates 3 5
in G2

s1 number of non-root 7 0
predicates in G1

s2 number of non-root 5 0
predicates in G2

oi number of objects in Gi=1,2 2 6

fi frequency of a given 2 3
predicate label in Gi=1,2

ai number of arguments 2 2
per predicate in Gi=1,2

(Halford, Wilson, & Phillips, 1998). It is of interest to see if
a bound on the arity of mentally represented relations helps
keep analogical mapping computational tractable for human
minds.

Results and Discussion

We next present a list of fixed-parameter (fp-) tractability and
intractability results for sets of parameters selected from Ta-
ble 1. Proofs of all these results can be found in Supplemen-
tary Materials published online.6 We start with the results
for general input structures. Subsequently we also consider

6http://www.nici.ru.nl/˜irisvr/supplement08.pdf

918

results for predicate structures consisting of ordered7 predi-
cates only. It will become clear why this has relevance for
SMT.

Structure mapping in general is

1. fp-intractable for parameter set {h,a, f ,s}
2. fp-intractable for parameter set { n

h}
3. fp-tractable for parameter set {n1}
4. fp-intractable for parameter set {n2,r,h,a, p}

Result (1) means that the height of the predicate structures
(h), the arity of predicates (a), the frequency of predicate la-
bels (f), and the number of non-root predicates (s = p− r,
where p is the total number of predicates and r is the num-
ber of root predicates) are neither individually, nor combined
in any way, a source of complexity for Structure mapping.
In other words, even if all these parameters are small then,
all else being equal, Structure mapping remains computa-
tionally unfeasible for all but small inputs. We particularly
note two important implications for the SMT literature: First,
even if repetitiveness in predicate structures introduces diffi-
culties for structure-mapping, as proposed by Falkenhainer et
al. (1989, p. 47), then this will not be due to the repetitive-
ness of predicate labels alone, and second, the natural bound
on arity in human mental representations assumed by Halford
et al. (1998) is insufficient to yield analogical mappings com-
putationally tractable for human minds, at least for analogical
mappings as construed by SMT.

Interestingly, we have also Result (2), which shows that
contrary to the conjecture of Falkenhainer et al. (1989), the
flatness of a predicate structure (measured by n

h) is not a
source of complexity for Structure mapping. Also, contrary to
the conjecture that the number of vertices do not matter much,
we have Result (3), showing that the number of vertices—at
least in the larger of the two predicate structures, i.e., n1—
is a source of complexity. We should qualify, however, that
it is impossible to have large input if parameter n1 is small,
since the whole input size n1 +n2 is bounded by 2×n1. Since
intractability is only an issue for non-small inputs, the obser-
vation that n1 is a source of complexity is more or less redun-
dant. We see that if we switch from n1 to n2 (i.e., the num-
ber of vertices in the smaller of the two predicate structures)
then the ability to confine the non-polynomial complexity in
Structure mapping to the parameter is lost (Result (4)). Also,
Result 4 shows that the number of root predicates (r) is not
a source of complexity, not individually nor combined with
any of the parameters h, a, n2, p. In other words, like its
relative flatness, the large number of roots in the Composer-
General example in Figure 1d fails to explain why inputs of
this type (or any type) are “hard” for Structure mapping. We
next present a result that can explain the apparent hardness of
this type of input.

7A predicate is said to be ordered if the order of its arguments
matter, otherwise it is said to be unordered. For example, the predi-
cate AND(X,Y) is unordered, but GREATER(X,Y) is ordered.

Structure mapping for predicate structures with ordered
predicates is

5. fp-tractable for parameter set {o}
To interpret Result (5), first observe that the Composer-
General example in Figure 1d contains only ordered predi-
cates. This means that if we want to explain why this type of
input is hard we may assume w.l.o.g. that we are dealing only
with predicate structures with ordered predicates. Then Re-
sult (5) naturally explains why Structure mapping algorithms
run long for this type of input. After all, Result (5) shows
that the parameter o (the number of objects in the predicate
structures) is a source of complexity for Structure mapping
of predicate structures with ordered predicates, and o is rela-
tively large in the Composer-General predicate structures.

At this point, the reader may wonder if perhaps the pa-
rameters shown not to be sources of complexity for Structure
mapping in general (Results (1), (2), and (4)), may also turn
out to be sources of complexity if inputs are constrained to
predicate structures with ordered predicates only. This is not
the case, however, as is evidenced by Result (6).

6. Results 1−4 hold even if the predicate structures con-
tain ordered predicates only

From Result (6) we conclude that of all the parameters that
we have considered in this paper, the relatively large size of
only one of them (viz., o) yields a parsimonious explanation
of the apparent ‘hardness’ of Structure mapping for inputs of
Composer-General type. Admittedly, the parameter n1 could
in principle be used to explain ‘hardness’ of this type (or any
type!) of input as well, but it would hardly be parsimonious,
because n1 ≥ o + p and courtesy of Result (5) we know that
o already suffices to capture the non-polynomial complexity
inherent in the Structure mapping problem for inputs like the
Composer-General example.

We remark that Result (5) does not yet explain why Struc-
ture mapping for inputs of the type shown in Figure 1a/b (the
Rutherford example) is “easy”, because these predicate struc-
tures contain unordered predicates (viz., AND(X,Y)). There-
fore it is of interest to note that we have the following result
which establishes that Result (5) also holds for general inputs
with both ordered and unordered predicates.

Structure mapping in general is

7. fp-tractable for parameter set {o}.

Result (7) yields a natural explanation of why inputs like the
Rutherford example make for easy structure-mapping, viz.,
because the number of objects in base and target is small (in
this case, o1 = o2 = 2).

In sum, with our analyses we have shown that several (in-
tuitively plausible) conjectures about what makes structure-
mapping computationally difficult are incorrect. In addition,
our results show that the relative difficulty of the Composer-
General example compared to the Rutherford examples can
be parsimoniously explained by the difference in number of
objects in the predicate structures.

919

Conclusion

Often algorithmic simulations of computational-level theo-
ries give good, first guesses about input aspects that cause
the computational problem defined by a cognitive theory to
be computationally intractable. However, to validate those
guesses we need evidence that we have actually identified
sources of intractibility in the computational problem, rather
than artifacts of an inadvertently inefficient implementation
of the theory.

In this paper, we have illustrated how parameterized com-
plexity theory provides some useful analytical tools that can
help substantiate claims or intuitions about what makes a
given problem hard or easy. The same tools also can help
us discover when our intuitions about sources of intractabil-
ity are in fact mistaken. That such intuitions can be mistaken,
even after considerable simulation tests, is illustrated by our
results for SMT and how they bear on existing conjectures in
the literature about potential sources of intractability in this
theory.

Intuitions about sources of intractability may be more often
mistaken than we realize. Not only are people poor at intuit-
ing the speed of combinatorial expansion,8 but to pinpoint ex-
actly which aspects of representational structures are respon-
sible for (or contribute to) computational intractability one
needs to understand the subtle interaction between a com-
binatorially complex domain and the problem to be solved
for that domain. This is a highly non-trivial task. It is not
for nothing that a whole branch of mathematics is devoted to
building tools and concepts for performing exactly this task.

We think that cognitive scientists can greatly benefit from
adopting the tools of parameterized complexity theory, as
many cognitive theories are known to face computational in-
tractability for unrestricted domains. If a computational-level
theory can be shown to be tractable under certain input con-
straints and there is empirical evidence that inputs are in-
deed so constrained for human cognizers, then the theory can
maintain a status of psychological and computational plausi-
bility, despite its intractability for unrestricted domains.

References

Arora, S., & Barak, B. (in press). Computational complexity:
A modern approach.

Downey, R. G., & Fellows, M. R. (1999). Parameterized
complexity. Berlin: Springer.

Downey, R. G., Fellows, M. R., & Langston, M. A. (2008).
The Computer Journal special issue on parameterized com-
plexity: Foreword by the guest editors. Computer Journal,
51, 1–6.

Evans, P. A., Gedge, J., Müller, M., van Rooij, I., & Ware-
ham, T. (2008). On the computational complexity of anal-
ogy derivation in structure-mapping theory (Tech. Rep. No.

8For example, Tversky and Kahneman (1973) found that people
estimate 1× 2× 3× 4× 5× 6× 7× 8 to be about 500, while it is
more than 40,000.

2008-003). Department of Computer Science: Memorial
University of Newfoundland.

Falkenhainer, B., Forbus, K. D., & Gentner, D. (1989). The
structure-mapping engine: Algorithm and examples. Arti-
ficial Intelligence, 41, 1–63.

Flum, J., & Grohe, M. (2006). Parameterized complexity
theory. Berlin: Springer.

Forbus, K. D., & Gentner, D. (1989). Structural evaluation
of analogies: What counts? In Proceedings of the Eleventh
Annual Conference of the Cognitive Science Society (pp.
341–348). Mahwah, NJ: Erlbaum.

Garey, M. R., & Johnson, D. S. (1979). Computers and in-
tractability: A guide to the theory of NP-completeness. San
Francisco, CA: W.H. Freeman.

Gentner, D. (1983). Structure-mapping: A theoretical frame-
work for analogy. Cognitive Science, 7, 155–170.

Halford, G. S., Wilson, W. H., & Phillips, W. (1998). Process-
ing capacity defined by relational complexity. Behavioral
& Brain Sciences, 21, 803–831.

Hamilton, M., Müller, M., van Rooij, I., & Wareham, T.
(2007). Approximating solution structure. In E. Demaine,
G. Z. Gutin, D. Marx, & U. Stege (Eds.), Structure The-
ory and FPT Algorithmics for Graphs, Digraphs, and Hy-
pergraphs. Schloss Dagstuhl, Germany: Internationales
Begegnungs- und Forschungszentrum fur Informatik.

Sloper, C., & Telle, J. A. (2008). An overview of techniques
for designing parameterized algorithms. Computer Jour-
nal, 51, 122–136.

Tversky, A., & Kahneman, D. (1973). Availability: A heuris-
tic for judging frequency and probability. In D. Kahne-
man, P. Slovic, & A. Tversky (Eds.), Judgment under un-
certainty: Heuristics and biases. Oxford University Press.

van Rooij, I. (in press). The tractable cognition thesis. Cog-
nitive Science.

van Rooij, I., Stege, U., & Kadlec, H. (2005). Sources of
complexity in subset choice. Journal of Mathematical Psy-
chology, 49, 160–187.

van Rooij, I., & Wareham, T. (in press). Parameterized com-
plexity in cognitive modeling: Foundations, applications
and opportunities. Computer Journal.

van Rooij, I., & Wright, C. D. (2006). The incoherence of
heuristically explaining coherence. In Proceedings of the
28th Annual Conference of the Cognitive Science Society
(p. 2622).

Veale, T., & Keane, M. T. (1997). The competence of sub-
optimal theories of structure mapping on hard analogies. In
Proceeding of the 1997 International Joint Conference on
Artificial Intelligence.

Veale, T., O’Donoghue, D., & Keane, M. T. (1999). Com-
putability as a limiting cognitive constraint: Complexity
concerns in metaphor comprehension about which cogni-
tive linguists should be aware. In E. M. Hiraga, C. Sinha,
& S. Wilcox (Eds.), Cultural, psychological and typologi-
cal issues in cognitive linguistics. Amsterdam: John Ben-
jamins.

920

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

