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Abstract

Brain activity typically increases with increasing working memory (WM) load, regardless of age, 

before reaching an apparent ceiling. However, older adults exhibit greater brain activity and reach 

ceiling at lower loads than younger adults, possibly reflecting compensation at lower loads and 

dysfunction at higher loads. We hypothesized that WM training would bolster neural efficiency, 

such that the activation peak would shift towards higher memory loads after training. Pre-training, 

older adults showed greater recruitment of the WM network than younger adults across all loads, 

with decline at the highest load. Ten days of adaptive training on a verbal WM task improved 

performance and led to greater brain responsiveness at higher loads for both groups. For older 

adults the activation peak shifted rightward towards higher loads. Finally, training increased task-

related functional connectivity in older adults, both within the WM network and between this task-
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positive network and the task-negative/default-mode network. These results provide new evidence 

for functional plasticity with training in older adults and identify a potential signature of 

improvement at the neural level.

Keywords

executive functions; fronto-parietal; default-mode; cognitive training; aging

Introduction

Working memory (WM) is a fundamental cognitive ability that typically declines with age 

(Park et al., 2002; Salthouse, 1994). Functional neuroimaging evidence indicates age 

differences in neural recruitment (Li et al., 2015; Spreng et al., 2010) and suggests that WM 

load influences whether older adults will over-activate or under-activate WM circuitry 

relative to younger adults (Cappell et al., 2010; Heinzel et al., 2014; Schneider-Garces et al., 

2010). In particular, older adults tend to over-activate PFC regions at lower loads, while 

performing equivalently to younger adults, but under-activate at higher loads, while 

performing more poorly than younger adults (Cappell et al., 2010).

According to the Compensation Related Utilization of Neural Circuits Hypothesis 

(CRUNCH; Reuter-Lorenz & Cappell, 2008; see also Cabeza et al., 2018), over-activation in 

older adults compensates for age-related decline in neural efficiency. While lower levels of 

task demand can be met by over-recruitment, increased demand will rapidly outstrip 

resource availability in older adults, resulting in a performance drop and activation decrease 

(Cappell et al., 2010; Mattay et al., 2006). The inflection point along the task-demand axis 

where activity reaches its peak level and then declines (i.e., the crunch point) is thought to 

reflect a resource ceiling beyond which neural mechanisms are inefficiently engaged (Fig. 

1a). Older adults reach this apparent resource ceiling at lower loads than younger adults 

(Cappell et al., 2010), although younger adults can also show compensatory neural 

activation when task demands are sufficiently high (Holler-Wallscheid et al., 2017).

While accumulating evidence clearly supports the idea of load-dependent over-activation in 

older adults, particularly when able to reach performance levels comparable with younger 

adults (e.g., Berlingeri et al., 2013; Cappell et al., 2010; Heinzel et al., 2014; Holler-

Wallscheid et al., 2017; Kennedy et al., 2015; Schneider-Garces et al., 2010; for a recent 

meta-analysis see Li et al., 2015), the hypothesis that over-activation signals compensation 

has sometimes been challenged. It could be argued that the correlational nature of the 

available evidence makes it impossible to ascertain whether increased brain activity is used 

in the service of improved performance (Schneider-Garces et al., 2010). Alternatively, a 

common factor, such as general insufficient capacity or deterioration of neural function (e.g., 

due to insult or aging), could be at the root of both increased activity and decreased capacity 

or performance (Morcom & Henson, 2018; Spreng et al., 2010).

Posing this problem in an intervention framework (i.e., training study) provides longitudinal 

data to complement existing correlational findings and using a within-subjects design 

accounts for potential confounding by a common general factor. CRUNCH makes clear 
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predictions about how activation in regions critical to WM should change due to training 

(Lustig et al., 2009). Specifically, training should simultaneously (1) reduce activation under 

low demand, consistent with the idea of reduced need for compensatory over-activation with 

training, and (2) increase activation under high demand, consistent with the idea of enhanced 

dynamic range of activation (i.e., greater responsivity under high demand) with training 

(Kennedy et al., 2017). In other words, CRUNCH predicts a rightward shift of the demand-

activation curve with training, irrespective of age (Fig. 1a).

The main goal of the present study was to test this hypothesis in the context of a within-

subjects intervention design. Achieving this goal would further shed light on potential neural 

mechanisms of plasticity mobilized by cognitive training. Such mechanisms have heretofore 

been characterized mainly by decreases in activation, particularly in the WM network 

(Bamidis et al., 2014; Belleville & Bherer, 2012; Bherer, 2015; Brehmer et al., 2014; Lustig 

et al., 2009). To the extent that these mechanisms relate to CRUNCH, training should also 

lead to increased activation in WM regions at high WM loads.

To summarize, if a successful training intervention simultaneously (1) improves WM 

performance and (2) shifts the demand-activation curve towards higher loads within the 

same neural circuits that showed over-activation before training, then it would provide 

strong evidence for the compensatory nature of neural over-activation. We tested this 

hypothesis in a sample comprising both healthy older and younger adults, who participated 

in an adaptive verbal WM training study with 3 functional MRI scanning sessions (see Fig. 

1b). Sessions 1 and 2 were two weeks apart (Time1 and Time2) and preceded a 10-day 

adaptive WM training intervention. The third scanning session (Time3) was conducted 

immediately after training, approximately two weeks after Time2.

Based on a priori considerations (see Cabeza et al., 2018; Lustig et al., 2009), our approach 

comprised 3 analytic components: First, to dissociate the effects of task-exposure from the 

effects of training, we performed two comparisons, specifically Time1 vs. Time2 for task-

exposure effects and Time2 vs. Time3 for training effects. Second, to account for the 

possibility that older adults may recruit additional brain regions compared to younger adults, 

we assessed both task-exposure and training effects between groups, using meta-analytically 

defined regions, and training effects within each group, using age-specific maps 

independently identified at Time1. Finally, to determine whether the CRUNCH model and 

its implications for mechanisms of training could be further extended to measures of 

functional coupling between regions critical to WM performance, analyses of brain 

activation were supplemented by analyses of functional connectivity.

Materials and Methods

Participants

A sample of 23 healthy, cognitively normal older and 23 younger adults was recruited from 

the University of Michigan campus and community surrounding Ann Arbor, Michigan. 

Initial sample size was based on prior work examining age and load effects in WM (Cappell 

et al., 2010). All participants were right-handed, native English speakers with normal or 

corrected-to-normal hearing and vision and were screened for history of head injury, 
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psychiatric illness, or alcohol/drug abuse. Data from 2 older and 2 younger adults were 

excluded due to technical errors in the administration of the training (1 older adult) or fMRI 

(1 younger adult) tasks, inability to perform the fMRI task (1 younger adult did not provide 

responses to >50% of the trials), and attrition (1 older adult failed to return for the last scan). 

Thus, the behavioral sample consisted of 21 older and 21 younger adults. In addition, 2 older 

adults were excluded from the fMRI analyses due to technical issues related to brain-

imaging data acquisition, and thus the final sample consisted of 19 older adults (age range: 

63–75; 9 women) with a mean age of 67.84 (± 3.29) years and 21 younger adults (age range: 

18–28; 12 women) with a mean age (±S.D.) of 21.33 (± 2.65) years (see Table 1). Older 

adult participants completed the Short Blessed Test (Katzman et al., 1983) over the phone 

prior to inclusion in the study to screen for potential mild cognitive impairment, and 

additional neuropsychological assessments using the Montreal Cognitive Assessment 

(Nasreddine et al., 2005) confirmed normal cognitive function for all participants (scores ≥ 

25). Additionally, participants were screened for depressive symptoms that could affect 

cognitive functioning using the depression module of the Patient Health Questionnaire 

(Kroenke et al., 2001). Additional neuropsychological testing was performed at each 

assessment time point (Times1–3) and this is reported elsewhere (see Moored et al., in 

prep.). The University of Michigan Institutional Review Board approved all procedures, and 

all participants provided informed consent prior to participating.

Experimental Design and Procedure

fMRI WM Task—During each of the 3 fMRI scanning sessions, participants performed a 

delayed match-to-sample verbal WM task (Sternberg, 1966) with span and supraspan loads 

(Fig. 1c). At the beginning of each trial, a set of letters was displayed during encoding (4 s), 

followed by a fixation cross during the maintenance interval (7 s). At retrieval, a probe letter 

was displayed on the screen (2 s), and participants indicated by a button-press whether or not 

the probe was part of the memory set. The memory sets varied in size from 4 to 8 letters for 

older adults and from 5 to 9 letters for younger adults. These age-specific ranges of loads 

were chosen based on pilot data to minimize ceiling and floor effects on WM performance, 

and to allow comparisons of both baseline performance and training-induced improvement. 

Both groups also completed a control condition (set size of 1) that served as an active 

baseline for the fMRI analyses (see below). During each fMRI session, participants 

completed 6 blocks of 24 trials, with each block comprising 4 trials of each set size, 

displayed in random order.

Prior to the first scanning session, all participants practiced the task in a mock scanner that 

approximated the conditions used in the scanner itself, including using the same response 

devices, viewing the screen through a mirrored aperture, performing the task in a supine 

position, together with simulated scanner sound effects. Practice consisted of a total of 12 

trials, with 2 trials per load. Participants were monitored for understanding of the task and 

accurate responding. While efforts were made to familiarize the participants with the 

procedure, this had to be balanced with potential exposure effects and inadvertent WM 

training. Data for the practice sessions were not examined or retained. Prior to each scanning 

session, participants were reminded about the task instructions, along with varying set-sizes, 

response-mappings, and responding as quickly and accurately as possible.
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Behavioral WM Training Task—The training task was an adaptive verbal WM task, 

similar to the fMRI task in terms of the type of stimuli employed (i.e., letters) but different 

with respect to the set sizes and timing, as described below (Iordan et al., 2018). All 

participants started the first training session with a set size of 3 letters. The number of letters 

in each memory set remained constant for each block and was determined by the 

participant’s performance in the previous block. The set size increased by one letter if the 

participants’ accuracy was >86% on the preceding block and decreased by one letter if their 

accuracy was <72%. The set size attained in the last session of each day was used as the 

starting set size the subsequent day. For each trial, the memory set was displayed for a 

duration weighted by its size (325 ms × set size) at encoding, followed by a 3 s maintenance 

interval, and a 2 s retrieval period. Participants completed 6 blocks of 14 trials during each 

of the 10 training sessions. Both tasks were presented using E-Prime 2.0 (Psychology 

Software Tools, Pittsburgh, PA).

Imaging Protocol

Imaging data were collected using a 3 T General Electric MR750 scanner with an eight-

channel head coil. Functional images were acquired in ascending order using a spiral-in 

sequence, with MR parameters: TR = 2000 ms; TE = 30 ms; flip angle = 90°; field of view = 

220×220 mm2; matrix size = 64×64; slice thickness = 3 mm, no gap; 43 slices; voxel size = 

3.44×3.44×3 mm3. After an initial ten seconds of signal stabilization, 168 volumes were 

acquired for each of the 6 runs. A high-resolution T1-weighted anatomical image was also 

collected following the WM task, using spoiled-gradient-recalled acquisition (SPGR) in 

steady-state imaging (TR = 12.24 ms, TE = 5.18 ms; flip angle = 15°, field of view = 

256×256 mm2, matrix size = 256×256; slice thickness = 1 mm; 156 slices; voxel size = 

1×1×1 mm3). Images were produced using a k-space de-spiking of outliers, followed by 

reconstructing using an in-house iterative reconstruction algorithm with field-map correction 

(Sutton et al., 2003), which has superior reconstruction quality compared to non-iterative 

conjugate phase reconstruction. Initial images and field-map estimates were inspected for 

distortions and when present, the field maps were re-estimated using maps from adjacent 

runs.

Behavioral Data Analyses

Responses in the WM task were classified in one of the four categories derived from signal 

detection theory (Green & Swets, 1966; Macmillan & Creelman, 2005): (1) Hits, 

corresponding to letters in the memory set correctly classified as Old, (2) Misses, 

corresponding to letters in the memory set incorrectly classified as New, (3) Correct 
Rejections (CRs), corresponding to new letters correctly classified as New, and (4) False 
Alarms (FAs), corresponding to new letters incorrectly classified as Old. Average 

percentages of probes correctly identified as being Old or New were also calculated for each 

participant [%WM Accuracy = (%Hits + %CR)/2], separately for each load and time point. 

%WM Accuracy is mathematically equivalent to %Corrected Recognition (%Hits – %False 

Alarms) and is typically used in WM studies with a neuroimaging component to capitalize 

on all possible trials (see below).
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To investigate task-exposure effects, we compared accuracy for the two time points before 

training (i.e., Time1 vs. Time2), whereas to investigate training effects, we compared 

accuracy pre- vs. post-training (i.e., Time2 vs. Time3). We used mixed-design ANOVAs 

with Group (older vs. younger adults) as a between-subjects factor and Time (Time1 vs. 

Time2/ Time2 vs. Time3) and Load (loads 5–8) as within-subject factors. Of note, only loads 

5–8 were used for between-subjects comparisons because these were included in the tasks 

for both older and younger adults, whereas set size 4 was unique to older adults and set size 

9 was unique to younger adults.

Statistical analyses were performed using SPSS 24 (IBM Corp., Armonk, NY). A 

Greenhouse-Geisser correction for violation of sphericity was applied as needed, for all 

ANOVA models. Effect-sizes are reported as partial eta squared (ηp
2). At Time1, WM 

performance for 2 participants (1 older and 1 younger adult) was calculated based on 5 runs, 

due to technical issues occurring during 1 run, and response buttons were remapped for an 

older adult who switched the buttons for the first 3 runs; fMRI analyses matched these 

adjusted behavioral data.

fMRI Data Analyses

Statistical analyses were performed using SPM12 (Wellcome Department of Cognitive 

Neurology, London) and MATLAB R2015a (The MathWorks Inc., Natick, MA), and were 

preceded by several preprocessing steps. Functional images were slice-time corrected, 

realigned, and co-registered to the anatomical image using a mean functional image. A 

study-specific anatomical template was created (younger and older adults together; Iordan et 

al., 2018), using Diffeomorphic Anatomical Registration Through Exponentiated Lie 

Algebra (DARTEL; Ashburner, 2007), based on segmented grey matter and white matter 

tissue classes, to optimize inter-participant alignment (Klein et al., 2009). The DARTEL 

flowfields and MNI transformation were then applied to the functional images, and the 

functional images were resampled to 3×3×3 mm3 voxel size and smoothed (8 mm full width 

at half maximum Gaussian kernel). The average proportion of outlier volumes (differential 

motion d > 3 mm or global intensity z > 6, identified with Artifact Detection Toolbox 

[ART]; www.nitrc.org/projects/artifact_detect) was <.5% (older adults: 0.28%; younger 

adults: 0.48%), and there were no significant differences in the number of outlier volumes or 

maximum motion between the two groups at any time point (Times1–3) or within-groups 

across time points (Time1 vs. Time2 or Time2 vs. Time3), as assessed by permutation 

testing (105 permutations, two-sided, all ps > .05).

At the first level, each participant’s preprocessed functional data were analyzed using an 

event-related design in the general linear model (GLM). The GLMs included separate 

regressors for each load (1, 4–8 for older adults/5–9 for younger adults) at each task phase 

(encoding, delay, and probe), resulting in 18 regressors. In addition, the model included 1 

regressor for incorrectly answered trials and 6 regressors for the realignment parameters 

derived from preprocessing (3 translations and 3 rotations). To further reduce residual 

influence of motion that may not be properly explained by the realignment parameters, scan 

nulling regressors were added for any outlier volumes (i.e., 1 for the outlier volume and 0 

everywhere else) identified using the procedure described above; this avoids discarding 
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entire datasets and is mathematically equivalent to extracting outlier volumes while 

preserving temporal continuity (Caballero-Gaudes & Reynolds, 2017; Lemieux et al., 2007; 

Whitfield-Gabrieli et al., 2011).

Evoked hemodynamic responses to all events were modeled with a delta (stick) function 

corresponding to the onset of each event convolved with a canonical hemodynamic response 

function, in conjunction with a high-pass filter (128 s) and an intensity threshold of 70% (to 

avoid inclusion of regions susceptible to fMRI signal drop-out; Iordan et al., 2018), and runs 

were modeled separately. To differentiate maintenance-related activity for the different 

loads, analyses were restricted to the task-delay phase, and linear contrasts were defined for 

each load (older adults: loads 4–8; younger adults: loads 5–9) relative to the load of 1 (active 

baseline).

Brain Activation Analyses

Analyses of Brain Activity in Meta-analytically Defined WM Regions.: Similar to the 

behavioral analyses, we investigated both task-exposure (Time1 vs. Time2) and training 

effects (Time2 vs. Time3) on brain activity. To identify brain regions associated with WM 

processing, we used an independently-defined functional mask derived by meta-analysis 

performed with Neurosynth (Yarkoni et al., 2011). The map was derived by an automated 

meta-analysis performed on studies indexed by the feature “working memory” (1091 studies 

[accessed October 5, 2018], reverse inference/association test map, thresholded at pFDR < 

0.01, which is the lowest default threshold in Neurosynth; see Fig. S1a). The binarized 

Neurosynth WM mask (resampled to 3×3×3 mm3 voxel size) was used for region of interest 

(ROI) analyses using MarsBaR (Brett et al., 2002). The GLM described above was run on 

the time-course of average activity within the ROI and the resulting contrast values for each 

participant, time point, and load were exported to SPSS and analyzed with mixed-design 

ANOVAs (Group×Time×Load).

Finally, to test for a rightward shift in the load-dependent neural recruitment (CRUNCH) 

curve with training, we ran multilevel models on brain activity with loads nested within 

participants and a random intercept for Load, separately for each group, before (Time2) and 

after training (Time3). A rightward shift of the CRUNCH curve would be consistent with a 

model comprising an additional quadratic term (Load2) describing the data over and above a 

model comprising only a linear term (Load) before but not after training. We employed full 

maximum-likelihood estimation, which allows model comparison, and the change in model 

fit (i.e., difference between log-likelihoods, −2LL) from linear to quadratic was assessed 

using a chi-square test (χ2) with 1 degree of freedom.

Analyses of Brain Activity in Group-Specific Regions Sensitive to Load 
Manipulation.: To identify group-specific regions sensitive to the load manipulation, brain-

wide contrast images generated for each participant at Time1 were analyzed at the second 

level, separately for each group. First, a voxel-wise one-way repeated-measures ANOVA 

with Load as factor (F-contrast: [1 −1 0 0 0; 0 1 −1 0 0; 0 0 1 −1 0; 0 0 0 1 −1]) identified 

brain regions showing up- or down-regulation in response to the Load manipulation (i.e., up-

regulation is typically expected in fronto-parietal regions, whereas down-regulation is 
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typically expected in default-mode regions, for high relative to low WM loads (Ceko et al., 

2015; Shulman et al., 1997); see Fig. S1b). Then, task-positive and task-negative brain 

regions were separated by masking (logical “AND” conjunction; Nichols et al., 2005) the F-

maps with binarized composite random-effects t-maps identifying up- and down-regulation, 

respectively, in response to the load manipulation. Specifically, the composite t-map 

identifying regions showing up-regulation was constructed by masking (logical “OR” 

conjunction) the binarized group-level t-maps derived by testing for effects of each load > 

baseline (one-sided). Similarly, the composite t-map identifying regions showing down-

regulation was constructed by masking (logical “OR” conjunction) the binarized group-level 

t-maps derived by testing for effects of baseline > each load (one-sided). Unless specified 

otherwise, we used a cluster-forming threshold of p < 0.001, in conjunction with a Random 

Field Theory familywise error (FWE) correction of pFWE < 0.05 (Eklund et al., 2016; 

Flandin & Friston, 2017). These final, group-specific masks independently defined at Time1 

were then employed as ROIs to analyze brain activity pre- vs. post-training (Time2 vs. 

Time3), using MarsBaR.

Functional Connectivity Analyses

Analyses of Functional Connectivity within the Meta-analytically Defined WM 
Network.: To complement the brain activation analyses described above, we also 

investigated task-exposure and training effects on functional connectivity within the WM 

network. To identify the WM network, we employed the (Power et al., 2011) functional atlas 

in conjunction with the meta-analytical WM mask described above. We chose the Power et 

al. atlas because it comprises cortical, subcortical, and cerebellar ROIs derived meta-

analytically across a variety of tasks. First, 5 mm-radius spheres were centered at each of the 

264 coordinates of the atlas. Then we selected those ROIs that had at least 8 voxels (~50% 

volume) overlap with the meta-analytical WM map (see above), thus retaining 23 ROIs (see 

Fig. S3a).

Functional connectivity between the selected ROIs was calculated using correlational 

psychophysiological interaction (cPPI) analysis, which computes the partial correlation 

between PPI terms of any two ROIs while controlling for effects of co-activation, task-

unrelated coupling, and nuisance signals (Fornito et al., 2012). To parallel the univariate 

analyses, we focused on the delay activity and used task regressors based on the GLM 

described above. Time courses for each ROI (extracted using REX, Whitfield-Gabrieli & 

Nieto-Castanon, 2012) were first deconvolved, then multiplied by the unconvolved task 

regressor modeling the effect of each load vs. baseline (load of 1), and then reconvolved 

with the hemodynamic response function to generate the ROI-specific PPI terms. Task-

related functional connectivity between any two ROIs i and j was estimated separately for 

each load, as ρPPIi, PPIj ⋅ z, that is partial correlation between the two regions’ PPI terms 

(i.e., PPIi and PPIj), adjusted for the variance of z, which included: the task regressor, to 

control for co-activation effects; the regions’ time courses, to control for intrinsic or task-

unrelated coupling; the regressor for incorrect trials, from the GLM model; and nuisance 

signals. Specifically, nuisance signals included: the 6 realignment parameters (3 translations 

and 3 rotations), regressors for outlier volumes (i.e., volumes with differential motion d > 3 

mm or global intensity z > 6, identified as described above), and concurrent signals from 
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within the white matter and cerebrospinal fluid (i.e., average signals across each individuals’ 

masks resulted from segmentation); for similar approaches see Davis et al. (2017), Davis et 

al. (2018), Wang et al. (2018). Correlation coefficients were then Fisher-z transformed to 

allow statistical testing. Within-WM network functional connectivity was estimated as the 

sum of all connectivity values divided by the number of possible connections (Geerligs et 

al., 2015). Task-exposure and training effects were analyzed using Group×Time×Load 

ANOVAs, similar to previous analyses.

Analyses of Functional Connectivity in Group-Specific Networks Sensitive to Load 
Manipulation.: Similar to the univariate analyses, we identified group-specific networks 

sensitive to the load manipulation based on Time1 results. Specifically, the task-positive and 

task-negative networks were identified based on the peak-activation voxels of the task-

positive and task-negative F-maps resulting from the voxel-wise ANOVAs described above 

(see Fig. S3b and Tables 2 and 3 for employed coordinates). Then, 5 mm-radius spheres 

were centered at each Time1 peak coordinate, and functional connectivity between ROIs was 

calculated for Time2 and Time3, using cPPI, and the resulting correlation coefficients were 

Fisher-z transformed. Functional connectivity within the task-positive and task-negative 

networks, as well as between the two networks, was calculated in the same way as described 

above.

Results

Behavioral Results

Effects of task-exposure and training on WM performance were examined with loads 5–8, 

which were common to both groups, using Group×Time×Load ANOVAs. The main effect of 

Load was significant at p<0.001 for all ANOVA models, unless noted otherwise. First, the 

task-exposure (Time1 vs. Time2) analysis (Fig. 2, left panel) showed that, while younger 

adults performed overall better than older adults (F1,38=4.3, p=0.045, ηp
2=0.1), this group 

difference was reduced with task exposure (Time×Group: F1,38=6.37, p=0.016, ηp
2=0.14)1. 

Second, analysis of training effects (Time2 vs. Time3) (Fig. 2, right panel) showed that 

performance improved with training for both groups (Time: F1,38=10.63, p=0.002, 

ηp
2=0.22)2. Finally, post hoc analyses (see Supplementary Results) confirmed an overall 

effect of Time across all three time points.

fMRI Results

We examined both activation in and functional connectivity between brain regions involved 

in WM performance. In each case, we performed two sets of complementary analyses, 

examining (1) task-exposure and training effects between groups, using meta-analytical WM 

maps/regions, and (2) training effects within each group, using age-specific maps/regions, 

1Interestingly, while older adults showed performance improvement with task-exposure (F1,18=4.58, p=0.046, ηp2=0.2, calculated 
across loads 4–8), younger adults did not (F1,20=1.42, p=0.247, ηp2=0.07, calculated across loads 5–9). This may be related to 
younger adults being less motivated to perform a task that was no longer novel, whereas older adults’ motivation remained high.
2Similar results were obtained when including all 21 older adults who had behavioral data. Specifically, the task-exposure analysis 
showed that younger adults performed overall better than older adults (F1,40=5.91, p=0.02, ηp2=0.13) and that this group difference 
was reduced with task exposure (Time×Group: F1,40=6.17, p=0.017, ηp2=0.13), whereas analysis of training effects similarly showed 
that performance improved with training for both groups (Time: F1,40=13.04, p=0.001, ηp2=0.25).
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independently identified at Time1. These latter analyses take into account the possibility that 

older adults may recruit additional brain regions compared to younger adults. The two 

complementary analyses enabled us to compare the age groups directly, using the same 

independently defined map/regions, and to assess how training affects the amplitude of brain 

activation and functional connectivity within groups, independent of age differences in the 

extent of activation. Similar to the behavioral analyses, the main effect of Load was 

significant at p<0.001 for all ANOVA models, unless noted otherwise.

Brain Activation Results

Task-exposure and Training Effects in Meta-analytically Defined WM Regions.: First, 

we examined task-exposure and training effects on brain activity in WM regions identified 

meta-analytically using Neurosynth (Yarkoni et al., 2011; see Materials and Methods and 

Fig. S1a). Paralleling the behavioral analyses, we performed two Group×Time×Load 

ANOVAs on estimates of average activity (loads 5–8) within this map of WM regions. The 

Time1 vs. Time2 analysis (Fig. 3, left panel) indicated no effect of task exposure 

(F1,38=0.81, p=0.373, ηp
2=0.02) and greater overall recruitment in older adults (F1,38=5.43, 

p=0.025, ηp
2=0.13), with a decline in activation at the highest load. Comparing Time2 and 

Time3 to assess training effects (Fig. 3, right panel) again indicated greater overall 

recruitment in older adults (F1,38=4.22, p=0.047, ηp
2=0.1), but also increased recruitment at 

higher loads with training for both groups (Time×Load: F3,114=3.54, p=0.017, ηp
2=0.09). 

Follow-up analysis confirmed that, with training, activation increased, rather than decreased, 

from load 7 to 8 in older adults (Time×Load interaction: F1,18=7.29, p=0.015, ηp
2=0.29) 

(see Supplementary Results for additional robustness analysis).

Multilevel models on brain activity by Load (see Materials and Methods) confirmed a 

rightward shift of the CRUNCH curve with training that was specific to older adults: A 

quadratic trend described the data over and above a linear trend before (−2LLlinear=473.81, 

−2LLlinear+quadratic=462.57, χ2
difference(1) =11.24, p<0.001) but not after training 

(−2LLlinear=479.09, −2LLlinear+quadratic=476.74, χ2
difference(1) =2.35, p=0.126). For younger 

adults, quadratic terms did not significantly improve model fit (ps>0.17).

Training Effects in Group-specific Regions Sensitive to Load Manipulation.: In the 

second set of analyses, group-specific maps sensitive to WM load were defined based on 

Time1 data and then training-induced changes (Time2 vs. Time3) were examined in each 

age group (see Materials and Methods). First, voxel-wise ANOVAs of brain activity at 

Time1, across all loads (i.e., loads 4–8 in older adults and 5–9 in younger adults), identified 

load-sensitive regions, separately for each group. These included both task-positive and task-

negative regions, which overlap with canonical WM and default-mode network (DMN) 

regions, respectively (Fig. S1b and Tables 2 and 3). Then, training effects were analyzed 

separately for each group, using Time×Load ANOVAs on estimates of average activity 

within the task-positive and task-negative maps (see Materials and Methods).

In task-positive regions, both groups showed greater activation at higher loads after training 

compared to before training (Time×Load older adults: F4,72=3.48, p=0.012, ηp
2=0.16; 

younger adults: F4,80=3.14, p=0.019, ηp
2=0.14), thus replicating the Neurosynth results (see 
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Fig. 4a; see also Supplementary Results and Fig. S2 for training effects in specific load-

sensitive PFC regions). Likewise, follow-up analyses in older adults confirmed a Time×Load 

cross-over interaction for loads 7–8 (F1,18=7.11, p=0.016, ηp
2=0.28), and a shift from a 

quadratic to a linear trend with training (see Supplementary Results). In task-negative 

regions, younger adults showed less deactivation with training (Time: F1,20=8.49, p=0.009, 

ηp
2=0.3), particularly for lower loads (Time×Load: F4,80=3.17, ε=0.59, p=0.043, ηp

2=0.14), 

whereas older adults showed no training effects (ps>0.5), consistent with evidence of less 

DMN modulation with aging (Turner & Spreng, 2015) (see Fig. 4b).

Functional Connectivity Results

Task-exposure and Training Effects within the Meta-analytically Defined WM 
Network.: Similar to the brain activation analyses, first we assessed effects of task-exposure 

and training on functional connectivity within the WM network. For this purpose, we 

employed the Power et al. (2011) functional atlas and selected those ROIs that overlapped 

with the Neurosynth meta-analytical WM map (23 ROIs; see Materials and Methods and 

Fig. S3a). We performed two Group×Time×Load ANOVAs on estimates of average 

functional connectivity (loads 5–8) within this meta-analytical WM network. The Time1 vs. 

Time2 analysis (Fig. 5, left panel) indicated no effects of task exposure on functional 

connectivity (all ps>0.15). Comparing Time2 and Time3 to assess training effects (Fig. 5, 

right panel) yielded a Time×Group interaction (F1,38=5.09, p=0.03, ηp
2=0.12), indicating 

increased within-WM network functional connectivity with training in older compared to 

younger adults. The main effect of Load was also significant (F3,114=3.57, p=0.016, 

ηp
2=0.09).

Training Effects within Group-specific Networks Sensitive to Load Manipulation.: A 

second set of analyses examined training effects on functional connectivity, separately for 

each group, based on the Time1 data. First, task-positive and task-negative networks were 

defined based on the voxel-wise ANOVA results identifying brain-wide load-sensitive 

regions; network nodes were defined as peak-voxels within the task-positive and task-

negative F-maps, separately for each group (see Fig. S3b and Tables 2 and 3 for employed 

coordinates). Then, training effects (Time2 vs. Time3) were analyzed separately for each 

group, using Time×Load ANOVAs across all loads (i.e., loads 4–8 in older adults and 5–9 in 

younger adults) on estimates of average functional connectivity within and between the task-

positive and task-negative networks, respectively (see Materials and Methods).

Within the task-positive network, older adults showed greater functional connectivity with 

training (F1,18=9.41, p=0.007, ηp
2=0.34), thus replicating the results based on meta-

analytical ROIs (see Fig. 6a; see also Supplementary Results and Fig. S5 for training effects 

on functional connectivity between specific load-sensitive PFC regions); younger adults only 

showed modulation of functional connectivity by WM load (F4,80=2.76, p=0.033, ηp
2=0.12). 

Within the task-negative network, older adults also showed a trend toward greater functional 

connectivity with training (F1,18=4.23, p=0.055, ηp
2=0.19), whereas younger adults showed 

no significant effects (ps>0.1) (see Fig. S4). Interestingly, older adults also showed greater 

functional connectivity between the task-positive and task-negative networks with training 

(F1,18=4.85, p=0.041, ηp
2=0.21), while both age groups showed modulation of between-
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networks connectivity with load (older adults: F4,72=4.58, p=0.002, ηp
2=0.2; young adults: 

F4,80=5.23, p=0.001, ηp
2=0.21) (see Fig. 6b; see also Supplementary Results for analysis of 

segregation between the task-positive and task-negative networks).

Discussion

CRUNCH posits that additional neural resources are recruited with increasing task demand 

regardless of age; however, older adults over-recruit at lower levels of demand compared to 

younger adults and reach capacity sooner with activation decline at higher loads. We 

hypothesized that WM training would bolster neural efficiency, lowering activation so that 

the activation peak shifts towards higher WM loads after training.

Younger adults performed better overall than older adults, but task-exposure reduced this age 

difference, and training improved performance for both groups. Brain imaging analyses 

yielded three main findings. First, older adults showed greater WM network recruitment pre-

training, compared to younger adults, with activity decline at the highest load. Second, 

training led to greater brain responsiveness at higher loads for both groups, and for older 

adults, the activation peak shifted rightward toward higher loads. Finally, training increased 

task-related functional connectivity in older adults, both within the WM network and 

between this task-positive network and the task-negative/default-mode network. These 

results are discussed, in turn, below.

Older Adults Over-recruit WM Regions and Show Activation Decline at High Loads

Using a meta-analytical WM map, we found greater recruitment of WM regions in older 

adults, with decline at the highest load, before training, and minimal effects of task 

exposure. Overall, these results are consistent with CRUNCH and replicate previous findings 

(Berlingeri et al., 2013; Cappell et al., 2010; Heinzel et al., 2014; Holler-Wallscheid et al., 

2017; Kennedy et al., 2015; Schneider-Garces et al., 2010). According to CRUNCH, the 

extent of compensation-related activity varies with both the level of task demand and the 

resources available to meet that demand. For older adults relative to young adults, CRUNCH 

predicts over-activation for lower loads and under-activation or decline for the highest loads, 

as a function of both task demands and resource supply. Indeed, the present results support 

this prediction. Also in line with CRUNCH, the voxel-wise ANOVA at Time1 (see Fig. S1) 

showed bilateral modulation of brain activity by load in both groups, suggesting that 

contralateral recruitment is not unique to older adults, but an age-independent compensation 

mechanism engaged for difficult tasks3 (see also Holler-Wallscheid et al., 2017).

While here we replicated the quadratic activation trends previously identified in older adults, 

we did not find a group by load interaction, as was the case in our original investigation (cf. 

Cappell et al., 2010). Nevertheless, the activation slopes for older and younger adults at the 

highest loads had opposite signs (i.e., negative in older adults vs. positive in young adults), 

3Compensation has often been invoked to describe greater or more widespread activation in older compared to younger adults, even in 
the absence of links with performance (for a discussion, see Cabeza & Dennis, 2013). Recently, compensation has been defined as 
“cognition-enhancing recruitment of neural resources in response to relatively high cognitive demand” (Cabeza et al., 2018). This is in 
line with CRUNCH, which postulates increased recruitment (i.e., bilateral and/or fronto-parietal) at high loads as an age-independent 
mechanism of compensation for insufficiency or gap between task demands and available neural resources.
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suggesting that a group by load interaction might have occurred had we included additional 

(higher) loads. These results could be partly explained by the inclusion of relatively young, 

high-performing older adults in the present sample (Moored et al., in prep.). Future 

investigations should consider inclusion of a more representative sample of older adults and 

use a larger range of loads capable of eliciting greater demand. Overall, though, the present 

pre-training results are consistent with CRUNCH which postulates age-related over-

activation coupled with inefficient engagement at higher loads in older adults.

CRUNCH proposes that older adults compensate for neural inefficiency by over-activating at 

low loads to optimize task performance. Although the results comparing the two pre-training 

time points showed robust age differences in recruitment that cannot be simply explained by 

task exposure, a common factor, such as insufficient capacity or degraded neural function, 

could potentially explain both brain activity and decreased WM performance (see also 

Morcom & Henson, 2018) in older adults. In other words, based solely on pre-training data, 

one cannot assert a causal relationship between brain activation and behavior, because the 

evidence is simply correlational. In contrast, a within-subjects training intervention could 

potentially clarify the behavioral significance of neural over-activation (Iordan & Reuter-

Lorenz, 2017; Lustig et al., 2009). Because CRUNCH makes clear predictions about the 

expected effects of training on brain activation (see Introduction) and given the within-

subjects design of our study, a putative common factor could not explain both the pre- and 

post-training activation patterns, within the same individuals (see also Maillet & Rajah, 

2013).

Training Shifts Peak Activation in WM Regions toward Higher Loads in Older Adults

Our results show, for the first time, that adaptive WM training increases brain activity at 

higher memory loads, regardless of age, and shifts the demand-activation function in older 

adults. In general, more efficient networks are thought to exhibit lower activation than less 

efficient networks and can respond to a greater range of task demands (Barulli & Stern, 

2013; Dunst et al., 2014). Assuming that brain networks become relatively less efficient with 

age, CRUNCH predicts both increasing activation with advancing age and narrowing of the 

dynamic range of activation (i.e., reduced ability to modulate brain activity in response to 

demand). While such predictions have been confirmed by previous cross-sectional 

investigations (e.g., Kennedy et al., 2015), the present results suggest that, to the extent that 

training improves efficiency, it also reduces the need for compensatory activation under low 

demand and enables greater activation under high demand (Festini et al., 2018; Lustig et al., 

2009).

The present findings converge well with prior reports of age differences in task-related 

activation and training effects in older adults. First, these results are consistent with recent 

meta-analytical evidence (Li et al., 2015) showing that older adults’ propensity to over-

activate the fronto-parietal control network is typically observed in studies in which older 

adults achieve performance levels comparable to younger adults (see also Maillet & Rajah, 

2013). Second, our findings are also in line with previous training studies in older adults 

(e.g., Brehmer et al., 2011; Erickson et al., 2007; Heinzel et al., 2014; reviewed in Duda & 

Sweet, 2019; Nguyen et al., 2019). Such studies have typically identified decreased 
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activation in WM regions after training, particularly for low and medium loads (e.g., 1- and 

2-back conditions in an N-back WM task), but not for high loads (e.g., 3-back task; Heinzel 

et al., 2014). Thus, these previous findings are consistent with a rightward shift of the neural 

recruitment curve with training, as predicted by CRUNCH, which can explain why both 

decreases and no changes (or even increases) (Duda & Sweet, 2019) in task-related BOLD 

activity have been reported in training studies. More specifically, either decreased or 
increased activation in task-relevant brain regions may occur when comparing pre- vs. post-

training brain activity, depending on the level of demand elicited by the criterion task (i.e., 

the task employed to assess the training effects). This further underscores that parametric 

variation of task demands is critical for identifying boundary conditions (e.g., the crunch 

point) and that associations between brain activity and performance are likely non-linear 

(Reuter-Lorenz & Iordan, 2018).

The present evidence for training-related modulation of activity in fronto-parietal regions is 

in line with meta-analytical results suggesting that the most consistent loci of change with 

WM training are the same regions that are involved in WM performance (Constantinidis & 

Klingberg, 2016; Duda & Sweet, 2019; Salmi et al., 2018). In addition to identifying 

training effects in fronto-parietal WM regions, however, we also identified less deactivation 

in task-negative regions with training in younger adults, particularly for lower loads. The 

task-negative regions overlap with the canonical default-mode network (DMN), which is 

anchored in the medial prefrontal and posterior cingulate cortices, and includes lateral 

parietal, as well as lateral and medial temporal regions (Buckner et al., 2008; Raichle et al., 

2001). While reduced deactivation in task-negative/DMN regions has been associated with 

aging (e.g., Grady et al., 2006; Persson et al., 2007; Sambataro et al., 2010), less deactivation 

of task-negative regions with training in younger adults is consistent with multiple lines of 

evidence: First, there is substantial evidence that deactivation in DMN regions scales with 

load during WM tasks (e.g., Arsalidou et al., 2013; Ceko et al., 2015; Esposito et al., 2006; 

Jansma et al., 2007; Manelis & Reder, 2014; Mayer et al., 2010; McKiernan et al., 2003; 

Pyka et al., 2009), and this pattern is observed even at high WM loads (Westbrook, 2016). 

As a result, DMN deactivation is also considered an index of cognitive effort (Owens et al., 

2018). Second, regarding the effects of training, our results are in line with Jolles et al. 

(2010), who also identified reduced deactivation of DMN regions with WM training in 

younger adults, consistent with the interpretation that cognitive demands decrease with 

training (see also Poldrack, 2000). Similarly, in our study, reduced DMN deactivation was 

associated with better task performance with training in younger adults, at least at the group 

level. Finally, the lack of DMN modulation with training in older adults is in line with meta-

analytical evidence from studies of brain activation (Duda & Sweet, 2019) and consistent 

with the other evidence indicating less modulation of DMN activity with aging (e.g., Persson 

et al., 2007; Turner & Spreng, 2012).

Training Increases Functional Connectivity within the WM Network and between the Task-
positive and Task-negative Networks in Older Adults

Complementing the brain activation results, analyses of task-related functional connectivity 

showed both increased functional connectivity within the WM network and between the 

task-positive and task-negative networks in older adults, with training. Greater WM-network 
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functional connectivity with training has been previously shown in younger adults with both 

resting-state (Jolles et al., 2013; Takeuchi et al., 2013) and task-related data (Kundu et al., 

2013), supporting the idea that strengthening of fronto-parietal coupling may benefit WM 

maintenance (reviewed in Constantinidis & Klingberg, 2016). Here, we observe a similar 

pattern, but only in older adults (see also Lebedev et al., 2018).

Although older adults showed increased functional connectivity within the task-

positive/WM network with training, consistently for both meta-analytically defined and 

group-specific WM regions, these two analyses showed somewhat different profiles. 

Specifically, whereas the analysis using meta-analytically defined regions suggests opposite 

effects of training on functional connectivity within the WM network in older vs. younger 

adults (i.e., relative increase in older adults vs. relative decrease in younger adults; see Fig. 

5), the group-specific analysis conveys a general increase due to training in older adults and 

minimal effects in younger adults (see Fig. 6a). This indicates a tendency for older adults to 

be more responsive to training in our neural measures, a pattern we discuss further below.

The result showing increased functional connectivity between the task-positive and task-

negative networks with training in older adults was not anticipated, given that the two 

networks are frequently described as being anti-correlated (Fox et al., 2005) and their 

competitive relationship is thought to be important for attention-demanding task 

performance (e.g., Kelly et al., 2008). Recent studies, however, have challenged the idea that 

cognitive control reflects an antagonism between fronto-parietal and default-mode networks, 

and cooperation between the two systems has been detected in various cognitive tasks (see 

Cocchi et al., 2013). Thus, whereas the results based on the amplitude of brain activity may 

suggest that older adults become more “young-like” with training, the results based on task-

related functional connectivity suggest complex and divergent age-related trajectories that 

remain to be further explored, considering both their potential benefits and costs (for 

instance, see Hillary & Grafman, 2017). The present results also underscore the 

complementary nature of activation-based and functional connectivity analyses.

The present functional connectivity results and to some extent, the brain activation results, 

suggest relatively more measurable functional reorganization with training in older adults 

than in younger adults. While such an outcome may initially seem surprising, it may be 

understood through Lovden’s theoretical framework regarding cognitive plasticity (Lovden 

et al., 2010). Within this framework, flexibility refers to “the capacity to optimize the brain’s 

performance within the limits of the current state of functional supply” (p. 660), whereas 

plasticity relates to “the capacity for changes in flexibility” or “the capacity for changes in 

the possible range of cognitive performance” (p. 661). Because older adults presumably have 

a more limited range of functional supply, which in turn limits flexibility, the training 

intervention fostered greater plasticity (i.e., reorganization) in older adults. In other words, to 

the extent that the training intervention was overall more challenging for older adults, it may 

have promoted greater plasticity, which was reflected during the performance of the criterion 

fMRI tasks. In contrast, younger adults were potentially able to perform the tasks more 

within their range of flexibility, especially given the relatively short intervention. The 

currently employed paradigm, however, did not test the limits of training or plasticity in 

either group. Thus, future training studies with longer/more intensive interventions should 
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further clarify whether behavioral and neural training effects persist over the long-term in 

the same task and whether they transfer to other working memory contexts. In addition, 

identification of boundary conditions, such as the crunch point of neural activation, could be 

further used to set personalized criterion tasks, whereas age-specific shifts of the demand-

activation curves could potentially be used as neural markers of successful training 

interventions.

Limitations

The current study had a number of limitations. First, our sample size was relatively small, 

albeit consistent with previous research examining age and load effects in WM (Cappell et 

al., 2010) and comparable with recent training studies with an fMRI component (e.g., 

Heinzel et al., 2014; Heinzel et al., 2016). Second, although our within-subjects design 

enabled dissociation of task-exposure from training effects, the lack of a control group limits 

the conclusions that can be drawn about the specificity of training effects, for instance 

relative to other active, non-WM interventions. Such limitations reflect the expense and 

labor-intensive nature of training studies, and future investigations with larger sample sizes 

and active control groups are needed. Third, because there was a limited range of a priori 
defined high loads, we were unable to capture the entire activation curve for all participants 

(i.e., some older adults might have shown peak activation at loads greater than 8 post-

training). This may have prevented us from identifying correlations between the shift in 

activation and gains in WM performance at the subject level. Future investigations should 

use a larger range of WM loads and/or adapt the criterion (fMRI) task to each individual’s 

WM capacity. Finally, while the main prediction of an increase in the range of activation for 

the same set of loads pre- vs. post-training was supported, not all features of CRUNCH were 

confirmed. Specifically, predicted effects at low loads were less visible than at high loads. 

One possible explanation is that the training intervention was relatively short. We would 

expect the effects to extend to low loads with longer training. Despite these limitations, the 

present study provides new evidence for functional plasticity in older adults, consistent with 

the predictions of CRUNCH. Our future goal is to replicate these training effects in a larger 

and more diverse sample of older and younger adults, to investigate the effects of a longer 

training regimen with more demanding working memory loads.

Conclusions

In sum, the present results are consistent with CRUNCH and provide new evidence for the 

effects of training on brain activity as a function of age. According to the CRUNCH 

hypothesis, a resource ceiling that differs with age (Reuter-Lorenz & Cappell, 2008) but that 

can increase with training (Lustig et al., 2009), limits the system’s capacity to meet task 

demands. Consistent with this view, our results showed that older adults over-recruit WM 

regions and reach peak activation at lower loads than younger adults. As predicted, however, 

after training peak activation shifted to the right (to higher memory loads). This outcome 

suggests that appropriate training can increase the dynamic range of activation in WM 

circuitry (Kennedy et al., 2017), enabling greater responsiveness at higher loads. These 

results provide new evidence for functional plasticity with training in older adults and 

identify a potential signature of improvement at the neural level.
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Fig. 1. CRUNCH predictions and current design.
a, CRUNCH predicts a rightward shift of the neural recruitment curves with training, 

regardless of age. b, The present within-subjects design enabled the dissociation of task-
exposure (Time1 vs. Time2) from training (Time2 vs. Time3) effects. c, During each fMRI 

session, participants performed a delayed match-to-sample verbal WM task, with varying 

memory sets. OA, older adults; YA, younger adults.
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Fig 2. Exposure and training effects for WM performance.
Behavioral results show a reduction in age-related differences in WM performance due to 

task exposure (left panel) and training-related improvements in both groups (right panel). 

Line-graphs display average WM performance for each load. Error bars display standard 

error of the mean. The grey rectangle highlights the loads common to both groups (loads 5–

8). WM, working memory; OA, older adults; YA, younger adults.
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Fig 3. Exposure and training effects for brain activity in meta-analytically-defined WM regions.
Brain imaging results show greater overall recruitment of WM regions in older adults pre-

training (left panel) and increased activation at higher loads for both groups post-training 

(right panel), consistent with increasing responsiveness in the WM network. For older 

adults, this entails greater activation at the highest load, which is characterized by a shift 

from quadratic to linear trends (red arrow; see Results). For younger adults, greater 

responsiveness is evident across a range of higher loads. Line-graphs display average brain 

activity for each load vs. baseline (load of 1) in meta-analytically-defined WM regions (see 

Materials and Methods and Fig. S1a). Error bars display standard error of the mean. The 

grey rectangle highlights the loads common to both groups (loads 5–8). WM, working 

memory; OA, older adults; YA, younger adults.
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Fig. 4. Training effects on brain activation in group-specific regions sensitive to load at Time1.
a, Training effects in task-positive regions, associated with working memory. Both groups 

show greater activation at higher loads after training compared to before training. Older 

adults show a shift from quadratic to linear trends, consistent with the results in meta-

analytically defined WM regions (see Fig. 3). b, Training effects in task-negative regions, 

associated with the default-mode network. Younger adults show less deactivation with 

training, particularly for lower loads. There are no training effects for older adults in these 

regions. Line-graphs display average brain activity for each load vs. baseline (load of 1) in 

group-specific regions sensitive to load at Time1 (see Materials and Methods and Fig. S1b). 

Error bars display standard error of the mean. WM, working memory; OA, older adults; YA, 

younger adults.
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Fig 5. Exposure and training effects for functional connectivity within a meta-analytically 
defined WM network.
Functional connectivity results show no significant differences pre-training (left panel) and 

increased functional connectivity within the WM network pre- vs. post-training, in older 

compared to younger adults (right panel). Line-graphs display average functional 

connectivity for each load vs. baseline (load of 1) within the meta-analytically defined WM 

network (see Materials and Methods and Fig. S3a). Error bars display standard error of the 

mean. The grey rectangle highlights the loads common to both groups (loads 5–8). WM, 

working memory; OA, older adults; YA, younger adults.
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Fig. 6. Training effects on functional connectivity in group-specific networks sensitive to load at 
Time1.
a, Training effects on functional connectivity within the task-positive network, associated 

with WM. Older adults show greater functional connectivity with training, consistent with 

the results based on meta-analytical ROIs (see Fig. 5). Older adults also showed a trend 

toward greater functional connectivity with training within the task-negative network, which 

overlaps with regions of the default-mode network (see Fig. S4). There are no training 

effects in younger adults within either network. b, Training effects on functional 

connectivity between the task-positive and task-negative networks. Older adults show greater 

functional connectivity between the task-positive and task-negative networks with training. 

Line-graphs display average functional connectivity for each load vs. baseline (load of 1) 

within/between group-specific networks sensitive to load at Time1 (see Materials and 

Methods and Fig. S3b). Error bars display standard error of the mean. WM, working 

memory; OA, older adults; YA, younger adults.

Iordan et al. Page 27

Neuroimage. Author manuscript; available in PMC 2020 December 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Iordan et al. Page 28

Table 1.

Sample demographic information.

OA (N = 19) YA (N = 21)

% Female 47 57

Age (S.D.) 67.84 (3.29) 21.33 (2.65)

Education (S.D.)
† 16.95 (1.68) 14.81 (1.75)

MoCA (S.D.) 28.21 (1.62) 28.48 (1.50)

†
Older adults had relatively more years of education than younger adults, p < 0.001. OA, older adults; YA, younger adults; MoCA, Montreal 

Cognitive Assessment score.
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Table 2.

Task-positive and task-negative brain regions showing up and down regulation, respectively, in response to the 

Load manipulation, in older adults.

Brain Regions BA

MNI Coordinates

F Values Cluster sizex y z

Task-positive Regions (WM)

 Dorsolateral Prefrontal Cortex

  R Superior Frontal Gyrus 9 36 54 21 6.66 65

 Lateral Frontal Cortex

  L Superior Frontal Gyrus 6 −3 15 54 12.97 1573

  L Middle Frontal Gyrus −21 −6 51 7.4

  L Inferior Frontal Gyrus 9 −51 6 21 9.47

  L Precentral Gyrus 6 −45 −6 36 11.19

  R Superior Frontal Gyrus 6 6 18 48 10.82

  R Middle Frontal Gyrus 36 0 60 10.12

 Medial Frontal Cortex

  L Medial Frontal Gyrus 6 −6 3 60 12.58

32 −9 21 45 12.05

  R Cingulate Gyrus 32 9 27 33 7.69

 Parietal Cortex

  L Superior Parietal Lobule 7 −27 −63 57 17.44 1969

  L Inferior Parietal Lobule 40 −45 −39 48 12.18

  L Precuneus 7 −24 −66 39 11.92

31 −30 −75 27 9.54

  R Superior Parietal Lobule 7 15 −66 63 13.64

  R Inferior Parietal Lobule 40 45 −33 42 10.38

  R Precuneus 7 24 −63 45 14.43

31 27 −45 39 8.47

 Temporo-Occipital Cortex

  L Fusiform Gyrus 37 −51 −57 −12 9.28 140

19 −45 −75 −9 9.08

  L Middle Occipital Gyrus 18 −39 −84 −6 7.72

 Occipital Cortex

  L Lingual Gyrus 17 −6 −96 −3 12.05 374

18 −3 −72 9 9.51

19 −24 −69 6 6.14

  L Fusiform Gyrus 19 −24 −87 −6 5.29

  R Lingual Gyrus 18 9 −66 6 7.75

  R Posterior Cingulate 30 9 −69 15 7.36

 Insula

  L Insula 13 −36 30 6 10.24 186

 Subcortical
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Brain Regions BA

MNI Coordinates

F Values Cluster sizex y z

  R Putamen 24 12 0 11.18 106

 Cerebellum

  R Declive 30 −69 −21 9.61 174

  R Tuber 42 −66 −30 8.86

  R Pyramis 6 −72 −27 6.68

Task-negative Regions (DMN)

 Medial Prefrontal Cortex

  R Medial Frontal Gyrus 9 6 57 18 8.92 146

 Temporo-Parietal Junction

  L Middle Temporal Gyrus 39 −57 −69 24 9.17 165

   Superior Temporal Gyrus 22 −48 −57 21 7.47

  R Middle Temporal Gyrus 39 51 −60 24 7.95 140

   Angular Gyrus 51 −63 39 5.4

 Posterior Cingulate Cortex

  L Posterior Cingulate 23 −9 −57 21 12.46 435

   Posterior Cingulate 31 −6 −51 30 10.54

  R Posterior Cingulate 31 6 −57 30 11.73

   Posterior Cingulate 30 6 −48 24 10.94

Significance threshold is pFWE < 0.05 (see Materials and Methods). Cluster size is in voxels and reflects size after masking (logical “AND” 

conjunction) the F-maps with binarized composite random-effects t-maps identifying regions showing up and down regulation, respectively, in 
response to the Load manipulation (see Materials and Methods). Anatomical regions were identified using the Talairach Client (http://talairach.org) 
after transforming the SPM12 Montreal Neurological Institute coordinates to Talairach space using GingerALE (http://brainmap.org). WM, 
Working memory; DMN, Default-Mode Network; L, Left; R, Right; BA, Brodmann Area.
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Table 3.

Task-positive and task-negative brain regions showing up and down regulation, respectively, in response to the 

Load manipulation, in younger adults.

Brain Regions BA

MNI Coordinates

F Values Cluster sizex y z

Task-positive Regions (WM)

 Dorsolateral Prefrontal Cortex

  R Middle Frontal Gyrus 9 36 39 33 9.78 49

 Lateral Frontal Cortex

  L Inferior Frontal Gyrus 9 −48 9 24 9.63 155

  L Precentral Gyrus 6 −57 0 21 6.24

 Medial Frontal Cortex

  L Medial Frontal Gyrus 6 −9 15 48 8.43 115

  L Cingulate Gyrus 32 −6 21 42 8.14

  R Superior Frontal Gyrus 6 6 12 54 5.68

  R Cingulate Gyrus 32 6 27 33 5.93

 Parietal Cortex

  L Precuneus 7 −24 −63 42 10.65 333

  R Precuneus 7 9 −69 51 7.34 160

 Insula

  R Insula 13 33 18 3 7.97 72

Task-negative Regions (DMN)

 Medial Prefrontal Cortex

  L Superior Frontal Gyrus 9 −15 51 33 5.93 36
†

 Temporo-Parietal Junction

  R Middle Temporal Gyrus 39 54 −69 30 7.55 121

  L Middle Temporal Gyrus 39 −45 −66 27 5.5 43
†

 Posterior Cingulate Cortex/Precuneus

  L Precuneus 31 −9 −48 33 5.94 57
†

  R Cingulate Gyrus 31 6 −48 30 5.96

Significance threshold is pFWE < 0.05 (see Materials and Methods). Cluster size is in voxels and reflects size after masking (logical “AND” 

conjunction) the F-maps with binarized composite random-effects t-maps identifying regions showing up and down regulation, respectively, in 
response to the Load manipulation (see Materials and Methods).

†
Significant at p < 0.001 and k = 30 voxels, uncorrected. Anatomical regions were identified using the Talairach Client (http://talairach.org) after 

transforming the SPM12 Montreal Neurological Institute coordinates to Talairach space using GingerALE (http://brainmap.org). WM, Working 
Memory; DMN, Default-Mode Network; L, Left; R, Right; BA, Brodmann Area.
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