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Abstract

Optimization Based Control for Multi-agent System with Interaction

by

Cheng Peng

Doctor of Philosophy in Engineering - Mechanical Engineering

University of California, Berkeley

Professor Masayoshi Tomizuka, Chair

Recently, the artificial intelligence has achieved a significant success with applications in var-
ious domains including transportation, smart building, robotics, economy and so on. More and
more traditional system entities have been entitled with full or partial autonomy, allowing them
to make their own decisions and moves based on the specific surrounding environments. An inte-
gration of multiple such intelligent entities is called a multi-agent system (MAS) where the agents
need to interact with each other effectively and efficiently to attain cooperation and optimal system
performance. As to fulfill this more challenging intelligent interaction objective, the traditional
control approaches will not suffice and more advanced algorithms become essential.

In this dissertation, three system structures for interactive control systems, centralized, dis-
tributed and decentralized, are discussed with application in intelligent building and autonomous
driving. Several concrete interactive control algorithms are proposed and verified.

In the centralized control system, a single central agent with the whole system information
available is in charge of making decisions for all the agents. The systemwise cooperation solution
is thus directly obtained and all the interactions involved are optimally addressed. Chapter 3 and 4
adopt such centralized control strategy for the intelligent building system. In order to save energy
consumption and satisfy the occupants’ thermal comfort demand, a combination of feedforward
iterative learning control (ILC) and iteratively tuned feedback controller is designed to compensate
both repetitive and non-repetitive disturbance components. Chapter 3 proposes an iterative con-
troller design algorithm via optimization solving and stabilizing feedback projection. In Chapter 4,
the concurrent design of feedforward ILC and causal stabilizing feedback controller is introduced,
where both controllers are simultaneously solved by one optimization.

However, the centralized approach’s complexity grows with the problem size, which leads to
failure for large-scale systems. The distributed control strategy is introduced as an alternative
for such high-dimensional control problems. In the distributed system, a communication network
enables the information exchange among agents. Therefore, each agent can keep broadcasting and
updating its local controller until a convergence to the cooperative solution is reached. In Chapter
5, a distributed cooperative controller design method is developed for intelligent building thermal
control with convergence property theoretically proven.
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For a system with no global communication, agents of which follow different control policies,
the decentralized control structure is the only valid solution, where each agent designs its local con-
troller independently based on estimated information of others. In Part II of the dissertation, several
decentralized interactive control algorithms are proposed for the autonomous driving system. In
Chapter 6, an optimization-based negotiation with both concession and persuasion is formulated
for vehicle agent’s decision making in various interactive scenarios. A Bayesian persuasion based
algorithm for interactive driving is explored in Chapter 7. In the algorithm, the ego vehicle agent
(persuader) intends to manipulate the interacting vehicle agent (information receiver)’s belief about
the current driving situation via observable driving behavior. In Chapter 8, the interaction between
two vehicle agents is defined as a two-player persuasion game, the mixed Nash equilibrium of
which denotes the agents’ optimal intention probabilities. The optimal intention is then expressed
via the ego vehicle’s driving trajectory planned by an optimization with the intention expression
constraint.
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Chapter 1

Introduction

1.1 Background of Multi-agent System with Interacting
Agents

Nowadays, with the advancement of control technology, communication system and computer
science, the autonomous systems start playing an important role in our daily life. It can be easily
imagined that on a normal day in the future, autonomous vehicles will drive people safe and fast
to work at an intelligent office building which provides occupants with desired thermal comfort
level consuming minimum necessary energy. However, in order to realize such exciting imaginary
future, more efforts are required.

Actually, the autonomous driving and intelligent building systems are representative examples
of the multi-agent system (MAS). Formally, a MAS is defined as a system with intelligent agents
which possess at least partial autonomy. In the autonomous drivng system, all the entities involved
in the current driving scenario can be treated as agents incluidng automated vehicles, human-
driven vehicles and pedestrians. The agents in the bulding system intuitively correspond to all
controllable room/zones. The general structure of an agent in MAS is shown in Fig. 1.1. The
agent first obtains sensor data about the environment and other agents. The following node in the
information flow is the perception module which analyzes the received sensor data and figures out
what the environment looks like. Based on the received world state informaiton produced by the
perception module, the planning/high level control module will make decisions telling the agent
what action to take. With the next step action decided, the low level controller will then generate
corresponding concrete control commands for the agent’s actuators.

The MAS technique has been successfully applied in a wide range of domains besides au-
tonomous driving and intelligent building. In the manufacturinng domain, researchers have at-
tempted to solve various problems using the MAS technique such as production planning, re-
source allocation and process planning for discrete manufacturing operations [35]. The robotics
researchers have studied MAS theory in robotics context for several decades. Generally, there are
two main challenges for robots control problem: 1) cooperation and coordination and 2) safe and
efficient trajectory planning [6]. For both challenges, the MAS approach is able to provide promis-
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Figure 1.1: General structure of an agent in MAS

ing solutions. For example, in [17], a multi-agent deep reinforcement learning method is proposed
for several cooperative multi-agent benchmark tasks; [44] developes a consensus-based algorithm
for mobile robots trajectory planning with fixed formation.

Although many of the MAS approach’s advantages have been verified by its application pop-
ularity, there are still challenges waiting to be addressed. One of the most challenging problems
in MAS area is how to handle the interaction. For the automated driving vehicle, first it needs
to avoid all the obstacles including pedestrians and other moving or stopping vehicles so that no
accidents will happen. Moreover, the interaction is necessary for the scenarios where the vehicles’
priorities are not clearly defined, e.g., lane change/keep and intersection crossing in urban driving.
In these driving situations, the autonomous vehicle has to “talk” with others and then make its own
decision based on the information collected. With regard to the building system, since each room
could possibly have different temperature preference, heat interaction between rooms is bound
to happen which will not only affect the occupants’ thermal comfort but also cause more energy
consumption.

In order to deal with the interaction effect in the system, the agent needs to know not only
what the environment looks like but also what the environment will look like in the near future.
With the prediction module added, the structure of a MAS with interactive agents is shown in
Fig. 1.2. Compared to the reflex agent described in Fig. 1.1, after receiving information from the
perception module, the interactive agent will first predict about the environment (including other
agents)’s future states and utilize the prediction results in the planning/high level control module.
Depending on the interactive strategy used, the agent may repeat the prediction-planning procedure
for several times to simulate the actual interaction process and the final decision will be passed to
the low level control module to make actual moves.
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Figure 1.2: Structure of an interactive agent in MAS

1.2 Interactive Agent Control
In this dissertation, we focus on the interactive planninng (high level control) module design.
Generally, there are three different methodologies for the interactive agents control including cen-
tralized control, distributed control and decentralized control. The centralized control scheme is
mainly applied for small/medium dimensional systems with full information of all the agents avail-
able. Since the centralized controller takes all the agents involved in the interaction process into
account, the global optimal solution can be achieved. However, the computational load for the cen-
tralized approach will keep increasing with the system dimension, which will make the problem
intractable for a large-scale system. Additionally, the other agents may not share the same control
strategy and the full information may not be accessed. Aiming at resolving such limitations, dis-
tributed and decentralized methods have been proposed. For a system with agents using different
controllers, if there is a reliable communication system allowing agents to broadcast and receive
informaton, the distributed approach can be applied as a solution to the large-scale problem. Oth-
erwise, when the communication is not reliable enough or even not realizable, the decentralized
control strategy will be essential.

Centralized Control
The most intuitive interactive control approach is to assign the design task to a single central agent
which makes decisions for all the agents. In this way, with all the information available to the
central agent, each agent is informed the optimal action so that the interaction effect is dealt in
one shot. In order to find the optimal solution, the general centralized control problem can be
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formulated as an optimization:

minc1,··· ,cn J(c1, · · · ,cn)

s.t. constraints, (1.1)

where c1 to cn represent the controllers corresponding to each agent and J denotes the global cost
function for the whole system depending on all the agents’ controllers.

For most real engineering systems, such centralized control structure’s application is quite
limited due to its heavy dependency on the number of agents in the system and the full information
requirement. However, for a building system with a fair number of control zones, the centralized
approach apperas to be the right solution. Usually, a small/medium-size biulding system is only
equipped with one building management system which controls all zones in the building meaning
that all the related innformation is accessible. Such organization structure is naturally in line with
the centralized control.

Distributed Control
With regard to the large-scale system with communication between agents, the distributed ap-
proach can be applied to reduce the computational load. A distributed control system is composed
of local controllers associated with each agent and a communication system through which the
agents are able to exchange decision information with each other. Via the informatoin exchange
process, the decisions made by local controllers will converge to the problem’s optimum which
guarantees the system control performance similar with the centralized approach. The distributed
optimization-based control problem for the agent i can be formulated as:

minci J(ĉ1, · · · ,ci, · · · , ĉn)

s.t. constraints, (1.2)

where ci is the decision-making agent i’s local controller, J is the same global cost function as in
(1.1) and ĉ represents the controller result information broadcasted by other agents. In the applica-
tion, each agent will solve such local optimization in parallel and broadcast the obtained solutions
to the whole agent network. Based on the updated information of the other agents (understanding
of the whole system), a new controller will be designed accordingly for each agent. After several
information exchange iterations, the local controller solutions will converge to an optimum which
mean the cooperation among agents after interaction.

The success of the distributed control algorithm is rooted in the reliable communication sys-
tem. If the information exchange process is corrupted, the agents’ prediction or understanding
of the whole system will be deviated from the real situation. Such deviation will lead to failure
of convergence and degrade the control performance. For the building application, as all zones
are physically connected, such communication system can be fairly easy to build. Therefore, the
distributed control becomes a valid solution to the large-scale intelligent building control problem.
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Decentralized Control
For a system where each agent follows a unique control strategy and the reliable global commu-
nication system does not exist, the decentralized control method will be the only solution. In a
decentralized system, agents actions are determined by independent local control systems with
different strategies and goals. Therefore, in order to handle the interaction effect and resolve possi-
ble conflicts, the agents have to talk with others in some manner, building a virtual communication
system. In this virtual communincation system, the agent should convey to others the information
it intends to express via behavior so that the other agents can adjust their future decisions accord-
ingly. Meanwhile, the agent also needs to update its belief of its interacting agents and make
judgement about their possible future actions after observing their new behavior. Basically, this
process can be seen as a negotiation between agents, which can be done in various concrete forms
dependent on the system characteristics.

Mathematically, the decentralized optimal control design can be fulfilled via the following
decentralized optimization:

minci J̃i(c̃1, · · · ,ci, · · · , c̃n)

s.t. constraints, (1.3)

where ci represents agent i’s controller to be designed, J̃i is the global cost function of the system
estimated by agent i and c̃’s denote the estimated/predicted control decisions of other agents in the
system. Due to the lack of exact information about the whole system, to find a balance between
agents’ different demands usually requires multiple rounds of negotiation and optimization.

The autonomous drivng system is a typical example of the decentralized control structure ap-
plication since different vehicles/drivers seldom share the exactly same driving strategy and there
exists many barriers for real-time communication during driving process. Therefore, how to de-
sign the negotiation mechanisms for agents becomes the key challenge in the autonomous and
interactive driving.

1.3 Dissertation Outline
In this dissertation, several methodologies are developed for control of interactive agents in two
applications: intelligent building system and autonomous driving system. Three major control
structures for multi-agent systems are discussed: centralized, distributed and decentralized. The
centralized approach is applied to small/medium sized builidng system control; the distributed
structure is utilized to solve the large-scale challenge for high dimennsional building system and
the decentralized control strategy is explored for the autonomous driving system. The dissertation
is organized as follows.

Intelligent Building System
In Part I of the dissertation, the temperature regulation problem for intelligent building system is
studied. In Chapter 2, a model identification approach is introduced to parametrize the building
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thermal dynamic model. Since the building system is essentially an integrated entity with all zones
connected together, centralized control approaches are first introduced in Chapter 3 and Chapter 4
to reject disturbances and guarantee satisfactory control performance. For the large-scale building
system, a distributed cooperative control algorithm is developed in Chapter 5.

Thermal Dynamic System Modeling

The first step for the controller design is modeling and identification of the plant. In Chapter 2,
in order to facilitate the controller design, the complex thermal dynamic system is modeled as a
first-order lumped resistance and capacitance (RC) model. Since such simplified model structure
cannot capture all the complex thermal effects, a semiparametric regression estimation algorithm
is applied. This statistical techinique represents all the uncertain and complex effects by a non-
parametric term and therefore can achieve an accurate estimation for the parametric part. With the
identified model, a model description in finite time horizon using lifting technique [4] is developed
which allows us to design controllers via time-domain optimization.

Centralized Iterative Controller Design

Although the centralized control strucutre offers an optimal strategy to handle interaction effects,
more efforts are required to achieve other control objectives for the thermal system including ro-
bustness against disturbance, energy saving and comfort level expected by the occupants. In Chap-
ter 3, an iterative design of feedforward and feedback controller is proposed. The algorithm aims
at finding a balance between building occupants’ thermal comfort and the energy consumption.
The influence of disturbance from ambient environment and inside human activities is considered.
Observing that the disturbances are nearly repetitive, an iterative learning control (ILC) strategy
is utilized to eliminate the influence of repetitive disturbance and an iteratively tuned feedback
controller is applied to reduce the influence of non-repetitive disturbance components. With con-
straints from input saturation, the controller design is formulated into a constrained optimization
problem. To reduce the complexity of the problem, an alternating procedure is proposed to solve
the optimization problem, separating the original problem into two parts, namely, constrained ILC
problem and iterative feedback tuning problem. The proposed algorithm is demonstrated by simu-
lations on a four-room testbed system [42], [43].

Centralized Concurrent Controller Design

The iterative controller design approach requires solving multiple optimization problems and the
resulting controller is an approximation of the optimal feedforward and feedback combination.
To find the exact optimum of the problem, in Chapter 4, a concurrent design of feedforward and
feedback controllers is proposed. The controller design is formulated as an optimization with feed-
forward ILC and Youla-parametrized feedback controller as two blocks for decision making. To
guarantee that the controllers are stabilizing and implementable in practice, stability, causality and
robustness requirements must be considered along with the control saturation limit as constraints.
The optimization is convexified via introducing new variables and relaxation. The solution to the
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optimization simultaneously gives the feedforward and feedback controllers to be applied in the
next iteration. The proposed algorithm is demonstrated on a four-room system by simulation [40].

Distributed Cooperative Controller Design

For a large-scale building system, the centralized control structure will suffer from high problem
dimension, making the control design extremely time-consuming or even intractable. For such
large-scale systems, a distributed and cooperative ILC algorithm is proposed in Chapter 5. For
each agent, a distributed optimization is formulated for the ILC design, the cost function of which
is global and shared by all the agents. After solving the distributed optimization, each agent will
broadcast the obtained solutions to its interacting neighbors and receive the neighbors’ updated
controller solutions at the same time. Via such informaiton exchange process, all the agents’
local solutions will converge to a global cooperative optimum. The convergence property of the
algorithm is theoretically proven and simulation results are provided to demonstrate the algorithm’s
effectiveness [38].

Autonomous Driving System
Part II of this dissertation is devoted to the autonomous driving system considering interaction be-
tween individual vehicles. In Chapter 6, the interaction between vehicle agents is formulated as an
optimization-based negotiation with concession and persuasion. Chapter 7 introduces a Bayesian
persuasion algorithm for agent decision making in interactive driving scenarios. In Chapter 8, the
interactive driving problem is explicitly desgined as a two-player persuasion game.

Cooperative Driving Based on Negotiation with Persuasion and Concession

In the future, to build an intelligent driving environment, it is necessary for the autonomous vehi-
cles to effectively and efficiently interact with other road users including human-driven vehicles
and other autonomous vehicles. However, due to the lack of a global and reliable communication
system, the agents do not have access to the others’ intention states and decision making strate-
gies and cannot directly convey their intentions to others either. In order to achieve cooperation
and successful interaction without information transparency, the agent has to negotiate with others
about right of the road via observable driving behavior. In Chapter 6, such negotiation process
with concession and persuasion is formulated as an optimization. Concession is introduced as a
tuning weight in the cost function and persuasion is formulated as a convex constraint. The pro-
posed algorithm enables the autonomous vehicle to find a balance between conservativeness and
aggressiveness so that the interaction process can be finished smoothly [41].

Bayesian Persuasive Driving

Since the interactive driving problem is still a unsolved open challenge, there exist many possible
solutions. In Chapter 7, another decentralized interactive control approach based on Bayesian
persuasion is proposed. In the persuasion process, the ego vehicle intends to convey its intention
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and future decision information to the interacting vehicle via its driving behavior. The information
received by the interacting vehicle will impose certain influence on its belief about the current
driving environment, which will potentially affect its next step behavior decision making. The
proposed algorithm aims at finding the optimal driving behavior which will persuade the interacting
vehicle to alter its behavior towards a better global welfare [39].

Interactive Driving Based on Persuasion Game and Intention Expression

Essentially, the interactive decision making process is a game between the interacting agents. The
game’s Nash equilibrium solution represents the best strategy for the vehicles in the current situa-
tion. In Chapter 8, a two-player persuasion game is formulated and the mixed Nash equilibrium is
found. In the game setting, each player/agent has two options representing the vehicles’ intention
which are yielding and passing. The game’s payoff matrix is dependent on both vehicles’ driving
style information estimated based on Bayesian update. In order to help agents make more human-
like decisions, the cumulative prospect theory (CPT) is applied mapping the payoff matrix to a
utility function. The Nash equilibrium with the optimal yielding/passing (intention) probabilities
is then solved corresponding to the developed utility. In the trajectory design module, the obtained
intention probability is formulated as a convex constraint imposed on the vehicle speed. In this
manner, the optimal intention expressive trajectory for the ego autonomous vehicle is found and
the intelligent interaction is achieved.



9

Part I

Intelligent Building System
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Chapter 2

Thermal Dynamic System Modeling

In general, modeling serves as the foundation of controller design and is thus critical to the system
performacne. With an accurate well-structured model, the designed controller will potentially
reject disturbances effectively and guarantee a desired control performance. In this chapter, a
parametrized model for the thermal dynamics is introduced and the model parameters are estimated
using semiparametric approach.

2.1 Introduction
Currently, the building sector consumes about 20-40% of the worldwide energy and exceeds con-
sumption of other major sectors, including industry and transportation. Moreover, it is forecast that
the energy cost in buildings will keep growing by 34% in the next two decades. This striking phe-
nomenon is due to the growth of population worldwide, increasing requirement for comfort levels
and more time spent inside the building. Majority of this building energy consumption is caused
by the heating, ventilation, and air conditioning (HVAC) system, which consumes approximately
50% of it. Therefore, in order to balance between people’s growing demand for thermal comfort
and energy saving, more advanced HVAC control strategies become necessary [45]. Among many
key factors for controller design, an accurate model is the most important and fundamental one.
Recently, many different HVAC models have been proposed through simulation software. How-
ever, such computational models developed are always high-dimensional and too complicated for
controller design. A trade-off has to be made between the model complexity and model accuracy.

Figure 2.1 shows the general structure of a HVAC system. The most important sector in the
HVAC system is the air handling unit (AHU), which determines the maixmum air mass flow rate
into the system and the supply air temperature. The input of an AHU is the air flow mixed by
the outside air and return air from the system, which is then heated or cooled to the determined
supply air temperature by the heating and cooling coils. The output air with desired temperature is
forced into the duct system by a supply fan. Before entering each room, the supply air flow will go
through dampers which adjust mass flow rate of air by changing the ducts’ opening areas. At last,
part of air is recirculated and mixed with outside air in order to go through the system again.
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Figure 2.1: Heating, ventilation, and air conditioning (HVAC) system

In order to properly describe the thermal dynamic system functioning in the context of HVAC
application, a lumped first-order resistance and capacitance (RC) model [5] is utilized in this dis-
sertation which parametrizes the building system with thermal resistances and capacitances. The
model parameters involved can either be theoretically derived based on thermodynamics knowl-
edge or estimated from measurement data. However, the thermodyncmics derivation approach
usually requires a full understanding of all the building materials’ complex thermal properties.
Moreover, there is not a general derivation approach valid for all different structured buildings.
Therefore, in this dissertation, a data-driven model estimation approach is applied to get a numer-
ical description of the HVAC thermal dynamic system.

However, in the real building system, there exist certain factors which cannot be fully de-
scribed by a parametric model. Some examples include the measurement error in the data record,
undetected disturbance sources and thermal effects beyond the scope of RC model. In order to
achieve an estimated model with good performance in presence of such uncertainties, a semipara-
metric model combining both parametric part and non-parametric part is applied. The parametric
part reflects the thermal RC influence and all the uncertain factors are merged together as a non-
parametric term in the model. To achieve numerical values of the parameters, an autoregressive-
moving average (ARMA) time series model is developed and the maximum loglikelihood algo-
rithm is used to find the optimal solution. For the prediction and verificatoin purpose, another
ARMA model is developed for the non-parametric part and the corresponding parameters are
achieved via the expectation-maximization (EM) algorithm. With the obtained model parameters,
a model description in the finite time horizon based on the lifted system technique is introduced to
facilitate optimization-based controller design.

The remainder of this chapter is organized as follows. The basic thermal model structure is
introduced in Section 2.2. Section 2.3 proposes a semiparametric model parameters estimation
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approach based on ARMA model and a specific case is studied demonstating the approach’s ef-
fectivenss. Section 2.4 applies the model estimation method to a four-room testbed system and
Section 2.5 introduces a lifted model description friendly to time-domain control design. Section
2.6 concludes the chapter.

2.2 Basic Model Structure
Although specific thermal system models differ from case to case, they still share some general
structures. Therefore, instead of treating the thermal dynamic system as a complete black box, we
treat it as a grey box with known structure and several unknown parameters. According to the heat
transfer principles, a first order thermal RC model can be achieved to reflect the thermal dynamic
evolution relationship [5]. The most obvious benefit of this model is its simplicity and computa-
tional efficiency. This model uses concepts of thermal capacitance and resistance, analogous to the
electric capacitance and resistance. The basic assumptions utilized include:

• The air inside each zone is well-mixed, which means that the whole zone has the uniform
temperature. Thus each zone can be treated as a simple temperature node.

• Thermal properties of the room studied is constant during the control process, which indi-
cates that all the resistances and capacitances in the RC thermal network are constant.

• The density of air is constant, implying that net mass of air in the room is unchanged.

These assumptions are actually valid for most commercial and non-commercial buildings.
Using the assumptions above, the HVAC temperature model can be formulated as

ci
dTi

dt
=

n

∑
k

1
Rki

(Tk−Ti)+Qi, (2.1)

where ci and Ti are the thermal capacitance and temperature of zone i respectively, Tk’s represent
the temperature of zone i’s neighboring zones, including the ambient environment, Rki represents
the thermal resistance of heat transfer between zone i and zone k and Qi denotes the heat flux into
zone i. By decomposing Qi into two parts including the energy control input and disturbances, the
RC model in (2.1) can be rewritten as

dTi

dt
= c−1

i

n

∑
k

1
Rki

(Tk−Ti)+ c−1
i ui + c−1

i vi, (2.2)

where vi denotes the heat disturbance of zone i and

ui = ṁcp(Tc−Ti)

is zone i’s energy control input, determined by ṁi: the air mass flow rate to zone i, Tc: the supply
air temperature and cp: the specific heat capacity of air.
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After discretization with a sampling time of Ts, the following discrete time model is obtained:

Ti(t +1) = Ti(t)+Ts(c−1
i

n

∑
k

1
Rki

(Tk(t)−Ti(t))+ c−1
i ui(t)+ c−1

i vi(t))

= (1−Tsc−1
i

n

∑
k

1
Rki

)Ti(t)+Tsc−1
i

n

∑
k

1
Rki

Tk(t)+ c−1
i ui(t)+ c−1

i vi(t)

To simplify the expression above, two new variables are introduced: ai = c−1
i and bi,k = c−1

i
1

Rki
which reformulate the model as

Ti(t +1) = (1−Ts

n

∑
k

bi,k)Ti(t)+Ts

n

∑
k

bi,kTk(t)+aiui(t)+aivi(t). (2.3)

2.3 Model Identification

Semiparametric Method
In the building systems, the disturbance mainly come from two sources, which are the inside
human activities and outside weather. The baseline of the disturbances can be obtained from the
room’s working schedule and the weather forecast respectively. However, the real situation can be
far more complex, there will be many unexpected uncertainties corrupting the prediction results.
For instance, the schedule for room usaeg is subject to change as some meetings may be cancelled
or rescheduled. With regard to the ambient environment, since the mechanism of weather system
has not been fully understood, the forecast information cannot be perfectly accurate. All these
possibilities make the real influence of disturbance hard to predict, which may deteriorate fitting
performance of the learned model. Hence, in this dissertation, a semiparametric method is utilized
to address such uncertainty issue.

In statistics, a semiparametric model [3] is a model with both parametric and nonparametric
components. When applied in the model estimation problem, the basic idea of the semiparametric
method is also very straightforward: merging all the unknown factors into a new nonparametric
variable and performing system model identification for the parametric part. In the thermal dynam-
ics context, a new variable qi(t) is introduced to represent all the thermal uncertainties for room i.
Thus, the model can be separated into two parts and reformulated as

Ti(t +1) = (1−Ts

n

∑
k

bi,k)Ti(t)+Ts

n

∑
k

bi,kTk(t)+aiui(t)+aiwi(t)+qi(t)+ ε(t), (2.4)

where wi(t) represents the predicted disturbance to zone i and ε(t) is assumed to be independent
and identically distributed zero mean noise with constant covariance.

Now the question becomes how to learn the parametric part (ai’s and bi,k’s) from the collected
data. First, the following conditional expectations are defined: T̂i(t) = E[Ti(t)|t], ûi(t) = E[ui(t)|t],
T̂k(t) = E[Tk(t)|t], ŵi(t) = E[wi(t)|t] = wi(t) and q̂i(t) = E[qi(t)|t] = qi(t). With these notations,
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by taking conditional expectations for both sides of (2.4) and using the fact that E[ε(t)] = 0, the
following equation can be obtained:

T̂i(t +1) = (1−Ts

n

∑
k

bi,k)T̂i(t)+Ts

n

∑
k

bi,kT̂k(t)+aiûi(t)+aiwi(t)+qi(t). (2.5)

Substracting (2.5) from (2.4) achieves

Ti(t +1)− T̂i(t +1) = (1−Ts

n

∑
k

bi,k)(Ti(t)− T̂i(t))+Ts

n

∑
k

bi,k(Tk(t)− T̂k(t))+ai(ui(t)− ûi(t)),

(2.6)
where the non-parametric term qi(t) is eliminated and a pure parametric model is left. To ob-
tain values of T̂i, T̂k and ûi, we just need to smooth data of Ti, Tk and ui over time. There are
many different tools that can fulfill this task, in this dissertation, the kernel regression technique is
applied.

Mixture of ARMA Time-Series Model
In this section, the time-series thermal model behavior is described by the ARMA structure [53]
and the optimal estimation of parameters ai and bi,k are obtained. The basic idea of ARMA model
is to predict future states using the past information in time series for a stationary stochastic pro-
cess. With the model structure already determined by the RC approach, the numbers of autore-
gressive terms and moving average terms are both selected to be 1. To build a clear model descrip-
tion, several notations are introduced: D = (D1, · · · ,Dt , · · · ,DN) where Dt = Ti(t)− T̂i(t), Dk =
(Dk,1, · · · ,Dk,t , · · · ,Dk,N) where Dk,t = Tk(t)− T̂k(t) and Du = (Du,1, · · · ,Du,t , · · · ,Du,N) where
Du,t = ui(t)− ûi(t). Using these notations, the temperature ARMA model can be represented
by a directed graph as shown in Fig. 2.2, the mathematical description of which is

Dt+1 : N (µD,t+1,σ
2), (2.7)

where µD,t+1 = (1−Ts ∑
n
k bi,k)Dt +Ts ∑

n
k bi,kDk,t +aiDu,t and σ is set to be 1.

Figure 2.2: Graphical ARMA model of temperature
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Denoting all the parameters by θ = [bi,1, · · · ,bi,n,ai]
T , the loglikelihood can be calculated as

l(θ) = log(∏
t

1√
2π

exp(−(Dt−µt)
2

2
))

= −1
2 ∑

t
(Dt−µt)

2 + log(2π).

By applying the maximum loglikelihood estimation algorithm, the following equations can be
obtained:

∂ l
∂bi,k

=
N

∑
t=2

(Dt−µt)(TsDk,t−1−TsDt−1) = 0,

∂ l
∂ai

=
N

∑
t=2

(Dt−µt)(TsDu,t−1) = 0. (2.8)

To find solutions to (2.8), the Newton-Raphson method is applied with the update law as:

θ
(t+1) = θ

(t)−H−1
∇θ (l(θ (t))), (2.9)

where H is the Hessian of loglikelihood l and ∇θ (l) is the gradient of l. The hessian H can be
calculated as

H =

[
Bb Bc
∗ Cc

]
, (2.10)

where Bb is an n×n matrix with the elements

Bbi j =−
N

∑
t=2

(TsDi,t−1−TsDt−1)∗ (TsD j,t−1−TsDt−1), i, j = 1, · · · ,n,

Bc is an n×1 vector with elements

Bci =
N

∑
t=2

TsDu,t−1(TsDi,t−1−TsDt−1), i = 1, · · · ,n,

and

Cc =−
N

∑
t=2

T 2
s Du,t−1.

By repeating (2.9) for several iterations, the estimation of parameters ai and bi,k can be achieved.
In order to verify the estimated model’s effectiveness, prediction results for the testing data are

required. However, at this stage, the model still cannot be used for temperature prediction as the
non-parametric part is totally unknown. Therefore, we propose to train another ARMA model for
the non-parametric term qi. The time series training data for qi can be extracted from the original
data set using the estimated ai and bi,k:

q̂i(t) = T̂i(t +1)− (1−Ts

n

∑
k

bi,k)T̂i(t)−Ts

n

∑
k

bi,kT̂k(t)−aiûi(t)−aiwi(t), (2.11)
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where q̂i(t) represents the estimation of qi(t) used as training data. Actually, as qi represents the
disturbance uncertainties caused by inside human activities and outside weather, it is reasonable
to assume that qi at the current time step depends on its own past values. which validates the
application of ARMA model method. Similar with the thermal parameters estimation procedure,
several notations are introduced including Q = (Q1, · · · ,Qt , · · · ,QN) where Qt = qi(t) and latent
white noise variables E = (E1, · · · ,EN). The graphical description of the ARMA model for qi is
shown in Fig. 2.3, the mathematical description of which is as:

Qt+1 : N (µQ,t+1,σ
2
q ), (2.12)

where µQ,t = ψ +∑
r
k=1 αkQt−k +Et−1, r is the autoregressive order, ψ and α’s are model param-

eters to be estimated and σq is again set to be 1.

Figure 2.3: Graphical ARMA model of the non-parametric term

Denoting all the parameters as θq = [ψ,α1, · · · ,αr]
T and utilizing EM algorithm, the estimation

process of ARMA model for the non-parametric term is as

• E-step:

l(θq) = E

[
log(

N

∏
t=h

1√
2π

exp(−
(Qt−µQ,t)

2

2
))

]

= −1
2

N

∑
t=h

E[(Qt−µQ,t)
2]+ log(2π).

= −1
2

N

∑
t=h

E[(Qt− (ψ +
r

∑
k=1

αkQt−k +Et−1))
2]+ log(2π),

where h = max(N,r+1).

• M-step:

ψ
j+1 =

∑
N
t=h q̂i(t)−∑

r
k=1 α

j
k q̂i(t− k)

N−h+1
(2.13)

α
j+1

k =
∑

N
t=h

(
q̂i(t− k)q̂i(t)−ψ jq̂i(t− k)− q̂(t− k)∑

r
l=1,l 6=k α

j
l q̂(t− l)

)
∑

N
t=h q̂i(t− k)

, (2.14)

where j denotes the EM iteration.
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After running the EM algorithm for several iterations, the convergence can be achieved resulting
in well-trained ARMA model for the non-parametric term.

Case Study Results
In this section, a classroom at UC Berkeley is used as a case study and the temperature prediction
results are shown to demonstrate the introduced model identification method’s effectiveness. The
temperature measurements and working (class) schedule are collected from room C220 of UC
Berkeley Cheit Hall, the floor plan of which is shown in Fig. 2.4. The temperature data of the
studied room from Oct. 21st to Oct. 29th is used for training and the data from Oct. 31st to Nov.
17th is used for testing. The sampling time of the system is 15 minutes and the autoregressive order
of the non-parametric part’s ARMA model is set as 2. The training and testing results are shown
in Fig. 2.5 and Fig. 2.6 respectively, where the good prediction performance is achieved indicating
an accurate estimated model.

Figure 2.4: Floor plan of the studied room (Room C220, UC Berkeley Cheit Hall)

2.4 Testbed Simulation System Modeling
Unfortunately, the Chiet Hall room cannot be used as a testing system for the controller design pur-
pose due to the safety reasons. Therefore, in this section, a simulation system model is developed
based on a four-room testbed system built in Singapore, the layout of which is shown in Fig. 2.7.

In the testbed system, there is one single air handling unit (AHU) serving all the four rooms
and each room has its own controllable damper. Following the same model structure defined in
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Figure 2.5: Train result with disturbance estimation
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Figure 2.6: Test result with disturbance estimation

(2.1) and combining all the four rooms, the centralized system model can be derived as:

CT
dT
dt

= RT T +RT 0T0 +u+w, (2.15)

where T=[T1, · · · ,T4]
T and u=[u1, · · · ,u4]

T represent the temperature vector and the energy in-
put (control input) vector for the 4 zones respectively. T0 denotes the ambient temperature, and
w=[w1, · · · ,w4]

T is the disturbance vector for all zones including effect of the non-parametric term
and inside thermal activities. CT ∈ R4×4 and RT ∈ R4×4 represent the thermal capacitance and
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Figure 2.7: Simplified HVAC system with four rooms

Table 2.1: Thermal Parameters

Parameter Value Unit
c1,c2,c3,c4 1000 kJ/K

R12,R13,R24,R34 1.0417 kW/K
R14,R23 10000 kW/K

R01,R02,R03,R04 0.5208 kW/K

resistance matrix respectively, describing the thermal interaction among all zones. RT 0 ∈ R4×1

is a thermal resistance vector corresponding to the system’s thermal interaction with the outside
environment. The corresponding discretized state space model of system (2.15) can be developed
as:

G : T (t +1) = AgT (t)+Bgu(t)+Bgd(t), (2.16)

where Ag = I+TsC−1
T RT , Bg = TsC−1

T are system matrices and d(t)=w(t)+RT 0T0(t) is the lumped
disturbance vector. The parameter matrices CT , RT and RT 0 can be estimated with the semipara-
metric model identification approach described in this chapter using real world measurement data.
The specific thermal parameters used in this dissertation are shown in Table 2.1.

2.5 Model Description in Finite Time Horizon
In this section, the developed thermal dynamic model is described using the lifted form within
finite time horizon so that optimization-based control design approach can be applied.

To design controllers in time domain with finite time horizon, an intuitive idea is to stack all
the signals into a super vector. Such a technique is called lifting [4], which has been widely used
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for time-domain optimization based control problems.
First define a general single-input-single-output (SISO) discrete dynamics system as

y(t) = h(z−1)u(t), (2.17)

where y(t) and u(t) are the output and input signals, respectively.

h(z−1) = h1z−1 +h2z−2 + · · · , (2.18)

is the system’s transfer function written in the infinite impulse response form, where the parameters
[h0,h1, · · · ] are the system’s impulse response at each time instant.

Then, the output signals in a finite time horizon N can be expressed in the vector and matrix
form: 

y(1)
y(2)

...
y(N)

=


h1 0 · · · 0
h2 h1 · · · 0
...

... . . . 0
hN hN−1 · · · h1




u(0)
u(1)

...
u(N−1)

 ,
which can be compactly written as

Y=HU. (2.19)

The system (2.19) is called the lifted presentation of the system (2.17). The super vector Y obtained
by stacking all the signals in the time horizon is defined to be the original signal y’s lifted form and
the matrix H is defined as the system’s impulse resposne matrix.

For the remainder of Part I, signals/systems in lifted form are in bold form and the correspond-
ing original signals/systems are in normal form.

Note that the lifting technique is also applicable to multiple-input-multiple-output (MIMO)
systems. The only difference is that in MIMO system’s impulse response matrix H, each h element
is a matrix instead of a scalar. Therefore, the building thermal dynamics system (2.16) can be lifted
as:

T = G(U+D)+Tin, (2.20)

where T, U, D and Tin represent the lifted form of temperature T , control input u, disturbance d
and the system’s initial temperature state respectively. Matrix G represents the lifted system plant.

2.6 Chapter Summary
In this chapter, the general HVAC system structure is introduced and a lumped first-order resistance
and capacitance (RC) model is given to describe the building thermal dynamics. In order to achieve
accurate model parameters for both prediction and control purpose, the model is identified using a
semiparametric approach, where two ARMA time-series models are trained for the parametric and
non-parametric components respectively. The identification approach’s effectiveness is verified by
a case study. For the controller design purpose, a simulation testbed system model is developed
and its description in finite time horizon based on lifted system is discussed.
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Chapter 3

Centralized Iterative Controller Design

With the model developed in Chapter 2, a centralized iterative controller design approach is pro-
posed in this chapter. The designed control system is composed of a constrained iterative learning
control (ILC) and an iteratively tunable feedback controller. To guarantee good control perfor-
mance in the presence of both repetitive and non-repetitive disturbances, the feedforwrad ILC and
the feedback controller are designed based on optimization in each iteration. Considering con-
straints from the input saturation, the ILC convergence requirement and the closed-loop stability,
the controller design is formulated as a convex optimization problem. The influence of disturbance
uncertainties is also incorporated into the optimization problem in the form of chance constraints.
To reduce the complexity of the problem, techniques such as relaxation and projection on convex
sets are introduced to make the algorithm more efficient.

3.1 Introduction
Among many alternatives to traditional building control approaches, model predictive control
(MPC) has been extensively investigated and applied. It aims at minimizing the energy consump-
tion over a planning time window subject to certain constraints. Weather forecast information can
be incorporated to handle the influence of disturbance [25], [30]. However, in practice, neither the
weather forecast nor the estimation of human activities can be exact. Such disturbance uncertain-
ties may severely influence the MPC performance.

Note that even though disturbances from weather and human activities cannot be precisely
known, there always exist certain repetitive patterns for both of them, especially for office and
commercial buildings. Considering such repetitiveness in disturbance, iterative learning control
(ILC) may be effective for building control [33]. The central idea of ILC is to improve the perfor-
mance of current iteration based on learned information from previous iterations. Therefore, the
repetitive disturbance can be effectively eliminated by ILC even if it is unknown. Another differ-
ence of ILC compared to MPC is that ILC design process is offline, which means that computation
load will not be a significant issue.

In the ILC design for the building temperature control systems, the two most critical issues
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are the effect of non-repetitive disturbance and the input saturation constraint. Both of them, if
not properly addressed, can severely degrade the control performance. With regard to the effect
of non-repetitive disturbance, several frequency-domain ILC design schemes have been proposed
[51], [27]. However, in such frequency-domain approaches, it is hard to incorporate constraints.
On the other hand, in [50], [7], [16], several optimization-based approaches are proposed to solve
constrained ILC problems, but non-repetitive disturbance is not taken into consideration.

In this chapter, an optimization-based ILC with iterative tunable feedback controller is pro-
posed to handle both the constraints and the non-repetitive disturbances. By translating the input
saturation limit, the ILC convergence and the closed-loop stability requirements into convex con-
straints, the control problem is formulated as an optimization problem. The feedforward ILC input
is used to handle the repetitive disturbances and the iteratively optimized feedback controller is
introduced to deal with the non-repetitive components. Moreover, a chance constraint method is
incorporated to further enhance the performance robustness against disturbance uncertainties.

The remainder of this chapter is organized as follows. The control design problem is defined
in section 3.2 and section 3.3 formulates the problem into a solvable convex optimization problem.
Section 3.4 describes the implementation of the algorithm. Simulation results are given in section
3.5 to demonstrate the effectiveness of the proposed algorithm. Section 3.6 concludes the chapter.

3.2 Constrained ILC with Non-repetitive Disturbances
The fundamental idea of ILC is to learn from past, attempting to improve the performance of cur-
rent iteration based on experience from previous iterations. Through learning, ILC can effectively
remove the unknown repetitive disturbances. In addition, benefiting from its offline property, ILC
will not bring significant computation load for online application. To better adapt ILC into the
HVAC control problem, there are still two remaining issues: influence of the non-repetitive distur-
bances and constraints. In this section, the ILC design is formulated as a constrained optimization
and a feedback controller is used to handle the non-repetitive disturbances.

The ILC update strategy adopted in this dissertation is called current-iteration ILC [4]. Utiliz-
ing the lifted technique described in section 2.5, the ILC update law is given by

Uk+1 = U f f ,k+1 +Ck+1Ek+1
U f f ,k+1 = Uk +Lk+1Ek

, (3.1)

where k, U f f , E, L, U and C represent the iteration index, the feedforward ILC input, the error
signal, the learning filter, the control input to the plant and the feedback controller respectively.

Obviously, the performance of ILC heavily depends on the learning filter L. Traditionally, such
a learning filter can be analytically given by minimizing a quadratic cost function, with constant
feedback controller and no constraints. However, in the building temperature control problem,
certain constraints have to be incorporated and the existence of non-repetitive disturbance calls
for an iteration-varying feedback controller. To address these problems, an ILC algorithm with
iteration-tunable feedback controller is defined as follows.

The block diagram of the proposed control system is shown in Fig. 3.1. To formulate the
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Figure 3.1: Current-iteration ILC with iteratively tunable feedback controller

problem into an optimization problem, a quadratic cost function in iteration domain is defined as

Jk+1 = ET
k+1WeEk+1 +UT

k+1WuUk+1, (3.2)

where We and Wu are positive definite penalty matrices for error signal E and control input U,
respectively. The variables in this optimization problem include Ck+1 and Lk+1. Utilizing the
lifted system technique and the relationship in (3.1), the control signal Uk+1 in Fig. 3.1 is given by

Uk+1 = Tu f f 2u,k+1(Uk +Lk+1Ek)+Td2u,k+1Dk+1 +Tr2u,k+1R (3.3)

where
Tu f f 2u,k+1 = (I +Ck+1G)−1,

Td2u,k+1 =−(I +Ck+1G)−1Ck+1G,

and
Tr2u,k+1 = (I +Ck+1G)−1Ck+1

represent the lifted transfer functions from U f f ,k+1 to Uk+1, from disturbance Dk+1 to Uk+1 and
from reference signal R to Uk+1, respectively. G represents the lifted system plant. Similarly, the
error signal is given by

Ek+1 = Tr2e,k+1R+Tu f f 2e,k+1(Uk +Lk+1Ek)+Td2e,k+1Dk+1, (3.4)

where
Tr2e,k+1 = (I +GCk+1)

−1,

Tu f f 2e,k+1 =−(I +GCk+1)
−1G,

and
Td2e,k+1 =−(I +GCk+1)

−1G

are the lifted transfer functions from reference R to error Ek+1, from feedforward control input
U f f ,k+1 to Ek+1 and from disturbance Dk+1 to Ek+1.
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Therefore, high nonlinearity exists in the minimization problem of Jk+1 as the variables Ck+1
and Lk+1 are coupled with each other in Ek+1 and Uk+1. Moreover, Ck+1 appears in the inverse
form in all the lifted transfer function terms.

Meanwhile, several constraints need to be included. In HVAC system, one of the most impor-
tant constraints is the saturation constraint on the input signal U , which is given by

U ≤ Uk+1 ≤U , (3.5)

where U is the lower bound of U and U is the upper bound of U. Substituting (3.3) into (3.5), the
saturation constraint can be expressed in the lifted form as

U ≤ Tu f f 2u,k+1 (Uk +Lk+1Ek)+Td2u,k+1Dk+1 +Tr2u,k+1R≤U . (3.6)

Besides, new constraints from closed-loop stability arise as the feedback controller C is varying
between iterations. Suppose the closed-loop system is realized by [Ac,Bc,Cc,Dc], then the closed-
loop stability requires that all the eigenvalues of Ac are inside the unit circle, namely,

|λ (Ac)| ≤ 1. (3.7)

Moreover, monotonic convergence of ILC has to be guaranteed for good control performance.
Thus, another ILC convergence constraint is included as

‖Ek+1‖2 ≤ ‖Ek‖2, (3.8)

which guarantees the decrease of the error signal in iteration domain (in the sense of 2-norm).
Summarizing (3.2-3.8), the ILC design problem has been defined as a constrained optimization

problem:

minLk+1,Ck+1 Jk+1 (3.9)
s.t. |λ (Ac)| ≤ 1

U ≤ Uk+1 ≤U
‖Ek+1‖2 ≤ ‖Ek‖2.

The problem in (3.9) is, however, not convex due to the high nonlinearity in both the cost function
and constraints. To make it solvable, special techniques such as relaxation and projection on convex
sets are employed in this chapter and will be discussed in the following sections.

3.3 Convex Formulation
In this section, the defined nonconvex optimization problem in (3.9) will be reformulated as a
solvable convex optimization problem.
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Introduction of New Variables
Recall that the control signal Uk+1 in (3.3) and the error signal Ek+1 in (3.4) are both nonlinear
functions with respect to variables Ck+1 and Lk+1. To get rid of the nonlinearity, two new variables
X and Y are defined as

Y = (I +Ck+1G)−1 , (3.10)

X = (I +Ck+1G)−1 Lk+1. (3.11)

Then the control input signal in (3.3) can be rewritten as:

Uk+1 = (I +Ck+1G)−1(U f f ,k+1 +Ck+1R−Ck+1GDk+1)

= (I +Ck+1G)−1(Uk +Lk+1Ek)

+[I− (I +Ck+1G)−1](G−1R−Dk+1)

= Y Uk +XEk +(I−Y )G−1R− (I−Y )Dk+1. (3.12)

Noting the fact that for any matrices A ∈ Rn×m and B ∈ Rm×n,

(In +AB)−1A = A(Im +BA)−1 (3.13)

always holds, the error signal in (3.4) can be simplified as

Ek+1 = (I +GCk+1)
−1(R−GU f f ,k+1−GDk+1)

= (I +GCk+1)
−1GG−1R

−(I +GCk+1)
−1G(Uk +Lk+1Ek +Dk+1)

= G(I +Ck+1G)−1G−1R
−G(I +Ck+1G)−1(Uk +Lk+1Ek +Dk+1)

= GY G−1R−GY Uk−GXEk−GY Dk+1. (3.14)

Through such mathematical manipulations, both (3.12) and (3.14) now have become linear func-
tions of variables Y and X . Consequently, substituting (3.12) and (3.14) into (3.2) and replacing
unavailable future disturbance Dk+1 with predicted disturbance D̂k+1 yields the objective function
as

Jk+1 = ‖W
1
2

e [GY (G−1R− D̂k+1)−G(Y Uk +XEk)]‖2
2

+‖W
1
2

u [Y Uk +XEk +(I−Y )(G−1R− D̂k+1)]‖2
2,

(3.15)

which is jointly convex with respect to variables X and Y .
The introduction of X and Y also allows simplification of the input saturation constraint as

U ≤ Y Uk +XEk +(I−Y )G−1R− (I−Y )D̂k+1 ≤U . (3.16)
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Similarly, the ILC convergence constraint in (3.8) can be simplified as

‖GY G−1R−GY Uk−GXEk−GY D̂k+1‖2 ≤ ‖Ek‖2. (3.17)

Note that when designing the controller for the (k+1)-th iteration, the error signal Ek in the k-
th iteration, is already known, so the ILC convergence constraint in (3.17) is a standard conic
constraint in vector norm form and ready to solve. To further enhance the performance robustness
against disturbance uncertainties, additional chance constraints are introduced in the next section.

Chance Constraint
As mentioned before, in practice, weather forecast is inevitably subject to uncertainties, which
means that the weather forecast can only provide the baseline information. This is also true for the
human activity disturbance prediction. Thus, blind trust of disturbance prediction may violate the
saturation constraint in (3.16) and correspondingly leads to poor control performance.

To incorporate the influence of disturbance uncertainties into the optimization problem, a
chance constraint approach [37] is proposed, which reformulates the original input saturation con-
straint in (3.16) to

Prob[U ≤ Y Uk +XEk +(I−Y )G−1R− (I−Y )Dk+1 ≤U ]≥ η , (3.18)

where η is the confidence level. Assume that the uncertain disturbance is Gaussian,

Dk+1 ∼N (D̂k+1,Σ), (3.19)

where Σ is the covariance matrix and can be selected based on historical disturbance information.
Denote the i-th element of the vector Y Uk+XEk+(I−Y )G−1R as bi and the i-th row of the matrix
I−Y as aT

i , then the control input will also be Gaussian and its distribution can be expressed as

bi−aT
i Dk+1 ∼N (bi−aT

i D̂k+1,aT
i Σai), i = 1, · · · ,n. (3.20)

Hence, the chance constraint (3.18) can be rewritten as:

Prob(bi−aT
i Dk+1 ≤U) = Φ

U−bi +aT
i D̂k+1√

aT
i Σai

≥ η ,

and

Prob(bi−aT
i Dk+1 ≥U) = Φ

bi−aT
i D̂k+1−U√
aT

i Σai

≥ η ,

i = 1, · · · ,n, which are equal to:

U−bi +aT
i D̂k+1 ≥Φ−1(η)‖Σ 1

2 ai‖2

bi−aT
i D̂k+1−U ≥Φ−1(η)‖Σ 1

2 ai‖2
, i = 1, · · · ,n, (3.21)

where Φ is the standard Gaussian cumulative distribution function.



CHAPTER 3. CENTRALIZED ITERATIVE CONTROLLER DESIGN 27

Closed-loop Stability Constraint
Since the feedback system is tuned iteratively, it is necessary to guarantee the closed-loop stability
in each iteration.

In this chapter, the feedback controller is employed with u f b,k(t) = Kkek(t), where ek and Kk
represent the error signal and the feedback gain in the k-th iteration respectively. Recalling the
system dynamics in (2.16), when ignoring the disturbance, the closed-loop system in the k-th
iteration can be formulated as

Tk(t +1) = (Ag−BgKk)Tk(t)+BgKkr(t) (3.22)

where r(t) is the reference signal. Denote Ac,k = Ag−BgKk, then the stability constraint requires
that all the eigenvalues of the non-symmetric matrix Ac,k be within the unit circle. Generally,
optimization problems subjected to eigenvalue constraints are very difficult to solve, especially for
high dimensional case. Therefore, a Lyapunov approach [11] is applied to formulate this constraint
into the solvable convex linear matrix inequality (LMI) form.

Theorem I: The closed-loop system realized by [Ac,Bc,Cc,Dc] is stable if there exist full rank
matrices F , M and S = ST > 0 with appropriate dimension such that[

FT +F−S FT AT
g −MT BT

g
AgF−BgM I

]
> 0, (3.23)

and the feedback gain K can be recovered as K = MF−1.
Proof : According to the Lyapunov stability theorem for discrete time system, the closed-loop

system realized by [Ac,Bc,Cc,Dc] is stable if and only if there exists a symmetric positive definite
matrix Q such that

AT
c QAc−Q < 0. (3.24)

Using the Schur complement and substituting in Ac = Ap−BpK, the result in (3.24) can be shown
to be equivalent to [

Q (Ag−BgK)T

(Ag−BgK) Q−1

]
> 0. (3.25)

The inequality in (3.25) is a bilinear matrix inequality (BMI), which is still hard to solve. Thus, to

transfer it to a LMI form, first left-multiply and right-multiply (3.25) by
[

FT 0
0 I

]
and

[
F 0
0 I

]
,

where F is a full rank real matrix with appropriate dimension. This multiplication gives[
FT Q−1F FT (Ag−BgK)T

(Ag−BgK)F I

]
> 0. (3.26)

Then using the inequality FT + F −Q−1 ≤ FT Q−1F , a sufficient condition of (3.26) can be
achieved: [

FT +F−Q−1 FT (Ag−BgK)T

(Ag−BgK)F I

]
> 0. (3.27)
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Since there still exists inversion and product of design variables in (3.27), it cannot be efficiently
solved. Introduce two new variables M =KF and S =Q−1, then the LMI in (3.23) can be obtained.
The feedback gain K can be recovered as K = MF−1. (End of proof)

Applying Theorem I to the ILC design problem combining ILC convergence constraint in
(3.17) and chance constraint of input saturation in (3.21), the controller design problem can be
restated as

min
X ,Y,F,M,S

Jk+1 (3.28)

subject to
U−bi +aT

i D̂k+1 ≥Φ−1(η)‖Σ 1
2 ai‖2

bi−aT
i D̂k+1−U ≥Φ−1(η)‖Σ 1

2 ai‖2
, i = 1, · · · ,n,

‖GY G−1R−GY Uk−GXEk−GY D̂k+1‖2 ≤ ‖Ek‖2,[
FT +F−S FT AT

p −MT BT
g

AgF−BgM I

]
> 0.

3.4 Optimal Controller Design
As a 2-DOF (degree of freedom) optimization-based controller design approach, the optimization
problem in (3.28) involves variables in lifted form and non-lifted form. To make these variables
reconcile in one framework, a three-step optimization method is proposed. In the first step, the op-
timization problem is solved in the lifted form, namely, minimizing Jk+1 subject to input saturation
constraint and ILC convergence constraint. Recalling (3.15), (3.17) and (3.21), the problem of this
initializing solution step can be defined as

min
X ,Y

Jk+1 (3.29)

subject to
U−bi +aT

i D̂k+1 ≥Φ−1(η)‖Σ 1
2 ai‖2

bi−aT
i D̂k+1−U ≥Φ−1(η)‖Σ 1

2 ai‖2
, i = 1, · · · ,n,

‖GY G−1R−GY Uk−GXEk−GY D̂k+1‖2 ≤ ‖Ek‖2.

The optimal solution (X∗,Y ∗) gives the optimal learning matrix L∗k+1 and optimal feedback con-
troller C∗k+1 by

L∗k+1 = Y ∗†X∗ (3.30)

C∗k+1 =
(

Y ∗†− I
)

G−1 (3.31)

where (·)† denotes the pseudo inverse of a matrix.
However, such optimal C∗k+1 is not necessarily causal to be implemented. Therefore, in the sec-

ond step, the optimal feedback controller C∗k+1 from the first step is projected to an implementable
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causal stabilizing feedback controller for the closed-loop stability. In this stabilizing projection
step, a new optimization problem is defined as

min
F,S,M

∥∥∥MÊ∗k+1−C∗k+1FÊ∗k+1

∥∥∥
2
, (3.32)

subject to [
FT +F−S FT AT

g −MT BT
g

AgF−BgM I

]
> 0,

S > 0,

where Ê∗k+1 is the estimated error signal for the (k+1)-th iteration with the optimal learning matrix
L∗k+1 and controller C∗k+1. M ∈ Rn×n and F ∈ Rn×n are block diagonal matrices with block entries
M and F respectively. The goal of the objective function in (3.32) is to find the closest stabilizing
controller to C∗k+1 with minimum difference in control performance.

The problem in (3.32) is a standard semi-definite problem (SDP). Note that as M annd F in the
objective function are just the lifted form of M and F , so real design variables only include F , S,
and M. Once the optimal solution is found as (M∗,S∗,F∗), the feedback gain K∗k+1 can be given as

K∗k+1 = M∗F∗†. (3.33)

With K∗k+1, the initial solution L∗k+1 can be updated for better performance. This leads to a
simplified process of the first initializing solution step, with the Ck+1 fixed and replaced by Kk+1,
which is the lifted form of K∗k+1.

Overall, the proposed algorithm can be summarized as:

• Step 1: Initializing solution. Solve the optimization problem in (3.29) to obtain an initial
solution of Ck+1 and Lk+1 satisfying the input saturation constraint and the ILC convergence
constraint.

• Step 2: Stabilizing projection. Solve the optimization problem in (3.32) to project the non-
causal C∗k+1 to a stabilizing feedback controller K∗k+1.

• Step 3: Update. Solve the optimization problem in (3.29) for a updated learning filter L′k+1
with Ck+1 fixed and replaced by Kk+1.

Remark 1: Note that the proposed algorithm cannot theoretically guarantee the feasibility, so
if infeasibility happens, the control input obtained from the last iteration can be applied instead.
In fact, the infeasibility issue can only happen under extreme weather condition, meaning that
the outside environment temperature is unusually high or low compared to the previous iterations.
However, this harsh condition may not actually happen for most building systems.
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3.5 Simulation Results

Simulation Setup
The simulation was conducted on the testbed system shown in Fig. 2.7 with thermal parameters in
Table 2.1. During working hours from 8am to 7pm, the desired temperatures for each room are as
shown in Table 3.1. Otherwise, the reference temperatures are set to be 30 degrees. With regard
to the disturbance, the two-day weather forecast data and real weather data in Singapore, collected
from EnergyPlus energy simulation software website [14] are shown in Fig. 3.2. It is seen that the
disturbances have highly non-repetitive components and significant uncertainties exist. Note that
in the simulation, weather forecast data and real weather data for five consecutive days are used.
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Figure 3.2: Weather data

Table 3.1: Desired temperature when occupied

Room 1 2 3 4
Temperature(◦C) 24 25 26 27

Discussion of Results
In this section, simulation results are shown to demonstrate the effectiveness of the proposed algo-
rithm. The weather forecast data is used as disturbance prediction information D̂ when designing
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Figure 3.3: Temperature of the four rooms in five iterations

controllers and real weather data is applied to the system as real disturbance D in simulation. The
simulation was run on the laptop lenovo yoga 900 with Matlab 2015b. The upper bound of the
control input is set to be 2 and the lower bound is set to be −2. The ILC and feedback controller
are updated simultaneously once every day, meaning that one iteration is one-day period.

The temperature profiles of the four rooms from the first iteration to the fifth iteration are shown
in Fig. 3.3. It reveals that the system performance has been significantly improved even with the
presence of large non-repetitive disturbance uncertainties. Figure 3.4 shows the control input sig-
nals for the four rooms, which indicates that the input saturation limit is always obeyed. Figure 3.5
shows the performance index J in iteration domain compared to ILC with fixed feedback controller.
With the same initial feedback controller, both approaches can greatly improve the performance.
The proposed approach, however, achieves smaller asymptotical ILC error. This is because the
iteratively tuned feedback controller is optimized with predicted disturbance information and such
“customized” design can offer a more aggressive feedback controller for disturbance rejection with
the control inputs satisfying the constraints. Note that to prevent occupants from suffering unreg-
ulated temperature, the first iteration may be tuned offline in the actual building control systems.
The time cost of the proposed algorithm for one iteration is around 120s, which is fairly small
compared to the sampling period 30 minutes.
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Figure 3.4: Control input of the four rooms in five iterations
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3.6 Chapter Summary
This chapter presents a centralized control scheme combining constrained current-iteration ILC
with iteratively tunable feedback controller. By allowing flexibilities in not only the feedforward
ILC signal but also the feedback controllers, both the repetitive disturbance components and the
non-repetitive components can be effectively eliminated or attenuated. Moreover, the input satu-
ration limit, ILC convergence and closed-loop stability requirement are considered as constraints.
The disturbance uncertainties are also incorporated into the optimization problem for enhanced
performance robustness. The simulation results showed that the system performance was greatly
improved compared to the standard ILC controller and the time cost was quite acceptable.
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Chapter 4

Centralized Concurrent Controller Design

In the previous chapter, a centralized iterative controller design approach is proposed to improve
the control performance for multi-zone building thermal systems with heat interaction. However,
although the algorithm’s performance was verified, the controller results achieved by this method
is still an approximation of the optimal solution due to the feedback controller projection step. In
order to find the exact optimal feedforward and feedback controller combination, a centralized con-
current controller design is proposed in this chapter, where both controllers solutions are obtained
simultaneously through one optimization.

4.1 Introduction
Finding a balance of comfort and energy cost has always been the core task in the building thermal
management which has emerged as a popular research topic in recent years. In the building system,
a promising candidate for energy saving is the heating, ventilation and air conditioning (HVAC)
system. However, the traditional PID controllers used in most existing building systems are not
intelligent enough and tuning of parameters is mainly based on the building manager’s personal
experience. Thus, more advanced and intelligent control techniques for the building HVAC system
are in urgent need.

Currently, Model predictive control (MPC) has been the major approach in the building ther-
mal control area due to accessibility to disturbance prediction and building system’s relatively long
sampling time [25], [1]. In the MPC framework, the controller design is formulated as an optimiza-
tion problem, and the objective fucntion is optimized over a finite time horizon, but only the current
time solution is implemented [15]. In general, an MPC algorithm achieves good performance if
the time horizon is reasonably long. This requires that the model and disturbance prediction are
accurate over such time horizons. The required model and prediction accuracy, however, may not
be available in the real system, especially for a complex plant such as the building system.

It is noted that the weather is repetitive from one day to the next during a relatively long period
(one season or one month), especially in tropics such as Singapore. Therefore, in order to reduce
the influence of model uncertainties and explicitly take advangtage of the repetitive characteristics
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of the disturbances, the iterative learning control (ILC) becomes an attractive alternative. The ILC
technique has been shown as an effective method to deal with repetitive disturbances [51], [4]. The
underlying idea of ILC is to conduct the same task for several times and learn the implicit repeat-
ing pattern from experience collected from past iterations. The ILC application in the building
thermal control problem has been extensively investigated recently. In [34], a passivity-based ILC
is proposed for coupled temperature and humidity control. In [26], the authors combine the ILC
with standard MPC to tackle the control task of heating systems.

In this chapter, a concurrent convex optimization-based design of feedforward ILC and feed-
back controller is proposed. In addition to the feedforward ILC controller, a feedback controller de-
sign based on the Youla parametrization is applied to enhance control system’s robustness against
disturbance uncertainties. With both controllers described in the lifted form, the controller design
is formulated into a time-domain optimization with a cost function having thermal comfort and
energy consumption terms. With regard to the constraints, the control saturation limit, closed-loop
system stability, controller causality and robustness requirement are included. Compared to the
algorithm proposed in the previous chapter, solutions to the two controllers in the new proposed
algorithm are simultaneously obtained through only one optimization. No extra computational
effort is required so that complexity of the problem is largely reduced. Moreover, the robustness
preformance against disturbance is also improved.

The remainder of the chapter is organized as follows. In Section 4.2, the controllers are de-
scribed mathematically and the concurrent controller design problem is formulated as a non-convex
optimization problem. In Section 4.3, the formulated non-convex optimization problem is convex-
ified by applying Youla parametrization and introducing new variables. In section 4.4, simulation
results are provided to illustrate the proposed algorithm’s effectiveness. Section 4.5 concludes the
chapter.

4.2 Optimization Based Concurrent Controller Design
In this section, the concurrent feedforward and feedback controller design problem is formulated
into a time-domain optimization via rewriting the signals in lifted form.

Concurrent Controller Design
In building temperature control systems, disturbances mainly come from outside environment and
inside human-related thermal activities, both of which are nearly repetitive in a long period (one
month or one season). For such a system with nearly repetitive disturbances, the iterative learning
control approach serves as an effective solution for regulation and disturbance rejection.

However, the control performance of ILC can be significantly diminished if non-repetitive
components in disturbance presents. In fact, non-repetitive disturbances always exist in building
systems, e.g. unpredictable weather change and unusual human related thermal activities. Such
non-repetitive disturbances must be compensated by the feedback controller. There are mainly
three requirements for the design of the feedback controller. The first one is effective rejection
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of predictable non-repetitive disturbance, information of which can be achieved via weather fore-
cast and schedule of indoor human activities. The second one is robustness against unpredictable
disturbance uncertainties and the last but most fundamental one is the guarantee of closed-loop
system stability.

The concurrent controller design block diagram is shown in Fig. 4.1 with all the signals written
in the lifted form. In Fig. 4.1, k is the iteration index, Lk+1 and Ck+1 are feedforward ILC learning
gain and feedback controller to be designed for the next iteration, respectively. R denotes the
desired temperature reference, Ek, Tk, U f f ,k and Uk represent error signal, temperature output
signal, feedforward ILC signal and net control input at iteration k. D̂k+1 and Dk are disturbance
prediction for the next iteration and actual disturbance signal respectively.
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Figure 4.1: Concurrent design of feedforward and feedback controllers

As Fig. 4.1 illustrates, at iteration k+1, the feedforward ILC learning gain Lk+1 and feedback
controller Ck+1 are updated at the same time according to disturbance prediction D̂k+1, error signal
Ek and control input signal Uk collected from the last iteration and stored in the system memory.
The mathematical expressions for the related signals can be obtained as follows:

U f f ,k+1 = Uk +Lk+1Ek, (4.1)

Uk+1 = U f f ,k+1 +Ck+1Ek+1, (4.2)

Ek+1 = Sk+1(R−Tin)−Sk+1GU f f ,k+1−Sk+1GDk+1, (4.3)

where
Sk+1 = (I +GCk+1)

−1, (4.4)

corresponds to the system’s sensitivity function, I represents the identity matrix with appropriate
dimension and Tin is the system’s initial state.

Note that the error signal at k+ 1-th iteration Ek+1 in (4.3) depends on the future disturbance
Dk+1 which is not available. Thus, one additional estimated error signal Êk+1 is introduced as

Êk+1 = Sk+1(R−Tin)−Sk+1GU f f ,k+1−Sk+1GD̂k+1, (4.5)



CHAPTER 4. CENTRALIZED CONCURRENT CONTROLLER DESIGN 37

where D̂k+1 is the disturbance prediction.

Optimization Formulation
In this subsection, the controller design is formulated as a time-domain optimization problem with
the feedforwrad ILC learning gain L and feedback controller C as decision variables.

In order to achieve both satisfactory thermal comfort for the occupants in the building and
energy reduction, the objective function J for the optimization is defined as a quadratic one with
two weighted terms:

Jk+1 = ÊT
k+1WeÊk+1 + ÛT

k+1WuÛk+1, (4.6)

where k is the iteration index, We and Wu are positive definite penalty weights for error signal and
control input, respectively. Ûk+1 is the estimated control input defined by

Ûk+1 = U f f ,k+1 +Ck+1Êk+1, (4.7)

corresponding to the estimated error signal Êk+1. In the objective function (4.6), temperature
deviation from the desired reference is used to account for thermal comfort level and energy saving
is fulfilled by penalizing total energy input to all zones.

With regard to the constraints, first the control saturation constriant is considered. Due to
physical limitations of the HVAC system, there exist upper and lower bounds for the energy input
to each zone. The upper bound is mainly determined by the maximum opening area of dampers
and highest possible supply air temperature of the AHU, i.e., AHU’s heating power. Similarly, the
lower bound is decided by the AHU’s cooling power. Thus, the saturation constraint can be stated
as:

U ≤ Ûk+1 ≤U , (4.8)

where U and U denote the lower and upper bound of the control input respectively.
Another constraint is imposed to enforce that the temperature responses always lie in the com-

fort zone defined by lower and upper temperature bounds. The comfort zone constraint can be
formulated as

T ≤ T̂k+1 ≤ T , (4.9)

where T and T are temperature lower and upper bound respectively and

T̂k+1 = R−Tin− Êk+1, (4.10)

is the estimated temperature output for the k+1-th iteration.
Moreover, as the feedback controller is updated for every iteration, the closed-loop system’s

stability and the feedback controller’s causality must be guaranteed which establish another con-
straint for the optimization. To make the matrix C able to represent a proper causal feedback
controller, C must be an impulse resposne matrix with the same structure as matrix H defined in
(2.19) with each element as a z× z matrix, where z is the number of zones in the system. With
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regard to the closed-loop stability guarantee, the bounded-input-bounded-output (BIBO) stability
is applied and in the finite time-horizon case, it can be approximated by

‖Sk+1α‖1 ≤ γ1, (4.11)

where α is a column vector of appropriate dimension with the first z elements being one while
all other elements being zero and γ1 is a pre-defined small scalar. By (4.11), the 1-norms of z
zones’ impulse responses are summed and constrained to be less than a given number γ1, which
guarantees that all zones’ responses will not go crazy.

The last constraint considered is the system’s robustness against disturbance uncertainties. In
the frequency domain, a popular technique to sovle such robust control problems is the H2 control
technique which minimizes the H2 norm of the transfer fucntion from disturbance to output. In time
domain controller design, the H2 norm idea is still valid. Hence, via imposing certain constraints
on the impulse response matrix corresponding to the transfer function from disturbance D to the
output T , the control performance can be accordingly adjusted. Mathematically, the robustness
constraint can be stated as:

‖Gd2t,k+1α‖2 ≤ γ2, (4.12)

where Gd2t,k+1 is the impulse resposne matrix corresponding to the trasnfer function from distur-
bance to output at iteration k+1, α is the same vector as defined for the stability constraint (4.11)
and γ2 is another pre-defined scalar reflecting the performance requirement. In fact, ‖Gd2t,k+1α‖2
is the approximation of H2 norm in the finite time-horizon. Gd2t,k+1 can be explicitly written as:

Gd2t,k+1 = Sk+1G. (4.13)

Combining the defined objective function (4.6) and constraints (4.8) - (4.12), the optimization
problem can be formulated as:

minLk+1,Ck+1 Jk+1 (4.14)

s.t. U ≤ Ûk+1 ≤U ,

T ≤ T̂k+1 ≤ T ,
Ck+1is properly structured and causal,
‖Sk+1α‖1 ≤ γ1,

‖Gd2t,k+1α‖2 ≤ γ2.

However, the optimization (4.14) is non-convex due to coupling of Lk+1 and Ck+1 in error
signal term Êk+1 and control input term Ûk+1. In addition, the feedback controller variable Ck+1
also appears in inverse form in the sensitivity matrix term Sk+1. Therefore, both the objective
function and constraints are non-convex, which makes the problem difficult to solve.

4.3 Convexification based on Youla Parametrization
In this section, the Youla-parametrization is applied to the feedback controller design so that the
design task of feedback controller matrix Ck+1 is transferred to design of a Q system which can
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describe all the stabilizing controllers. Moreover, by introduction of the variable Q and another
new variable, the objective function and constraints of the optimization problem (4.14) are all
convexified.

Youla Parametrization
Youla parametrization, also known as Q parametrization first proposed in [57] is a general de-
scription of all stabilizing controllers for a given plant system. The general Youla parametrization
theorem states that given a MIMO system P(z−1) with proper, stable and coprime right factor-
ization Np(z−1)D−1

p (z−1) and left factorization D̃−1
p (z−1)Ñp(z−1), let X(z−1), Y (z−1) and X̃(z−1),

Ỹ (z−1) be stable and proper systems that satisfy the Bezout equations, which are:

X(z−1)Dp(z−1)+Y (z−1)Np(z−1) = I,

Ñp(z−1)Ỹ (z−1)+ D̃p(z−1)X̃(z−1) = I,

D̃p(z−1)N(z−1)− Ñp(z−1)D(z−1) = 0,

Y (z−1)X̃(z−1)−X(z−1)Ỹ (z−1) = 0,

then all the stabilizing controllers K(z−1) can be parametrized as

K(z−1) =
(
X(z−1)−Q(z−1)Ñp(z−1)

)−1

×
(
Y (z−1)+Q(z−1)D̃p(z−1)

)
=

(
Ỹ (z−1)+Dp(z−1)Q(z−1)

)−1

×
(
X̃(z−1)−NP(z−1)Q(z−1)

)
,

(4.15)

where Q(z−1) is an arbitrary stable system.
For the building thermal system discussed in this dissertation, as the plant system is always

stable due to its physical characteristics, one intuitive candidate to the systems X(z−1), Y (z−1),
Np(z−1), Dp(z−1) and X̃(z−1), Ỹ (z−1), Ñp(z−1), D̃p(z−1) can be found as

X(z−1) = X̃(z−1) = I,Y (z−1) = Ỹ (z−1) = 0,

Np(z−1) = Ñp(z−1) = P(z−1),Dp(z−1) = D̃p(z−1) = I.

Then the general Youla theorem can be simplified and the stabilizing controllers K(z−1)s’ descrip-
tion (4.15) is reduced to

K(z−1) =
(
I−Q(z−1)P(z−1)

)−1Q(z−1),

= Q(z−1)
(
I−P(z−1)Q(z−1)

)−1
. (4.16)

Applying (4.16) to the building thermal dynamics system (2.16) and rewriting it into the lifted
form obtains:

C = (I−QG)−1Q = Q(I−GQ)−1, (4.17)
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where the lifted form signals and systems are in bold form. As shown in (4.17), design of the
feedback controller matrix C is now transferred to design of a stable system Q. This transfer idea
is explained in the block diagram form as in Fig. 4.2, where U f b,k is the feedback control input at
iteration k and the state space form of system C′ and Qk are given by

C′ :


x̂(t +1) = Agx̂(t)+Bgvk(t)
u f b,k(t) = vk(t)

yk(t) = x̂(t)+ ek(t)
, (4.18)

Qk :
{

xq,k(t +1) = Aq,kxq,k(t)+Bq,kyk(t)
vk = Cq,kxq,k(t)+Dq,kyk(t)

. (4.19)
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Figure 4.2: Youla parametrization

Convexified Optimization
With the help of Youla parametrization, the feedback controller design has been transferred to
design of the Q system. In this subsection, another new variable is introduced and the optimization
problem (4.14) is convexified.

First, the following two equations can be derived from (4.17):

(I +GC)−1 = I−GQ, (4.20)
(I +CG)−1 = I−QG. (4.21)

Then the error and control input estimation signal Êk+1 in (4.5) and Ûk+1 in (4.7) can be reformu-
lated as

Êk+1 = R−Tin +GQk+1(GUk +GD̂k+1−R+Tin)

−G(Uk + D̂k+1)+(GQk+1− I)GLk+1Ek, (4.22)
Ûk+1 = Uk +Qk+1(R−Tin−GD̂k+1−GUk)

−G−1(GQk+1− I)GLk+1Ek. (4.23)
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It can be observed that the only term with Qk+1 and Lk+1 coupled together in both Êk+1 and
Ûk+1 is (GQk+1− I)GLk+1. Note that although Qk+1 is restricted to be in a proper impulse re-
sponse matrix form, however, there are no constraints imposed on the structure of Lk+1, which
results in no specific structural constraints for the matrix (GQk+1− I)GLk+1. Hence, Lk+1 pro-
vides one extra degree-of-freedom (DOF) for design and it is valid to define a new variable as

Xk+1 = (GQk+1− I)GLk+1. (4.24)

At this stage, Êk+1 and Ûk+1 can be brought to the convex form with regard to new variables Qk+1
and Xk+1 as

Êk+1 = R−Tin +GQk+1(GUk +GD̂k+1−R+Tin)

−G(Uk + D̂k+1)+Xk+1Ek, (4.25)
Ûk+1 = Uk +Qk+1(R−Tin−GD̂k+1−GUk)

−G−1Xk+1Ek, (4.26)

both of which are linear fucntions of Qk+1 and Xk+1.
The optimization (4.14) can then be revised as

minQk+1,Xk+1 Jk+1 (4.27)

s.t. U ≤ Ûk+1 ≤U ,

T ≤ T̂k+1 ≤ T ,
Qk+1is proper and causal,
‖Qk+1α‖1 ≤ γq,

‖Gd2t,k+1α‖2 ≤ γ2,

where the new expression of Gd2t,k+1 is

Gd2t,k+1 = GQk+1G−G,

and γq is a pre-determined small scalar for Q system stability guarantee. The closed-loop stability
constraint (4.11) is replaced by Q stability in (4.27) because a stable Q will always result in a
stabilizing controller according to the Youla parametrization theorem. After obtaining the solutions
to Qk+1 and Xk+1, the ILC learning gain Lk+1 and the feedback controller Ck+1 can be recovered
as

Lk+1 = G−1(GQk+1− I)−1Xk+1, (4.28)

and
Ck+1 = (I−Qk+1G)−1Qk+1. (4.29)

The proposed convex concurrent feedforward and feedback controller design algorithm can be
summarized by the block diagram in Fig. 4.3.
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Figure 4.3: Convex concurrent feedforward and feedback controller design

4.4 Simulation Results
In this section, simulation results are provided to demonstrate the proposed concurrent controller
design algorithm’s effectiveness. In the simulation, the disturbance prediction is assumed to be
accessible, but its accuracy is not required.

Simulation Setup
We simulated the proposed algorithm on a testbed system with four rooms as shown in Fig. 2.7
with thermal parameters in Table 2.1. The centralized control structure is selected, which means
that the control input to all the rooms are solved at the same time by one optimization. In the
simulation, one iteration for the controller design is selected to be one day and the sampling time
is chosen as 30 minutes.

Since the application is intended to take place in Singapore, the Singapore weather forecast data
[14] and a self-defined human activity schedule are used for the disturbance prediction while the
real weather data and perturbed human related thermal signal are treated as real disturbance. Fig-
ure 4.4 shows the net effect of the disturbance sources for one day in the form of temperature and
makes a comparison between the prediction and real disturbance data. It is shown in Fig. 4.4 that
there exists obvious difference between the prediction and real data, which verifies the necessity
of a robust feedback controller.

With regard to the reference, within the working hours from 7 : 30am to 6pm, each room’s
desired temperature was set as shown in Table 4.1 and no reference was defined for the rest time
for energy saving purpose.
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Figure 4.4: Comparison between disturbance prediction and real disturbance

Table 4.1: Desired temperature during working hours

Room 1 2 3 4
Temperature(◦C) 22.5 22 23 23.5

Discussion of Simulation Results
First, the proposed algorithm was simulated assuming that the disturbance prediction was perfectly
accurate and compared to the ILC with a fixed PID feedback controller. The performance of the
concurrently designed controllers is shown in Fig. 4.5, where the temperature output profiles for
room 1 and room 2 in three consecutive days are depicted. Note that the disturbances for these
three days are not the same, which means non-repetitiveness still exists in the system. In the first
iteration, as there is no pre-knowledge available, the performance was very poor. However, after the
first iteration, the performance was significantly improved as both feedforward ILC and feedback
controller have come into effect so that both repetitive and non-repetitive disturbance components
were properly attenuated. Besides, the precooling behavior instead of sharp cooling was also
observed after the first iteration since ILC has learned reference information and thus automatically
selected the best energy saving strategy. Figure 4.6 shows the performance of pure ILC with fixed
pre-designed PID feedback controller. Comparison of Fig. 4.5 and Fig. 4.6 explicitly illustrates
that the introduced concurrently updated feedback controller greatly reduced the influence of non-
repetitive disturbances.

Then, the disturbance uncertainties were added to the system so that the disturbance prediction
was no more accurate as shown in Fig. 4.4. The corresponding simulation results of the proposed
algorithm are shown in Fig. 4.7, where the desired temperatures were well tracked during the
working hours and the whole day temperature profiles were within the bounded comfort zone. As
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Figure 4.5: Concurrent controller design with accurate disturbance prediction
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Figure 4.6: ILC with fixed feedback controller given accurate disturbance prediction
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Figure 4.7: Concurrent controller design with disturbance uncertainties
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Figure 4.8: ILC with fixed feedback controller and disturbance uncertainties
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a comparison, Fig. 4.8 shows the result of pure ILC design with fixed feedback controller, where
the reference tracking performance was not satisfactory and the thermal comfort constraints were
also violated.

4.5 Chapter Summary
In this chapter, a centralized concurrent feedforward and feedback controller design algorithm
was proposed. In order to reject repetitive disturbance components, the iterative learning con-
trol was utilized for the feedforward controller. With regard to the non-repetitive components,
a Youla-parametrized feedback controller was designed. The controller design was formulated
into a convex time-domain optimization that took both thermal comfort and energy consumption
into account. The optimal feedforward ILC learning gain and feedback controller combination
was solved simultaneously by the optimization without assumptions on the feedback controller
structure made in the iterative design proposed in Chapter 3. Benefiting from the general feed-
back structure described in Youla form, the concurrent algorithm would potentially achieve better
control performance compared to the iterative method. To make the algorithm implementable for
the practical system, the control saturation limit, thermal comfort demand, closed-loop stability
guarantee and robustness against disturbance uncertainties were included as constraints.
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Chapter 5

Distributed Cooperative Controller Design

Chapter 3 and 4 focus on the optimal centralized control for the building thermal system. How-
ever, the actual building system may contain hundreds of room, for such large-scale system, the
computational power may not be strong enough to find an optimal centralized controller solu-
tion. Actually, the large-scale centralized system can be separated into several distributed and
cooperative small-scale subsystems that communicate among each other. In this chapter, a dis-
tributed and cooperative optimization-based iterative learning control (ILC) algorithm is proposed
for the large-scale building temperature control problem to handle interactions between zones and
reject disturbances. With the algorithm, the large-scale building temperature control problem be-
comes solvable with reasonable computational load and guaranteed control performance under
nearly repetitive disturbances. For each subsystem, a convex optimization problem is solved. The
cooperative learning policy allows all subsystems to contribute together to improve the overall
performance.

5.1 Introduction
Recently, research about building control systems, especially the heating, ventilation and air con-
ditioning (HVAC) system has received a great amount of attention. In order to utilize energy more
efficiently, several methodologies have been proposed to replace the traditional simple structured
feedback controllers for HVAC systems. One popular approach is model predictive control (MPC)
[25], [1], which aims to optimize the energy consumption with constraints. To achieve good con-
trol performance, a long time horizon is generally necessary for MPC, which leads to high reliance
on the model accuracy of both thermal dynamics and disturbance prediction. However, in practice,
high model accuracy cannot be always guaranteed.

An alternative to MPC is the iterative learning control (ILC). The essential idea of ILC is
to improve system’s performance by learning its repetitive characteristics through past iterations
experience [51], [4]. For the HVAC control system, both the reference and disturbances, including
ambient weather and inside human activities, exhibit certain repetitive properties. These repetitive
features endorse the application of ILC to the building control problem. In [33], a frequency
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domain ILC is designed for the building temperature control problem. In our previous work [42]
and [43], a two-degree-of-freedom controller is proposed to simultaneously handle both repetitive
and non-repetitive disturbance using combined ILC and iterative feedback tuning (IFT) technique.
However, these methods are all centralized and thus quite time-consuming or even intractable for
large-scale systems where hundreds of zones need to be controlled.

To deal with the scalability challenge, some distributed MPC algorithms have been proposed,
e.g., [56], [36]. In the distributed MPC framework, the centralized system is partitioned into several
subsystems that communicate. Each sub-system MPC solves a small-scale optimization problem.
By integrating all subsystems’ solutions, the interactions among the subsystems can be handled.
However, this approach leads to higher dependency on prediction accuracy than normal MPC.
In the ILC framework, similar subsystem concepts are utilized in cooperative ILC for formation
control problems [31], [20]. In cooperative ILC, each subsystem can learn from not only its own
past experience but also its neighbouring control zones’. In this way, the control performance can
be improved and more information can be leveraged. However, it ignores possible interactions
among subsystems, which makes it impractical to be directly applied to building control problems
where the interactions are strong.

In this chapter, a distributed cooperative optimization-based ILC algorithm is proposed to ad-
dress the large-scale HVAC system control problem. The large-scale centralized system is sep-
arated into several subsystems, where in each subsystem, a small-scale convex optimization is
solved to get the optimal learning gains. Compared to original cooperative ILC, the significant
difference, however, lies in the incorporation of the interaction effects into the overall performance
evaluation and each of the small-scale optimization. With this algorithm, physical constraints and
ILC convergence constraints have been considered, and the control performance depends less on
the model accuracy but more on the past iteration data. To authors’ best knowledge, the distributed
cooperative ILC approach has not been applied to the HVAC control problem before.

The chapter is organized as follows. In Section 5.2, the cooperative ILC is introduced and its
convergence properties are analyzed. In Section 5.3, the building temperature control problem is
formulated as a convex optimization problem. In Section 5.4, the detailed distributed coopera-
tive ILC algorithm is described and convergence analysis of the whole algorithm is conducted. In
section 5.5, several simulation results are presented to illustrate the proposed algorithm’s effective-
ness. Section 5.6 concludes the chapter.

5.2 Cooperative ILC
In this section, the cooperative ILC is applied to the system and the convergence analysis is con-
ducted using the lifted system technique described in 2.5.

Cooperative ILC Algorithm
In building temperature control systems, disturbances mainly come from ambient heat and inside
heat generated by human activities, both of which are nearly repetitive in a long period (one month
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or one season). For such a system with nearly repetitive disturbances, the iterative learning control
approach serves as a quite effective solution for regulation and disturbance rejection. The central
idea of ILC is to learn from past experience and improve performance of the next iteration.

Moreover, in order to take the most advantage of available information and solve the problem,
we propose to use cooperative ILC instead of traditional I-type learning ILC so that each zone can
learn from not only its own experience but also the neighbours’. The main difference of coop-
erative ILC and original ILC lies in the definition of error signal. By taking relative temperature
information into account, the new error signal for zone i is defined as:

ei,k(t) = T re f
i (t)−Ti,k(t)+ ∑

j∈Ni

[
(T re f

i (t)−

Ti,k(t))− (T re f
j (t)−Tj,k(t))

]
, (5.1)

where ei,k denotes the error signal of zone i at iteration k, T re f
i denotes the reference temperature

profile of zone i and Ni represents the neighboring zone set of i.
With the error signal defined, the cooperative ILC update law can be expressed by

uILC
i,k+1(t) = ui,k(t)+Ψi,k(q)(t)ei,k(t), (5.2)

where uILC
i,k+1(t) denotes feedforward ILC input to zone i at iteration k+1, q−1 is the backward shift

operator and
Ψi,k(q)(t) = ψ

0
i,k(t)+ψ

1
i,k(t)q

−1 + · · ·+ψ
N−1
i,k (t)q−(N−1)

is zone i’s learning function at iteration k. Note that the t index is not omitted as the learning gains
are not necessary to be constant during one iteration, which provides more degree of freedom for
controller design.

Using the lifting technique, the ILC input in (5.2) can be represented by
uILC

i,k+1(0)
uILC

i,k+1(1)
...

uILC
i,k+1(N−1)


︸ ︷︷ ︸

uILC
i,k+1

=


ui,k(0)
ui,k(1)

...
ui,k(N−1)


︸ ︷︷ ︸

ui,k

+Li,k


ei,k(1)
ei,k(2)

...
ei,k(N)


︸ ︷︷ ︸

ei,k

, (5.3)

with the learning matrix defined as:

Li,k =


ψ0

i,k(0) 0 · · · 0
ψ1

i,k(1) ψ0
i,k(1) · · · 0

...
... . . . 0

ψ
N−1
i,k (N−1) ψ

N−2
i,k (N−1) · · · ψ0

i,k(N−1)

 .
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Convergence Analysis of Cooperative ILC
In this subsection, the convergence condition of the cooperative ILC is developed. First, some
notations are introduced. The adjacency matrix Ω = Ωi j is defined as Ωi j = 1 if zone i and zone
j are adjacent or i = j and Ωi j = 0 otherwise. Φ is a matrix converting stacked subsystem vector
[TT

1,k, · · · ,TT
n,k]

T=[T1,k(0), · · · ,T1,k(N), · · · ,Tn,k(0), · · · ,Tn,k(N)]T to centralized system lifted vector
Tk=[T1,k(0), · · · ,Tn,k(0), · · · ,T1,k(N), · · · ,Tn,k(N)]T , defined as Φ = Φi j, Φi j = 1 if j = (mod(i,N)−
1)∗n+ di/Ne (d•e denotes the rounddown function) or j = (N−1)∗n+ i/N and mod(i,N) = 0,
Φi j = 0 otherwise.

With these notations defined, the lifted system representation of the centralized cooperative
ILC can be obtained:

uILC
k+1 = uk +ΦLkek,

= uk +ΦLk(Ω⊗ IN)ΦEk (5.4)

where

Lk =


L1,k 0 · · · 0

0 L2,k · · · 0
...

... . . . 0
0 0 · · · Ln,k

 ,
uILC

k+1 =

[uILC
1,k+1(0), · · · ,u

ILC
n,k+1(0), · · · ,u

ILC
1,k+1(N), · · · ,uILC

n,k+1(N)]T ,

ek = [eT
1,k, · · · ,eT

n,k]
T and Ek = Tre f −Tk. Operator⊗ denotes the Kronecker product and IN is N×

N identity matrix. The matrix Φ’s function is to convert the stacked subsystem lifted vector with
the structure of [T1,k(0), · · · ,T1,k(N), · · · ,Tn,k(0), · · · ,Tn,k(N)]T to centralized system lifted vector in
the form of [T1,k(0), · · · ,Tn,k(0), · · · ,T1,k(N), · · · ,Tn,k(N)]T .

With (5.4), the closed-loop error signal at iteration k+1 can be reformulated as:

Ek+1 = (I +GC)−1(I−GΦLk(Ω⊗ IN)Φ)Ek

+(I +GC)−1Gδ , (5.5)

where C denotes the feedback controller’s transfer function matrix and disturbance difference be-
tween iterations is merged into δ term to facilitate analysis.

The ILC convergence requires ‖Ek+1‖2 ≤ ‖Ek‖2 when disturbance is purely repetitive, i.e.
δ = 0. From (5.5), it can be seen that this condition is equivalent to

ρ((I +GC)−1(I−GΦLk(Ω⊗ IN)Φ))≤ 1, (5.6)

where ρ represents the spectral radius of the system, which is also equal to the system’s maximum
singular value. As (I +GC)−1 and Lk are both lower triangular matrices, their singular values are
the diagonal entries. Therefore, in a more concise manner, (5.6) can be reformulated as:

max
j=1,2,··· ,n×N

ρ0|1−λ1, jL
j
kλ2, j| ≤ 1, (5.7)
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where ρ0 is the diagonal entry of matrix (I+GC)−1, λ1, j’s and λ2, j’s are singular values of matrix
GΦ and (Ω⊗ IN)Φ respectively and L j

k is the j-th diagonal element of Lk.
Note that both GΦ and (Ω⊗ IN)Φ are known constant matrices, hence all the λ1, j’s and λ2, j’s

can be obtained. Thus, (5.7) actually formulates a convex constraint on Lk, which can be easily
implemented in the optimization problem.

5.3 Optimization Problem Formulation
In this section, the cooperative ILC design is formulated as a convex constrained optimization
problem in ILC iteration domain.

Centralized Optimization
First let us consider the centralized control structure. It provides a globally optimal solution to the
problem. Similar with Ek+1, the control input signal uk+1 can be written as:

uk+1 = (I+CG)−1[uILC
k+1+C(Tre f−Tin−Gwk+1)]. (5.8)

The objective function Jk+1 can then be defined as:

Jk+1(Lk) = ET
k+1WeEk+1 +uT

k+1Wuuk+1, (5.9)

where We and Wu are positive definite penalty matrices for the error signal and control input signal,
respectively. Note that here we assume the feedback controller to be fixed in ILC iteration domain.

With regard to constraints, the most two important constraints for the building temperature
control problem are the saturation constraint imposed on control input and the comfort constraint
on each zone’s temperature profile, which respectively can be formulated as:

U ≤ uk+1 ≤U , (5.10)

and
T ≤ Tk+1 ≤ T , (5.11)

where U , U and T , T are correspondingly lower and upper bounds for control input u and temper-
ature T.

Summarizing (5.9)-(5.11) and ILC convergence constraint (5.7), the centralized optimization
problem can be stated as:

minLk Jk+1 (5.12)
s.t. U ≤ uk+1 ≤U

T ≤ Tk+1 ≤ T

max
j=1,2,··· ,n×N

ρ0|1−λ1, jL
j
kλ2, j| ≤ 1.
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The optimization problem (5.12) is convex with regard to the learning matrices Li,k, for i =
1,2, · · · ,n. However, its computational demand grows exponentially with the system size n. In
practice, solving and implementing such a centralized optimization-based controller is quite time-
consuming and requires more powerful hardware. Such disadvantages greatly restrict the applica-
tion of centralized controller structure. In addition, the centralized controller also leads to inflexi-
bility, meaning that any damage of the controller will jeopardize the whole system.

Distributed Optimization
In order to achieve similar control performance with centralized controller and acceptable compu-
tational efficiency, the distributed cooperative controller is proposed. In the distributed cooperative
control framework, each subsystem solves a small-scale optimization problem. The cost function
is the same as centralized case and communication between subsystems is allowed. The distributed
cooperative optimization problem is defined as:

minLi,k Jk+1 (5.13)

s.t. U ≤ uk+1 ≤U
T ≤ Tk+1 ≤ T

max
j=1,2,··· ,N

ρ0|1−λ1, jL
j
i,kλ2, j| ≤ 1,

where L j
i,k denotes j-th diagonal entry of Li,k, λ1, j, λ2, j represent the corresponding singular values

of GΦ and (Ω⊗ IN)Φ with regard to L j
i,k.

Note that as

uk+1 = [u1,k+1(0), · · · ,ui,k+1(0), · · · ,un,k+1(0),

· · · ,u1,k+1(N−1), · · · ,un,k+1(N−1)]T ,

Ek+1 and Tk+1 also share the similar structure, information about the other subsystems is involved
in both the cost function and the constraints. However, compared to centralized structure, the
decision variables in (5.13) are reduced from Lk for all n subsystems to Li,k for only one subsystem.

5.4 Distributed Cooperative ILC Algorithm and Convergence
Analysis

Algorithm
With communication enabled, (5.13) can be solved iteratively. The detailed algorithm of dis-
tributed cooperative ILC is described in Algorithm 1, where k denotes ILC iteration and kc de-
notes distributed optimization iteration. In the algorithm, each subsystem solves a small-scale
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optimization-based cooperative ILC design problem after receiving information of other subsys-
tems and then broadcasts its solution to the whole system. By iteratively exchanging information,
a near-optimal solution can be found.

Algorithm 1 Distributed Cooperative ILC

1: Given uILC
i,1 ← 0, ωi > 0, ∑i ωi = 1, i = 1,2, · · · ,n

kc
max > 0, 0 < ε � 1, Γ� ε

2: for each k = 1,2, · · · ,m do
3: Given uILC(kc)

i,k+1 ← uILC
i,k , γi← Γ, i = 1,2, · · · ,n, kc← 1

4: ∀i = 1,2, · · · ,n, calculate ui,k according to uILC
j,k ’s

( j = 1,2, · · · ,n)
5: Implement ui,k’s to the subsystems and record

temperature information Ti,k’s; Calculate ei,k’s
6: while γi > ε and kc < kc

max do
7: for each i = 1,2, · · · ,n do
8: Lkc

i,k = arg(optimization(5.13))

9: uILC(kc,∗)
i,k+1 ← ui,k +Lkc

i,kei,k
10: end for
11: for each i = 1,2, · · · ,n do
12: uILC(kc+1)

i,k+1 ← ωiu
ILC(∗)
i,k+1 +(1−ωi)u

ILC(kc)
i,k+1

13: γi←‖uILC(kc+1)
i,k+1 −uILC(kc)

i,k+1 ‖2

14: Transmit uILC(kc+1)
i,k+1 to all the other subsystems

j = 1,2, · · · ,n, j 6= i
15: end for
16: kc=kc+1
17: end while
18: for each i = 1,2, · · · ,n do
19: uILC

i,k+1=uILC(kc)
i,k+1

20: end for
21: end for

Remark 1: Note that when solving the optimization problem (5.13), the future information of
ambient temperature and inside disturbance is required. These unaccessible information is replaced
by weather forecast and human heat disturbance prediction in implementation.

Remark 2: The parameter kc
max is used to force termination of the distributed optimization to

guarantee algorithm efficiency when dealing with systems that have a great number of subsystems.
Although in this case, convergence to the centralized solution cannot be guaranteed, the algorithm
can still provide acceptable performance. Details of proof will be shown in the next subsection.



CHAPTER 5. DISTRIBUTED COOPERATIVE CONTROLLER DESIGN 54

Convergence Analysis
In this subsection, the convergence properties of distributed cooperative ILC will be analyzed. The
Algorithm 1 can be separated into two parts, which are cooperative ILC and distributed optimiza-
tion. As the convergence of cooperative ILC has been proved in the previous section, we will focus
on the distributed optimization part here. The following theorem similar to [56] can be established:

Theorem I: With Algorithm 1, the cost function Jk+1 is non-increasing with distributed opti-
mization iteration kc.

Proof: By definition of ωi and uILC(kc+1)
i,k+1 =ωiu

ILC(∗)
i,k+1 +(1−ωi)u

ILC(kc)
i,k+1 (see Algorithm 1), the

following equation can be obtained:

Jk+1(u
ILC(kc+1)
1,k+1 , · · · ,uILC(kc+1)

i,k+1 , · · · ,uILC(kc+1)
n,k+1 )

= Jk+1(ω1uILC(kc,∗)
1,k+1 +(1−ω1)u

ILC(kc)
1,k+1 , · · · ,

ωnuILC(kc,∗)
n,k+1 +(1−ωn)u

ILC(kc)
n,k+1 )

= Jk+1(ω1uILC(kc,∗)
1,k+1 +ω2uILC(kc)

1,k+1 + · · ·+ωnuILC(kc)
1,k+1 , · · · ,

ωnuILC(kc,∗)
n,k+1 +ω1uILC(kc)

n,k+1 + · · ·+ωn−1uILC(kc)
n,k+1 )

As Jk+1 is convex, the following inequality can be developed:

≤
n

∑
i

ωiJk+1(u
ILC(kc)
1,k+1 , · · · ,uILC(kc,∗)

i,k+1 ,uILC(kc)
i+1,k+1, · · · ,u

ILC(kc)
n,k+1 )

≤
n

∑
i

ωiJk+1(u
ILC(kc)
1,k+1 , · · · ,uILC(kc)

i,k+1 ,uILC(kc)
i+1,k+1, · · · ,u

ILC(kc)
n,k+1 )

= Jk+1(u
ILC(kc)
1,k+1 , · · · ,uILC(kc)

i,k+1 , · · · ,uILC(kc)
n,k+1 )

In addition, as the cost function is in quadratic form, its value is bound to be greater or equal
to zero. Thus, theorem I assures the convergence of cost function in the distributed optimization
iteration domain. Note that due to penalty on control input, the cost function will not converge to
zero.

5.5 Simulation Results
To verify the effectiveness of the proposed algorithm, simulation results are shown in this section.
The simulation was run on the test-bed system with four connected zones shown in Fig. 2.7 with
parameters in Table 2.1. The reference temperatures are only defined for working hours from 8am
to 7pm. Each zone’s reference temperature is the same as listed in Table 4.1. For other periods, no
references are set.

The weather disturbance and forecast data used for simulation was collected from EnergyPlus
energy simulation software website [14] and the inside human disturbance was assumed to be
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constant. Note that in practice, room schedules are accessible, which will indicate future human
activities and this information can be utilized to predict the heat disturbance term using human
heat generation model. During the simulation, weather forecast was utilized when solving for ILC
input of the next future iteration and real disturbance was introduced into the system along with
ILC controller of the current iteration.

In simulation, one ILC iteration is set to be one day (24 hours) and the feedforward ILC con-
troller is updated at the end of every iteration. To comply with definition of references, the penalty
matrix for error signal We is defined to be a diagonal matrix. Its i-th diagonal entry is equal to
umax (the upper bound of control input) if the corresponding time instant of i is in the working
period. All the other elements of We are set to zeros. umax is selected to balance between energy
consumption and comfort demand. Wu is defined as identity matrix of size nN×nN. The learning
weights ωi’s are set to 1/n for all zones.

All simulations were performed using Matlab 2016b on a laptop lenovo yoga 900 (2.5 GHz
Intel Corei7). In the simulation, the algorithm was run in series with regard to the subsystems.
The average time cost for one ILC iteration was 8.0314 seconds. In real implementation, as each
subsystem could run the algorithm in parallel, the time cost of one ILC iteration is supposed to be
around 2 seconds. As a comparison, the centralized optimization was run on the same platform,
average time cost of which was 10.2076 seconds for one ILC iteration. It can be seen that the pro-
posed algorithm has achieved much better computational efficiency than the centralized approach
for this test case with only n = 4 zones. For a practical building system with hundreds of rooms,
more significant improvement can be predicted.

Figure 5.1 shows the temperature output of the four control zones in three ILC iterations, each
of which tracks the reference temperature quite well during the working periods after the first ILC
iteration. In addition, the figures also show that precooling behavior was learned as temperature
began to decrease even before the working period started (8am).

Figure 5.2 shows the corresponding control commands for the four rooms. As can be seen
from the figures, all the control signals obeyed the saturation constraints and in order to save
energy, during the off-work hours, control signals almost stayed at zero. Moreover, the precooling
behavior can be seen more clearly in the control signal figures, where control signals came into
effect several time steps before the start of references (8am).

Figure 5.3 shows the algorithm’s performance w.r.t. distributed optimization iteration kc when
ILC iteration k = 1. It can be seen that the cost function kept decreasing until the convergence
criteria was met.

5.6 Chapter Summary
In this chapter, a distributed cooperative ILC algorithm was proposed. Compared to the centralized
algorithms in Chapter 3 and Chapter 4, the distributed approach significantly reduced the compu-
tational cost for the large-scale building control problem. The feedforward ILC controller was
designed using lifting technique and solved by a convex optimization problem with thermal com-
fort constraint, control saturation constraint and ILC convergence constraint. With the proposed
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Figure 5.1: Temperature of the four zones in three iterations
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Figure 5.2: Control input of four zones in three iterations
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Figure 5.3: Algorithm performance in distributed optimization iteration domain

algorithm, large-scale thermal systems can be well handled with similar achievable performance
with the centralized approach but low time cost. The convergence of the algorithm has also been
established.
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Part II

Autonomous Driving System
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Chapter 6

Cooperative Driving Based on Negotiation
with Persuasion and Concession

Recently, along with emergence of autonomous driving vehicles, it is predicted that in the near
future, human drivers need to share road and interact with self-driving cars in all the possible
traffic scenarios. In order to achieve smooth interaction results similar with human drivers, the
ego autonomous vehicle’s behavior needs to be controlled intelligently. However, since the other
traffic participants’ information is not accessible to the ego autonomous vehicle, the centralized
and distributed control approach cannot be applied. Therefore, the decentralized control method
with properly designed information gathering strategy becomes the most promising candidate.

In this chapter, an algorithm based on negotiation with both persuasion and concession is pro-
posed to tackle the challenging task of cooperative driving involving both human and robot drivers.
The decision making process is formulated as an optimization based negotiation problem. The per-
suasion of autonomous vehicle is achieved by making commitment to tipping towards cooperation
in the form of convex constraint. The concession is accomplished by gradually tuning weights
in the objective function. We propose an approach suitable for most common driving scenarios
including ramp merging, lane keeping/changing and intersection crossing. The effectiveness of the
proposed algorithm is demonstrated by simulation for several different driving scenarios.

6.1 Introduction
With recent development of autonomous driving technology, it is becoming more and more con-
vincing that a driving environment dominated by autonomous vehicles is coming in the future.
However, current self-driving cars are not mature enough to totally replace human drivers. Sev-
eral years or even decades of effort is needed to bring the conceptual fully connected autonomous
driving into reality, which means that autonomous cars and human drivers will coexist for quite
a long time. This predictable situation leads to the requirement that robot drivers not only need
to communicate and interact with its robot siblings but also need to cooperate with human drivers
safely and intelligently.
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Recent works on cooperative driving mainly focus on cooperation among connected vehicles
assuming that each vehicle can be controled by the same strategy [10], [18], [19]. With this as-
sumption, the cooperative driving task can be formulated as a multi-agent system control problem.
However, when it comes to human drivers who will follow his/her own driving logic or habits, the
algorithms based on multi-agent system theory will fail as some of agents (human drivers) cannot
be controlled and their behaviors may or may not comply with the multi-agent system’s coopera-
tion objective. In these scenarios, most algorithms simply require the autonomous vehicles to yield
people or assume they are following certain simple predefined driving pattern. The disadvantages
of these algorithms are obvious, the resulting autonomous vehicles will either be too conserva-
tive (bullied by human drivers in the extreme case) or drive into some dangerous situations due to
incorrect assumption of human behavior.

Another approach dealing with human drivers is to model their behaviors as solutions of an
optimal planner, the reward function of which can be learned through human driving data [49].
This method did produce some promising results illustraing autonomous cars’ influence on human
driver’s action. However, this algorithm heavily depend on the accuracy of the learned reward
functions. In addition, human drivers’ behavior may be influenced by other road users so that
reward function itself may not be reliable enough.

In this chapter, in order to enable intelligent and cooperative interaction without dependency
on learned reward function, we proposed to use human driver’s prediction informaition and make
cooperative proposals accordingly by solving an optimization problem. Our algorithm models the
decision making task as a negotiation process between human and robot (H-R) drivers similar to
negotiation between human and human (H-H). Two key factors in H-H negotiation are concession
and persuasion, which work together to help reach an offer acceptable to both sides [58], [24]. In
the autonomous driving context, concession is formulated as sacrifice in self-objective and persua-
sion is fulfilled by showing preference among several available strategies. By their co-effect, the
autonomous car can make its behavior more readable to human which results in more effective
cooperation.

The chapter is organized as follows. In Section 6.2, the cooperative driving prolem is formu-
lated as an optimization problem assuming all the traffic participants are autonomous vehicles. In
Section 6.3, the simplistic conservative control strategy is introduced. In Section 6.4, the human
driver factors are taken into account which transform the optimization problem is transferred to a
negotiation process. In section 6.5, simulation results in several driving scenarios are presented to
illustrate the effectiveness of the proposed algorithm’s. Section 6.6 concludes the chapter.

6.2 Cooperative Driving
In this section, the mathematical description of the vehicle dynamics is introduced and an optimiza-
tion problem is formulated for cooperative driving in the framework of Model Predictive Control
(MPC). The system is treated as a two-agent system consisting of two autonomous cars, both of
which can be controlled.
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Vehicle Modeling
A popular model used for vehicle dynamics is the bicycle model [46]. We adopted the discretized
version of the bicycle model described by the following difference equations:

xk+1 = xk+Tsvk cos
(

θk+ tan−1(
Lr

L
tanδk)

)
, (6.1)

yk+1 = yk+Tsvk sin
(

θk+ tan−1(
Lr

L
tanδk)

)
, (6.2)

θk+1 = θk+Tsvk
tanδk

L
cos
(

tan−1(
Lr

L
tanδk)

)
, (6.3)

vk+1 = vk+Tsak, (6.4)

where k is the time index, Ts is the sampling time, the state vector [x,y,θ ,v]T∈R4×1 includes mass
center x,y positions, yaw angle and speed of the vehicle in the road aligned coordinate frame re-
spectively. Control input vector of the system [a,δ ]T∈R2×1 consists of the vehicle’s acceleration a
and steering angle δ . Lr, L f and L=Lr+L f are the rear, front and full length of the car respectively.

Compactly, (6.1)-(6.4) can be written as

xk+1 = f (xk,uk), (6.5)

where xk=[xk,yk,θk,vk]
T and uk=[ak,δk]

T are the state and control input vector respectively.

Optimization Formulation
In this subsection, the two-agent cooperative driving problem is formulated as an optimization
problem applying the bicycle model.

Aiming at achieving driving efficiency and satisfying comfort demand, the following cost func-
tion is defined:

Jk =
2

∑
i=1

1
Zi

N−1

∑
t=0

(
‖xi,k+t|k−xdes‖2

Q +‖∆ui,k+t|k‖2
R
)
, (6.6)

where k is the current time instant, i is the vehicle index, N is the receding horizon length, Zi are
predefined normalizing factors and xdes is the desired state. xi,k+t|k and ui,k+t|k denote state and
control input signal at k+t predicted at k starting from the current state. ∆ui,k+t|k=ui,k+t|k−ui,k+t−1|k
defines the control change, representing the comfort level, Q and R are penalty matrices for devia-
tion from desired state and control change respectively.

With regard to the constraints, the most critical one is associated with safety. To guarantee
collision avoidance with both moving obstacles i.e. other vehicles sharing the road and static ones
such as lane bounds and parked vehicles, the following safety constraints are defined:

ymin,k+t ≤ y j
i,k+t|k ≤ ymax,k+t , (6.7)

(x1,k+t ,y1,k+t) ∈ S(x2,k+t ,y2,k+t), (6.8)
i ∈ {1,2}, j ∈ {1,2,3,4}, t = 0,1, · · · ,N−1,
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where (6.7) describes constraints formulated by static obstacles and (6.8) accounts for safety con-
straint between two agents. y j’s denote the lateral positions of the vehicle’s four corners, where

front right : y1 = y+L f sinθ − W
2 cosθ ,

front left : y2 = y+L f sinθ + W
2 cosθ ,

rear right : y3 = y−Lr sinθ − W
2 cosθ ,

rear left : y4 = y−Lr sinθ + W
2 cosθ ,

and W is the width of the vehicle. ymin and ymax denote lower and upper bounds of lateral position
defined by the lane and parked cars and S(x,y) represents the safety set formulated by position
(x,y). There exist quite a few approaches to define safety set S(x,y) in literatures. One simple case
exemplifying S(x,y) is the halfplane defined by the line passing through (x,y) with slope equal to
tanθ . Another example is the region outside a circle centered at (x,y) with radius of pre-assigned
safety distance.

In addition to the safety constraints, other demands imposing on the vehicle consist of the initial
state consistency, control saturation, kinematics and dynamics feasibility which are formulated as:

ui,k+t|k ∈ Ui, (6.9)
xi,k+t+1|k = f (xi,k+t|k,ui,k+t|k), (6.10)
xi,k|k = xi(k), (6.11)
i ∈ {1,2} t = 0,1, · · · ,N−1,

where Ui is the feasible set of vehicle i’s control input ui and xi(k) is vehicle i’s current state.
Combining cost function (6.6) and constraints (6.7)-(6.11), the agent-based cooperative driving

optimization problem can be stated as:

min
ui,k+t|k,i=1,2,t=0,1,··· ,N−1

Jk (6.12)

s.t. constraints(6.7)− (6.11)

Note that in this optimization, both the agents can be controlled so that the Pareto optimal
solution can be achieved in which no vehicle can obtain better performace without hurting the
other one. This Pareto optimal solution is defined to be the cooperative driving strategy.

6.3 Conservative Driving Strategy
The most intuitive approach to handle human factors in driving is to assign human drivers with
the highest priority. As a consequence, autonomous vehicles are required to always yield human
drivers who can take any trajectory they please. Mathematically, this is equal to setting human
drivers’ behavior as hard constraints, which adjusts the original optimization problem (6.12) to the
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following:

minu1,k+t|k

N−1

∑
t=0

(
‖x1,k+t|k−xdes‖2

Q +‖∆u1,k+t|k‖2
R
)

(6.13)

s.t. ymin,k+t ≤ y j
1,k+t|k ≤ ymax,k+t ,

(x1,k+t|k,y1,k+t|k) ∈ S(xp
2(k+ t),yp

2(k+ t)),
u1,k+t|k ∈ U1,

x1,k+t+1|k = f (x1,k+t|k,u1,k+t|k),

x1,k|k = x1(k),
j ∈ {1,2,3,4}, t = 0,1, · · · ,N−1,

where the autonomous car and human driven car are assigned to be vehicle 1 and 2 respectively
without loss of generality. (xp

2(k+t),yp
2(k+t)) is the prediction of human driver’s future trajecotry,

which is assumed to be accessible either by an extra prediction module or Vehicle-to-Vehicle (V2V)
communication. Compared to optimization (6.12), decision variables in the altered optimiztion
(6.13) only involve the autonomous car.

Note that as the autonomous vehicle always treats human driver’s behavior as hard constraints,
the human driver thus has no incentive to change his planned trajectory. Resultantly, the solution
to (6.12) is a conservative instead of a cooperative one for human driver’s behavior cannot be
influenced. Hence there is no interaction between vehicles. The outcome of this conservativity
can be easily foreseen. An examplar situation is that an autonomous vehicle and a vehicle driven
by human meet at an intersection. In this scenario, the autonomous car will always let the human
driver pass first regardless of whether this decision is reasonable or not. In the extreme case where
traffic is heavy on the other lane and all human drivers happen to be selfish implying that they will
not yield the autonomous car spontaneously, the robot-driver then has no choice but a ridiculously
long wait.

6.4 Human Robot Driver Negotiation
In this section, the existence of human drivers in the traffic system is considered. The original
agent-based optimization problem is extended to a negotiation process where the autonomous driv-
ing vehicle attempts to “talk” with human drivers by making cooperative proposals and modifying
them according to human drivers’ corresponding behaviors.

In order to avoid undesirable over-cautious behavior caused by the conservative algorithm in
(6.13), we formulate the cooperative drving problem as a negotiation process with concession
and persuasion reflecting human’s natural behavior in negotiation. The concession is fulfilled by
introducing a tunable cost function and the persuasion is achieved by integrating a persuasion
constraint into the original optimization (6.13).

Negotiatoin has been an effective tool in almost every aspect of the society. People are in-
volved in different forms of negotiation purposely or unconciously. Namely, in the business field,
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companies are vigorously negotiating with other companies or customers for product price and
material costs. In the politics area, each nation negotiates with the others for their own benefits. In
the traffic system, human drivers are also negotiating with others for right of the road in whatever
driving scenarios. A general definition of negotiation is the necessary dialogues between agents
in order to arrive at a globally acceptable offer when two or more of them have conflicting prefer-
ences over a set of issues or a fixed amount of resource. In addition, agents are most likely to be
only aware of its own preference without enough knowledge about the other participants in most
such negotiations. This feature requires the players to make tentative proposals and check for the
others’ reactions. In the specific driving problem, this proposal-based behavior can be observed in
all common scenarios:

Lane Changing

Suppose a rantional human driver intending to change to the neighboring lane, he/she will first
turn on the indicator, then slightly move towards bound of the target lane in order to make the
behavior more evident and eventually finish lane changing when a safe space is existent. This safe
gap can be found by either patient waiting or persuading the car behind him/her on the target lane
to decelerate for driving efficiency purpose. The indicator and possible persuasion process both
constitute the proposals in lane changing case.

Lane Keeping

Now we switch the point of view from drivers making lane changing proposals to drivers already
on the target lane but passively influenced by the lane changing cars. To obviously show his/her
preference for yielding (not yielding), the lane keeping cars are predicted to decelerate (accel-
erate or keep current speed). These possible actions formulate the lane keeping cars’ proposals
representing their responses to lane changing cars’.

Ramp Merging

Ramp merging scenario is quite similar to the lane changing case except that it has to be completed
in a certain distance and there is a speed difference between self-car and the target lane cars. The
proposals in this case are still defined by indicator and turning behavior.

Intersection Crossing

Suppose two cars reach an intersection without stop signs around the same time, then they need
to negotiate about who should pass first. Another interesting situation is the two-way stop (cross
traffic does not stop), the question facing the drivers stopping at the stop sign is how to find or
make a safe space for passing. In these examples, drivers again have two choice, which are passing
as soon as possible and waiting patiently. The corresponding proposals are then moving forward
to show preference for passing and staying still or even backing up to express patience.
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In the following subsection, the negotiation based cooperative driving problem is formulated
as an optimization.

Negotiation Formulation
In order to enable negotiation between robot driver and human driver, the control input of both
the human driver vehicle and the autonomous vehicle should be treated as decision variables.
Meanwhile, the prediction of human driving behavior should be taken into account. Hence, the
negotiation objective function is adjusted as

Jn
k =

1
Z1

N−1

∑
t=0

(
‖x1,k+t|k−x1,des‖2

Q +‖∆ui,k+t|k‖2
R
)

+
1
Z2

N−1

∑
t=Tn

‖x2,k+t|k−x2(k+ t)p‖2, (6.14)

where x2(k + t)p is the human driver’s state trajectory prediction and Tn is the pre-defined near
future horizon during which human driver is assumed to follow the prediction exactly. The first
term in (6.14) is the same as conservative objective function in (6.13) and the second term is
included to reflect human driver’s intention. Given that autonomous vehilce presumably has no
access to accurate prior knowledge about human driver’s objective function, it is assumed that the
prediction trajectory minimizes (maximizes) human driver’s hidden cost (reward) function. Thus,
via minimizing the difference between planned human driver trajectory and predicted trajecotry in
the 2-norm sense, the autonomous vehicle is enabled to consider its possible intervention to the
human driver in its planning step.

The constraints for the negotiation optimziation problem will be altered correspondingly as:

ymin,k+t ≤ y j
i,k+t|k ≤ ymax,k+t , j ∈ {1,2,3,4}

ui,k+t|k ∈ Ui, x1,k|k = x1(k),
xi,k+t+1|k = f (xi,k+t|k,ui,k+t),

t = 0,1, · · · ,N−1, if i = 1,
t = Tn,Tn +1, · · · ,N−1, if i = 2,
(x1,k+t|k,y1,k+t|k) ∈ S(xp

2(k+ t),yp
2(k+ t)),

t = 0,1, · · · ,N−1,
x2,k+t|k = x2(k+ t)p, t = 0, · · · ,Tn−1 (6.15)

Summarily, the negotiation problem is formulated as:

min
u1,k+t , t = 0,1, · · · ,N−1
u2,k+t , t = Tn, · · · ,N−1

Jn
k (6.16)

s.t. set of constraints(6.15).
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Remark 1: The solution to the optimzation problem (6.16) is not broadcasted to the human
driver so that vehicle-to-vehicle (V2V) communication is not necessary in this approach. The
autonomous vehicle will take the action given by the solution showing its intention. In this manner,
the human-robot driver interaction can be fulfilled.

Remark 2: Despite treating the human driver’s control input as one of optimziation decision
variables, it does not mean that human driver will follow the solution obtained. The planned
trajectory merely serves as a proposal to the human driver which may be accepted or refused.

However, the interaction modeling still remains incomplete as human driver’s response is not
included yet. Thus, we propose the introduction of two more factors which are concession and
persuasion strategies in the next subsections.

Concession Strategy
The most intuitive and natural strategy when negotiating with another party possessing a different
utility function is to make concession, revising the originally proposed relatively more selfish offer
to a more likely acceptable one for both sides. This idea has been formalised as a negotiation pro-
tocol called monotonic concession protocol [13]. A negotiation protocol is defined as a set of rules
or sequential steps restricting negotiating agents’ available moves into a certain range. Specifi-
cally, the monotonic concession protocol requires the agent’s desired utility being monotonically
decreasing.

However, negotiation in driving context not only depends on the cost function but also on
the constraints imposed by environment and other agents. Moreover, each move in the driving
negotiation means an actual move in the real world which is far more safe critical compared to
traditional negotiations encountered in business field. Hence, the simplistic monotonic concession
strategy is not suitable for the autonomous driving problem.

In order to fit the concession characteristic into the optimization based negotiation problem
defined by (6.16), a time-varying tunable weight is introduced to the cost fucntion. The adjusted
cost function is as following:

Jn,c
k =

wk

Z1

N−1

∑
t=0

(
‖x1,k+t|k−x1,des‖2

Q +‖∆ui,k+t|k‖2
R
)

+
1−wk

Z2

N−1

∑
t=Tn

‖x2,k+t|k−x2(k+ t)p‖2. (6.17)

The tunable weight wk at time instant k is defined as{
w0 = 0.5,
wk+1 = wkβ 1−pa,k ,

(6.18)

where β<1 is a predefined scalar and pa,k is the proposal acceptance probability at time instant k
reflecting intention of the human driver involved in the negotiation. The initial value w0 is set to
0.5 for at the first round of negotiation, it is assumed that autonomous vehicle and human driver
vehicle share equal priority using the road.
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As the negotiation proceeds, the priority of human and autonomous vehicle will be adjusted
according to human driver’s acceptance of proposal. Particularly, if human driver instantly accepts
the proposed trajectory by exactly following it thereafter, then pa,k will be equal to 1 so that wk
remains at 0.5, assigning autonomous vehicle and human driver the same priority for the entire
negotiation process. Another extreme case is that human driver totally refuses to consider the
proposed driving plan, never willing to change his/her originally planned trajectory and act in
ignorance of existence of the autonomous vehicle. In this scenario, pa,k will quickly decrease to
nearly 0 and the autonomous vehicle’s behavior will coincide with the conservative strategy as
human driver purposely leaves no space for negotiation. In practice, these two extremes may be
quite rare, most probably pa,k will be some number between 0 and 1 and keep changing during
the negotiation process as human driver’s behavior may not properly reflect his/her true intention
or the human drivers simply changes his/her intention which is a fairly common phenomenon in
everyday life.

Therefore, definition of the acceptance probability term pa,k is crucial to the algorithm. In order
to model human drivers’ reaction in the negotiation, we propose to define pa,k as

pa,k =
‖tr jp

k − tr jp
k−1‖

2
2

‖tr jp
k − tr jp

k−1‖2
2 +‖tr jp

k − tr jh,c
k−1‖2

2

, (6.19)

where

tr jp
k = [xp

2,k|k, · · · ,x
p
2,k+t|k, · · · ,x

p
2,k+T−1|k,

yp
2,k|k, · · · ,y

p
2,k+t|k, · · · ,y

p
2,k+T−1|k]

T

represents the predicted (x,y) trajectory of the human driver vehicle at time instant k. Similarly,

tr jp
k−1 = [xp

2,k|k−1, · · · ,x
p
2,k+t|k−1, · · · ,x

p
2,k+T−1|k−1,

yp
2,k|k−1, · · · ,y

p
2,k+t|k−1, · · · ,y

p
2,k+T−1|k−1]

T

denotes the prediction at the last time instant which is human driver’s original plan before the
autonomous vehicle makes the move and

tr jh,c
k−1 = [x2,k|k−1, · · · ,x2,k+t|k−1, · · · ,x2,k+T−1|k−1,

y2,k|k−1, · · · ,y2,k+t|k−1, · · · ,y2,k+T−1|k−1]
T

is the solution trajectory for human to the negotiation optimization problem (6.16) at the last time
step k−1, i.e., the previous cooperative driving proposal for human driver.

The definition (6.19) is based on the idea that the human driver is given two options at each
decision making step. One is to follow his/her original plan and the other one is to cooperate
with the autonomous car after recognizing its intention leading to a predicted trajectory relatively
close to the cooperative porposal. Thus, the similarity of the new predicted trajectory with the
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initial planned one and the cooperative proposal provides us with a metric of acceptance probabil-
ity. There are multiple ways to describe similarity between two trajectories such as the simplest
Euclidean distance and more complex ones including Fréchet distance, dynamic time warping
(DTW), longest common subsequence (LCSS) and so on [54]. In this dissertation, the Euclidean
distance (2-norm) is selected due to the same sampling rate of trajectories, intuitive physical mean-
ing and its simplicity. Therefore, the acceptance probability (6.19) can be interpreted as normalized
trajectory similarity between updated and original prediction, inferring that less similar the new
prediction is with the original one, the larger pa is and more likely human driver is to cooperate.

Although with the tunable concession weight, the autonomous vehicle is capable of interacting
with other road users more efficiently than treating human prediction as hard constraints, it is
still quite conservative as concession itself can only express yielding intention. Therefore, in the
next subsection, the persuasion factor is introduced to assist the autonomous vehicle in making
decisions.

Persuasion Strategy
In order to distinguish the negotiating agents from ones with conservative strategies, in addition to
concession, the autonomous vehicle also needs to express its intent to cooperate properly, claiming
its own right of using the raod. As concession strategy, persuasion is another useful technique
in negotaition. Unlike concession focusing on making more acceptable offers, persuasion on the
other hand is utilized to influence opponents’ beliefs and behaviors so that the offer can be more
beneficial to the self-agent. The persuasion used in business and other fields where interaction
happens is mainly based on dialog. Dialogs enable agents holding different points of view or
involved in a conflict of interest to exchange arguments and persuade each other [48]. However, in
the context of driving, as all the agents are making moves simultaneously and the dialogs are in the
form of driving behavior, it is necessary to reformulate the concrete implementation of persuasion.

In this dissertation, the persuasion is introduced as a constraint imposed on the negotiation
process formulated in the following:

pcoop,k ≥ αk pcon,k, (6.20)

where αk=1+γ pa,k is a scalar dependent on pa,k defined by (6.19) and a predefined parameter γ ,
pcoop,k and pcon,k denote the cooperating and conservative probability at time instant k respectively.
Following the same idea of definition of pa,k, pcoop,k and pcon,k are formulated as:

pcoop,k =
‖tr jcoop

k − tr jcon
k−1‖

2
2

‖tr jcoop
k − tr jcon

k−1‖2
2 +‖tr jcoop

k − tr jcoop
k−1 ‖2

2
, (6.21)

pcon,k =
‖tr jcoop

k − tr jcoop
k−1 ‖

2
2

‖tr jcoop
k − tr jcon

k−1‖2
2 +‖tr jcoop

k − tr jcoop
k−1 ‖2

2
, (6.22)

where

tr jcoop
k = [x1,k|k, · · · ,x1,k+t|k, · · · ,x1,k+T−1|k,

y1,k|k, · · · ,y1,k+t|k, · · · ,y1,k+T−1|k]
T ,
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is the autonomous vehicle trjectory to be solved at current time instant,

tr jcoop
k−1 = [x1,k|k−1, · · · ,x1,k+t|k−1, · · · ,x1,k+T−1|k−1,

y1,k|k−1, · · · ,y1,k+t|k−1, · · · ,y1,k+T−1|k−1]
T ,

is the robot driver’s solution to the negotiation problem at the last time step and tr jcon
k−1 is the

conservative trajectory plan for the autonomous vehicle at previous time instant. There exist many
candidates for the conservative plan tr jcon

k−1, among which the most simple one is to decelerate
until the interacting human vehicle pass through. A more reasonable and decent option is to use
the solution from a conservative MPC like the one in (6.13). In this dissertation, we selected the
latter method.

According to definition (6.21) and (6.22), it is shown that the persuasion constraint (6.20)
pushes the solution trajectory to the cooperative direction harder when interacting with human
drivers more likely to cooperate, i.e. higher acceptance probability.

The constraint (6.20) can be reformulated as:

‖tr jcoop
k − tr jcon

k−1‖
2
2 ≥ α‖tr jcoop

k − tr jtk−1r jcoop
k−1 ‖2, (6.23)

which is a convex quadratic constraint. Thus, it will not bring in much more computational load to
the original problem.

The complete negotiation optimization with concession weight in the cost function and persua-
sion constraint is then written as:

min
u1,k+t , t = 0,1, · · · ,N−1
u2,k+t , t = Tn, · · · ,N−1

Jn,c
k (6.24)

s.t. set of constraints(6.15),
persuasion constraint (6.23).

6.5 Simulation Results
In this section, simulations are performed in several driving scenarios based on the proposed ne-
gotiation optimization approach. The exemplifying scenarios include lane changing, lane keeping
and intersection crossing. One interacting vehicle is considered in the intersection and lane keep-
ing case, while two are taken into account for lane changing. The MPC strategies with different
weights on safety are utilized to represent human drivers with different driving styles. Higher
safety term is used for “nice” human drivers who is more willing to negotiate or cooperate and
lower/zero weight on safety is used for selfish human drivers who are “iron nerved” and tough in
negotiation. Thus, the simulation results are able to show the proposed algorithm’s performance in
different scenarios interacting with different kinds of human drivers.
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Simulation Setting
The simulation environment utililzed in this chapter is a 1/10 scaled version of the real world and
all the vehicles are assumed to be of the same size. The dimension parameters are shown in Table
6.1, where WV and WL are width of the vehicle and the lane respectively. The other optimization
configurations are shown in Table 6.2, where ue

δ
, ue

δ
are lower and upper bound for steering angle

and ue
a, ue

a are lower and upper bound for acceleration respectively.

Table 6.1: Dimension parameters

L f Lr WV WL
0.21(m) 0.19(m) 0.19(m) 0.37(m)

Table 6.2: Optimization configurations

Ts N ue
a ue

δ

0.1(s) 30 -1(m/s2) −π/3(rad)
ue

a ue
δ

ymin ymax

1(m/s2) π/3(rad) 0(m) 0.74(m)
vmin vmax as bs

0(m/s) 1.5(m/s) 0.75(m) 0.35(m)

Lane Changing
In this scenario, the autonomous vehicle and two human driver vehicles are interacting in the
setting of two-lane highway driving. The autonomous vehicle attempt to make lane changing and
human drivers will decide to yield or not based on their internal driving strategy.

The strategy we use to handle multi-vehicle scenario is as follows:

• Select the front vehicle in the neighbour lane as the interacting vehicle and solve the negoti-
ation optimization problem (6.24) accordingly.

• Check the interacting vehicle’s acceptance probability (6.19). If pa,k+1 − pa,k ≤ ε (ε is
a predefiend small scalar) holds for five sequential time steps, then switch the interacting
vehicle to the rear vehicle in the neighbour lane.

• Treat the previous interacting vehicle’s trajectory prediction as hard constraint using similar
method in the conservative control strategy described in section 6.3.
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Figure 6.1 shows the case with “nice” human drivers (relatively high sfety weight), where the
yellow car is the self autonomous vehicle, blue/green car is the front/rear vehicle in the neighbour
lane and the red line represents the car trajectory. It is demonstrated in Fig. 6.1 that with persuasion
constraint and concession cost function, the autonomous vehicle is able to cut in on the human
driver when the cooperation proposal is accepted.

Figure 6.1: Negotiation with “nice” human driver in lane changing scenario

On the other hand, Fig. 6.2 shows the lane changing scenario interacting with a “tough” human
driver (the front car) and a nice driver (the rear car). It is shown that the autonomous vehicle first
attempt to cut in, however, the front tough human driver refuse to yield. The self vehicle then
needs to wait and try again on the rear human driver. It turns out that the second driver is a nice
one and willing to cooperate. Hence, the autonomous vehicle cut in on the rear human driver on
the neighbour lane and finish lane changing.
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Figure 6.2: Negotiation with “tough” human driver in lane changing scenario

Lane Keeping
In this scenario, the autonomous vehicle becomes the one trying to keep lane and get to decide
whether to yield the human driver who wants to make lane change. The simulation results are
shown in Fig. 6.3 and Fig. 6.4 for interacting with nice and tough driver respectively, where the
yellow/blue rectangle represents autonomous/human vehicle and the red solid line is the car trajec-
tory. When interacting with a nice (tough) driver as shown in Fig. 6.3 (Fig. 6.4), the self vehicle
express its intention of not yielding (yielding) by accelerating (decelerating). This effect can be
seen more clearly in the speed profile plot as shown in Fig. 6.5 and Fig. 6.6.

Intersection Crossing
At the intersection, if the autonomous vehicle and the human driver vehicle arrive at the same time,
the self car needs to make decision on passing first or second. The algorithm’s performance shown



CHAPTER 6. COOPERATIVE DRIVING BASED ON NEGOTIATION WITH PERSUASION
AND CONCESSION 74

Figure 6.3: Negotiation with “nice” human driver in lane keeping scenario

in Fig. 6.7 and Fig. 6.8 demonstrate that when the other driver is nice (tough), the self vehicle
will decide to cross intersection first (second). In the figures, the yellow (blue) rectangle represent
self (human driver) vehicle and the red line is the car trajectory. It is shown that the algorithm
leads to reasonable results consistent with human driving behavior: passing first when meeting a
“nice” driver and waiting when meeting a “tough” driver. The vehicles’ speed profiles are shown
in Fig. 6.9 and Fig. 6.10. These two figures illustrate that autonomous vehicle choose to accelerate
and pass first when interacting with negotiable “nice” driver and keep speed low when dealing with
selfish “tough” driver.

6.6 Chapter Summary
In this chapter, the cooperative driving problem was formulated as an optimization based negotia-
tion process. For more intelligent and effective interacting among human drivers and autonomous
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Figure 6.4: Negotiation with “tough” human driver in lane keeping scenario
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Figure 6.5: Lane keeping speed profile (negotiation with “nice” human driver case)
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Figure 6.6: Lane keeping speed profile (negotiation with “tough” human driver case)

Figure 6.7: Negotiation with “nice” human driver in intersection scenario

Figure 6.8: Negotiation with “tough” human driver in intersection scenario
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Figure 6.9: Intersection crossing speed profile (negotiation with “nice” human driver case)

0 10 20 30 40 50 60 70 80

time/s

0

0.2

0.4

0.6

0.8

1

1.2

1.4

sp
ee

d/
(m

/s
)

self vehicle speed
human driver vehicle speed

Figure 6.10: Intersection crossing speed profile (negotiation with “tough” human driver case)
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vehicles, a concession weight cost function and a convex persuasion constraint were introduced
to the model predictive control (MPC) optimization framework. With the concession weight cost
function, the autonomous vehciel could adjust its own priority in the driving negotiation process
according to human driver’s reaction (defiend as acceptance probability of the cooperative pro-
posal). The introduction of persuasion constraint enabled the autonomous vehicle to express its
own intention and actively ask for right of the road. The proposed algorithm’s performance was
demonstrated by simulation results in several driving scenarios including lane changing, lane keep-
ing and intersection crossing.
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Chapter 7

Bayesian Persuasive Driving

In the previous chapter, the interactive driving problem is formulated as a negotiation based opti-
mization which needs to solve for both vehicles. However, this will introduce extra computational
load which is not desirable. In order to reduce the decision variables back to the ego vehicle only,
the interacting surrounding vehicle’s decision making process has to be modeled. In this chap-
ter, a Bayesian persuasive driving algorithm is proposed, where the ego vehicle is the persuader
(information sender) and the surrounding vehicle is the persuadee (information receiver). In the
persuasion process, the ego vehicle aims at changing the surrounding vehicle’s posterior belief of
the world state by providing certain information via signaling in order to achieve a lower cost for
both players. The information received by the surrounding vehicle and its belief of the world state
are described by Gaussian distributions. Simulation results are provided to demonstrate the pro-
posed algorithm’s capability of handling interaction situations involving surrounding vehicles with
different driving characteristics in several common traffic scenarios.

7.1 Introduction
Although autonomous vehicles have been spotted more and more frequently driving on the city
roads, most of them are still not interacting with other road users like human drivers do. Instead,
most autonomous vehicles are implementing a reactive behavior, which means that the trajectory
predictions about surrounding vehicles are made first and the ego vehicle’s driving actions are
decided accordingly by applying obstacle avoidance algorithm. However, in this planning pattern,
the interaction between vehicles is ignored since the interacting vehicle’s future driving profile is
assumed to be independent of the ego vehicle’s behavior. Therefore, more efforts are needed to
fulfill a real interactive, efficient and cooperative driving environment where robot cars and human
drivers coexist.

Several approaches have been proposed for interactive driving in literatures, which can be
categorized into two groups in general. The first category is multi-agent algorithm [10]-[19], where
the assumption is made that all the vehicles involved in a driving scenario can be controlled. In a
multi-agent system, all the vehicles optimize the same functional and each vehicle knows exactly
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what the others will be doing and what influence its behavior will cause. The major drawback of
the multi-agent algorithm is that in the real world, not all the related vehicles can be controlled,
especially at the current stage where autonomous vehicles only make a minority of all road users.
Another disadvantage is its heavy dependency on vehicle-to-vehicle (V2V) communication which
may not be reliable enough in real system.

The second category of algorithm is based on interactive prediction of surrounding vehicle’s fu-
ture behaviors. Several promising prediction approaches have been proposed in literatures includ-
ing partially observable Markov decision process (POMDP), deep neural network, optimization-
based method and so on. For example, a POMDP based decision making strategy was proposed
in [22] for intersection scenario where interacting vehicles were assumed to pick one route from
a predetermined route hypothesis set. However, this approach was confined to a specific driving
situation due to the fixed route hypothesis setting. In [29], several deep neural network based
motion models were evaluated for the highway entrance scenario, among which a model was se-
lected for fast computation and relatively good performance. The drawback of this approach is
that its performance heavily depends on feature selection which is not general for different driving
scenarios. Optimization provides another direction of generating interactive prediction for sur-
rounding vehicles. As an example, in [49], the human driver behavior is predicted by optimizing a
reward function with pre-defined structure and parameters learned via inverse reinforcement learn-
ing (IRL) algorithm. Through including the learned human model reward function in robot vehicle
trajecotry planning, the interaction effects can be handled. Compared to the POMDP and neu-
ral network based methods, this optimization-based approach is more computationally efficient.
However, the learned reward function can only describe a particular type of driver, which is not a
general solution to the interactive driving problem.

Another optimization-based interactive planning approach is to formulate the interactive driv-
ing problem as a Bayesian persuasion game, which is first proposed for economy application [24].
In the Bayesian persuasion game, there is one sender with information who attempts to persuade
the receiver to change his/her action so that the welfare of both players can be improved. The
basic assumptions include 1) the receiver’s behavior is dependent on his/her belief of the world
state and 2) both the players are rational Bayesian under which the interaction can be described
as a Bayesian process. The persuasion process can be achieved by the sender via selecting certain
information to convey to the receiver so that the receiver’s posterior belief distribution of the world
state can be properly manipulated.

In this chapter, the world state for the interactive driving environment is defined to be the ego
vehicle’s conservativeness perceived by the surrounding vehicle, the ego vehicle is defined as the
information sender, whose information of driving intention can be reflected from his/her driving
behavior and the surrounding interacting vehicle is the corresponding information receiver. With
regard to the signal, several candidates are available including binary signal of yield or not yield,
discrete signal of driving route selection and continuous signal of driving state. As a starting point,
the ego vehicle’s continuous driving state is selected as the signal since it carries the most driving
information. By determining the optimal signal based on an optimization, the ego vehicle is able
to achieve maximization/minimization of utility/cost expectation for both players. Meanwhile, the
receiver will extract more information about the world state from the perceived signal and thus
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his/her posterior belief of the world state can be updated.
The remainder of the chapter is structured as follows. In Section 7.2, the mathematical for-

mulation of the general Bayesian persuasion problem is introduced. In Section 7.3, the concrete
Bayesian persuasion problem for interactive driving is formulated as an optimization with certain
constraints incorporated including vehicle dynamics, safety and physical saturation limit. In ad-
dition, the integrals are calculated and the optimization problem is reformulated into a tractable
form. In Section 7.4, the proposed algorithm’s effectiveness is illustrated by simulations in several
driving scenarios. Section 7.5 concludes the chapter.

7.2 General Bayesian Persuasion
In this section, the formulation of a general Bayesian persuasion game is introduced and the related
preliminary notations are given.

A general and intuitive definition of the persuasion problem is to exploit some information
advantage to influence the opponent’s action or intention. In fact, the persuasion behavior is ubiq-
uitous in everyday life with applications in a great deal of areas including economy, psycology,
decision making theory and so on. Basically, in almost any interacting process, there always exists
a persuasion scheme which is advantageous to some or all players.

Among various persuasion models, the Bayesian persuasion model [24] first proposed for econ-
omy application stands out as the most popular and fundamental one. In a Bayesian persuasion
game, there are two players: the player sending information is called sender and the other one
receiving information is called receiver. The sender aims to change the receiver’s action so that
there is a higher probability that a situation more beneficial to both parties can be achieved. The
receiver’s task is to pick an action based on the information extracted from the sender’s signal.
The reward/cost function of the game depends on both players’ actions meaning that neither player
can determine the game’s result by himself. This characteristic leads to the fact that both players
cannot exactly know what the reward or cost will be until both of their actions have been unveiled.

In order to formulate the persuasion game mathematically, some notations are introduced first.
The action of the receiver is denoted as a ∈ A, where A is the receiver’s action space. The world
state is represented by ω ∈ Ω, where Ω is the world state space. The realization space of the
sender’s information signal is denoted as S and the corresponding signal realization is s. How-
ever, the information carried by the signal may not be fully comprehended by the receiver. In
the receiver’s point of view, the signal should be described by a probability distribution which is
called signal belief distribution denoted by π(s). Hence, π(s) represents the distribution of the
information signal perceived by the receiver. Due to the similar reason, another world state belief
distribution µ(ω|s) is introduced to describe how the world state ω is influenced by the signal in
the receiver’s mind. For the game’s objective function, maximizing a reward function and mini-
mizing a cost function are equivalent. Thus, without loss of generality, we choose to define a cost
function c(ω,a,s), which is dependent on the world state, receiver’s action and the sender’s signal.
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With the notations defined above, the Bayesian persuasion problem can be formulated as:

min
π(s)

Eπ(s)ĉ(µ(ω|s)), (7.1)

where
ĉ(µ(ω|s)) = min

a
Eµ(ω|s)c(ω,a,s)

represents the expected cost at a specific signal realization s when the receiver holds the belief
distribution µ(ω|s). The solution to the optimization (7.1) is defined as the optimal signal and the
corresponding achieved minimum value is called the value of the optimal signal. In the Bayesian
persuasion process described by (7.1), according to the rationality assumption, the receiver will
decide his action by optimizing the objective function expectation given his belief of the world
state influenced by the sender’s signal. Moreover, since the sender is aware that the receiver’s
rational, he can then determine the optimal signal to send based on the receiver’s strategy.

In summary, the optimization problem in (7.1) illustrates the idea that the sender’s purpose is to
minimize both players’ cost by manipulating the receiver’s posterior belief distribution µ(ω|s) via
conveying information via signaling perceived by the receiver as a probability distribution π(s).

7.3 Bayesian Persuasive Driving
In this section, the Bayesian persuasion framework is applied to the interacting driving problem
with Gaussian distribution assumption. The concrete definition of variables are given in the au-
tonomous driving context first and a mathematical approximation is then applied to the resulting
driving persuasion problem to make it tractable.

Bayesian Persuasion in Autonomous Driving Context
In order to formulate a Bayesian persuasion game in the autonomous driving background, the
players along with their possible actions and signals need to be clearly defined first.

Intuitively, the surrounding interacting vehicle is selected as the information receiver and his
driving state

xs
t = [ xs

t ys
t θ s

t vs
t ]T

is defined as his action at , where xs
t , ys

t , θ s
t and vs

t denote the surrounding vehicle’s x− y posi-
tions, yaw angle and speed in the lane-based coordinate frame at time instant t respectively. The
information sender role is then naturally assigned to the ego vehicle. With regard to the signaling
content, there are quite a few options including intention indicator for yielding or not yielding,
route selection preference and the driving state itself. In this chapter, the ego vehicle’s driving state

xe
t = [ xe

t ye
t θ e

t ve
t ]T
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is chosen as the signal realization st since it includes more intention/driving behavior information
and it is directly perceivable for the surrounding vehicle. Similar with the notation for the sur-
rounding vehicle, xe

t , ye
t , θ e

t and ve
t denote the ego vehicle’s x−y positions, yaw angle and speed in

the lane-based coordinate frame at time instant t respectively.
The last definition involved in the Bayesian persuaison is the world state variable ω . The

characteristic of the Bayesian persuasion game imposes two requirements on the state ω , which
are 1) it determines the cost for both players along with the receiver’s action and the sender’s signal,
2) it cannot be directly influenced by the receiver’s action. In order to satisfy the two mentioned
properties, the state is defined as the ego vehicle’s conservativeness perceived by the surrounding
vehicle. Basically, the state ω denotes the receiver (surrounding vehicle)’s impression of the sender
(ego vehicle), whether aggressive, conservative or in between. The mathematical formulation of
ωt is as:

ωt = ‖I′(xs,p
t −xe,p

t )‖2, (7.2)

where xs,p
t = [ xs,p

t ys,p
t θ

s,p
t vs,p

t ]T denotes the surrounding vehicle’s predicted driving state
at time step t and xe,p

t is the ego vehicle’s predicted driving state made by the surrounding vehicle
defined similarly with xs,p

t . The definition of I′ is as

I′ =

[
1
as

0 0 0
0 1

bs
0 0

]
,

where as, bs are semi-major axis and semi-minor axis of the ellipse representing the surrounding
vehicle respectively. The definition (7.2) shows that ω is a scalar and the smaller it is, the less
conservative (more aggressive) the ego vehicle appears to the surrounding vehicle. For instance, in
the extreme scenario where the distance dt is almost 0 and ω equals to 0 which means the ego ve-
hicle totally does not care about the surrounding vehicle so that its behavior becomes significantly
influential to the surrounding vehicle. An opposite case happens when dt is approaching infinity
and ω also goes to infinity, the ego vehicle then cannot bring any influence to the surrounding
vehicle and the surrounding vehicle thus has no incentive to consider what the ego vehicle will do
in the future. Of course, these scenarios are impossible in the practical driving system. However,
they effectively demonstrate the essence of ωt .

In summary, in the Bayesian persuasive driving process, the ego vehicle aims at finding an
optimal signal determined by its driving behavior. The general Bayesian persuasion optimization
(7.1) can be reformulated as

min
π(xe

t ),ue
t

∫
xe

t
π(xe

t )minxs
t

∫
ωt

µ(ωt |xe
t )c(ωt ,xs

t ,xe
t ,ue

t ) (7.3)

for the interactive driving scenario with the expectation term expanded, where

ue
t = [ ae

t δ e
t ]T
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denotes the ego vehicle’s control input at time instant t including acceleration ae
t and steering angle

δ e
t . In order to avoid shortsighted non-optimal behavior, a receding time horizon is introduced:

min
π(xe

t|t0
),ue

t|t0

t0+N

∑
t=t0

∫
xe

t|t0

π(xe
t|t0)×

min
xs

t|t0

∫
ωt|t0

µ(ωt|t0 |x
e
t|t0)c(ωt|t0,x

s
t|t0,x

e
t|t0,u

e
t|t0), (7.4)

where N is the optimization horizon length, t0 is the current time instant, (•)t|t0 denotes prediction
of variable for t made at t0.

Gaussian Assumption
The optimization (7.3) is intractable since the decision variable is a probability distribution in con-
tinuous space. In order to make (7.3) solvable, the Gaussian assumption is made so that each prob-
ability distribution can be described by a mean and a variance in an exponential form. Therefore,
the decision variable of (7.3) is reduced from a complicated probability distribution to a vector-
valued mean and a covairance matrix. Moreover, the exponential form of Gaussian distribution
also facilitates the next integral approximation step. With the Gaussian assumption, the probability
distributions π and µ in the original problem (7.4) can be explicitly written as

π : xe
t|t0 ∼N (x̂e

t|t0 ,Σxe
t|t0
),

µ : ωt|t0 |x
e
t|t0 ∼N (ω̂t|t0 |x

e
t|t0,Σωt |xe

t|t0
), (7.5)

where x∼N (x̂,Σ) means that random variable x has the Gaussian distribution with mean of x̂ and
covariance of Σ.

Then the Bayesian persuasion game can be reorganized as:

min
x̂e

t|t0
,ue

t|t0

t0+N

∑
t=t0

∫
xe

t|t0

Gxe
t|t0
(x̂e

t|t0 ,Σxe
t|t0
)×

min
xs

t|t0

∫
ωt|t0

[
Gωt|t0

(ω̂t|t0|x
e
t|t0,Σωt|t0 |x

e
t|t0
)×

c(ωt|t0,x
s
t|t0 ,x

e
t|t0,u

e
t|t0)
]

(7.6)

where the expectations of ego vehicle driving states x̂e
t|t0(t = t0, · · · , t0 + N) and control inputs

ue
t|t0(t = t0, · · · , t0 +N) are new decision variables,

Gx(x̂,Σ) =
exp(−1

2(x− x̂)T Σ−1(x− x̂))√
(2π)k|Σ|

,
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denotes the density function of Gaussian distribution N (x̂,Σ) and k is the dimension of x. ω̂t|t0|x
e
t|t0

follows the same definition of ω as in (7.2):

ω̂t|t0 |x
e
t|t0 = ‖I

′(xs,p
t −xe

t|t0)‖2, (7.7)

where the ego vehicle’s driving state prediction xe,p
t is replaced by xe

t|t0 . According to the definition
(7.7), the surrounding vehicle’s expected impression of the ego vehicle given his driving behavior
is dependent on how the ego vehicle will influence its original driving plan.

Cost Function
The cost function c in (7.6) is defined in exponential form as

c(ωt|t0,x
s
t|t0 ,x

e
t|t0,u

e
t|t0) = exp

(
(1+ωt|t0)‖x

s
t|t0−xs,p

t|t0‖
2
W1

+‖xe
t|t0−xe

g‖2
W2

+‖∆ue,T
t|t0 ‖W3

−‖xs
t|t0−xe

t|t0‖
2
W4

)
, (7.8)

where xe
g denotes the ego vehicle’s desired goal state, ∆ue

t|t0 = ue
t|t0−ue

t−1|t0 represents the change
of ego vehicle’s control input and W1, W2, W3 and W4 are positive definite penalty matrices. It is
required that W1−W4 � 0 in order to guarantee the existence of a minimum for the cost function c
with regard to xs

t|t0 . In the rest of the paer, W1 and W4 are set to be equal to w1I and w4I respectively,
where I denotes the identity matrix, w1 and w4 are scalars.

The first term in the cost function (7.8) represents the surrounding vehicle’s preference of track-
ing his original driving plan, the second and third terms are driving the ego vehicle to his goal and
penalizing the input change in order to achieve comfortable driving experience and the last term
represents the surrounding vehicle’s aversion of risk, i.e., the preference to keep a certain distance
from the ego vehicle. According to the definition (7.8), when the perceived conservativeness of the
ego vehicle ωt|t0 is lower, the surrounding vehicle will be inclined to focus more on the safety in-
stead of sticking to his original plan. Otherwise, when ωt|t0 is higher, meaning that the surrounding
vehicle is more likely to treat the ego vehicle as a conservative agent, it will be intuitive for him to
pursue a more selfish behavior.

The cost function c in (7.8) shows that the surrounding vehicle’s action is dependent on two
factors, i.e., the world state of the Bayesian game ωt|t0 and the penalty matrix W1. The penalty
matrix W1 represents the interacting vehicle’s driving characteristics, which can only be recognized
but not controlled.

Note that although the cost function (7.8) is intended for two vehicle interaction scenario, the
framework can be extended to multiple vehicle interaction case by including more surrounding
vehicles in the cost function definition.
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Constraints
In the interactive driving application, besides the Bayesian cost function in (7.6), certain constraints
need to be handled including model dynamics, control input saturation and safety constraint.

Vehicle Dynamics

In this chapter, the bicycle model [46] is adopted to describe the vehicle dynamics as follows:

xe
t+1|t0=xe

t|t0+Tsve
t|t0 cos

(
θ

e
t|t0+ tan−1(

Lr

L
tanδ

e
t|t0)

)
ye

t+1|t0=ye
t|t0+Tsve

t|t0 sin
(

θ
e
t|t0+ tan−1(

Lr

L
tanδ

e
t|t0)

)
θ

e
t+1|t0=θ

e
t|t0+Tsve

t|t0
tanδ e

t
L

cos
(

tan−1(
Lr

L
tanδ

e
t|t0)

)
ve

t+1|t0=ve
t|t0+Tsae

t|t0, (7.9)

where Ts is the sampling time, t is the time index, Lr, L f and L=Lr+L f denote the dimension
parameters of the vehicle which are the vehicle’s rear, front and full length respectively.

The model equations (7.9) can be summarized as

xe
t+1|t0 = f (xe

t|t0,u
e
t|t0). (7.10)

Safety Constraint

Another critical constraint for autonomous driving is the guarantee of safety. For the static obsta-
cles including parking vehicles and lane boundaries, the following constraint is defined:

ymin ≤ ye,i
t|t0 ≤ ymax, i ∈ {1,2,3,4}, (7.11)

where ye,i
t|t0 denotes the y coordinate of the vehicle’s i-th corner at time step t, ymin and ymax represent

the lateral position’s lower and upper limit respectively. With regard to the moving surrounding
vehicle obstacles, the safety constraint is defined as:

‖I′(xs,p
t −xe

t|t0)‖2 ≥ 1, (7.12)

where the surrounding vehicle is described by the same ellipse as in (7.2). In addition, another
constraint is imposed on the vehicle speed which is

vmin ≤ ve
t|t0 ≤ vmax, (7.13)

where vmin and vmax are minimum and maximum speed respectively.
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Saturation Constraint

In addition to the vehicle modeling and safety constraint, the system also needs to be consistent
with the physical control saturation constraint described by

ue ≤ ue
t|t0 ≤ ue, (7.14)

where ue, ue represent the lower and upper control saturation bound respectively.

Integral Calculation
Currently, the Bayesian persuasion is mainly applied in the economics community. The main factor
limiting its popularity in other areas is that calculation of expectation for continuous distribution
requires computation of integrals as illustrated by (7.6). Although Gaussian assumption grants
the reduction of decision variable from a distribution to a vector, calculation of integrals is still
challenging, especially for the autonomous driving problem with high dimension involved. In
this subsection, through introducing several approximations, the original cost fucntion (7.4) is
reformulated into a tractable form. By an abuse of notation, the subscript t|t0 is replaced by t in
this subsection.

First consider the integral with regard to ωt :∫
ωt

Gωt (ω̂t |xe
t ,Σωt |xe

t
)c(ωt ,xs

t ,x
e
t ,u

e
t ). (7.15)

As ωt is a scalar variable, we can directly calculate the result of (7.15) as∫
ωt

Gωt (ω̂t |xe
t ,Σωt |xe

t
)c(ωt ,xs

t ,x
e
t ,u

e
t )

= εexp
(

1
2

Σωt |xe
t
[(xs

t −xs,p
t )TW1(xs

t −xs,p
t )]2

)
×

c(ω̂t |xe
t ,x

s
t ,x

e
t ,u

e
t ), (7.16)

where

ε = Ψ

ω̂t |xe
t +Σωt |xe

t
(xs

t −xs,p
t )TW1(xs

t −xs,p
t )

Σ
1
2
ωt |xe

t

 ,

Ψ(x) =
1
2
(1+ er f (x/

√
2))

is the cumulative distribution function of a standard Gaussian distribution and er f (•) is the error
function. According to the safety constraint (7.12), ω̂t |xe

t ≥ 1 always holds. Hence when the
variance Σωt |xe

t
is chosen to be less than 0.2, we have

1≥ ε ≥Ψ(
√

5) =
1
2
(1+ er f (

√
2.5)) = 0.9873, (7.17)



CHAPTER 7. BAYESIAN PERSUASIVE DRIVING 88

resulting in ε ≈ 1 due to er f (•)’s S-shape property.
Then, the solution to the sub-problem

min
xs

t

∫
ωt

Gωt (ω̂t |xe
t ,Σωt |xe

t
)c(ωt ,xs

t ,x
e
t ,u

e
t )

can be obtained as

xs∗
t ≈

(
(1+Σωt |xe

t
γt + ω̂|xe

t )W1−W4
)−1 ∗(

(1+Σωt |xe
t
γt + ω̂|xe

t )W1xs,p
t −W4xe

t
)

(7.18)

via setting the derivative equal to zero, where

γt = (xs
t−1−xs,p

t−1)
TW1(xs

t−1−xs,p
t−1),

xs,p
t−1 is the previous prediction and xs

t−1 denotes the surrounding vehicle’s previous state.
Substituting (7.18) into (7.16) obtains

min
xs

t

∫
ωt

Gωt (ω̂t |xe
t ,Σωt |xe

t
)c(ωt ,xs

t ,x
e
t )

≈ exp{(xe
t −xe

g)
TW2(xe

t −xe
g)+ue,T

t W3ue
t + k1ω̂t |xe

t + k2

+
k3

[w1ω̂t |xe
t +((1+Σωt |xe

t
γt)w1−w4)]

+
k4

[w1ω̂t |xe
t +((1+Σωt |xe

t
γt)w1−w4)]2

}, (7.19)

where k1, k2, k3 and k4 are constant scalars dependent on w1, w4, Σωt |xe
t and γt . Furthermore, it

can be guaranteed that k3 is always negative and k4 is always positive so that there exists a upper
bound k for the last two terms in (7.19) as ω̂t |xe

t ≥ 0.
Thus the original optimization (7.6) is changed to

min
x̂e

t ,ue
t

∫
xe

t

Gxe
t
(x̂e

t ,Σxe
t
)exp{(xe

t −xe
g)

TW2(xe
t −xe

g)

+ue,T
t W3ue

t + k1ω̂t |xe
t }, (7.20)

where the constant terms k2 and k are omitted.
The integral term in (7.20) can be compactly written as∫

xe
t

exp(C(xe
t )),

where C(xe
t ) is in quadratic form. Since the variable xe

t is a vector, a mathematical approximation
technique based on Lapace’s method is utilized to eliminate the high-dimensional integral [12]. Via
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taking second order Taylor seires expansion around xe∗
t :=argminxe

t
C(xe

t ) where ∇C(xe∗
t ) equals to

0, the following equation can be obtained:

C(xe
t ) ≈ C(xe∗

t )+∇C(xe∗
t )T (xe

t −xe∗
t )

+
1
2
(xe

t −xe∗
t )T

∇
2C(xe∗

t )(xe
t −xe∗

t )

= C(xe∗
t )+

1
2
(xe

t −xe∗
t )T

∇
2C(xe∗

t )(xe
t −xe∗

t ). (7.21)

Then the integral term
∫

xe
t
exp(C(xe

t )) can be approximated as∫
xe

t

exp(C(xe
t )) ≈ keexp(C(xe∗

t )), (7.22)

where ke is a constant determined by the Hessian ∇2C(xe∗
t ). Then the cost function in (7.20) can

be reformulated as

min
x̂e

t ,ue
t

Jt =−1
2
(xe∗

t − x̂e
t )

T
Σ
−1
xe

t
(xe∗

t − x̂e
t )+ue,T

t W3ue
t

+(xe∗
t −xe

g)
TW2(xe∗

t −xe
g)+ k1ω̂t |xe∗

t . (7.23)

Note that xe∗
t in (7.23) is a linear combination of x̂e

t , xe
g and xs,p

t , thus the cost function in (7.23) is
a quadratic function with regard to x̂e

t .
Remark 1: Note that the accurate distribution of ωt |xe

t is supposed to be truncated Gaussian
instead of standard Gaussian as ωt is always positive due to defintion in (7.2). The strict formula
of ωt |xe

t ’s density function is

f (ω|xe
t ) =

Gωt (ω̂t |xe
t ,Σωt )

Σ
1
2
ωt |xe

t

1−Ψ

− ω̂t |xe
t

Σ

1
2
ωt |xe

t

 . (7.24)

According to the safety consrtaint (7.12) and utilizing the same approximation as for ε in (7.17),
the denominator of (7.24) can be treated as a constant and hence the usage of Gaussian distribution
in (7.6) is validated.
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Bayesian Persuasive Optimization
With the integral calculation result from the previous subsection, the solvable form of the original
Bayesian persuasive driving optimization (7.4) can be summarized as

min
x̂e

t|t0
,ue

t|t0

∑
t0+N−1
t=t0 Jt (7.25)

s.t. x̂e
t+1|t0 = f (x̂e

t|t0,u
e
t|t0),

‖I′(x̂e
t|t0−xs,p

t )‖2 ≥ 1,

ue ≤ ue
t|t0 ≤ ue,

x̂e
t0|t0 = xe

t0 ,vmin ≤ v̂e
t|t0 ≤ vmax,

ymin ≤ ŷe,i
t|t0 ≤ ymax, i ∈ {1,2,3,4},

t = t0, · · · , t0 +N−1, (7.26)

where xe
t0 is the ego vehicle’s current driving state.

Remark 2: After obtaining the solution to the optimization (7.25) and observing the surround-
ing vehicle’s behavior, more information about the interacting vehicle’s characteristics will be
revealed so that the covariance and penalty matrices in the cost function should be updated accord-
ingly. With regard to Σxe

t
, it is updated based on the surrounding vehicle’s confident level of the

ego vehicle’s behavior, which can be approximated by

α =
t0+N−1

∑
t=t0

wα
t ‖xe

t|t0−xe
t|t0−1‖2, (7.27)

where wα
t ’s are weighting factors satisfying ∑t wα

t = 1. According to the definition, smaller α

indicates that the ego vehicle’s behavior is more consistent with its previous driving plan and
thus the surrounding vehicle will be more confident about the information he extracts from the
ego vehicle’s behavior. Therefore, the covariance matrix of probability distribution Σxr

t should be
proportional to α .

As shown in the cost function (7.8), the penalty matrix W1 which reflects the surrounding
vehicle’s driving characteristics is another influential factor of the algorithm. Similar with the
update strategy for Σxe

t
, the update of W1 is based on the surrounding vehicle’s confidence in his

own driving plan, which can be inferred from the following parameter:

β =
t0+N−1

∑
t=t0

wβ

t ‖x
s,p
t|t0−xs,p

t|t0−1‖2, (7.28)

where wβ

t ’s are weighting factors for β satisfying ∑t wβ

t = 1. Intuitively, a smaller β represents a
smaller change of the surrounding vehicle’s driving plan, reflecting his more self-centric driving
characteristics resulting in a larger W1.
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7.4 Simulation Results
In this section, the proposed algorithm’s performance is demonstrated by simulations implemented
for several driving scenarios including lane changing, lane keeping and intersection crossing. The
setting details for the simulation are the same as in Table 6.1 and Table 6.2. In the simulation,
the surrounding vehicles are assumed to follow a model predictive control (MPC) strategy with
different safety weights reflecting various driving characteristics, i.e., more cautious/conservative
drivers are associated with higher safety weights and more aggressive drivers are represented by
lower safety weights. Another assumption is about perfect prediction, which means that the ego
vehicle knows exactly what the surrounding vehicle’s driving plan is. Although this is a very strong
assumption, the algorithm is still necessary as its point is to persuade the surrounding vehicle to
change its original plan instead of just identifying it.

Lane Changing Scenario
First consider the scenario where the ego vehicle attempts to change to the neighboring lane with
two surrounding vehicles running in it. The front surrounding vehicle is assumed to be always
aggressive (safety weight equals to zero) so that it will never yield the ego vehicle and the rear
vehicle’s safety weight is adjusted to represent different kinds of driver, where large safety weight
means nice driver and small or zero safety weight is utilized for iron nerved aggressive driver. The
interacting case with “nice” driver is shown in Fig. 7.1, where the ego vehicle is represented by the
yellow rectangle, the front and rear vehicle are plotted as blue and green rectangle respectively. The
solid red line represents the ego vehicle’s driving trajectory. In this case, the nice driver decided
to decelerate and yield the ego vehicle. The ego vehicle thus took the chance and finished the lane
changing task smoothly.

Figure 7.2 shows another case with “tough” driver who chooses to accelerate and ignore the
ego vehicle’s lane changing need. In this case, as the rear vehicle refused to yield, the ego vehicle
waited until the rear surrounding vehicle passed and completed lane changing later.

Lane Keeping Scenario
In the lane keeping scenario, the ego vehicle needs to make decision between to yield or not to
yield when the surrounding vehicle seeks to merge in. The simulation results Fig. 7.3 and Fig. 7.4
illustrate the ego vehicle’s intelligent driving behavior when interacting with nice and tough driver
respectively. In the case of a nice driver, the ego vehicle decides to ignore its merging request and
accelerate to show its intention as shown in Fig. 7.3. On the other hand, when interacting with a
more aggressive driver, the ego vehicle expresses its intention of yielding by decelerating as shown
in Fig. 7.4. The speed profile for these two driving situations are shown in Fig. 7.5 and Fig. 7.6
respectively.
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Figure 7.1: Bayesian persuasion with “nice” surrounding vehicle in lane changing scenario
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Figure 7.2: Bayesian persuasion with “tough” surrounding vehicle in lane changing scenario
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Figure 7.3: Bayesian persuasion with “nice” surrounding vehicle in lane keeping scenario
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Figure 7.4: Bayesian persuasion with “tough” surrounding vehicle in lane keeping scenario
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Figure 7.5: Lane keeping speed profile (persuasion with “nice” surrounding vehicle case)
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Figure 7.6: Lane keeping speed profile (persuasion with “tough” surrounding vehicle case)
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Intersection Crossing Scenario
Another common driving scenario is intersection crossing, where both the vehicles need to reason
about who is supposed to pass first. Fig. 7.7 and Fig. 7.8 demonstrate the algorithm’s performace
when interacting with different kinds of driver. In the figures, the yellow rectangle represent the
ego vehicle and the blue rectangle is the surrounding vehicle. It is shown in Fig. 7.7 (Fig. 7.8)
that the ego vehicle decides to pass first (second) when meeting a nice (tough) driver, which is
consistent with human driving behavior. The vehicles’ speed profiles are shown in Fig. 7.9 and
Fig. 7.10, which further illustrate the ego vehicle’s intention. In the case of nice surrounding
vehicle, the ego vehicle keeps accelerating and cross the intersection first. When interacting with a
tough surrounding vehicle, the ego vehicle first inches a little and then stops, waiting for the other
vehicle to pass.
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Figure 7.7: Bayesian persuasion with “nice” surrounding vehicle in intersection scenario
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Figure 7.8: Bayesian persuasion with “tough” surrounding vehicle in intersection scenario
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Figure 7.9: Intersection crossing speed profile (persuasion with “nice” surrounding vehicle case)
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Figure 7.10: Intersection crossing speed profile (persuasion with “tough” surrounding vehicle case)
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7.5 Chapter Summary
In this chapter, an optimization-based Bayesian persuasive driving algorithm was proposed. Com-
pared to the negotiation strategy introduced in Chapter 6, by modeling the interacting vehicle’s
decision making process utilizing Bayesian persuasion, the intelligent interactive driving behav-
ior could be obtained without introducing extra decision variables (the interacting vehicle’s driving
states for cooperative proposal). Therefore, a better computational performance could be achieved.

In the persuasion game, the ego vehicle serves as the information sender who attempts to ma-
nipulate the surrounding vehicle’s (information receiver) posterior belief of the world state in order
to achieve a lower cost for both players via providing information about its driving intention. The
world state of the Bayesian game was defined to be the surrounding vehicle’s impression about
the ego vehicle. In the surrounding vehicle’s point of view, both the signaling and the belief of
the world state are formulated as Gaussian distributions. An integral approximation was applied to
reformulate the optimization into a tractable form. As shown by simulation results in several driv-
ing scenarios, the ego vehicle is capable of interacting with various types of surrounding vehicles
intelligently due to the persuasion signaling strategy.
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Chapter 8

Interactive Driving Based on Persuasion
Game and Intention Expression

In Chapter 6 and Chapter 7, we have developed two algorithms for the interactive driving prob-
lem including negotiation and Bayesian persuasion. Essentially, both of these approaches aim to
approximate the Nash equilibrium solution of the interactive driving game via cost function and
constraint set adjustment. In this chapter, we propose to formulate the problem as an explicit per-
suasion game between the ego vehicle and the surrounding vehicle with certain assumptions and
simplification. The game’s utility function is formulated using the cumulative prospect theory to
achieve a more accurate and reasonable description of the surrounding vehicle’s decision making
process and the numerical solution to the Nash equilibrium is obtained via gradient descent ap-
proach. The Nash equilibrium solution which represents the ego vehicle’s driving intention is then
utilized in the ego vehicle’s trajectory design module which results in the expressive and optimal
driving behavior.

8.1 Introduction
A fully functioning autonomous vehicle is generally composed of three modules including per-
ception, planning and control. If we look the autonomous vehicle as a human, the the perception
module works as human’s eyes and ears; control module can be treated as hands and feet and the
planning module which is in charge of all the decision making tasks, commanding the vehicle
to get the target without colliding with obstacles is more like the human’s brain. Although these
three components are equally important for the autonomous vehicle, compared to the other two,
the planning module as a brain still apperas to be more complex and the problems involved are
also quite challenging. Among all the planning problems, the interaction between vehicles stands
out as an extremely important one which has not been fully resolved.

The ability to intelligently and safely interact with other vehicles can not only improve self
driving quality but also be beneficial to the global driving environment. In the literatures, there are
quite a few attempts to tackle the interactive driving problem from different points of view using
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different techniques. When all the involved vehicles can be controlled by one planning module and
all the driving information can be accessible, a centralized control approach can be applied to find
the global solution as reviewed in [8]. However, since the vehicle-to-vehicle (V2V) communication
system has not been fully developed, the full information required by the centralized approach may
not be accessible. Therefore, for the near future applications, the decentralized approach looks
more realistic and promising. In the decentralized approach, since the other vehicles’ information
cannot be obtained from the communication module directly, the interacting vehicles’ behavior
prediction becomes necessary. Several interactive prediction methods has been proposed. For
example, a partially observable Markov decision process (POMDP) based approach is proposed
in [21] to solve the interactive driving problem in varying intersection driving scenarios. In [28],
the other vehicle’s behavior is modeled via an intelligent driver model (IDM) depending on the
ego vehicle’s behavior. [49] utilizes an inverse reinforcement learning algorithm to learn human
drivers’ cost function and then include it in the autonomous vehicle’s planning optimization.

In constrast to the approaches aforementioned, in this chapter, the interactive driving problem
is divided into two steps including intention decision making and intention expressive trajectory
planning. With regard to the intention decisoin making, the game theory approach has shown its
unique advantage in interaction handling through applications in many areas. For example, game
theory is combined with psychology to solve social interaction decision mkaing problem in [9]; in
[23], a game theoretic approach is introduced to achieve efficient and intelligent automated nego-
tiation in various contexts; in [32] and [52], the game theory is applied to solve vehicle-pedestrian
interaction at crosswalks and vehicle-vehicle interaction at lane changing scenario respectively. In
this chapter, a two-player game is formulated for vehicle interactions in different driving scenarios,
where both players have two options: yielding and passing. The game’s mixed Nash equilibrium
is then solved to achieve the optimal intention represented by the optimal passing probability.
In order to express the intention via the ego vehicle’s driving trajectory, an intention expression
constraint imposed on the vehicle’s speed is formulated and merged into the trajectory planninng
optimization.

The remainder of the chapter is structured as follows. In Section 8.2, the interactive driving
game is designed with payoff matrix dependent on vehicles’ estimated driving style information
and utility function formulated by the cumulative prospect theory (CPT). In Section 8.3, the for-
mulated game’s Nash equilibrium is solved to obtain the optimal intention and the corresponnding
intention expression constraint is formulated in Section 8.4. In Section 8.5, the proposed algo-
rithm’s effectiveness is illustrated by simulations in lane changing and intersection crossing driving
scenarios. Section 8.6 concludes the chapter.

8.2 Interactive Driving Game
In this section, the two-player game between the ego vehicle and the surrounding vehicle for the
interactive driving scenario is proposed. In the game setting, each player has two possible actions:
yield and pass which represent their driving intention in the current driving situation. The Nash
equilibrium solution to the game is defined as the vehicles’ yielding/passing probability.
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Game of Chicken
The proposed persuasion game is inspired by the game of chicken which is a model of conflict
for two players in game theory [47]. The game of chicken originates from a scenario where two
drivers drive towards each other on a one-lane road which means that one must swerve, otherwise
a collision is bound to happen and two drivers will die in the crash. If both drivers swerve, then
both of them are safe. However, if only one driver swerves and the other does not, the one who
swerves will be called a “chicken”, meaning a coward and the iron-nerved driver will enjoy a great
success.

From the game theory point of view, the game of chicken can be formulated as the payoff
matrix in Table 8.1:

Table 8.1: Game of chicken

Player Y
Swerve (S) Drive (D)

Player X
Swerve (S) (1,1) (−1,2)
Drive (D) (2,−1) (−M,−M)

According to the game description in Table 8.1, for both swerving case, both players will
receive a small payoff of 1, for only-one swerving case, the swerving driver (chicken in the game)
will get a penalty of −1 and the other driver will yield a higher payoff of 2. M in Table 8.1 is a
large number representing a huge penalty of death for both players if they both choose to drive and
a collision happens. Intuitively, in order to obtain a higher payoff in this game, a rational player
is supposed to follow the principle corresponding to the game’s pure Nash equilibria: if the other
player chooses to swerve, then keep driving, but if the other player chooses to drive, then swerving
will be the optimal action to take.

However, the practical driving scenarios can be much more complicated than the chicken game
setting. First, besides the one-lane conflict situation, the most common conflict cases encoun-
tered include lane changing and intersection crossing. In order to handle the multiple situations
mentioned above, the palyers’ action options are generalized to yielding and passing intention cor-
responding to the swering and driving options in the game of chicken. Specifically, for the lane
change case, the meaning of yielding is to wait and execute lane change motion later while passing
means immediate start of lane changing process; for the intersection scenario, options of yielding
and passing just follow their original meanings. The desired decision strategy is also replaced by
the mixed Nash equilibria because of the intention’s probabilistic nature.

Another challenge of the practical interactive driving game is that the driver usually does not
have direct access to the other driver’s intention. Therefore, the decision making is largely de-
pendent on the analysis of the other driver’s driving behavior/trajectory and the game to be imple-
mented in the practical driving system should also be altered accordingly.
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Driving Intention Estimation
In an interactive driving situation with two vehicles involved, the full scenario information is usu-
ally unaccessible which means that no one has accurate informatoin about the other vehicle’s driv-
ing intention. Thus, it is necessary for the vehicle opeartors (decision making module for an
autonomous vehicle) to make judgement about the interacting entity’s driving intention based on
the historical observation of their driving behavior before taking any action.

A general driving intention estimation mechanism based on Bayes’ theorem can be formulated
as:

p(Pass|Behavior) =
p(Behavior|Pass)p(Pass)

p(Behavior|Yield)p(Yield)+ p(Behavior|Pass)p(Pass)
,

p(Yield|Behavior) = 1− p(Pass|Behavior), (8.1)

where p(Yield) and p(Pass) represent the prior probability of yielding and passing respectively
which are the previous time step estimation results, p(·|Behavior) denotes the conditional prob-
ability of the intention given the driving behavior observation and similarly p(Bahavior|·) is the
conditional probability of the observed driving behavior given the intention.

In order to achieve reliable estimation performance, the selected driving behavior should be
easy to obtain from the measurement data and also strongly relevant to the vehicle’s driving inten-
tion. In this chapter, for the lane changing scenario, the vehicle’s predicted average speed v̂avg is
chosen as the vehicle’s representative intention-reflecting drivng behavior which can be obtained
based on the current speed and the most recent average acceleration or from another prediction
module. Intuitively, a predicted slower vehicle is more likely to yield; a predicted faster vehicle
will be reasonably more inclined to the passing option and the intention of a vehicle with predicted
speed almost equal to the ego vehicle is ambiguous which means that its yielding probability and
passing probability are both around 0.5. With regard to the intersection crossing case, instead
of the predicted speed, we utilize the predicted time of arrival at the confict zone as the driving
behavior. The predicted time of arrival T̂ is defined as:

T̂ =

{ dc

v̂avg if v̂avg ≥ εv
Tmax if v̂avg < εv

, (8.2)

where dc is the vehicle’s distance to the intersection conflict zone, Tmax is the maximum crossing
time and εv represents a low speed close to zero. Tmax and εv are used to handle the cornercase
where the vehicle is almost not moving.

In the case of lane changing, since there will be a forward/backward safety distance ds from the
interacting yielding/passing vehicle to the ego vehicle when the driving task is finished, the model
of driving behavior conditioned on intention p(Behavior|Yield) and p(Behavior|Pass) is assumed
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to follow the Gaussian distributions as:

Behavior|Yield = v̂avg
s |Yield ∼N (v̂y,σ2

1 ),

Behavior|Pass = v̂avg
s |Pass∼N (v̂p,σ2

1 ),

v̂y = v̂avg
e −

ds−d
t f

,

v̂p = v̂avg
e +

ds +d
t f

, (8.3)

where v̂avg
s and v̂avg

e denote the predicted average speed of the surrounding vehicle and the ego
vehicle respectively, v̂y and v̂p represent the yielding and passing speed predicted by the vehicle, d
is the current forward distance from surrounding vehicle to the ego vehicle (it will be negative if the
ego vehicle is lonngitudinally behind the surrounding vehicle), ds is the safety distance between
two vehicles, t f is the typical time of finishing the driving task, which is set to 5 seconds in this
dissertatoin and σ1 denotes the standard deviation of the Gaussian distribution.

Similarly, for the intersection case, the driving behavior model is defined as:

Behavior|Yield = T̂s|Yield ∼N (T̂ y,σ2
2 ),

Behavior|Pass = T̂s|Pass∼N (T̂ p,σ2
2 ),

T̂ y = T̂e +T c,

T̂ p = T̂e−T c, (8.4)

where T̂s and T̂e are the predicted arrival time for the surrouding vehicle and the ego vehicle respec-
tively, T̂ y and T̂ p are the predicted arrival time in the case of yielding and passing correspondingly,
T c is the typical crossing time at the intersection and σ2 denotes the standard deviation of the
distribution.

Based on the Gaussian assumptions in (8.3) and (8.4), the estimated intention probability can
be calculated according to (8.1) after the predicted behavior information is revealed.

Payoff Function Design
During the driving process, as described by the game of chicken, the vehicle will always receive
some reward or penalty after taking certain actions. In the real life, the reward can be a sense of
satisfication for the driver, saving a little time via driving faster or avoidance of the heavy traffic
at a certain lane and the possible penalty can be anger caused by other drivers, getting stuck in the
traffic or an accident in the worst case.

Obviously, each driver has a different sense of reward and penalty dependent on their character-
istics and lots of other unpredictable factors. To simplify the design, we assume that each vehicle’s
payoff is determined by the current intention of itself and the interacting vehicle estimated via
(8.1). For the payoff functions design, we follow the basic idea of the chicken game and introduce
the driving style information to make the outcome more realistic and human-like. The modified
payoff matrix of the interactive driving game is shown in Table 8.2, where EV and SV denote the
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ego and surrounding vehicle, p̃s|e and p̃e|s are the passing probabilities of the surrounding vehicle
estimated by the ego vehicle and the ego vehicle estimated by the surrounding vehicle respectively,
pe represents the ego vehicle’s passing probability solution to the previous time step game and M
is the accident penalty.

Table 8.2: Interactive driving game

EV
Yield Pass

SV
Yield (−2p̃s|e/p̃e|s,−2pe/p̃s|e) (−p̃s|e/p̃e|s, pe/ p̃s|e)
Pass (p̃s|e/p̃e|s,−pe/p̃s|e) (−M,−M)

According to the payoff matrix, for the pass-yield pair, the passing vehicle will receive a re-
ward and the yielding vehicle will get a penalty. Both the reward and penalty are dependent on the
vehicles’ passing probability. Intuitively, for a vehicle with higher passing probability, the waiting
time caused by yielding will seem more unbearable which means a larger penalty. Moreover, the
penalty is also influenced by the other vehicle’s driving style. For example, if the other vehicle is
very aggressive, then yielding will be a reasonable option resulting in a small penalty. Therefore,
in the one passing and one yielding case, the penalty for the yielding vehicle is designed as pro-
portional to the ego vehicle’s current passing probability and inversely proportional to the other
vehicle’s. Similarly, the design of reward is based on the same reasoning. With regard to the both
yielding case, since in this scenario, both vehicles will have to wait for a longer time reducing
the global driving efficiency, both vehicles will get a larger penalty compared to the one vehicle
yielding case. In order to reflect this effect, the yielding penalty is multiplied by a constant of 2 for
both yielding case.

Remark 8.1: The passing probabilities in the payoff matrix in Table 8.2 are the prior intention
probabilities before the interaction process which represent the vehicles’ driving style information.
In order to find the posterior optimal action probability after the interaction, the game’s Nash
equilibrium needs to be sovled.

Remark 8.2: In the payoff matrix, two different variables are used to represent the ego vehi-
cle’s passing probability estimated by the surrouding vehicle p̃e|s and the ego vehicle’s previous
solution pe. The reason that these two variables are both necessary is that pe is solved based on
the prediction of the surrouding vehicle made at previous time step which is subject to change and
thus can be different from the surrouding vehicle’s actual new observed action. Therefore, in the
surrounding vehicle’s point of view, the estimated ego vehicle’s intention p̃e|s can get misunder-
stood deviating from pe. Thus, both the ego vehicle’s prior real intention represented by pe and
its intention perceived by the surrounding vehicle represented by p̃e|s are needed for the current
time step planning. The estimation of p̃e|s is basically the same as for p̃s|e with the role of ego and
surrounding vehicle switched.
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8.3 Solution of Nash Equilibria
In this section, the Nash equilibria of the interactive driving game defined in Table 8.2 are solved to
obtain the optimal driving intentions for both vehicles. Since in most scenarios, the vehicle’s inten-
tion will be neither pure yielding nor pure passing, we are more interested in the mixed equilibria
instead of the pure ones.

Utility Function
In order to achieve the Nash equilibria, an utility function needs to be derived from the game payoff
matrix. The most commonly used utility function is based on the statistical expectation and thus
called expected utility. The expected utility theory has been successfully applied in economics,
game theory and decision making area for decades. However, the theory is heavily dependent
on the assumption that the decision makers are always rational and thus cannot explain some
common phenomena in the decision making process especially when human players are involved.
For instance, several common facts happening in human decision making that violate the standard
expected utility model are listed in the following:

• Nonlinear preferences: It has been observed that people’s preference in different options
is not linear in the corresponding outcome probability. For example, as demonstrated by
the Allais paradox experiment connducted by Maurice Allais in 1953 [2], the difference
between probabilities of 0.99 and 1.0 has more influence on people’s selected choice then
the difference between 0.1 and 0.11 although both differences have the same value of 0.01.

• Risk seeking: Although in many applications of decision making, it is assumed that people
tend to avoid risk when uncertainties are present, however, there are actually lots of obser-
vations of risk-seeking behavior in decision making problems. For example, people usually
prefer winning a large reward with a small probability over following the ”correct” option
given by the expected value.

• Loss aversion: In the situation with both uncertainty and risk, the decision makers often
choose to avoid loss instead of pursuing a better gain. This asymmetry is also hard to explain
using the expected utility theory.

In order to explain these common phenomena in human players’ decision making process and
achieve a more realistic utility function that is in line with people’s psychological thinking, the cu-
mulative prospect theory (CPT) is applied. The cumulative prospect theory was first propsoed by
Tversky and Kahneman in 1992 [55] and provides another model for descriptive decisions under
risk and uncertainty. The two basic ideas of CPT are 1) mapping the original payoff function of the
game to a value function that has different effect on gains and losses to address loss aversion effect
and 2) transformation of the objective cumulative probability to a subjective cumulative weighting
curve to model people’s nonlinear preferences of probabilities. The mapped wieghting function is
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supposed to be nonsensitive to moderate probabilities, overestimate small probabilities and under-
estimate high probabilities. These two mapping of values and weights will jointly influence the
decision makers’ risk seeking behavior.

The general requirement for the value function mapping is that it should be concave for gains,
convex for losses and steeper for losses than for gains. An examplar value function mapping is as

v(x) =
{

xα if x≥ 0
−λ (−x)β if x < 0

, (8.5)

where x represents the original payoff and α > 0, β > 1, λ ≥ 1 are the model parameters prede-
fined. In this dissertation, we choose the same values as estimated in the original CPT paper [55],
which are α = β = 0.88 and λ = 2.25.

In order to reflect people’s tendecy of overestimating extreme but unlikely events and under-
estimating average events, the mapping from the cumulative objective probability to subjective
perceived weights can be expressed as:

w+(cp) =
cpγ

(cpγ +(1− cp)γ)1/γ
,

w−(cp) =
cpδ

(cpη +(1− cp)η)1/η
, (8.6)

where cp is the objective cumulative probability, w+ and w− are mapping functions for events with
loss and gain respectively. The mapping parameters γ and η are positive scalars between 0 and 1,
which are selected as γ = 0.61 and η = 0.69 in this dissertation, again following the estimation
in the original CPT paper [55]. The relationship between the objective cumulative probability and
the mapped weights are shown in Fig. 8.1, which clearly shows the effect of small probability
overweighting and high probability underweighting.

With the value function and probability mapping defined in (8.5) and (8.6) respectively, the
utility function U based on CPT is formulated as:

U =U++U−, U+ =
n

∑
i=0

π
+
i v(xi), U− =

0

∑
i=−m

π
−
i v(xi),

π
+
i = w+(pE

i + · · ·+ pE
n )−w+(pE

i+1 + · · ·+ pE
n ),

π
−
i = w−(pE

−m + · · ·+ pE
i )−w−(pE

−m + · · ·+ pE
i−1),

π
+
n = w+(pE

n ), π
−
−m = w−(pE

−m), (8.7)

where x is the original payoff, i is the event index and pE
i is the probability of event i happening.

The negative i’s represent index for loss event, the positive ones are for gain events and the indexing
can be in any order. Particularly, for the interactive driving game, the event probability matrix
is shown in Table 8.3, where pa

e and pa
s denote the action passing probability for the ego and

surrounding vehicle respectively.
By combining the payoff matrix in Table 8.2, the event probability matrix in Table 8.3 and

the utility formulation in (8.7), the utility of the ego and surrounding vehicle can be expressed as
Ue(pa

e , pa
s ) and Us(pa

e , pa
s ) respectively, which are functions of pa

e and pa
s .
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Figure 8.1: Mapping from objective cumulative probability to subjective weight

Table 8.3: Interactive driving game event probabilities

EV
Yield Pass

SV
Yield (1− pa

e)(1− pa
s ) pa

e(1− pa
s )

Pass (1− pa
e)pa

s pa
e pa

s

Numerical Solution Strategy
After achieving the utility functions Ue(pa

e , pa
s ) and Us(pa

e , pa
s ), the interactive driving game is

fully defined and we are ready to find the game’s mixed Nash equilibrium, i.e., the optimal pair
of action probabilities (pa,∗

e , pa,∗
s ). The resulting optimization problem can be formulated as a

two-step procedure:

• Step 1: Solve for the optimal pa,∗
s as a function of pa

e :

pa,∗
s (pa

e) = argmax
pa

s
Us(pa

e , pa
s ). (8.8)

• Step 2: Solve for the optimal pa,∗
e :

pa,∗
e = argmax

pa
e

Ue(pa
e , pa,∗

s (pa
e)). (8.9)

However, since the utility functions Ue(pa
e , pa

s ) and Us(pa
e , pa

s ) are highly nonlinear due to the
CPT formulation in (8.7), the analytical form of pa,∗

s (pa
e) is hard to obtain. Therefore, a numerical

solution strategy is developed to solve for (pa,∗
e , pa,∗

s ). The procedure is described as:
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• Step 1: Sample for pa
e between 0.05 and 0.95 meaning that the extreme events are eliminated.

Each sampling point is denoted as pa
e,k.

• Step 2: For each pa
e sampling point at pa

e,k, solve for the corresponding optimal pa,∗
s,k as

pa,∗
s,k = argmax

pa
s

Us(pa
e,k, pa

s ).

As Us(pa
e,k, pa

s ) is still a highly nonlinear and complicated function with regard to pa
s , more

efforts are required to solve the problem. Note that pa
s only appears in the mapped weighting

terms and both mapping functions w+ and w− are differentiable. Therefore, the gradient
descent approach is applied to get the numerical solution pa,∗

s,k .

• Step 3: Calculate the value of Ue for each pair of candidate solution (pa
e,k, pa,∗

s,k ). The candi-
date pair with maximum Ue value is selected as the optimal solution (pa,∗

e , pa,∗
s ).

8.4 Trajectory Planning with Intention Expression
In this section, the obtained optimal action probability pair is merged into the trajectory design
module so that the ego vehicle can effectively express its updated driving intention and intelligently
react to the surrounding vehicle’s new action. The trajectory planning optimization problem is first
defined and the intention expression is formulated as a convex constraint.

The standard model predictive control (MPC) based optimization problem for vehicle trajectory
planning is formulated as:

minut|t0

t0+H

∑
t=t0
‖xt|t0−xdes‖2

Q +
t0+H−1

∑
t=t0

‖ut+1|t0−ut|t0‖
2
R (8.10)

(xt|t0,yt|t0) ∈ S(xp
s (t),y

p
s (t)),

ut|t0 ∈ U,
xt+1|t0 = f (xt|t0 ,ut|t0),

xt0|t0 = x(t0),

where t0 is the current time instant, H is the receding horizon length, x = [x,y,θ ,v]T is the vehicle’s
state vector including its x, y positions, yaw angle θ and speed v, u = [a,δ ]T is the control input
for the vehicle including acceleration a and steering angle δ and f (x,u) represents the vehicle
dynamics model. xdes denotes the vehicle’s desired state, xt|t0 and ut|t0 denote the state and control
input vector at t predicted at the current time instant t0 respectively and x(t0) is the vehicle’s initial
state. S(xp

s (t),y
p
s (t)) denotes the safety set defined by the surrounding vehicle’s predicted t time

instant (x,y) positions (xp
s (t),y

p
s (t)) and U is the feasible set for the vehicle’s control input. Q

and R are positive definite penalty matrices for deviation from desired state and control change
respectively.
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In order to express the optimal action intention via the driving trajectory, the intention expres-
sion needs to be combined into the optimization framework. In fact, the intention expression is a
reverse process of the intention estimation. For the estimation purpose, the other vehicle’s behavior
observation is utilized as the input and the estimated intention probability is the desired output. In
the expression process, however, the input is the optimal intention and the aim is to find the appro-
priate driving behavior which the other vehicle can understand and therefore a smooth interaction
process can be achieved. The intention expression can be formulated as the following constraint:

pa,l
e ≤ p(Pass|Behavior)≤ pa,∗

e , (8.11)

where
pa,l

e = max(pa,∗
e − εp,0.01)

is the lower bound for the acceptable passing intention probability interval and εp is a small prob-
ability. The value of 0.01 is used to prevent the lower bound from going to zero. Based on the
intention estimation formula (8.1), the intention expression constraint (8.11) can be rewritten as:

pa,l
e

1− pa,l
e
≤ p(Behavior|Pass)p(Pass)

p(Behavior|Yield)p(Yield)
≤ pa,∗

e

1− pa,∗
e

, (8.12)

where p(Pass) = p̃e|s and p(Yield) = 1− p(Pass) are the ego vehicle’s current passing and yield-
ing probability before interaction estimated by the surrounding vehicle, which are both known
variables.

Similarly with the estimation process, the predicted average speed of the vehicle and the pre-
dicted time of arrival are selected as the representative driving behavior for the lane changing and
intersection crossing scenario respectively. The surrounding vehicle’s predicted average speed v̂avg

s
can be extracted from the prediction module and the ego vehicle’s can be formulated as:

v̂avg
e =

1
H

t0+H

∑
t=t0

vt|t0 . (8.13)

Then the predicted time of arrival T̂e can be developed accordingly based on the definition in (8.2).
Since the behavior model is assumed to be Gaussian in (8.3), the probability p(Behavior|Pass)

and p(Behavior|Yield) can be expanded as:

p(Behavior|Pass) =
1√

2πσ2
1

exp(−(v̂avg
e − v̂p

s )
2

2σ2
1

),

p(Behavior|Yield) =
1√

2πσ2
1

exp(−(v̂avg
e − v̂y

s)
2

2σ2
1

),
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where v̂p
s and v̂y

s are the passing and yielding speed predicted by the surrounding vehicle following
the definition in (8.3). Then the explicit form of the intention expression constraint (8.12) can be
derived for the lane chaning scenario as:

2σ2
1

v̂p
s − v̂y

s
ln

(
pa,l

e (1− p̂e|s)

p̂e|s(1− pa,l
e )

)
≤ 2

H

t0+H

∑
t=t0

vt|t0− v̂p
s − v̂y

s ≤
2σ2

1
v̂p

s − v̂y
s
ln

(
pa,∗

e (1− p̂e|s)

p̂e|s(1− pa,∗
e )

)
, (8.14)

which is a linear constraint imposed on the ego vehicle’s speeds in the receding horizon. Similarly,
the intention expression constraint for the intersection scenario can be developed as:

2dc
e

T̂ p
s + T̂ y

s +
2σ2

2 ln

(
pa,∗
e (1−p̂e|s)

p̂e|s(1−pa,∗
e )

)
T̂ p

s −T̂ y
s

≤ 1
H

t0+H

∑
t=t0

vt|t0 ≤
2dc

e

T̂ p
s + T̂ y

s +

2σ2
2 ln

(
pa,l
e (1−p̂e|s)

p̂e|s(1−pa,l
e )

)
T̂ p

s −T̂ y
s

, (8.15)

where dc
e is the ego vehicle’s distance to the intersection conflict zone, T̂ p

s and T̂ p
s are the yielding

and passing arrival time predicted by the surrounding vehicle.
By adding the intention expression constraint (8.14) for the lane changing scenario or (8.15)

for the intersection crossing scenario to the original trajectory planning optimization (8.10), the
expressive trajectory can be achieved for the ego vehicle so that the surrounding vehicle is able
to get a better a understanding of the driving situation. Therefore, the interaction process will be
more efficient and more intelligent.

8.5 Simulation Results
In this section, the proposed interactive driving game approach’s performance is demonstrated in
two scenarios which are lane changing and intersection crossing. An MPC optimization approach
is applied to the surrounding vehicles. Different driving styles are simulated by different safety
weights, where the small weight represents the aggressive driver and the large safety weight means
the relatively conservative or friendly driver. The setting details for the simulation are the same as
in Table 6.1 and Table 6.2. In the simulations, the yellow rectangles represent the ego vehicle and
green, blue rectangles are the surrounding vehicles.

Lane Changing
In the lane changing scenario, the ego vehicle needs to interact with two vehicles in sequence.
The first vehicle is always aggressive meaning that it will not yield to the ego vehicle. Both the
aggressive and friendly driving styles are simulated for the second surrounding vehicle. Fig. 8.2
shows the interaction result with the friendly driver, where the ego vehicle got to merge into the
target lane before the second surrounding vehicle. The aggressive second surrounding vehicle case
simulation result is shown in Fig. 8.3, where the ego vehicle could not find a chance to merge
until the second surrounding vehicle passed. The corresponding speed profiles for the friendly and
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aggressive interacting vehicle cases are shown in Fig. 8.4 and Fig. 8.5 respectively, which illustrate
the interacting vehicle’s yielding and passing process.

0 1 2 3 4 5 6 7 8 9

0

0.5

1

0 1 2 3 4 5 6 7 8 9

0

0.5

1

y[
m

]

0 1 2 3 4 5 6 7 8 9
x[m]

0

0.5

1

Figure 8.2: Game playing with “friendly” surrounding vehicle2 in lane change scenario

Intersection Crossing
With regard to the intersection crossing scenario, two vehicles are assumed to arrive the intersec-
tion around the same time and there is no priority difference between them. In this scenario, since
both vehicles prefer passing first to save waiting time and they also need to avoid collision, the
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Figure 8.3: Game playing with “aggressive” surrounding vehicle2 in lane change scenario
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Figure 8.4: Lane change speed profile (game with “friendly” surrounding vehicle case)
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Figure 8.5: Lane change speed profile (game with “aggressive” surrounding vehicle case)
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interaction influence needs to be taken into account for both vehicles’ decision making process,
which can be fulfilled by the interactive driving game approach proposed. The simulated ego vehi-
cle and friendly surrounding vehicle interacting scenario is shown in Fig. 8.6, where the interacting
surrounding vehicle decided to yield and the ego vehicle crossed the intersection first. The speed
profile for both vehicles in this scenario is shown in Fig. 8.7. Another exemplar case where the ego
vehicle needs to interact with an aggressive vehicle is shown in Fig. 8.8, where the surrounding
vehicle chose the passing first option which forced the ego vehicle to wait. The corresponding
speed profile is given in Fig. 8.9.

Figure 8.6: Game playing with “friendly” surrounding vehicle in intersection scenario
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Figure 8.7: Intersection crossing speed profile (game with “friendly” surrounding vehicle case)
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Figure 8.8: Game playing with “aggressive” surrounding vehicle in intersection scenario
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Figure 8.9: Intersection crossing speed profile (game with “aggressive” surrounding vehicle case)

8.6 Chapter Summary
In this chapter, the interactive driving problem was formulated as a two-player game between the
ego vehicle and the surrounding vehicle. The game’s payoff matrix was designed based on both
vehicles’ current driving intention before interaction process represented by their passing proba-
bilities estimated by each other. The intention estimation was achieved using Bayesian method.
In order to combine the loss aversion and nonlinear preference phenomena which are common in
people’s natural decision making process, the cumulative prospect theory (CPT) was applied to de-
fine the game’s utility function. The game’s Nash equilibrium, which is the optimal action passing
probability pair for both vehicles, was solved by a numerical solution strategy based on gradi-
ent descent. The obtained optimal intention was then formulated as a linear intention expression
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constraint imposed on the ego vehicle’s speed in the trajectory planning optimization module. The
proposed approach’s performance was verified by simulations in the lane changing and intersection
crossing scenarios.

Compared to the interactive driving algorithms proposed in Chapter 6 and Chapter 7, the per-
suasion game approach explicitly solved for the Nash equilibrium solution representing the opti-
mum in interactive scenarios. However, the algorithm performance would be more dependent on
the payoff and cost function structure.
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Chapter 9

Conclusion and Future Work

9.1 Summary
In this dissertation, three control structures for the multi-agent system with interaction were ex-
plored including centralized, distributed and decentralized control. The introduced algorithms
were applied to solve interactive agents control problems under two application backgrounds: in-
telligent building and autonomous driving.

Intelligent Building System
In Part I, the intelligent building thermal system was studied. The thermal dynamic model iden-
tification was achieved in Chapter 2 which built the foundation for controller design. A lumped
first-order resistance and capacitance (RC) model was utilized to describe the building thermal
dynamics. The model estimation was based on the semiparametric regression approach which
separates the model into two parts: a parametric part representing the RC model structure and a
non-parametric part corresponding to the un-modeled complex thermal effects. For each part, an
autoregressive-moving average (ARMA) time series model was trained. The identified model was
then rewritten into the finite time horizon form using lifting technique.

Chapter 3 proposed a centralized iterative controller design approach to compensate the heat
interaction effect between zones and reject disturbances. The developed control system was com-
posed of a feedforward iterative learning controller (ILC) and an iteratively tuning feedback con-
troller. The ILC was responsible for eliminating the influence of repetitive disturbances caused by
repeating human activities and weather pattern. The feedback controller was introduced to enhance
the system’s robustness against non-repetitive disturbance components. To fulfill the energy saving
objective and satisfy zone occupants’ thermal comfort demand, the controller design was formu-
lated as an optimization with to-be-designed controllers as decision variables. The optimization
solution provided an optimal feedforward and possible non-causal feedback controller combina-
tion. A stabilizing projection step was then proposed to find the causal feedback controller. Due
to the projection step in the iterative controller design algorithm, the optimality of feedforward
and feedback controller combination did not hold anymore. In Chapter 4, a centralized concurrent
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controller design algorithm was introduced to achieve the optimal combination of feedforward ILC
and causal implementable feedback controller. In the proposed algorithm, Youla-parametrization
technique was applied so that the feedback controller designed was guaranteed to be stabilizing. By
introducing new variables, the controller design optimization was convexified and both controllers’
solutions could be achieved simultaneously by one optimization step.

As the centralized approach will fail for large-scale systems, in Chapter 5, a distributed co-
operative ILC algorithm was proposed for the multi-agent building system with communication
between agents enabled. In the distributed control system, all the agents share the same global cost
function. In order to achieve systemwise cooperation, the distributed system was designed with
two basic functions: solving for local controllers and broadcasting the updated controller results.
For each agent, with the information received from the interacting entities, its corresponding lo-
cal controller was solved by a distributed optimization. Afterwards, the solution results would be
broadcast to the communication system so that the other agents could adjust their control decisions
accordingly. After repeating such procedure for iterations, the convergence to global optimum
could be reached. The algorithm’s performance was illustrated by simulations and the conver-
gence property was theoretically proven.

Autonomous Driving System
In Part II of the dissertaion, several decentralized algorithms were proposed for the autonomous
driving system. In Chapter 6, the interaction between vehicle agents was formulated as an op-
timization based negotiation about the right of the road. The two key factors of the negotia-
tion, namely, concession and persuasion were both introduced into the optimization framework
to achieve intelligent driving behaviors. The concession was realized by a tuning weight in the
cost function making tradeoff betwen the ego vehicle and interacting vehicles. The persuasion was
expressed by a convex constraint imposed on the ego vehicle’s driving state so that it could actively
claim its own driving right. The concession and persuasion were tuned according to the interacting
vehicle’s reaction to the ego vehicle’s cooperative proposal.

In the negotiation algorithm, the ego agent needed to plan for the interacting party as well to
make a proposal, which increased the computatinal load. In Chapter 7, a Bayesian persuasion
based algorithm was developed to reduce the computational load. In the Bayesian persuasion, the
ego vehicle agent was chosen as the persuader providing information and the interacting vehicle
was the corresponding information receiver. Since the interacting agent’s decision making was
dependent on the world state influenced by the persuader, by providing appropriate information,
the persuader would be able to manipulate the interacting agent’s posterior belief of the driving
situation and thus exert influence on its future behavior. The persuasion process was formulated
as an optimization. With the Gaussian assumption and integral approximation, the problem was
transformed to a convex form.

In Chapter 8, the agents’ interaction was formulated as a two-player persuasion game, which
was developed from the game of chicken. In the persuasion game, both players had two options:
yielding and passing and the game’s mixed Nash equilibrium represented interacting agents’ opti-
mal yielding/passing probabilities in the current driving scenario. The game’s payoff matrix was
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designed based on the agent’s driving style information estimated by each other. In order to imitate
human’s decision making strategy, the cumulative prospect theory (CPT) was applied to develop
the utility function from the payoff matrix. Since the utility in CPT form was highly nonlinear,
a numerical solution was found for the Nash equilibrium. The obtained optimal intention was
then formulated as a convex constraint in the trajectory planning optimization. With the optimal
intention decision made by the persuasion game and expressive trajectory optimization, the ego
autonomous vehicle was capable of performing human-like behavior in various interaction scenar-
ios.

9.2 Future Work
This dissertation only serves as one step towards ultimate intelligent autonomous agent, there
are still many open questions for the interaction challenge including cost function design, joint
interaction among multiple agents and computational efficiency.

Cost Function Design
In this dissertation, the controllers were desgined using an optimization based approach minimiz-
ing the cost function subject to certain constraints. However, since there are no general principles
for the cost function design, the definition of cost terms are still empirical dependent on the de-
signer’s knowledge and understanding of the system, which is vulnerable to biases and cognitive
limitations. Moreover, some factors in the decision making process are hard or even impossible
to be quantitatively described, e.g., in the driving system, the excitement of overtaking some other
vehicles and pressure when surrounded by some huge trucks. Therefore, establishing a general
systematic and objective methodology for quantitative cost function design is critical for next gen-
eration interactive autonomous agent control.

Joint Interaction Between Multiple Agents
In a multi-agent system, it is quite possible that three or more agents will interact with each other
at the same time. Such joint interaction process can be properly handled using the centralized and
distributed algorithm proposed for the building system in this dissertation. However, it can be very
troublesome for the decentralized approach. In order to consider influence of more other agents, the
ego agent needs to increase its own optimization problem size and takes into account the estimation
inaccuracy exponentially increased. In addition, the two-agent interaction solution algorithm may
require fundamental structure change to be applicable for joint interaction problems.

Computational Efficiency
The computational efficiency is critical for any algorithm to be applied in the real engineering sys-
tem. In this dissertation, all the formulated optimization problems are convexified so that they are
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valid for online implementatoin. However, along with the increase of problem size and number of
interacting agents, more efficient optimization solving technique becomes necessary. Furthermore,
for some engineering systems, the convexification may not be realizable or the control performance
will be significantly degraded after relaxation. For such systems, efficient non-convex optimization
solving algorithms will be more favorable.
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