Lawrence Berkeley National Laboratory
Recent Work

Title
Streamline-based time-lapse-seismic-data integration incorporating pressure and saturation effects

Permalink
https://escholarship.org/uc/item/9682c22z

Journal
SPE Journal, 22(4)

ISSN
1086-055X

Authors
Watanabe, S
Han, J
Hetz, G
et al.

Publication Date
2017-08-01

DOI
10.2118/166395-pa

Peer reviewed
Streamline-Based Time-Lapse-Seismic-Data Integration Incorporating Pressure and Saturation Effects

Authors
Shingo Watanabe (Texas A&M University) | Jichao Han (Texas A&M University) | Gill Hetz (Texas A&M University) | Akhil Datta-Gupta (Texas A&M University) | Michael J. King (Texas A&M University) | Donald W. Vasco (Lawrence Berkeley National Laboratory)

DOI
https://doi.org/10.2118/166395-PA

Document ID
SPE-166395-PA

Export citation
Get PDF

Summary
We present an efficient history-matching technique that simultaneously integrates 4D repeat seismic surveys with well-production data. This approach is particularly well-suited for the calibration of the reservoir properties of high-resolution geologic models because the seismic data are areally dense but sparse in time, whereas the production data are finely sampled in time but spatially averaged. The joint history matching is performed by use of streamline-based sensitivities derived from either finite-difference or streamline-based flow simulation. For the most part, earlier approaches have focused on the role of saturation changes, but the effects of pressure have largely been ignored. Here, we present a streamline-based semianalytic approach for computing model-parameter sensitivities, accounting for both pressure and saturation effects. The novelty of the method lies in the semianalytic sensitivity computations, making it computationally efficient for high-resolution geologic models. The approach is implemented by use of a finite-difference simulator incorporating the detailed physics. Its efficacy is demonstrated by use of both synthetic and field applications. For both the synthetic and the field cases, the advantages of incorporating the time-lapse variations are clear, seen through the improved estimation of the permeability distribution, the pressure profile, the evolution of the fluid saturation, and the swept volumes.

File Size 2 MB Number of Pages 19

References

Reuss, A. 1929. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für

