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Executive Summary 

The ECP Subsurface application code development project uses a performance portability strategy for 
Chombo-Crunch based on the Proto portability and productivity layer.  A new C++ version of 
CrunchFlow has been developed and invokable as a single point function call in EBProto::forall. Baseline 
CPU vs. GPU performance is reported. 
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1. Outline of Execution Plan 

1. Port CrunchFlow Lite to GPUs 
a. Convert CrunchFlow Lite from Chombo Fortran to C++ 
b. Use Proto::ShapeArray for vector length arrays 
c. Develop single point function call, invokable as device code in Proto::forall 
d. Implement Proto-Crunch driver and test 
e. Optimize Proto-Crunch on GPUs 

 
 

2. TECHNICAL WORK SCOPE, APPROACH, RESULTS 

CRUNCHFLOW GPU PORTABILITY 

Chombo-Crunch couples flow and coservative transport solvers in Chombo with the geochemical reaction 
network in CrunchFlow.  The interface was previously based on the Chombo FORTRAN DSL which 
seamlessly integrates CrunchFlow, a FORTRAN 90/77 code.  As we are making use of the Proto C++ 
library for performance portability of Chombo-Crunch to GPUs, and in doing so replacing Chombo 
FORTRAN, we have converted CrunchFlow FORTRAN 90/77 code to C++. We have also reduced the 
Chombo-Crunch interface to a single point function call invokable as device code in Proto::forall for GPU 
portability. Several areas of development have occurred in this process: 

● C++ implementation of CrunchFlow 
○ The standard C language implementation uses a column-wise representation for all arrays 

to achieve storage agreement between C and FORTRAN to facilitate continued 
FORTRAN/C interoperability, and aid in backward compatibility for regression testing 

■ We developed an offset library in C to reference array elements using 
FORTRAN-style indexing 

■ We implemented a regression testing framework to compare simulation results 
between the C implementation and the original FORTRAN implementation. 

○ The initial C implementation used variable-length arrays (VLAs), an ISO/IEC 9899:1999 
(i.e. C99) standard, to pass multidimensional arrays to functions. This implementation has 
been committed to the LBNL Subversion code repository.  

○ Use of VLAs promotes the object-oriented design principle of data encapsulation to 
avoid referencing arrays declared to have global scope, a liability found in the original 
FORTRAN 90/77 implementation 

○ However, support for VLAs was not accepted for inclusion into the C++ standard.  Many 
suggest using the std::vector mechanism in place of VLAs, however use of std::vector is 
not recommended for GPU acceleration. We therefore transitioned to using the available 
Proto::ShapeArray API, which permits a developer to use standard C array indexing 
syntax, given a pointer to the first element of a multidimensional array. 

● Global data 
○ Previous FORTRAN multidimensional arrays were global (in COMMON block storage) 

which presents non thread-safe code that may not be reentrant: 
■ Data encapsulation: we refactored the original FORTRAN 90/77 implementation 

to remove the dependence on global storage (common blocks, module files) 
using VLA and data encapsulation. We encapsulated data within functions where 

 



 

possible.  For example, functions that solve a linear system will locally store  a 
matrix A and RHS vector b. 

■ Data hiding keeps data from being exposed and therefore vulnerable to 
unintentional side effects. 

■ FORTRAN 90 module files were converted to prototype C++  header files 
● Proto-Crunch 

○ Developed single point function call to function os3d_newton, which implements a 
Newton-Raphson iterative method 

○ invokable as device code in Proto::forall 
○ Created standalone test code driver that isolates os3dNewton iterative solver in 

CrunchFlow 
■ Break before os3dNewton in CrunchFlow to dump array values as initial values 

for Proto::Crunch test code 
■ Hardcode 79 pointers to data using Proto::ShapeArray 

● call by reference, not by value 
● sum of all arguments is under 2^10 bytes: 1024/79=12.96 < 16 

○ Converted to LinPack 
■ CUDA optimized BLAS and LinPack (future) 

○ Performance times: 
 

Optimization / Architecture Host time [ns] 
Intel Xeon E5-2620v4 2.10GHz 

GPU time [ns] 
Nvidia V100 PCIe 16GB 

Baseline 2,285,781 12,664,179 

matrix assembly on device   

 
○ Further optimizations 

■ push matrix assembly onto device 
■ push entire reaction network on device, pass device pointer to solution (future 

work) 
 
 

3. CONCLUSIONS AND FUTURE WORK 

The primary goal of future work would be to push the entire Crunch reaction network computation onto 
the GPU. A device pointer to the solution of reaction components would need to be passed into Crunch. 

Another focus of future research pertaining to reaction geochemistry will be to accelerate CrunchFlow on 
the NVIDIA A100 architecture. We will also investigate how we can best make use of Fused 
Multiply-Add (FMA) operations on A100 Tensor Cores that can perform mixed 16-bit floating point 
(FP16) and 32-bit floating point (FP32) matrix operations on 4×4 block matrices in one clock cycle.  We 
will explore how we can use the new TF32 precision provided by the A100, which is capable of 20x more 
FLOPS in codes that use FP32. SDSU is purchasing an nVidia DGX cluster with 8x A100 GPUs, and we 
will port the accelerated CrunchFlow code over to the A100 architecture and evaluate speedup. A second 

4 
 



 

focus of future research will be to use the newly released Xilinx Vitis Accelerated Math Libraries to 
accelerate general matrix multiply (GEMM) operations in ChomboCrunch on a Xilinx Alveo U280 
(FPGA) data center accelerator card. We will acquire two U280s in November 2020 dedicated to this 
effort, funded through our recent NSF Office of Advanced Cyberinfrastructure (OAC) CC* Compute 
Grant 2019194 ($399,328) CC* Compute: Central Computing with Advanced Implementation at San 
Diego State University. The use of hardware accelerators will allow us to configure detailed kinetic 
mechanisms involving a greater number of silicate and carbonate minerals and aqueous electrolytes in 
formation water, and perform simulations at multiple timescales. 

 
 

 




