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Quantitative Performance Evaluation of
Uncertainty-Aware Hybrid AADL Designs

Using Statistical Model Checking
Yongxiang Bao, Mingsong Chen, Member, IEEE, Qi Zhu, Member, IEEE, Tongquan Wei, Member, IEEE,

Frederic Mallet, Member, IEEE, and Tingliang Zhou

Abstract—The hybrid architecture analysis and design
language (AADL) has been proposed to model the interactions
between embedded control systems and continuous physical envi-
ronment. However, the worst-case performance analysis of hybrid
AADL designs often leads to overly pessimistic estimations,
and is not suitable for accurate reasoning about overall system
performance, in particular when the system closely interacts with
an uncertain external environment. To address this challenge, this
paper proposes a statistical model checking-based framework
that can perform quantitative evaluation of uncertainty-aware
hybrid AADL designs against various performance queries. Our
approach extends hybrid AADL to support the modeling of
environment uncertainties. Furthermore, we propose a set of
transformation rules that can automatically translate AADL
designs together with designers’ requirements into networks of
priced timed automata and performance queries, respectively.
Comprehensive experimental results on the movement authority
scenario of Chinese train control system level 3 demonstrate the
effectiveness of our approach.

Index Terms—Hybrid architecture analysis and design lan-
guage (AADL), quantitative performance evaluation, statistical
model checking (SMC), uncertainty.

I. INTRODUCTION

TO PROMPTLY and accurately sense and control the
physical world, more and more real-time embedded

systems are deployed into our surrounding environment. As
a result, the stringent safety-critical requirements coupled
with increasing interactions with uncertain physical environ-
ments make the design complexity of cyber-physical systems
(CPS) skyrocketing [1], [2]. Unfortunately, due to the lack
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of architecture-level performance evaluation approaches con-
sidering uncertain environments, the required performance
of integrated CPS implementations can be easily violated.
Therefore, how to model the uncertain behaviors of both cyber
and physical elements and how to guarantee meeting the crit-
ical functional and real-time requirements have become major
challenges in CPS architecture design.

Architecture analysis and design language (AADL) [3]–[5]
has been widely adopted for the design and analysis of
safety-critical real-time systems (e.g., automotive, avionics,
and railway systems). By defining various modeling constructs
for hardware and software components, AADL core lan-
guage supports the structural description of system partitioning
and connectivity among components, while the semantics of
AADL can be extended via annex sublanguages and user-
defined properties. An AADL specification provides a set of
modeling constructs for the description and verification of both
functional and nonfunctional properties of interacting software
and hardware components. Since the core AADL language
only supports modeling of hardware and software components,
to model the physical environment we adopt the hybrid AADL,
which supports continuous behavior modeling via the hybrid
annex [6].

When modeling a safety-critical system using AADL,
before the design refinement, there is a rigorous certifica-
tion process to verify whether the AADL design satisfies
the required safety properties. Although existing AADL IDE
tools such as OSATE [7] can be used to check timing
properties (e.g., flow latency), most of existing approaches
adopt the worst-case timing analysis without considering
performance variations, which can easily lead to overly pes-
simistic performance estimations. To extend the performance
analysis capability of AADL designs, various model trans-
formation approaches [8], [9] have been proposed to verify
AADL models based on existing verification and analysis
tools. For quantitative analysis of AADL designs with uncer-
tain environment, designers would like to ask questions such
as “What is the probability that a specified scenario can
be achieved within time x?” However, existing approaches
focus on checking safety properties that only have an answer
of “yes” or “no” without considering uncertain environ-
ments. Few of them can quantitatively reason why a given
performance requirement cannot be achieved and answer how
to improve the design performance. Clearly, the bottleneck
is the lack of powerful quantitative evaluation approaches
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that can help AADL designers to make decisions during the
architecture design.

To enable the quantitative analysis for hybrid AADL
designs, we propose a novel framework based on statistical
model checking (SMC) [10] which relies on the monitor-
ing of random simulation runs of systems. By analyzing the
simulation results using statistical approaches (e.g., sequential
hypothesis testing or Monte Carlo simulation), the satisfaction
probability of specified properties (i.e., performance require-
ments) can be estimated. Unlike traditional formal verification
methods, which need to explore all the state space, SMC only
investigates a limited number of simulation runs of systems
and requires far less memory and time. Therefore, SMC is
very suitable for the approximate functional validation of com-
plex AADL designs. We use the statistical model checker
UPPAAL-SMC [10] as the engine of our approach, to leverage
its rich modeling constructs and flexible mapping mechanisms.

Based on UPPAAL-SMC, this paper makes three following
major contributions.

1) We extend the syntax and semantics of hybrid
AADL specifications [6] using our proposed uncer-
tainty annex, which enables the accurate modeling of
both performance variations caused by uncertain envi-
ronments and performance requirements specified by
designers.

2) To automate the quantitative analysis of uncertainty-
aware hybrid AADL designs, we rely on network of
priced timed automata (NPTA) [10] as the model of
computation in our approach. We propose a set of map-
ping rules that can automatically transform uncertain-
aware hybrid AADL designs into NPTA models and
convert the performance requirements into various kinds
of queries in the form of cost-constrained temporal
logic [11].

3) Based on our proposed SMC-based evaluation frame-
work, we implement a tool chain that integrates both
UPPAAL-SMC and the open-source AADL tool envi-
ronment OSATE to enable the automated performance
evaluation and comparison of uncertainty-aware hybrid
AADL designs.

The rest of this paper is organized as follows. After intro-
ducing the related work on AADL and SMC-based evaluation
approaches in Section II, Section III presents the details
of our proposal. Based on an industrial Chinese train con-
trol system level 3 (CTCS-3) movement authority (MA)
design, Section IV shows that our proposed approach can be
effectively applied to the quantitative analysis of Uncertain
hybrid AADL designs. Finally, Section V concludes this
paper.

II. RELATED WORK

To facilitate architecture design and analysis of safety-
critical systems, various AADL simulation and verification
tools were investigated [5]. For example, Jahier et al. [15]
proposed an approach that can translate both AADL models
and software components developed in synchronous languages
(i.e., SCADE and Lustre) into executable models, which
can be simulated and validated together. Yu et al. [13]

presented a co-simulation and co-verification framework for
AADL and Simulink designs. Based on a formal poly-
chronous/multiclock model of computation, an original clock-
based timing analysis and validation of the overall system is
achieved. Larson et al. [16] introduced the behavioral lan-
guage for embedded systems with software (BLESS) annex
for AADL. The extended AADL language enables engineers
to specify contracts on AADL components that can capture
both functional and timing properties. They also developed the
BLESS proof tool which can check whether AADL behavioral
descriptions conform to specified contracts. Although these
approaches are promising in functional checking, few of them
consider performance issues for AADL designs.

Rather than developing dedicated verification tools for
AADL designs, more and more model transformation-
based AADL analysis approaches resort to the benefits of
widely used model checking techniques [18]. For instance,
Hu et al. [8] presented a set of formally defined rules that can
translate a subset of AADL to corresponding timed abstract
state machines models for the purpose of timing and resource
verification. To ensure completeness and consistency of an
AADL specification as well as its conformity with the end
product, Johnsen et al. [9] presented a formal verification tech-
nique by translating AADL designs to timed automata models.
Bozzano et al. [12] proposed a formal semantics for AADL
that incorporates functional, probabilistic, and hybrid aspects.
Based on model checking techniques, they developed a toolset
that can be used for a wide spectrum of design purposes
ranging from requirements validation to performability evalu-
ation and diagnosability analysis. Although the above model
checking-based methods can check the functional correctness
of systems in a fully automated manner, most of them suf-
fer from the state space explosion problem [18]. Moreover,
very few of them take the uncertain physical environment into
account.

Since CPSs interact with surrounding physical environment
frequently, the behavior modeling and verification of mul-
tirate and hybrid systems have become important research
topics in AADL design. For example, Bae et al. [14] proposed
a modeling language named multirate synchronous AADL,
which can be used to specify multirate synchronous designs
using existing AADL modeling standard. They also defined
the formal semantics of multirate synchronous AADL, which
enables the formal verification using real-time Maude. Based
on BLESS annex [16] and hybrid annex [6], Ahmad et al. [20]
modeled and analyzed the MA scenario of the CTCS-3 in
AADL. Their approach can verify both discrete and hybrid
behaviors of annotated hybrid AADL designs based on the
interactive hybrid Hoare logic theorem prover [17]. However,
since their approach is based on theorem proving methods, it
cannot be fully automated due to the required expert knowl-
edge and manual “proof assistants.” Furthermore, existing
theorem proving-based methods focus on proving functional
correctness of AADL designs. Few of them can be used
to evaluate design performance within uncertain physical
environment.

Due to its scalability and effectiveness in evaluat-
ing stochastic behavior, SMC has become a preferred
option in performance analysis of system designs with
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Fig. 1. Workflow of our framework.

uncertainties [21]. Since SMC is based on simulation,
it requires far less memory and time, which enables
highly scalable validation for AADL designs. For example,
Bruintjes et al. [24] introduced an SMC approach for timed
reachability analysis of extended AADL designs. They devel-
oped a simulator that can perform probabilistic analysis of
underlying stochastic models using Monte Carlo simulation.
Our approach differs greatly from [24]. In [24], the extended
AADL is based on linear-hybrid models, whereas our approach
supports the modeling of nonlinear behaviors for a large group
of CPSs. In particular, the clock rates in UPPAAL-SMC can
be described using ordinary differential equations [10], e.g.,
c1′ == sin(c2), c1′ == c1∗c2+c3, where c1, c2, and c3 are
three clock variables. In addition to the capability of modeling
nonlinear behaviors, our approach focuses on evaluating CPS
performance under uncertain environments, while [24] empha-
sizes on the error behavior modeling of hardware and software
components. Moreover, [24] only considers the probability of
event occurrences and delay variations following either uni-
form or exponential distributions, while our approach allows
designers to define their own uncertain objects (e.g., system
parameters and user inputs) following a wide spectrum of
programmable distributions. Furthermore, the method in [24]
only supports the evaluation of time-bounded queries, while
our evaluation approach is based on cost-constrained temporal
logic which is more comprehensive.

To the best of our knowledge, so far there is no approach
that supports the performance evaluation for hybrid AADL
designs considering the uncertainties caused by physical envi-
ronments. Our proposed approach is the first attempt that not
only supports the uncertainty modeling in AADL, but also
enables the quantitative performance reasoning and compari-
son of uncertainty-aware designs at the architecture level.

III. OUR APPROACH

Fig. 1 shows the workflow of our approach. Since the core
AADL focuses on structural modeling, to describe concrete
execution behaviors of components, we need to resort to
annex modeling which is a mechanism provided by AADL
for the purpose of semantics extension. In this paper, we

focus on uncertain hybrid systems, thus our approach adopts
the hybrid and BLESS annexes to describe the dynamic and
hybrid behaviors of systems. To extend the semantics of hybrid
systems, we propose the uncertainty annex to specify vari-
ous performance variations (e.g., network delays and sensor
inputs) and performance requirements posed by designers.
Based on our defined AADL and NPTA meta-models, hybrid
AADL designs with extended performance variation infor-
mation can be extracted and transformed into corresponding
uncertainty-aware NPTA models. The specified performance
requirements are also parsed by our developed parser for
the generation of properties, which are in the form of cost-
constrained temporal logic [10]. Based on statistical model
checker UPPAAL-SMC, our approach can conduct the quan-
titative evaluation of uncertain hybrid AADL designs against
various properties (i.e., performance and safety queries). In the
following sections, we explain the major steps of our approach
in details.

A. Uncertainty-Aware Modeling of Hybrid AADL

To model a hierarchical real-time system, a typical
AADL [3], [4] design comprises both software components
and their corresponding execution platform. Software com-
ponents such as thread, thread group, process, data, and
subprogram can be used to construct the software architecture
of systems. Execution platform components including pro-
cessor, memory, device, and bus can be used for hardware
modeling. Within a system, all these components communicate
with each other through connections to accomplish specific
functions.

Definition 1: An uncertain hybrid AADL design is a 9-
tuple < Comp, Port,Conn,Mp,D, �,M�,Annex,Ma > where:
1) Comp is a finite set of hardware/software components
including their declarations and implementations; 2) Port is a
finite set of component ports including data ports, event ports
and event data ports; 3) Conn ⊆ Port × Port denotes a finite set
of connections between ports; 4) Mp : Port → Comp assigns
ports to corresponding components; 5) D is a finite set of
data which can be transferred via connections; 6) � is a finite
set of AADL properties; 7) M� : � → Comp assigns AADL
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properties to corresponding components; 8) Annex is a finite set
of annex declarations, i.e., BLESS annex, hybrid annex, and
uncertainty annex; and 9) Ma : Annex → Comp maps annexes
to their components.

To enable the quantitative evaluation of hybrid AADL
designs considering uncertain environments, Definition 1 gives
the formal definition of our Uncertain hybrid AADL. In
AADL, the definitions of both hardware and software compo-
nents contain two parts, i.e., declaration and implementation.
To enable interactions with other components, declaration
defines ports for components which can be used to transmit
and receive data or events, whereas implementation provides
the details of a component including its subcomponents, prop-
erties and the connections between ports. In addition to basic
data types, AADL allows designers to define their own data
types to enrich AADL designs.

By using annexes, designers can precisely define and
interpret behaviors of components by themselves. Different
from traditional AADL designs, our uncertain hybrid AADL
is based on a combination of BLESS, hybrid, and uncertainty
annex declarations. Our approach adopts BLESS annexes and
hybrid annexes to model the discrete and continuous behav-
iors of AADL components, respectively. To model various
uncertainties caused by external environment, we introduce
the uncertainty annex.

1) Background of BLESS and Hybrid Annexes: Based on
state machine like semantics, BLESS annex [16] provides a
set of notations which can be used to formally define dis-
crete component behaviors, while the BLESS assertions can
be used to specify and check the desired system properties.
Definition 2 gives the formal definition of a BLESS annex
instance (BAI) which can be embedded into a component
implementation. Note that a transition of a BAI may have
multiple actions for variable assignments or port communi-
cations. Since our approach does not adopt the assertions
provided by BLESS annex, we did not incorporate it in
Definition 2.

Definition 2: A BAI [16] is a 6-tuple <

S, s0,BV,Act,G,T > where: 1) S is a finite set of
states; 2) s0 is the initial state; 3) BV is a finite set of
variables; 4) Act is a finite set of actions; 5) G is a finite set
of guard conditions over BV; and 6) T ⊆ S × G × 2Act × S
denotes the finite set of transitions.

Definition 3 gives the formal definition of hybrid annex
instances (HAI). Based on semantics of hybrid communicat-
ing sequential processes (CSP) [6], [27], hybrid annex can be
applied in continuous behavior modeling of AADL device and
abstract component implementations, such as sensors, actua-
tors and physical processes. When using the hybrid annex,
both discrete and continuous variables are declared in the
variables section, and the values of constants are initialized
in the constants section. The behavior section of an HAI is
used to describe the continuous behaviors of annotated AADL
components in terms of concurrently executing processes.
Such behaviors indicating continuous process evolutions are
specified using differential expressions. The physical processes
communicate with each other using channels (declared in the
channels section) or ports (i.e., the ports of associated AADL
component). Continuous process evolution may be terminated

after a specific time or on a communication event, which is
invoked through timed and communication interrupts, respec-
tively. A timed interrupt preempts continuous evolution after
a given amount of time. A communication interrupt preempts
continuous evolution whenever communication takes place
along any one of the named channels or ports. For more
details of the processes and interrupts, please check the exam-
ples shown in Listing 1 and the model transformation rules in
Section III-B5. Note that the hybrid annex also supports asser-
tions which take the same format as BLESS assertions [16].
Since none of these assertions are suitable for quantitative
analysis, we neglect the assertion definition in Definition 3.

Definition 3: An HAI is a 6-tuple < HV,HC,P,CP,
I,Mi > where: 1) HV is a finite set of discrete and continuous
variables; 2) HC is a finite set of constants that can only be ini-
tialized at declaration; 3) P is a finite set of processes that are
used to specify continuous behaviors of AADL components;
4) CP is a finite set of channels and ports for synchroniz-
ing processes; 5) I is a finite set of time or communication
interrupts; and 6) Mi : I → P binds interrupts to associated
processes.

2) Definition, Syntax, and Semantics of Uncertainty Annex:
Although there are many tools that are proposed to check
the performance of AADL designs, most of them assume a
uniform distribution for flow delays. Few of them consider
the variations (e.g., sensor inputs and network delays) caused
by uncertain environments. To support the modeling of such
kinds of uncertainties, based on Definition 4, we extend the
semantics and syntax of hybrid AADL using our proposed
uncertainty annex.

Definition 4: An uncertainty annex instance (UAI) is a
7-tuple < TV,PV,DIST,Mtv,Mpv,Mdist,Q > where: 1) TV
is a finite set of stochastic time variables; 2) PV is a finite
set of stochastic price variables; 3) DIST is a finite set of
distribution functions; 4) Mtv : TV → {Port ∪ T} binds each
time variable tv ∈ TV to a port p ∈ Port or a transition
t ∈ T; 5) Mpv : PV → {BV ∪ HC} binds each variable
pv ∈ PV to a variable bv ∈ BV or a constant hc ∈ HC;
6) Mdist : {TV ∪ PV} → DIST assigns each variable v ∈
{TV ∪ PV} with a distribution function; and 7) Q is a finite
set of queries for the quantitative performance evaluation.

Unlike existing approaches, our uncertainty annex sup-
ports a large spectrum of distributions which can be used to
accurately capture the system behaviors within an uncertain
environment. To simplify the stochastic behavior modeling,
we define two kinds of stochastic variables, i.e., time vari-
ables which denote the time variations of AADL constructs
(e.g., ports), and price variables that indicate the value vari-
ations of AADL variables and constants. For example, if a
time variable tv is bound to a port p, the data transmission
time via p follows the specified time distribution Mdist(tv).
Note that uncertainty annex itself is only a syntactical nota-
tion, which specifies the uncertain values for constants and
variables and uncertain communication delays for ports. It
does not change the semantics of hybrid AADL designs. To
enable the SMC, the uncertainty annexes are used to indicate
the value of constants/variables or the delay of ports at the
beginning or during the execution of a simulation run follow-
ing the given distributions. During the automated quantitative
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evaluation, uncertainty annex allows the designers to specify
their queries to assess whether an uncertain hybrid AADL
design satisfies the requirements

Uncertainty Annex ::=‘{∗ ∗’

variables {variables_declaration} +
distributions {distribution_declaration} +
queries {query_declaration} +
‘∗∗}’.

As an extension, UAIs can be embedded into AADL com-
ponents as a subclause to specify their uncertain behaviors.
To describe the context-free syntax of uncertainty annex,
we explain all the notations of uncertainty annex using the
Extended Backus-Naur Form, where literals are printed in
bold; alternatives are separated by “|”; grouping are enclosed
with parentheses “( )”; square braces “[ ]” delimit optional ele-
ments; and “{ }+” and “{ }∗” are used to signify one-or-more,
and zero-or-more of the enclosed elements, respectively. As
shown in the above production rule, an uncertainty annex con-
sists of three parts, i.e., variables section, distributions section
and queries section. Their functions and usages are explained
as follows.

a) Variables section: Instead of modeling the uncer-
tainties of environment components directly, our approach
implicitly reflects the environment uncertainties by specifying
distributions for both data transmission time via connections
between interconnected ports and the values of system parame-
ters (e.g., AADL variables and constants). To model stochastic
behaviors of systems, we define local variables in this sec-
tion to indicate the uncertain dynamics of the corresponding
AADL component features. In our approach, all these vari-
ables are associated with specific probability distributions to
signify their possible values within an uncertain environment.
The following rules show the grammar for variables section:

variables_declaration ::=
type_prefix {variable_identifier} +

applied to {component_ref}∗
type_prefix ::= time | dynamic price | static price

component_ref ::= features_ref | annex_subclause.

In the above rules, the type prefix time means that local
variables are used to model the stochastic timing informa-
tion of component features. For example, a local time variable
can be bound to a component port to specify uncertain com-
munication delays on the connection via this port. The local
variables with type prefix static/dynamic price can be used
to specify the uncertain value assignment for variables and
constants declared in annotated components or their annexes.
In our approach, we consider two kinds of local price vari-
ables, i.e., static price variables and dynamic price variables.
Here, static price means that the initial value of the associ-
ated AADL (or annex) variables and constants are assigned
stochastically at the beginning of system execution. Unlike
static price variables which only conduct the initialization of
variables or constants once, local dynamic price variables are
usually bound to AADL (or annex) variables to model their
random value updates when newly referred.

b) Distributions section: The distributions section is to
specify the probability distributions of the variables defined
in the variables section. To allow the modeling of various
stochastic behaviors, our uncertainty annex has a built-in dis-
tribution functional library that supports a large spectrum of
widely used distributions, such as uniform, exponential and
normal distributions. The following production rules show how
to bind a variable with a specific distribution function:

distribution_declaration ::=
varable_identifier_reference = distribution

distribution ::=Normal‘(’const, const‘)’

| Uniform‘(’const, const‘)’

| Exponential‘(’const‘)’ | . . .

c) Queries section: To quantify the performance of
uncertain hybrid AADL models during the architecture level
design, designers would like to ask questions such as “what is
the probability that a scenario can happen or a condition can be
satisfied with limited resources?”. Uncertainty annex provides
the queries section that can be used for declaring such queries
to enable safety and performance evaluation of AADL designs.
As an effective way to check the quality and performance of
AADL designs, designers can put their design requirements in
this section. Only when all the evaluated requirements meet
design targets, the AADL design can be used as a reference
for the implementation

query_declaration ::=
query_identifier = query_target under constraint

query_target ::= expr {&& expr} ∗
expr ::= condition | ‘(’condition (&& | ‖) expr ‘)’

condition ::= identifier operation (const | identifier)

constraint ::= [identifier] operation const

operation ::= < | ≤ | == | != | ≥ | >.
When specifying a query, designers should provide two

things: 1) a query target that denotes a safety scenario or
performance metric in the form of a predicate expression and
2) a constraint indicating the available resources to achieve
the target. The above production rules present how to declare
queries. Here, identifier denotes the name of AADL features
(e.g., ports) or annex variables declared in annotated com-
ponent implementations, and const denotes a constant value.
The target of a query is a predicate represented by a con-
junction of expressions. The query constraint is in the form of
“res op lim”, where res, op and lim denote resource, operation
and resource limit, respectively. If the resource is not speci-
fied explicitly, the system time will be used as the resource
by default.

Listing 1 presents a hybrid AADL design example anno-
tated with a UAI, which describes the uncertain behavior of the
train component within the CTCS-3 MA scenario (see details
in Section IV). To operate safely, the train periodically sends
its current location and velocity information to the on-board
train controller through ports ts, tv and receives the acceler-
ation instruction directed by the controller from the port ta.
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Listing 1. Uncertain hybrid AADL design for Train in CTCS-3 MA.

All these ports are defined in the Train declaration. To model
the continuous behaviors, the train design adopts the hybrid
annex. Within the hybrid annex, the system time is modeled
using the continuous variable t whose rate is 1 (indicated by
notation ‘DT 1 t = 1’ which means the derivation of t is 1). In
the hybrid annex behavior section, the notation ‘DT 1 s = v’
defines train speed and the notation ‘DT 1 v = a+ fr’ denotes
the acceleration of the train. During the running, the traction
control force is determined by the value of a calculated by the
controller, while the resistance is determined by the friction
coefficient of the track. In this example, we consider two kinds
of uncertainties. The first one represents uncertain communi-
cation delays between trains and controllers. The second one
is the track friction which is highly dependent on the external
environment (e.g., weather and temperature). Therefore, we
define two local variables in the variables section of the uncer-
tainty annex. The time variable v_delay is bound to the port
ts with a distribution Normal (0.15,0.04) (defined in the dis-
tributions section). We set the variable v_fr as a static price
variable, since we assume that the coefficient for the whole
track and its value is only updated once at the beginning of
each system run. In the queries section, query p1 tries to figure
out the probability that the train can stop before the end of
authority (denoted by EOA) within 300 s, and query p2 tries
to reason whether the train can run 4 km within 200 s.

B. NPTA Generation From Uncertain Hybrid AADL

To formalize the semantics of uncertain hybrid AADL,
we adopt NPTA as the model of computation. This section
presents our model transformation approach in detail.

1) Preliminary Knowledge of NPTA: Unlike traditional
timed automata, the clocks of a priced timed automation
(PTA) [25] can evolve with different rates. To simplify the for-
mal definition, we skip the introduction to the richer flavors of
PTAs supported by UPPAAL-SMC, e.g., urgent locations [25].
Let C be a clock set. A clock valuation is a function v : C →
R>=0 which maps C to the set of non-negative reals R>=0.
Let v0 be the initial valuation where v0(c) = 0 for all c ∈ C.
Let U(C) (L(C)) be the set of upper-bound (lower-bound)
guards which are in the form x ∼ k or x − y ∼ k, where
x, y ∈ C, k ∈ R and ∼∈ {<,≤,==} (∼∈ {>,≥,==}).
Assuming g ∈ L(C) ∪ U(C), v(C) |= g denotes that valua-
tion v(C) satisfies the constraint g. Definition 5 presents the
formal definition of a PTA.

Definition 5: A PTA is a 8-tuple A =
(L, l0,C, �,E,R, I, τ ) where: 1) L is a finite set of
locations; 2) l0 ∈ L is the initial location; 3) C is a finite set
of clocks; 4) � = �i ∪�o is a finite set of actions where �i
and �o indicate exclusive input actions and output actions,
respectively; 5) E ⊆ L ×L(C)×� × 2C × L is a finite set of
transitions, where L(C) denotes the transition guard and 2C

denotes a set of reset clocks of the transition; 6) R : L → FC

assigns a clock rate vector to each location, where F(c)
specifies the clock rate for c ∈ C in the form of ordinary
differential equations; 7) I : L → U(C) assigns an invariant
to each location; and 8) τ is the system clock which is never
reset.

Let Ai = (Li, li0,Ci, �i,Ei,Ri, Ii, τ i) and Aj = (Lj, lj0,Cj,

�j,Ej,Rj, Ij, τ j) (i 
= j) be two PTAs. The PTAs Ai and Aj are
composable into a network only if Ci ∩Cj = ∅ and �i

o ∩�j
o =

∅. Definition 6 presents the formal structure of an NPTA.
Definition 6: Let Ai = (Li, li0,Ci, �i,Ei,Ri, Ii, τ i)

(1 ≤ i ≤ n) be a PTA. Their composition
(A1 | . . . | An) is an NPTA which is a 8-tuple NA =
(NL,NL0,NC,N�,NE,NR,NI, θ), where: 1) NL = ×iLi;
2) NL0 = ×i{li0}; 3) NC = ∪iCi; 4) N� = ∪i�

i; 5)
((l1, . . . , lj, . . . , ln), gj, a, rj, (l1, . . . , l′j, . . . , ln)) ∈ NE when-
ever (lj, gj, a, rj, l′j) ∈ Ej; 6) NR(l1, . . . ln)(x) = Ri(li)(x)
when x ∈ Ci; 7) NI(l1, . . . , ln) = ∧iIi(li) (li ∈ Li); and 8) θ
is the system clock shared by all the PTAs.

Let (l, v) ∈ NL × RNC
>=0 be an NPTA state where l =

(l1, . . . , ln) is a composite of locations from different PTAs
and v |= NI(l). Let v[X] indicate the reset operation on the
clock set X. That is if c ∈ X, v(c) is set to 0, otherwise
v(c) keeps its value. Following the composition rules [25], the
semantics of an NPTA is mainly based on the following two
kinds of transitions: 1) a discrete transition (l, v)

a−→ (l′, v′)
can be triggered if there is a transition (l, g, a,X, l′) such that

v |= g and v′ = v[X] and 2) a delay transition (l, v)
d−→

(l, v′) can be triggered if v′ = v + ∫ v(θ)+d
v(θ) NR(l) dθ such that

v |= NI(l) and v′ |= NI(l), where v(θ) indicates the system
time of entering state (l, v). Within an NPTA, PTAs com-
municate with each other using broadcast channels or shared
variables. For more details about NPTA, please refer to [10].

2) Example of NPTA With Uncertainties: Fig. 2 shows an
NPTA consisting of two PTAs A and B, where each PTA
has four locations and two clocks (e.g., c1 and ca in A). The
locations here marked with symbol “U” are urgent locations
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(a)

(b)

Fig. 2. NPTA (A|B). (a) PTA A. (b) PTA B.

which can freeze time. In other words, time is not allowed
to pass when a PTA is in an urgent location [10]. Note that
clocks can evolve with different rates in different locations.
The rate of a clock is 1 by default. To change the rate of a
clock, we need to modify the rate value of the primed version
of the clock. For example, c′

a == 3 in A2 denotes that the
rate of ca is 3 in this location. Since UPPAAL-SMC supports
the modeling of clock rates using expressions in the form of
ordinary differential equations, UPPAAL-SMC can be used to
model nonlinear hybrid systems. Note that although UPPAAL-
SMC only supports the uniform and exponential distributions
explicitly, based on the C-like programming constructs and
built-in function random() provided by UPPAAL-SMC var-
ious distributions can be constructed. For example, we can
construct the normal distribution based on the Box-Muller
approach [19]. Assume that the values of two variables t1 and
t2 follow the normal distributions N(1, 0.32) and N(4, 12),
respectively. The action t1 = Normal(1, 0.3) on the outgo-
ing edge of A1 assigns t1 with a random value following
N(1, 0.32). Since the invariant in A2 is c1 ≤ t1 and the guard
on the outgoing edge of A2 is c1 ≥ t1, PTA A is stuck at A2 for
a time of t1. If the NPTA is simulated for numerous times, the
sojourn time at location A2 follows the distribution N(1, 0.32).
In this example, PTAs are synchronized by two complementary
action pairs (“!” indicating sending and “?” denotes receiving)
via urgent channels a and b. While simulating (A|B) with a
large number of runs, we can find that the reaching time of
the composite location (A3,B3) follows the normal distribution
N(4+1, 12+0.32), since the sojourn time of (A|B) at composite
locations (A0,B1) and (A2,B2) follows the normal distribu-
tions N(4, 12) and N(1, 0.32), respectively. By adopting the
NPTA template like the above example, arbitrarily complex
stochastic behaviors can be modeled.

3) Mapping From Uncertain Hybrid AADL to NPTA:
To facilitate the detailed modeling of system architectures,
AADL provides more types of syntax modeling constructs
than NPTA. Since our approach focuses on quantitative analy-
sis of stochastic behaviors of uncertain hybrid AADL designs,
during the model transformation we neglect all the AADL
constructs which cannot affect the system behaviors. Table I
shows the structural mappings from uncertain hybrid AADL
constructs to NPTA constructs. Note that we only list a sub-
set of AADL constructs that have a strong correlation with
uncertainty-aware hybrid features. This subset can essentially
be used to fully describe the behaviors of hybrid systems
within an uncertain environment. In our approach, we use the

TABLE I
CONSTRUCT MAPPINGS BETWEEN AADL AND NPTA

BLESS annex to specify the discrete components of systems,
e.g., controller. We use the hybrid annex to describe both dis-
crete and continuous behaviors of hybrid components, e.g.,
plants. The instances of both annexes can be described using
PTAs. Note that our proposed uncertainty annex focuses on
the variation modeling of communication delays and param-
eter values. It only slightly changes the structure of PTAs.
To model the overall uncertain behaviors of the whole hybrid
system, all the generated PTAs are synchronized through the
channels, which are transformed from AADL connections.
To guarantee the correctness of our mappings from AADL
to NPTA and final translation results, we develop a compre-
hensive test suite which covers all possible notations of the
three annexes. The testing results show that the NPTA gen-
erated by our transformation rules (templates) can correctly
and accurately reflect the behaviors of uncertain hybrid AADL
designs. In Section III-B5, we will show the details of such
transformation rules with concrete examples.

Our approach relies on the meta-models of AADL and its
annexes to guide AADL model parsing as well as the con-
struct mapping. Similar to the formal definitions presented
in Section III-A, the meta-models define a set of correlated
subconstructs of the model, which can be used to extract the
necessary information for the model transformation. Due to the
space limitation, we do not introduce the meta-models used
in our approach here. The meta-model for the AADL without
annex can be found in [4], and the meta-models for BLESS
and hybrid annexes can be obtained from [16] and [6], respec-
tively. Similar to BLESS and hybrid annex, the meta-model
of uncertainty annex can be inferred from Definition 4.

In our approach, the generated NPTA model can be divided
into two parts: 1) back-end configurations that are used to
declare necessary data structures (e.g., variables and chan-
nels) and functions (e.g., distributions and actions) for the
stochastic modeling of NPTA modes and 2) front-end mod-
els that are used to model the behaviors of hardware, software
and environment components. Our approach assigns each of
AADL components annotated by BLESS and hybrid annex
subclauses with a front-end model and a back-end configura-
tion. Moreover, there is a global back-end configuration for
the whole system whose information are shared by all the
front-end models.

4) Back-End Configuration Generation: As a textual file,
a back-end configuration mainly consists of: 1) a set of dec-
larations of variable and channels and 2) a set of distribution
and action functions. By using our approach, such information
can be automatically extracted from AADL designs. Listing 2
shows the back-end configuration generated from the train
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Listing 2. Back-end configuration of Train.

AADL shown in Listing 1. To save space, we put both the
global configuration and the local configuration for the train
within the same file.

For a back-end configuration, the global declarations of
variables and channels are generated from the top level of
AADL designs, i.e., hardware/software components and their
interconnections. For each port of an AADL component, we
create an urgent channel1 that indicates the AADL connec-
tion associated with the port. For example, assuming that the
connection name bound by the port tv in the AADL design
is _tv, we declare two things for this port in the global con-
figuration. The first one is an urgent channel c_tv that is used
for the synchronization with other components. Since tv is a
data port for the velocity of trains, we declare a variable v_tv
of type double to hold data value during the data transmis-
sion via the connection. The constants defined in the global
NPTA configuration correspond to the constants (e.g., EOA)
defined in top level of AADL designs. For each NPTA model,
a clock system is defined in the global configuration to model
the system time. To model different stochastic behaviors of
PTAs, the global back-end configuration comprises a library of
distribution functions, which can be used by front-end NPTA
models or the local configurations.

The local back-end configuration mainly deals with the def-
inition of data structures for specific AADL components and
annexes. During the model transformation, all the continu-
ous AADL variables are converted to clock typed variables,
and other AADL variables are converted to nonclock variables
with different types. For each local configuration of PTAs, we
define one built-in function initialize() which is used to ini-
tialize the values of variables. To enable the reset operation
in a PTA, for each local configuration, we define one clock
d_t. For the uncertainty annex in Listing 1, there are two vari-
ables declared, i.e., v_delay and v_fr. Note that only v_delay
has a counterpart in the back-end configuration, since it is a
time variable. The price variables have no counterparts, since
they are used as intermediate variables during the model trans-
formation. Note that the transformation rules for static and

1An urgent channel does not allow a delay if it is possible to trigger a
synchronization over it. We only use urgent channels in our translation, since
the timing behavior of NPTA using urgent channels is deterministic. We use
urgent locations in the transformation for the same reason.

dynamic price variables are different. Since static price vari-
ables only take effect at the beginning of the simulation, we
assign their random values to associated variables in the func-
tion initialize() of local back-end configurations. For example,
we initialize the variable fr with a value following normal dis-
tribution N(−0.1, 0.052) in the back-end function initialize()
of the train example. Unlike static price variables, the dynamic
price variables generate random values during the execution
when necessary. It is widely used in front-end modeling to
indicate the random value change of variables. For example,
it can be used to model time-varying port delays.

5) Front-End Model Generation: As a graphical repre-
sentation, front-end models are used in UPPAAL-SMC to
describe the stochastic behaviors of PTAs. To describe the
hybrid behaviors of systems, our approach adopts two kinds
of annexes. We model the discrete behaviors of AADL com-
ponents (e.g., thread component) using the BLESS annex. To
describe continuous behaviors of components (e.g., device and
abstract components), we use the hybrid annex that is based on
hybrid CSP. For an AADL component without any annotated
annexes, we assume a simplified semantics for its behavior,
where the component periodically receives the data from its
input ports and sends the data to its output ports. Therefore,
the major task of front-end model generation is to transform
uncertainty-aware BLESS and hybrid annexes to their NPTA
counterparts.

a) Uncertainty modeling of front-end model: For front-
end model transformation, we consider two kinds of uncer-
tainties in the uncertainty annex. The first one is described by
time variables which are used to model the delay variations
of network communication or task execution. To model such
stochastic timing behaviors of system, we use the transforma-
tion pattern as shown in Fig. 3. Fig. 3(a) shows a scenario
where the PTA tries to send something via the channel using
the action channel. Without annotated uncertainty annexes, the
sending time of the action is fixed. However, by using our
uncertainty annex, we can associate a time variable v_delay
following normal distribution (i.e., N(1.0.22)) with this chan-
nel. By splitting the transition in Fig. 3(a) and introducing a
temporary location to indicate the waiting, we can model the
scenario that the action time follows the distribution N(1, 0.22)

as shown in Fig. 3(b). On the incoming edge of the newly
added location temp, we assign v_delay with a random value
following N(1, 0.22) and we reset the clock d_t. Note that the
invariant of location temp is d_t <=v_delay and the guard on
the outgoing edge of temp is d_t >= v_delay. Therefore, the
PTA remains at location temp for a time of v_delay following
the normal distribution N(1, 0.22). The second uncertainty in
the front-end model is specified by dynamic price variables
in the uncertainty annex, which mimics the random values of
parameters (e.g., sensor inputs). The transformation of such
uncertainty only needs to assign or replace the applied variable
with the given distribution function.

b) BLESS annex-based PTA generation: Listing 3
presents an AADL example annotated with both BLESS and
UAIs, which describes the uncertain behaviors of the controller
component within the CTCS-3 MA scenario (see details in
Section IV). Meanwhile, Fig. 4 shows the corresponding PTA
generated using our transformation rules. Due to the space
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(a) (b)

Fig. 3. Transformation pattern for uncertain PTA models. (a) Certain.
(b) Uncertain.

Listing 3. Uncertain AADL design for Controller in CTCS-3 MA.

limitation, we only give the partial AADL specification and
corresponding PTA for the controller.

From this example, we can find that the BLESS annex
shares a large overlap of the modeling constructs with PTA.
In BLESS annex, there are four kinds of states: 1) initial state;
2) complete state; 3) execution state; and 4) final state. Based
on the definition [16], the initial state and execution state
(with keyword “state”) are only used for the initialization and
branch operation, respectively. Therefore, they are converted
into urgent states in corresponding PTA, since they do not
consume any time. Conversely, the state machine of BLESS
annex leaves complete state upon periodical dispatch events,
and will stay at the final state forever when the whole con-
troller task finishes. Therefore, these two kinds of states will
be directly mapped to general PTA locations. Since the defi-
nition of BLESS transitions is more complex than the one of
PTA transitions, we need to use some specific transformation

Fig. 4. PTA model of Controller (partial).

pattern to generate PTA counterparts with equivalent seman-
tics. In BLESS annex, a transition allows for a sequence of
send (denoted by “!”) and receive (denoted by “?”) actions. As
an example shown in Listing 3, the transition T1_MA_Check
has two receive actions, i.e., m?(iMA) and ea?(e). Therefore,
after staying in the state GMA for 200 ms (indicated by the
guard dispatch>=0.2), the machine starts to receive the mes-
sage from the input event port m and input data port ea in a
sequential order. However, PTA models only allow one such
action on a transition. To model such combined send and
receive actions, for each action on the BLESS transition, we
introduce one auxiliary transition and one temporary location
to trigger the action in the order of their occurrences on the
BLESS transition. For example, in Fig. 4 two temporary loca-
tions (temp1 and temp2) are introduced for the two consequent
receive actions. Moreover, BLESS annex provides the assert
section and invariant section to specify the behavior constraints
of an AADL component. Such information can be directly
parsed and used as the transition guards and location invari-
ants in the generated PTA models. Since the AADL design of
the controller does not contain such information, we do not
show the corresponding translation in Fig. 4.

Note that, to model the network delay, in uncertainty
annex there may be some time variables associated with the
ports/channels used by the send actions. In this case, for each
send action we need to set the delay information on the newly
introduced location and transition pair. For example, in the
uncertainty annex of Listing 3, the time variable t_delay fol-
lowing the normal distribution N(0.2, 0.072) is applied to the
port r of the controller. Since there are two transitions (T0_go
and T4_MA_Retry in Listing 3) that conduct the send action,
we need to set the delay information on both the PTA loca-
tions temp0 and temp3 and their outgoing transitions using the
transformation template as shown in Fig. 3.

c) Hybrid annex-based PTA generation: When trans-
forming a hybrid annex annotated AADL [6], the front-end
PTA model is mainly extracted from the behavior section.
Since hybrid annex adopts the process algebra notations, the
behavior of component is described by a set of CSP process,
e.g., Train defined in the hybrid behavior section of Listing 1.

During the transformation, each CSP process is converted
to a location except for the skip process (e.g., continue in
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Fig. 5. PTA model of Train.

Listing 1). The continuous evolution of a CSP process is
expressed using differential expressions, which are translated
and used as the invariant of the corresponding nonurgent
location. As an example shown in Listing 1, the differential
expression ‘DT 1 s = v’ indicates that the derivative of s is v.
It can be translated into the derivative expression s′ = v and
used as a part of invariant for the location train.

To enable the communication between computation com-
ponents and physical environments, the semantics of hybrid
AADL allows two kinds of interruptions, i.e., timed inter-
rupts and communication interrupts. In the behavior section
of hybrid annex, a timed interrupt is defined as a part of CSP
process in the form of [ > time_val] >, which will preempt the
continuous evolution after an amount of time (i.e., time_val).
By using the similar transformation pattern shown in Fig. 3,
we can assure that the continuous evolution of CSP process
can be interrupted after a time of time_val. The communica-
tion interrupts enable the preemption of continuous evolutions
by communication events via AADL ports. For example, the
communication interrupt in the form of [[ > pout!(v)]] > EV
denotes that whenever a value of v is sent out the port pout,
the current evolution will be terminated and the CSP process
EV will be adopted as the subsequent behavior of the process.

Generally, a communication interrupt may contain a
sequence of send or receive actions. During the PTA trans-
formation, we model the actions based on their occurrence
order in the interrupt. For each action, we generate a new PTA
location together with a new transition with the correspond-
ing action on it. Note that in the generated PTA a location
should be set as urgent if the action on next edge is a send
action. When translating the choice operator of a CSP pro-
cess, we will create a new adjacent location in the generated
PTA for each alternative. The subsequent behavior of the pro-
cess is determined by the Boolean expression associated with
the alternative. To model the behavior of a repeating process
defined in the behavior section, we connect the last location
to the first location of the process in the PTA to form a loop.

Fig. 5 shows the PTA of the Train example defined in the
behavior section of Listing 1. To enable the execution of func-
tion initialize() defined in the local back-end configuration, we
introduce an urgent location start. On the outgoing transition
of location running train, the continuous variables s, a, and
v are initialized. Since the first action in the communication
interrupt is a send action (i.e., ts!(s)), we make the location
Train urgent. As defined in the uncertainty annex, the channel
associated with the port ts has a communication delay fol-
lowing N[0.15, 0.042]. Based on the pattern shown in Fig. 3,

we need to create a new location (i.e., temp0) to model the
delay information. Note that since ts is a data port, we need to
sent the value of s via this port. However, the corresponding
action c_ts! on the outgoing edge of temp0 cannot hold the
value information. Therefore, we use the variable v_ts which
corresponds to the channel c_ts to hold the data value during
the communication via the channel. Since an urgent location
allows no invariants, we move the invariant derived from the
different expression of CSP process train to the new location
temp0. Since there are three actions in the communication
interrupt of the CSP process train, we create two new locations
to perform the actions according to their occurrence order.
Note that the newly introduced three locations (i.e., temp0,
int0, and int1) can be considered as the sub-locations of CSP
process Train. Therefore, they should have the same location
invariant. For the action ta?(a) of the communication interrupt,
we need to get the data value from port ta. Therefore, we use
the action a=v_ta to update the value of a.

C. Property Generation for Quantitative Analysis

To enable the quantitative evaluation of uncertain hybrid
AADL designs, our proposed uncertainty annex allows design-
ers to specify design requirements as performance queries.
These performance queries will be transformed as proper-
ties in the form of cost-constrained temporal logic to reason
the performance of the NPTA models generated from uncer-
tain hybrid AADL designs. Since we focus on the reasoning
of stochastic behaviors of AADL systems, the designers can
conduct following two kinds of queries.

1) Performance Query: The performance query can be used
to check the probability that an expected performance
metric can be achieved under a given resource limit. The
performance metric can be expressed as the predicate
and the resource limit can be specified as the constraint
using the keyword under.

2) Safety Query: The safety query can be used to check
the probability that an unexpected scenario can happen
eventually with a given resource limit. In the query, the
unexpected scenario can be expressed as the predicate
and the resource limit can be specified as the constraint
using the keyword under.

Although safety queries and performance queries have dif-
ferent meaning, they share the same template during the
property generation. In the queries section, a query consists
of two parts, i.e., predicate φ and resource constraint ψ .
The predicate φ can be used to denote either an unexpected
scenario or an expected performance metric.

To evaluate the performance of generated NPTA models,
UPPAAL-SMC adopts cost-constrained temporal logic [11]
based performance queries in the form of Pr[bound](<>
expr), where [bound] indicates the bound of the cost and the
expression <> expr asserts that the scenario expr should hap-
pen eventually. By using our approach, the queries will be
transformed into properties in the form of Pr[ψ](<> φ). For
example, the performance query p2 in Listing 1 intends to
check the probability that the travel length of the train exceeds
4 km within 200 s. In order to conduct the quantitative eval-
uation using UPPAAL-SMC, the query will be converted to a
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Fig. 6. MA scenario of CTCS-3 [20].

property Pr[ <= 200](<> Train.ts >= 4000) in the form of
cost-constrained temporal logic. Based on the specified prob-
ability of false negatives (i.e., α) and probability uncertainty
(i.e., ε), UPPAAL-SMC will simulate a specific number of
stochastic runs which are terminated when either bound or <>
expr holds. The success rate p of <> expr satisfying bound
will be reported in the form of a probability range [p−ε, p+ε]
with a specified confidence 1 − α.

IV. CASE STUDY

To show the efficacy of our approach in analyzing
system performance within uncertain environments, this sec-
tion presents the experimental results of verifying the MA
control of CTCS-3 [20], [28]. By using our proposed uncer-
tainty annex, we extended the hybrid CTCS-3 AADL model
presented in [20] using the tool OSATE2 [7]. The uncer-
tainty information in the model is suggested by railway experts
from our industrial partner Casco Signal Ltd. Based on our
XMI parser and NPTA model generator implemented using
JAVA,2 we can obtain the corresponding NPTA model as
well as performance queries. We employed the model checker
UPPAAL-SMC (version 4.1.19, α = 0.02, ε = 0.02) to con-
duct the evaluation. All the experimental results were obtained
on a desktop with 3.3 GHz AMD CPU and 12 GB RAM.

A. System Model of CTCS-3 MA Scenario

As one of the fourteen basic scenarios of CTCS-3 system
requirements specification (SRS), the MA control plays an
important role in prohibiting trains from colliding with each
other. Typically an MA scenario involves three major compo-
nents as follows: 1) trains that periodically (every 500 ms) send
their status information (i.e., current location and velocity) to
the controller and receive acceleration information directed by
the controller; 2) radio block centers (RBCs) that provide MAs
to trains based on information exchange with trackside subsys-
tems and the on-board controller; and 3) on-board controller
subsystems which control the velocity of trains by changing
their accelerations.

As shown in Fig. 6, the RBC assigns a dynamic MA to the
left train based on the track situation and the movement of the
right train. Here, EOA stands for the End of Authorization.
When a train reaches a specific distance (i.e., SR) away from

2We have shared our tool (including the source code of uncer-
tain hybrid AADL parser and NPTA model generator) and the uncer-
tain CTCS-3 MA example on Github. The download address is
http://github.com/tony11231/aadl2uppaal.

Fig. 7. AADL model for CTCS-3 MA.

EOA, it needs to apply for a new MA. If the authorization
is not granted in time, according to SRS the train should
stop before the EOA. According to SRS [28], an MA com-
prises a sequence of segments, where each segment has two
speed limits v1 and v2 (v1 ≥ v2). In this example, we set the
speed limits v1 and v2 for each segment to 73 and 66 m/s,
respectively. If the train speed exceeds v1 (v2), an emergency
(normal) brake will be performed to slow down the train.
Upon receiving an MA request from controller, RBC will reply
a new MA together with all the segment information (e.g.,
speed limits and operation mode). More details can be found
in [20] and [28]. In this example, we set the length of an
MA to 6 km, and set the length of SR to 1 km. The train
starts with a speed of 0 m/s. All the segments have the same
length and speed limits. Note that the SRS requirements cannot
be guaranteed within an uncertain environment. For example,
due to the mutual interference between varying communication
delays and friction coefficient of tracks, inaccurate estimation
of locations can make the train pass the EOA. Although train
drivers can perform emergency brake manually, proper quan-
titative analysis of these unsafe scenarios should be studied at
architecture level to make the train movement more safe.

Fig. 7 shows the graphical AADL model for CTCS-3 MA
design, where the controller plays a central role. Within the
MA scenario, the controller sends the MA request to RBC
via the port r and receives the segment and EOA information
from the ports m and ea, respectively. To achieve the train sta-
tus, the controller receives the location and speed information
from the ports cs and cv every 500 ms. It also controls the train
by specifying the newly calculated acceleration for the train
via port ca. Although this figure does not explicitly present any
uncertainty information, in this example we consider various
uncertainties that may affect the performance of the MA con-
trol, e.g., communication delays between RBC and controllers,
computation time variations of both software/hardware compo-
nents of controllers, and varied coefficient of friction of tracks.
The cumulative variations by all these uncertainties strongly
affect the performance and safety of the CTCS-3 MA. In other
words, the risk of train collisions is high within an uncertain
environment.

B. Uncertainties in CTCS-3 MA Scenario

As shown in Table II, this experiment took nine uncertain
aspects of CTCS-3 MA into consideration. Similar to the work
in [21] and [26], this paper adopts normal distributions to
model the performance variations in the CTCS-3 MA scenario.

http://github.com/tony11231/aadl2uppaal
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TABLE II
UNCERTAINTIES OF MA COMPONENTS

All such variation information was collected from historical
data of train operations. Note that our approach supports a vari-
ety of distributions, which can be used to accurately model the
uncertain hybrid AADL designs. In this table, the first column
presents the category of the uncertainties. The second column
presents the AADL constructs that cause the uncertainties.
For example, when controller sends an MA request to RBC
via port Controller.r, there is a delay variation caused by the
connection conn_req following the distribution N(0.1, 0.032),
where the expected execution time is 0.1 s and the standard
deviation is 0.03 s. Note that during the SMC the network
delay of 0.1 s with standard deviation of 0.03 may lead to
a negative value. In our approach, if the variable with type
“time” is randomly assigned with a negative value, we will
set it to 0. According to the three-sigma rule, this approxima-
tion will still be accurate in this case. The last two columns
provide the variation distributions and value unit, respectively.
By using our tool chain, the NPTA model of the uncertain
hybrid AADL design can be obtained automatically.

C. Performance Analysis for CTCS-3 MA Scenario

To focus on quantitative analysis of the MA scenario
influenced by uncertain factors, we investigated stochastic
behaviors of a train within an MA as shown in Fig. 6. We
assume that the train will fail to get the next MA when enter-
ing SR. Therefore, it should stop before EOA. By using our
tool, three queries are generated to analyze the performance
of uncertain hybrid AADL design for CTCS-3 MA.

To investigate the probability that a train can stop
safely before the end of authorization within 300 s, we
adopt the performance query Pr[<=300](<> Train.v <=
0 && Train.s < 6000 && Train.s > 0), where Train.v denotes
velocity of the train and Train.s indicates the location of the
train. Fig. 8 presents the evaluation results for the query in the
form of cumulative probability distribution (CPD). In this fig-
ure, the x-axis denotes the time limit, and the y-axis indicates
success rate of the performance requirement indicated by the
query. In this evaluation, we considered three uncertain hybrid
AADL designs, where the accelerations directed by the con-
troller are different. We set the accelerations of three designs to
0.3 MPSS, 0.4 MPSS and 0.7 MPSS, respectively. By running
868 runs, we can get a probability interval [0.91, 0.95] with
a confidence 98% for the query of the AADL design with an
acceleration of 0.3 MPSS. The SMC simulation for this query

Fig. 8. Performance query results with different accelerations.

Fig. 9. Performance query results with different control periods.

costs around 132 s. For the AADL designs with acceleration
of 0.4 MPSS and 0.7 MPSS, we can get probability intervals
[0.88, 0.92] and [0.81, 0.85] with a confidence of 98%, respec-
tively. From this figure, we can find that the CPD of the design
with 0.7 MPSS rises earlier (i.e., 173 s), since it has a larger
acceleration and can reach the speed limit v2 more quickly
than the other two designs. However, the larger acceleration
indicates the higher difficulty in managing the train speed. In
other words, the chance that the train exceeds EOA becomes
higher. Therefore, we can find that the AADL design with
0.3 MPSS can achieve the highest success rate to stop before
reaching EOA. Moreover, we can find that the success rate
will not increase significantly after a time threshold, since the
train has stopped before the time limit, i.e., 300 s.

The interaction frequency between trains and the controller
plays an important role in CTCS-3 MA design, since it
strongly affects the cost and performance of train designs.
Although longer control periods cost less communication
bandwidth, the infrequent updates of train accelerations make
the train hard to be controlled. To investigate the effects
of different control periods, we assume that the acceleration
(without consider frictions) sent from the controller is fixed
(i.e., 0.4 MPSS) for the train design. Fig. 9 shows the evalua-
tion results of using the same query as the one used in Fig. 8.
We consider three designs with different control periods, i.e.,
0.2, 0.5, and 0.7 s, respectively. From this figure, we find that
the design with the smallest control period (i.e., 0.2 s) can
achieve the highest rate of success. By running 266 runs, we
can achieve a probability interval [0.95, 0.99] with a confi-
dence 98% for the query of the AADL design with a control
period of 0.2 s.

To determine the performance of the AADL design, we
used the query Pr[<=200](<> Train.s >= 4000) which
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Fig. 10. Performance query results for reaching a location.

Fig. 11. Safety query results for overspeed.

checks whether the train can run a distance of 4.0 kilome-
ters within 200 s. As shown in Fig. 10, we adopted three
designs with different accelerations. We can find that the
performance difference among these three designs is quite
small. The design with an acceleration of 0.3 MPSS achieves
the worst performance, since it needs a worst-case time of
193 s to reach the specified location. Interestingly, the design
with 1.0 MPSS does not win the comparison. It needs longer
time to hit the specified location than the design with 0.6
MPSS, since the design with a larger acceleration will have a
more drastic speed update near the speed limits.

From the above experimental results, we can find that
our approach can be used to effectively reason about the
performance of designs within complex uncertain environ-
ments. Our approach can not only support the quantitative
evaluation of specified design using performance queries, but
also can be used for the purpose of design optimization based
on parameter tuning.

D. Quantitative Safety Analysis for CTCS-3 MA Scenario

During the running of the train, we expect the train speed
not to exceed the upper speed limit v1, since it can easily make
the train derailed. Therefore, when the train reaches the speed
v1, we need to apply the urgent brake to reduce the train speed
drastically. To check the probability of overspeed of trains, we
used the safety query in the form of Pr[Tran.s <= 5000](<>
Train.v >= 73), which indicates that within a distance of
|EOA − SR| the train speed cannot be larger than or equal to
v1 (i.e., 73 m/s).

Fig. 11 shows the evaluation results for the three AADL
designs with different accelerations. For the design with an
acceleration of 0.3 MPSS, UPPAAL-SMC uses 17 s to obtain

a probability interval [0.009, 0.049] for the query. From this
figure, we can find that the larger the acceleration is, the higher
chance the train can exceed the upper speed limit. To achieve
a 2% chance of overspeed, the design with 1.0 MPSS needs
an average travel distance of 3.0 km, whereas the designs with
0.3 MPSS and 0.6 MPSS need an average of 3.5 and 4.1 km,
respectively. From the above evaluation results generated by
our approach, we can clearly figure out the safety information
for the designs within uncertain environment. Based on the
comparison among designs with different parameter values,
we can achieve reasonable design settings under a given safety
requirement.

V. CONCLUSION

This paper proposed a novel SMC-based framework that
enables quantitative performance evaluation of hybrid AADL
designs considering various uncertain factors caused by phys-
ical environments. We introduced a lightweight language
extension to AADL called uncertainty annex for the stochas-
tic behavior modeling. By using our proposed transformation
rules, the uncertainty-aware hybrid AADL designs can be
automatically converted into NPTA models. Based on the sta-
tistical model checker UPPAAL-SMC, our framework enables
automated evaluation of uncertain hybrid AADL designs
against various complex performance and safety queries.
Comprehensive experiment results carried on the CTCS-3 MA
scenario demonstrate the efficacy of our approach.
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