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ABSTRACT OF THE DISSERTATION

Galaxies and their Cosmic Variance in the First Billion Years

by

Adam Charles Trapp

Doctor of Philosophy in Astronomy and Astrophysics

University of California, Los Angeles, 2022

Professor Steven R. Furlanetto, Chair

Cosmic variance is the intrinsic scatter in the number density of galaxies due to fluctuations

in the large-scale dark matter density field. We begin by presenting a flexible analytic model

of cosmic variance in the high redshift Universe (z ∼ 5–15). We find that cosmic variance

in the luminosity function of galaxies at these times is dominated by the variance in the

underlying dark matter halo population, and not by differences in halo accretion nor the

specifics of our stellar feedback model. We also find that cosmic variance dominates over

Poisson noise except for the brightest sources or at very high redshifts (z ≳ 12). We provide a

linear approximation of cosmic variance via a public Python package galcv. We then develop

a statistical framework that folds our model of cosmic variance into the measurement of the

galaxy luminosity function. Through this framework, we forecast the performance of several

major upcoming James Webb Space Telescope (JWST) galaxy surveys. We find that they

can constrain field matter densities down to the theoretical limit imposed by Poisson noise

and unambiguously identify over-dense (and under-dense) regions on transverse scales of tens

of comoving Mpc. We then apply this framework to a real Hubble Space Telescope (HST)

data set at z = 6 – 8, providing a new measurement of the luminosity function of galaxies,

and for the first time, measure the underlying densities of the survey fields, including the

most over/under-dense HST fields. We show that the distribution of densities is consistent

with current predictions for cosmic variance. Finally, we develop the first quantitative,

statistically robust framework to infer the underlying density and ionization environment

of regions with elevated densities of Lyman-α emitters (LAEs). We apply this framework
ii



to an actual observation of 14 LAEs in a ∼50,000 cMpc3 region at z = 6.93, obtaining a

measurement of that region’s density and ionization state, and a constraint on the average

ionization fraction of the Universe.
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CHAPTER 1

Dissertation Introduction and Overview

There was an age, in the Universe we know, that no stars shone. No moons nor galaxies

abode in their destined place. There was only soup – very hot, glowing soup – filling all space.

Its ingredients: everything in the Universe. It was like a tomato bisque, extremely smooth

and homogeneous with only tiny bits of texture. These bits of texture proved fortunate, as

about them time and gravity congealed the soup into stars and moons and galaxies, and us.

We know of this age because we have seen it. A stubborn bit of static in a strange-looking

radio receiver – at one point thought to be caused by bird droppings – turned out to be a

signal from glowing soup at the beginning of time (Penzias & Wilson, 1965; Dicke et al.,

1965). This soup and its glow has since been extensively measured by many telescopes and

is now one of the best studied and well understood phenomena in all of Astrophysics (Planck

Collaboration et al., 2016). Thus, we know – in incredible detail – the nature of the Universe

around 13,800,000,000 years ago, a mere 380,000 year after the Big Bang. Paradoxically, the

time just after this period – the congealing of the soup and the cosmic dawn of starlight –

we know very little about. No telescope in astronomy was able to pierce this particular time

period, until this year. The James Webb Space Telescope (JWST) can observe some of the

first galaxies in the Universe, helping to illuminate the process by which all things we see in

this Universe grew from the soup.

The era after the cosmic dawn is also of great interest to Astronomers: the epoch of

reionization (EoR). During this time, the congealing galaxies produced many high-energy

photons, so many in fact, that all of the soup in-between galaxies was ionized into a plasma.

This process took a few hundred million years, finishing around 1,000,000,000 years after the

Big Bang, or 12,800,000,000 years ago. Reionization has been the subject of intense study,
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but JWST will be able to observe the individual sources that are contributing ionizing

photons in much greater detail than ever before.

1.1 The luminosity function and cosmic variance

One of the first things JWST will do is take a census of these galaxies during the EoR

and cosmic dawn. With this census Astronomers will build a “luminosity function”, which

counts the galaxies categorized by their luminosity. The luminosity function is an extremely

important feature of the galaxy population as a whole; its shape and evolution has been

studied extensively at the redshifts available to pre-JWST instruments, most importantly,

the Hubble Space Telescope (see e.g., Schenker et al., 2013; McLure et al., 2013; Bouwens

et al., 2015; Finkelstein et al., 2015; Bowler et al., 2015; Livermore et al., 2017; Atek et al.,

2018; Oesch et al., 2018; Behroozi et al., 2019; Bouwens et al., 2021; Finkelstein et al., 2022).

The luminosity function typically takes the form of a “Schechter function,” characterized

by a power-law slope at faint magnitudes and an exponential cutoff at some characteristic

magnitude. This function has the form

Φavg(M, z)dM = (0.4 ln10)ϕ∗[100.4(M
∗−M)]α+1exp[−100.4(M

∗−M)]dM, (1.1)

where Φavg(M, z)dM is the average number density of galaxies with absolute magnitudes

between (M,M + dM). The parameters of this function are the normalization ϕ∗, the char-

acteristic magnitude M∗, and the faint-end power-law slope, α. This “average” luminosity

function describes the Universal population of galaxies, and its parameters evolve with red-

shift.

However, this average luminosity function may not well describe the galaxies in a given

volume V . As part of the congealing of the soup, some regions contain much matter and

many galaxies, while others are relatively devoid of matter. This effect is called “cosmic

variance,” and is the main subject of this dissertation. Thus the “local” luminosity function

in the volume V will look different than average. For large volumes, the local luminosity
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function can be described linearly (Mo & White, 1996; Trapp & Furlanetto, 2020):

Φloc(M, z, δ, V ) = Φavg(M, z)

(
1 +

δ

σδ

εcv(M, z, V )

)
, (1.2)

where δ is the relative matter density of V , σδ is the root mean squared (r.m.s.) fluctuation

of δ across many volumes of the same size, and εcv is the “bias function” that indicates

the strength by which the luminosity function changes given some matter density, which

depends on the magnitude considered and the size and shape of V . The value of σδ is

relatively well understood (see Chapter 2), so εcv carries most of the information about

cosmic variance. Unfortunately, the effects of Poisson noise further complicate this picture.

If the local luminosity function predicts there to be Nexp galaxies of magnitude M in some

volume V with density δ, the actual number of sources found in a given volume Nobs will be

drawn from the Poisson distribution with probability

P (Nobs) =
NNobs

exp e−Nexp

Nobs!
. (1.3)

The relative width of this distribution goes as approximately 1/
√

Nexp, so if a large region

or number of regions are sampled, the effects of Poisson noise is reduced. Thus, the local

luminosity function is actually an average across all volumes V with density δ.

Like a census of people, it’s important that JWST’s census of galaxies samples many

different locations, lest it be biased towards one type of region or subject to large Poisson

uncertainties. Prior knowledge of the strength of cosmic variance is valuable for planning

a census and interpreting its results. Thus, cosmic variance has been modeled in a variety

of ways in the past. For example, analytic models typically start with the linear halo bias

function and then connect haloes to galaxies with a halo mass to luminosity relation, or by

matching abundances (see e.g., Newman & Davis, 2002; Somerville et al., 2004; Stark et al.,

2007; Moster et al., 2011). These models conclude that cosmic variance is a significant source

of uncertainty when studying galaxies at high redshifts. However, such models do not allow

cosmic variance to affect the halo mass to luminosity connection itself; they assume galaxies

are the same in all environments. Cosmic variance can also be estimated using mock observa-

tions of galaxy simulations. The early implementations of this method (see e.g., Kitzbichler
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& White, 2007; Trenti & Stiavelli, 2008) were very powerful, but also assumed galaxies are

the same in all environments. Recently, substantial improvements in computing power have

allowed for much higher-volume N -body simulations that also treat star formation in a more

complex way (e.g., Bhowmick et al., 2020; Ucci et al., 2021). These studies take into account

the difference in environment on individual galaxy growth, and are a major step forward in

predicting cosmic variance in the first galaxies. However, these studies (1) are still limited

by their volume, as a complete picture of cosmic variance requires extremely large volumes

to calculate cosmic variance on all relevant scales and magnitudes; (2) cannot explore how

cosmic variance depends on their specific implementation of mass accretion, star formation,

feedback, and other parameters, without re-running simulations many times, which would

be prohibitively expensive; and (3) can be limited in their redshift or magnitude ranges.

Simulations lack large volume and flexibility, while existing analytic models rely on linear

theory and lack a fully self-consistent connection between cosmic variance and galaxy growth

and star formation.

In Chapter 2 we develop a simple, flexible analytic model of high-z galaxies to study

the effects of cosmic variance on the galaxy population. We begin with a close examination

of large-scale variations in the dark matter halo population, where galaxies reside. This

provides the fundamental basis for the cosmic variance of the galaxy population, and with it

we capture some non-linear aspects of these fluctuations. Next, we describe a “minimalist"

model of galaxy evolution (Furlanetto et al., 2017) that fits observed luminosity functions

reasonably well but is sufficiently flexible to examine how a large range of assumptions about

the physics of these sources affects cosmic variance. We use this model to determine which of

the many uncertain parameters of galaxy formation have the most impact on cosmic variance,

and we account for changes in galaxy growth and star formation in different environments.

Finally, we combine our treatments of dark matter haloes and galaxy physics to create a

linear approximation of the cosmic variance of galaxies as a function of redshift and absolute

magnitude: εcv (available via an easy to install public Python package called galcv). Unlike

other such functions derived from simulations, our results apply across any mass or redshift,

and we quantify how uncertainties in galaxy evolution parameters affect the results. This
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model of εcv underpins the rest of the projects in this dissertation.

Our model of εcv (as well as others’) predicts that the effects of cosmic variance will

get stronger as redshift increases through the EoR and into the cosmic dawn. This will

increase the difficulty of measuring the luminosity function in these times. So, in Chapter 3,

we develop a framework to simultaneously measure the high-z average luminosity function

Φavg and field densities δ from a galaxy census. Unlike the standard approach to estimating

luminosity functions, which acknowledges the existence of cosmic variance but does not

attempt to model it, our new framework uses Bayesian statistics to fold in a comprehensive

model of cosmic variance (Trapp & Furlanetto, 2020) and its effect on the galaxy population.

Further, we argue cosmic variance is not just a nuisance. It is itself a key driver of both

galaxy formation and reionization during the cosmic dawn because it reflects real large-

scale structure in the Universe. If these large-scale densities can be measured, they can

complement the luminosity function as another bedrock observable. The insights to be

gained from such measurements include:

(i) The process of reionization likely began in the densest parts of the Universe and ended

in the largest voids. Identifying such over/under-densities is an area of great interest (see

e.g. Zitrin et al., 2015; Jung et al., 2020; Tilvi et al., 2020; Hu et al., 2021; Endsley et al.,

2021; Becker et al., 2018; Davies et al., 2018; Christenson et al., 2021).

(ii) Large-scale feedback mechanisms, driven by large-scale density, are likely to strongly

affect the galaxy population before and during reionization (Thoul & Weinberg, 1996; Iliev

et al., 2007; Noh & McQuinn, 2014).

(iii) Measuring large-scale densities at early times facilitates the understanding of the

assembly history of rare objects like galaxy clusters (e.g., Chiang et al. 2017), which form

from the densest environments.

(iv) Finally, comparing large-scale density measurements from surveys with theoretical

predictions of cosmic variance can help test models of the galaxy–halo connection (Trapp &

Furlanetto, 2020).

We then use our framework to forecast the performance of a selection of upcoming galaxy
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surveys, exploring how well different combinations of the surveys can measure the luminosity

function and individual field densities.

In Chapter 4, we apply the framework from Chapter 3 to existing HST data, making a

joint measurement of galaxy luminosity functions and large-scale structure during the EoR.

We obtain a new measurement of the galaxy luminosity function for z = 6–8 and, for the

first time, measure the underlying large-scale density of many HST survey fields.

1.2 Lyman-α emitters as probes of reionization

Finally, we take a turn towards the process of reionization in Chapter 5. Lyman-α emitters

(LAEs) are an exciting probe of reionization (as well as galaxy formation). The young

galaxies present in the reionization era are likely to have large intrinsic Lyman-α luminosities

(Partridge & Peebles, 1967; Ouchi et al., 2020), but those photons are subject to substantial

absorption by the intergalactic medium (IGM) before reionization is complete, thanks to

the enormous optical depth of remaining neutral islands (Gunn & Peterson, 1965). We

therefore expect to see a decline in the relative abundance of LAEs as we penetrate further

into the reionization era, making these galaxies an effective probe of the ionization state

(Madau & Rees, 2000; Haiman, 2002; Santos, 2004). A particularly interesting aspect of

this modulation is that it exaggerates the existing clustering: galaxies in over-dense regions

(which host large ionized bubbles) will remain visible, while even galaxies inside modest

over-densities will disappear early enough in reionization. This suggests that focusing on

identifying rare ionized regions can be a powerful probe of reionization (e.g., Mesinger &

Furlanetto 2008).

Of particular interest for us, several teams have discovered candidate ionized bubbles

hosting apparently significant over-densities of LAEs (e.g., Tilvi et al. 2020; Jung et al.

2020; Hu et al. 2021; Endsley et al. 2021). However, to date such inferences are mostly

qualitative, with only simple efforts to transform observed features in the galaxy distribution

to a quantitative constraint on the underlying ionization and density fields. Finding and

analysing these regions, and then connecting the visible sources to the total population of
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galaxies that are ionizing the Universe is challenging on many fronts. The bulk of ionizing

photons are coming from galaxies that we cannot see with HST nor JWST (see e.g., Behroozi

& Silk, 2015; Furlanetto et al., 2017). In a partially-ionized Universe, even strong Lyman-

α lines can be obscured by intervening neutral Hydrogen, leaving only a small number of

the brightest LAEs in the most ionized regions visible. The observed number density of

these LAEs is then strongly affected by Poisson noise. Poisson noise is uncorrelated between

magnitude bins, meaning an over-density of a few bright LAEs does not necessarily mean an

over-density in the much-larger underlying population of faint or obscured sources. In other

words, determining the large-scale density of a region from a small number of LAEs requires

a simultaneous treatment of (i) cosmic variance and the corresponding galaxy bias of those

LAEs, (ii) Poisson noise, and (iii) the effects of a partially ionized Universe on the visibility

of LAEs.

In Chapter 5, we use our model of cosmic variance to develop the first quantitative,

statistically robust framework to infer the underlying density and ionization environment

of regions with elevated densities of LAEs. This framework can be applied both to LAEs

(which probe both the ionization state and the density) and to other surveys (which probe

only the density). We apply this method to an actual observation of 14 LAEs in a ∼50,000

cMpc3 region at z = 6.93 (Hu et al., 2021), obtaining a measurement of its density and

ionization, and a constraint on the average ionization fraction of the Universe at this time.

We summarize the results of this dissertation and look to future applications in Chapter 6.
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CHAPTER 2

A Flexible Analytic Model of Cosmic Variance in the

First Billion Years

This chapter can be seen in its published form (Trapp & Furlanetto, 2020) here:

https://ui.adsabs.harvard.edu/abs/2020MNRAS.499.2401T/abstract

2.1 Abstract

Cosmic variance is the intrinsic scatter in the number density of galaxies due to fluctuations

in the large-scale dark matter density field. In Chapter 2, we present a simple analytic

model of cosmic variance in the high redshift Universe (z ∼ 5–15). We assume that galaxies

grow according to the evolution of the halo mass function, which we allow to vary with

large-scale environment. Our model produces a reasonable match to the observed ultraviolet

luminosity functions in this era by regulating star formation through stellar feedback and

assuming that the UV luminosity function is dominated by recent star formation. We find

that cosmic variance in the UVLF is dominated by the variance in the underlying dark

matter halo population, and not by differences in halo accretion or the specifics of our stellar

feedback model. We also find that cosmic variance dominates over Poisson noise for future

high-z surveys except for the brightest sources or at very high redshifts (z ≳ 12). We provide

a linear approximation of cosmic variance for a variety of redshifts, magnitudes, and survey

areas through the public Python package galcv. Finally, we introduce a new method for

incorporating priors on cosmic variance into estimates of the galaxy luminosity function and

demonstrate that it significantly improves constraints on that important observable.
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2.2 Introduction

Extragalactic astronomy is closing in on arguably the most important era of galaxy evolution:

the formation of the first galaxies. These galaxies will allow us to probe the processes that

drove the first emergence of complexity in our Universe.

The most fundamental observations for studying this era have been (and will continue

to be) deep galaxy surveys. These surveys measure many important features of the galaxy

population, most fundamentally the ultra-violet luminosity function (UVLF) of galaxies.

The UVLF is a measure of the number of galaxies at each luminosity, and its shape and

evolution through cosmic time has important implications for the physics behind galaxy

formation and growth, and much more (see e.g., Bouwens et al., 2015; Finkelstein et al.,

2015; Livermore et al., 2017; Atek et al., 2018; Oesch et al., 2018; Behroozi et al., 2019).

Unfortunately, these deep galaxy surveys will have very small volumes, which will be a key

limitation in measuring the UVLF due to the effects of “cosmic variance:” not all regions of

the Universe contain the average number of galaxies, and those galaxies did not all grow up

in an average environment. We must understand how cosmic variance affects the UVLF in

order to inform and correctly interpret future deep galaxy surveys.

Cosmic variance in the UVLF (and other measures) has been modeled in a variety of

ways in the past. For example, analytic models typically start with the linear halo bias

function and then connect haloes to galaxies with a halo mass to luminosity relation, or by

matching abundances (see e.g., Newman & Davis, 2002; Somerville et al., 2004; Stark et al.,

2007; Moster et al., 2011). These models conclude that cosmic variance is a significant source

of uncertainty when studying galaxies at high redshifts. However, such models do not allow

cosmic variance to affect the halo mass to luminosity connection itself; they assume galaxies

are the same in all environments. Also, the linear halo bias function does not accurately

predict cosmic variance in extreme environments.

Cosmic variance can also be estimated using mock observations of galaxy simulations.

The early implementations of this method (see e.g., Kitzbichler & White, 2007; Trenti & Sti-

avelli, 2008) were very powerful, but also assumed galaxies are the same in all environments.
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Recently, substantial improvements in computing power have allowed for much higher-volume

N -body simulations that also treat star formation in a more complex way (e.g., Bhowmick

et al., 2020; Ucci et al., 2021). These studies take into account the difference in environment

on individual galaxy growth, and are a major step forward in predicting cosmic variance in

the first galaxies. However, these studies (1) are still limited by their volume, as a complete

picture of cosmic variance requires extremely large volumes to calculate cosmic variance on

all relevant scales and magnitudes; (2) cannot explore how cosmic variance depends on their

specific implementation of mass accretion, star formation, feedback, and other parameters,

without re-running simulations many times, which would be prohibitively expensive; and (3)

can be limited in their redshift or magnitude ranges.

Simulations lack large volume and flexibility, while existing analytic models rely on linear

theory and lack a fully self-consistent connection between cosmic variance and galaxy growth

and star formation.

Quantitative interpretations of high-z data require corrections for cosmic variance, espe-

cially because most planned surveys subtend relatively small volumes. Such corrections are

particularly important when multiple independent surveys are combined, as each such survey

contains its own (unknown) intrinsic density. The standard method to account for cosmic

variance when fitting a UVLF, originally developed by Sandage et al. (1979) and used by

e.g. Efstathiou et al. (1988) and Bouwens et al. (2015), fits a universal shape of the UVLF

to all fields, ignoring the normalization parameter of the fit in each individual field. After

the shape has been optimized, the overall normalization is determined by demanding that

it reproduces the correct total number of galaxies across all surveys. This method cannot

account for a change in shape of the UVLF between fields, and it does not include a prior

for the amount of variance allowed in the normalization parameter of the UVLF.

In this paper, we use a simple, flexible analytic model of high-z galaxies to study the

effects of cosmic variance on galaxy surveys. We begin in section 2.3 with a close examination

of large-scale variations in the dark matter halo population in the context of excursion set

models of halo formation. This provides the fundamental basis for the cosmic variance of

the galaxy population, and with it we capture some non-linear aspects of these fluctuations.
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Next, in section 2.4, we describe a “minimalist” model of galaxy evolution (Furlanetto et al.,

2017) that fits observed luminosity functions reasonably well but is sufficiently flexible to

examine how a large range of assumptions about the physics of these sources affects cosmic

variance. We use this model to determine which of the many uncertain parameters of galaxy

formation have the most impact on cosmic variance, and we account for changes in galaxy

growth and star formation in different environments. We combine our treatments of dark

matter haloes and galaxy physics in section 2.5, where we also provide a linear approximation

to the cosmic variance of galaxies as a function of redshift and absolute magnitude. Unlike

other such functions derived from simulations, our results apply across any mass or redshift,

and we quantify how uncertainties in galaxy evolution parameters affect the results.

In section 2.6, we then describe the importance of our cosmic variance results for future

surveys of high-z galaxies with the James Webb Space Telescope (JWST) and the Nancy

Grace Roman Space Telescope (hereafter, the Roman Space Telescope; Spergel et al., 2015;

Akeson et al., 2019; Dore et al., 2019). We show how cosmic variance limits inferences

about the average UVLF of the Universe. Additionally, we introduce a method that fully

incorporates cosmic variance into UVLF estimates, essentially treating our estimates for

cosmic variance as a prior on the measurements. Most commonly, UVLF estimates allow for

an arbitrary amount of cosmic variance between fields, by ignoring the normalization of the

UVLF in each field (e.g., Bouwens et al. 2015; Finkelstein et al. 2015, though see Livermore

et al. 2017 for a contrasting case). We show that our method provides tighter constraints in

mock surveys. Finally, in section 2.7, we summarize our results.

In htis chapeter, we take the following cosmological parameters: Ωm = 0.308, ΩΛ =

0.692, Ωb = 0.0484, h = 0.678, σ8 = 0.815, and ns = 0.968, consistent with recent Planck

Collaboration XIII results (Planck Collaboration et al., 2016). We give all distances in

comoving units.
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2.3 Dark Matter Haloes

We follow the methods described in Furlanetto et al. (2017) to model dark matter haloes.

In this section we give a brief summary of those methods and also describe some additions.

2.3.1 Conditional halo mass function

We define the dark matter halo mass function as nh(m, z)dm: the comoving number density

of dark matter haloes between masses (m,m+ dm) at redshift z. By convention,

nh(m, z) = f(σ)
ρ̄

m
dln

(1/σ)

dm
, (2.1)

where ρ̄ is the comoving average matter density, σ(m, z) is the linear rms fluctuation of the

matter density field at redshift z smoothed over a spherical region of mass m (see section

2.3.3 for the calculation of σ(m, z)), and f(σ) is a dimensionless function that modifies the

shape of the mass function. Following Furlanetto et al. (2017), we use fTrac(σ) from a fit to

the average mass function of a high-z cosmological simulation (Trac et al., 2015):

fTrac(σ) = 0.150
[
1 +

( σ

2.54

)a]
eb/σ

2

, (2.2)

with a = −1.36 and b = −1.14.

The key aspect of this model is allowing the halo mass function to depend on its envi-

ronment. This environmental dependence is introduced via the conditional mass function

(CMF). The CMF ncond(m, z, δb, R) describes the number density of haloes in a spherical

region of mass M , with a corresponding Lagrangian radius1 R3 = 3M/(4πρ̄), and relative

density δb = (ρ− ρ̄)/ρ̄, where ρ is the linearly extrapolated matter density in that region at

redshift z. The CMF is what adds cosmic variance into the model.

We determine ncond(m, z, δb, R) using a coordinate transfer method described in Tramonte

1Note that the radius R is really a mass scale, as it does not correspond to the real radius of a region
except for regions that happen to be at cosmological average density.
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et al. (2017) that we will call “ν-scaling” applied to equation (2.2)2

σ2(m, z) → [σ2(m, z)− σ2(M, z)]

[
δcrit

δcrit − δb

]2
, (2.3)

where M is the mass corresponding to the region R, and δcrit ≈1.69 is the linear halo collapse

threshold (see Loeb & Furlanetto, 2013, eq.(3.13)). The resulting CMF is Lagrangian in

that it assumes all regions of fixed mass have the same volume. To convert into a real-space

(Eulerian) CMF, we calculate the real-space radius Re of a region of mass M and density

δb assuming spherical collapse: Re = R/(1 + δr)
1/3, where δr is the real-space (non-linear)

relative density3(Mo & White, 1996, see Appendix 2.8 for more details). Applying this

adjustment to the radius of each region results in an Eulerian CMF, ncond(m, z, δb, Re) =

ncond(m, z, δb, R)× (1 + δr).

Tramonte et al. (2017) justify ν-scaling by noting δcrit enters into f(σ) only through

the variable ν = δcrit/σ in previous parameterizations. They then apply the “standard”

coordinate transfer
δcrit → δcrit − δb

σ2(m, z) → σ2(m, z)− σ2(M, z)
(2.4)

to the variable ν, giving equation (2.3). Tramonte et al. (2017) validate this method using an

N-body simulation by Tinker et al. (2008), finding that this scaling technique accurately de-

scribes the CMF except for the most underdense regions (δb ≲ −1.5), where it overestimates

halo abundance.

We note that while we consider halo masses down to m ∼ 108M⊙, Tramonte et al. (2017)

test their prescription only down to a mass of m ∼ 3 × 1010M⊙, leaving it untested for

the lowest masses we consider. We also note that we use a different mass function (Trac

et al., 2015), for which this method has not been explicitly tested. Tramonte et al. (2017)

also test “local scaling”, a more rigorous method for constructing a CMF developed in Patiri

et al. (2006) and expanded in Rubiño-Mart́ın et al. (2008), and find that method produces

2We construct the CMF this way because simulations of dark matter haloes (e.g. McBride et al., 2009;
Goerdt et al., 2015; Trac et al., 2015) do not provide a full CMF.

3In practice, δr and δb are very similar, especially at the redshifts considered in this paper.
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a slightly better CMF. We do not test our model using local scaling as it cannot be easily

applied to the Trac et al. (2015) mass function.

Mo & White (1996) developed a method to linearly approximate their CMF by use of a

bias function bPS. We follow the same steps to calculate a linear bias factor bTrac for the Trac

et al. (2015) mass function. We first substitute equation (2.3) into equation (2.2), and then

Taylor expand to linear order about δb = 0, and set σ(M, z) = 0. We then make a linear

volume change correction of (1 + δb), giving us

bTrac = 1 +
a

δcrit

(σ/2.54)a

1 + (σ/2.54)a
− 2b

σ2δcrit
. (2.5)

The CMF can then be approximated as

ncond, lin(m, z, δb) = nh(m, z)(1 + bTracδb). (2.6)

We will use this linear approximation of the CMF to compare to our results when using the

full CMF.

For another comparison, we calculate the CMF by scaling the Trac et al. (2015) mass

function by the ratio of the conditional to non-conditional Press-Schechter mass functions.

ncond

nh
=

nPS,cond

nPS
(2.7)

where nPS is defined in Press & Schechter (1974), and represented here as fPS(σ) (which is

plugged into eq. 2.1).

fPS(σ) =

√
2

π
ν e−ν2/2 (2.8)

The Press-Schechter CMF nPS,cond(m, z, δb, R) is obtained with the “standard” coordinate

transfer in equation (2.4). We then multiply by the same (1+δr) factor to obtain an Eulerian

CMF. We note that this scaling, which was introduced in the high-z context by Barkana &

Loeb (2004), is commonly used in analytic, semi-analytic, and semi-numeric calculations of

galaxy populations at this time (e.g., in Mesinger et al. 2011).

At these high redshifts, we ignore the effects of assembly bias (e.g., Gao & White 2007)

on the CMF, as it is a small effect compared to the other uncertainties in our model.
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2.3.2 Dark matter density fluctuations

As stated above, σ(M, z) is the linear rms fluctuation of the matter density field at redshift

z smoothed over a spherical region of mass M (and corresponding R). Thus, the probability

distribution of dark matter density for a given scale R and redshift z, p(δb|R, z), is by

definition equal to a zero-mean Gaussian with variance σ2(M, z). However, galaxy surveys

measure Eulerian volumes, so to make predictions for them we must convert this distribution

to that system. A fixed Eulerian volume will correspond to a range of masses, because each

has a different density. In Appendix 2.8, we convert the probability distribution of densities

at fixed region mass p(δb|R, z) to fixed real-space volume p(δb|Re, z). While p(δb|R, z) is a

Gaussian, p(δb|Re, z) is closer to an inverse Gaussian. Fortunately, these two distributions

are very similar to one another at the region sizes and redshifts we consider in this paper.

However, we do find that p(δb|Re, z) predicts that underdense regions occupy a larger

volume-fraction of the Universe than overdense regions at all scales, by as much as ∼12 per

cent when considering very small scales. This result indicates that surveys will be slightly

more likely to probe underdense regions (see Appendix 2.8 for more details). Using different

methods, Muñoz et al. (2010) also found that surveys are more likely to probe an underdense

region because of those regions’ more rapid cosmic expansion.

With the distribution of densities p(δb|Re, z) and the CMF ncond(m, z, δb, Re), we can

compute the scatter in halo number density on various scales Re and redshifts. Figure 2.1

shows some example results. Cosmic variance in the mass function is substantial for the

haloes in which high-z galaxies form. For example, at redshift z = 9 on a 50 Mpc (radius)

scale, massive haloes (∼ 1012 M⊙) have a typical relative standard deviation of ∼65 per cent,

while haloes at the atomic cooling limit (see Section 2.4.1) have a relative standard deviation

of ∼10 per cent. At fixed halo mass, these relative standard deviations increase at higher

redshifts and decrease when considering larger volumes.
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Figure 2.1: The CMF ncond and its 2σ scatter due to cosmic variance on various scales

(identified with their radius Re) at three redshifts. The scatter increases at high mass and

for smaller scales of the Universe (widest shaded area corresponds to the smallest scale).
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2.3.3 The CMF in realistic survey volumes

The CMF presented in section 2.3.1 assumes a spherical region of radius Re. However, real

surveys subtend elongated regions pointing away from Earth, commonly referred to as pencil

beams. Here, we describe a method for building a CMF for a pencil-beam region.

We start with the variance in the dark matter density field σ2 in a pencil-beam region

(following e.g., Newman & Davis, 2002; Stark et al., 2007; Muñoz et al., 2010; Robertson,

2010). For an arbitrarily-shaped volume V,

σ2(V) =
Fg(z)

(2π)3

∫
P (k)|ŴV(k)|2dk, (2.9)

where Fg(z) is the growth function (nearly equal to 1/(1 + z)), k is wave vector, P (k) is

the power spectrum of dark matter (we use the transfer function from Eisenstein & Hu,

1998), and ŴV(k) is the Fourier transform of a real-space top hat in the shape of the

region V, normalized such that its integral in real-space is equal to unity. In the case of a

rectangular pencil-beam volume with side lengths ax, ay, az, ŴV(k) = Ŵ (kx)Ŵ (ky)Ŵ (kz)

with Ŵ (ki) = sin(aiki/2)/(aiki/2). When constructing a survey volume, we define az as the

radial distance corresponding to some ∆z centered at z. We define ax and ay such that the

physical area ax · ay at z gives the survey area A as seen from Earth.

We then make the simple approximation that a pencil-beam region has the same CMF

as a (larger) spherical region of radius Reff, such that σsphere(Reff ) = σPB(ax, ay, az). This

prescription is analogous to how pencil-beam volumes are treated in other analytic studies

of cosmic variance. In such studies, σPB is multiplied by a halo bias function to find cosmic

variance (e.g., Stark et al., 2007; Muñoz et al., 2010; Robertson, 2010; Moster et al., 2011).

The halo bias functions used in these studies come from CMFs determined assuming spherical

regions, so that pencil-beam volumes are treated as spherical volumes with equivalent σ.

2.3.4 Accretion rates

We now consider how dark matter haloes accrete matter. This accretion will be used in the

next section to determine the rate of star formation.
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Many simulations provide similar predictions of halo mass accretion rates (e.g., McBride

et al., 2009; Fakhouri et al., 2010; van den Bosch et al., 2014; Goerdt et al., 2015; Trac

et al., 2015). However, these rates have not been tested at the very high redshifts and very

low masses relevant to our model. For this paper, we calculate the accretion rates using

the method described in Furlanetto et al. (2017), which is analogous to abundance matching

(Vale & Ostriker, 2004): haloes maintain a constant number density as they evolve according

to the mass function of the region they are in. That is, we require that at any two nearby

redshifts z1 and z2, a halo has masses m1(z1) and m2(z2) such that:∫ ∞

m1

dm ncond(m, z1, δb, R) =∫ ∞

m2

dm ncond(m, z2, δb, R),

(2.10)

where ncond(m, z, δb, R) is the Lagrangian CMF from equation (2.7). We define the accretion

rate of haloes ṁh in a region such that they satisfy equation (2.10) at all masses over a small

redshift interval (∆z ∼ 0.1).

In practice this accretion method means that in a given region, the most massive halo

at one time step is also the most massive halo at the next time step, and the same goes for

the second and third most massive haloes, etc. In this treatment, accretion is continuous

and smooth, increases monotonically with halo mass, and has zero scatter at a fixed mass.

This treatment is obviously not entirely correct, but it is in line with our goal of simplicity

and has the added benefit maintaining the CMF across cosmic time in a way that conserves

mass. Furlanetto et al. (2017) show that accretion rates obtained using this method are

similar to the simulation accretion rates mentioned above in the redshift and mass ranges

they probe. We do neglect mergers in this model, which will provide an additional source of

scatter (see the discussion in Furlanetto et al. 2017).

This method allows haloes in over and underdense regions to accrete at different rates.

However, we find that this is actually a small effect. The shaded areas in Figure 2.2 show

how the accretion rates depend on large scale environment. For most masses, redshifts, and

scales, the variation in accretion is less than 5 per cent. A 5 per cent difference in accretion

can be significant over a Hubble time, but we will show it has a small effect on the UVLF,
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which is most sensitive to instantaneous star formation.

2.4 Feedback-Regulated Star Formation

In this section we transform the mass accretion rates of haloes into ultraviolet (UV) luminosi-

ties. Furlanetto et al. (2017) provides a detailed explanation of our star formation model; we

briefly summarize it here. We intentionally choose this simple, “minimalist” model so as to

make our assumptions about the mass-luminosity relation transparent. Estimates of cosmic

variance must necessarily account for the many uncertainties about high-z galaxies, and a

simple, flexible model allows us to estimate how important the specifics of galaxy formation

are for the variance.

2.4.1 Models of feedback

We assume that haloes only form stars when they exceed a threshold mass mmin. This mass

corresponds to a halo virial temperature Tvir = 104K, when atomic line cooling becomes

efficient enough for gas clouds to collapse and fragment for star formation (Loeb & Furlanetto,

2013). This mass is typically mmin ∼ 108M⊙. At the redshifts considered in this paper, haloes

at the threshold are always far below the detection limit of next generation telescopes.

Gas accreting onto a galaxy can be turned into stars. When stars form, they expel baryons

from their host galaxy through radiation pressure, supernovae, or some other process like

grain heating (e.g., Faucher-Giguère et al., 2013; Hayward & Hopkins, 2017; Krumholz et al.,

2018). Balancing this stellar feedback with accretion provides a simple estimate of the star

formation rate ṁ∗ of a galaxy via

ṁ∗ = ṁb − ṁw, (2.11)

where ṁb is the mass accretion rate of the halo times the baryon fraction ṁb = [Ωb/Ωm]ṁh,

and ṁw is the rate of baryon loss through feedback. The fraction of accreting baryons that

are converted into stars is defined as f∗ = ṁ∗/ṁb. Finally, we write the mass ejection rate
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Figure 2.2: Accretion rate scatter (shaded areas) due to cosmic variance compared to the

average accretion rate of haloes (solid black line) for various scales (identified with their

radius Re). Adding cosmic variance to our models changes accretion rates by < 5 per cent

for most haloes; smaller regions have larger variance in accretion. The dot dashed lines show

the accretion of a 1σ overdense region, and the opposite end of the shaded regions show

the 1σ underdense region. Higher mass haloes overaccrete in overdense environments and

underaccrete in underdense environments. For lower mass haloes, the opposite is true. The

threshold mass where haloes in all environments accrete nearly equally evolves to lower mass

with redshift. The top axes show the approximate apparent magnitude of the haloes “mAB”

(we assign haloes their magnitudes in section 2.4).

20



as a multiple of the star formation rate ṁw = η(m, z) ṁ∗, yielding

f∗ =
1

1 + η(m, z)
. (2.12)

Many models suggest that massive haloes accrete gas more slowly than our simple argu-

ment suggests, because of the heating at the virial shock. Furlanetto et al. (2017) show that

virial shock heating only has a modest effect on the results of this model, but we include it

because it helps match the observed densities at large luminosities. Faucher-Giguère et al.

(2011) show the fraction of gas that can cool onto a galaxy in the presence of a virial shock

is 4

fshock = 0.47

(
1 + z

4

)0.38(
m

1012M⊙

)−0.25

. (2.13)

Because we only include stellar feedback, which limits star formation at small masses,

we also impose a maximum efficiency f∗,max that limits star formation when η(m, z) → 0 at

large halo masses. We impose it in a way that keeps f∗ smoothly differentiable. Combining

fshock and f∗,max with equation 2.12 gives

f∗ =
fshock

f−1
∗,max + η(m, z)

. (2.14)

Finally, we parameterize the strength of stellar feedback, η(m, z), as

η = C

(
1011.5M⊙

m

)ξ (
9

1 + z

)σ

. (2.15)

For energy driven supernova feedback: C = 1, ξ = 2/3, σ = 1, and f∗,max = 0.1. We will

also consider a redshift-independent version (C = 2, ξ = 2/3, σ = 0, and f∗,max = 0.1) and

a momentum-driven version (C = 5, ξ = 1/3, σ = 1/2, and f∗,max = 0.2) for comparison

(for more details on η and its parameterization, see Sun & Furlanetto, 2016; Mirocha et al.,

2017; Furlanetto et al., 2017). These alternate parameterizations of η will allow us to test

how cosmic variance depends on our galaxy formation model.

This simple model undoubtedly ignores many important elements of galaxy formation,

but it suffices to consider a wide range of possible halo mass-luminosity relations. For

4We require fshock ≤ 1, and we smooth the function near where fshock → 1 in order to ensure that it is
smoothly differentiable.
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example, we do not take into account that gas should cycle through the interstellar medium

(ISM) before forming stars. However, in the ‘bath tub’ model of galaxy formation, galaxies

evolve towards a quasi-equilibrium state between mass accretion and star formation such that

the ISM maintains roughly constant mass (Dekel & Mandelker, 2014). Once this equilibrium

is reached, our model more accurately describes star formation.

2.4.2 From star formation to luminosity

We now convert star formation rate to UV luminosity. UV luminosity is a good tracer of star

formation because it is produced only by massive, short-lived stars. We take the standard

conversion

ṁ∗ = KUV × LUV , (2.16)

where LUV
5 is the rest-frame continuum (1500 − 2800 Å)6 intrinsic luminosity (without

extinction). KUV is a conversion from luminosity to star formation rate, and it is dependent

on the initial mass function, metallicity, star formation history, binaries, etc. We take

KUV = 1.15× 10−28M⊙yr
−1/(erg s−1Hz−1) from Madau & Dickinson (2014). We will show

that KUV will not substantially affect our predictions for the relative cosmic variance of the

UVLF, even though it can have significant effects on the UVLF itself.

We do ignore dust in our fiducial model, because the extinction in these sources is only

poorly constrained. Models suggest that it is modest, and most importantly is not a strong

function of halo mass (Mirocha et al., 2020). We do however test the effects of dust on our

results at z < 8 using an empirical dust correction (Vogelsberger et al., 2020, “Model A”).

In order to match the data when applying this dust correction to our energy-driven model,

we set C = 2 and f∗,max = 0.3, making the galaxies intrinsically brighter at fixed halo mass.

For simplicity, we ignore fshock in this case, because it also affects the bright end of the

luminosity function.

5For the remainder of the paper, we will display luminosity as absolute and apparent AB magnitudes
(MAB and mAB).

6This wavelength range corresponds to H-band in the redshift range of z ≈ 5 − 9, and K-band for
z ≈ 8− 12.
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We also ignore scatter in the halo mass to luminosity relation, which would have the effect

of flattening out the exponential drop off of the UVLF, as upward scatter in the luminosity

has a larger relative effect on the luminosity function in that regime. While we expect this

effect to be small (at least on population-level statistics such as the UVLF), we plan to

explore it in the future by introducing a scatter in the accretion rates and/or star formation

rates.

2.5 Cosmic Variance in the UVLF

In this section we present the conditional UVLF generated by our model. We provide a fit to

the conditional UVLF with a simple Gaussian approximation. We then test the robustness

of our results against model choices. Finally, we compare our results to recent works.

We show the conditional UVLF ϕcond(MAB, z, δb, Re) and its 2σ scatter due to cosmic

variance in Figure 2.3. As in the CMF, cosmic variance increases with increasing galaxy

luminosity and also with increasing redshift. The data points shown in Figure 2.3 are from

Bouwens et al. (2015) and Bouwens et al. (2016); for a more in-depth analysis of this model’s

agreement with current data, see Furlanetto et al. (2017).

The mapping from halo mass to luminosity in our model is nearly independent of envi-

ronment because accretion is also nearly independent of environment (see Fig. 2.2). Thus,

nearly all of the cosmic variance of the UVLF comes directly from the variance in the CMF

(see Fig. 2.1). Similarly, simulations by Lovell et al. (2021) find the star formation rate

of a galaxy is independent of the dark matter environment, although, they compare star

formation rates at fixed stellar mass, not halo mass.

2.5.1 Calculating cosmic variance

As shown in Figure 2.3, the amount of cosmic variance in a given galaxy formation model will

depend on luminosity, redshift, and the survey characteristics. In this section we provide a

simple descriptor of cosmic variance across all these parameters. We quantify cosmic variance
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Figure 2.3: The UVLF and its 2σ scatter from cosmic variance for three selections of survey

area at three redshifts (z = 6, 9, and 12; z = 9 and 12 are off-set in log space by -0.5 dex and

-1 dex, respectively). The scatter in the UVLF increases at the bright end and for smaller

survey areas, similar to the CMF in Figure 2.1. The survey areas A = 40, 400, 4000 arcmin2

have volumes equivalent to spheres with radii Re ≈ 29, 63, 135 Mpc at z = 6 (redshift bin

∆z = 1). The data points are from Bouwens et al. (2015) and Bouwens et al. (2016).
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εcv as the relative standard deviation of the conditional UVLF at fixed redshift, apparent

magnitude, survey area, and redshift bin width7:

ε2cv =
⟨ϕ2

cond⟩ − ⟨ϕcond⟩2

⟨ϕcond⟩2
, (2.17)

with ⟨ϕn
cond⟩ defined as

⟨ϕn
cond⟩ =

∫
ϕn

cond(mAB, z, δb, Re)× p(δb|Re, z)dδb, (2.18)

where Re is determined from the survey area and redshift bin width as described in Sec-

tion 2.3.3. Figure 2.4 shows εcv as a function of survey area for various redshifts and apparent

magnitudes (all with ∆z = 1). This definition of εcv uses ϕcond at fixed z, but applies it to

the entire volume defined by A and ∆z. This approximation breaks down if cosmic variance

evolves significantly over the range defined by ∆z. Thus, the choice of ∆z should be made

with care, especially at lower z where εcv evolves most rapidly in a relative sense (εcv evolves

more rapidly in an absolute sense at high z). Over ∆z = 1, εcv evolves 10% – 30% (at z =

14 & 5, respectively). Choosing ∆z < 0.5 keeps the change in εcv below 10% for most cases8.

Figure 2.4 shows that the relative importance of cosmic variance varies widely across the

galaxy population, with a strong dependence on survey parameters. Using a redshift bin

width ∆z = 1, εcv is low at the faint end of the UVLF (mAB = 32), ranging from ∼ 5% at

large survey area (1000 arcmin2) to ∼ 15% at small survey area (1 arcmin2) at z = 6. As

redshift increases, so does εcv; at z = 12 and mAB = 32, εcv ranges from ∼ 12% at large

survey area (1000 arcmin2) to ∼ 35% at small survey area (1 arcmin2).

Cosmic variance also increases significantly at the bright end of the UVLF. At mAB = 26,

εcv ranges from ∼ 15% at large survey area (1000 arcmin2) to ∼ 40% at small survey area

(1 arcmin2) at z = 6. At z = 12 and mAB = 26, εcv ranges from ∼ 30% at large survey area

(1000 arcmin2) to ∼ 90% at small survey area (1 arcmin2).

Cosmic variance flattens out at small survey areas, which is largely due to the effects of

the pencil-beam shape of surveys. Even at small survey areas, such a geometry still contains

7Our definition of mAB assumes the galaxy is at the specified ‘fixed redshift’, regardless of redshift bin
width.

8Our public Python package galcv can be used to explore the evolution of εcv over any desired parameter.
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Figure 2.4: The relative cosmic variance of the UVLF εcv as a function of survey area for

various apparent magnitudes with a redshift bin width of ∆z = 1 (black lines ; shown from

apparent magnitude mAB = 32 on the bottom, decreasing by ∆mAB = 2 towards the top).
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Table 2.1: Parameters for fits to εcv (eq. 2.19). We provide εcv on a much wider range of

parameters via our public Python package galcv (see Data Availability section).

Redshift App. UV mag. Fit parameters

z mAB Ψ γ b

6 32 -0.223 0.167 -0.608

30 -0.189 0.184 -0.529

28 -0.174 0.192 -0.410

26 -0.161 0.200 -0.235

24 -0.165 0.199 0.070

9 32 -0.198 0.184 -0.399

30 -0.190 0.188 -0.298

28 -0.178 0.194 -0.175

26 -0.173 0.197 -0.002

24 -0.197 0.188 0.353

12 32 -0.195 0.188 -0.240

30 -0.188 0.191 -0.137

28 -0.184 0.193 -0.001

26 -0.185 0.193 0.182

24 -0.202 0.189 0.533
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a relatively large range of environments due to its elongated shape. This effect keeps cosmic

variance much lower than what one would obtain with a spherical region of the same volume.

We approximate εcv with a simple functional form; a polynomial in log10(εcv) fits well:

log10(εcv) ≈ ΨAγ + b, (2.19)

where A is in arcmin2, and Ψ, γ, and b are fit parameters9. Table 2.1 displays the parameter

fits at a selection of redshifts and magnitudes. These fits have a typical/maximum fractional

error of 3/5%. We provide εcv for a wider range of parameters via a public python package

galcv (see Data Availability section for more details).

With εcv, we define a linear approximation of the conditional UVLF in a region with

density δb, angular extent A, and redshift bin width ∆z:

ϕcond(mAB, z, δb, A,∆z) =

⟨ϕ(mAB, z)⟩
[
1 + εcv(A,mAB, z,∆z)

δb
σPB

]
,

(2.20)

where ⟨ϕ(mAB, z)⟩ is the average UVLF and δb/σPB is the density of the region relative to a

1σ fluctuation. This conditional UVLF is similar in construction to that in Livermore et al.

(2017), used to fit to lensed high-z galaxy survey data.

2.5.2 Parameter dependence of εcv

Our calculations so far have assumed our fiducial choices for the galaxy model (assuming the

minimalist energy-regulated prescription) and mass function parameters. Here, we explore

how sensitive our results are to variations in these assumptions.

First, we consider how cosmic variance depends on the star formation model. Figure 2.5

shows shows the difference in εcv when using our fiducial energy-regulated feedback (solid

lines) vs a redshift-independent version of feedback (dotted lines, see Section 2.4.1). There

is little difference in the predictions for εcv. We find a similarly small difference when using

momentum-regulated feedback and when using the dust correction from Vogelsberger et al.

9Note that our fit assumes the survey subtends a square area on the sky.
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(2020) for z < 8 (the effects of these two are similar to the dotted lines; so are not plotted

to reduce clutter). Also, our choice of KUV (see eq. 2.16) will not significantly affect our

results, as εcv is not a particularly strong function of magnitude. These results suggest that

cosmic variance is not strongly dependent on the details of star formation or dust.

Second, we explore if cosmic variance is strongly affected by large-scale galaxy environ-

ment, namely through differences in accretion. With the linear halo bias function from

equation (2.5), we approximate

εcv ≈ bTracσPB, (2.21)

and show it in Figure 2.5 (faded solid line)10. While our full model allows for galaxies to

have an environment-dependent accretion and thus luminosity, this linear method does not.

However, it provides very similar results to the full method, though it slightly underpredicts

cosmic variance at the bright end and overpredicts at the faint end due to the variance in

accretion for those haloes (see Fig. 2.2). This result suggests that approximating the CMF

via a simple bias factor is sufficient to capture the effects of cosmic variance (at least to

linear order; large density excursions are discussed later in this section).

We conclude that the level of cosmic variance is not sensitive to the particulars of the

galaxy formation model. Rather, cosmic variance is dominated by the underlying conditional

halo mass function. In section 2.3.1, we described an alternate method of creating a CMF:

scaling the Trac et al. (2015) mass function by the conditional Press & Schechter (1974)

mass function (eq. 2.7). In Figure 2.5 we show εcv when using that CMF (dashed lines).

This change results in ∼ 25% more cosmic variance across the board, the largest effect of

any model choice. Thus, in our model, the biggest uncertainty in εcv is in our understanding

of the CMF.

While equation (2.20) provides a good approximation to the conditional UVLF for

δb/σPB ≲ 2, the assumption of a Gaussian bias distribution breaks down at larger den-

sity excursions. Figure 2.6 shows (at z = 9) the difference between using equation (2.20)

(dashed lines) and our full treatment (solid lines) for the conditional UVLF (ϕ) for a 3σ

10We connect the bias function bTrac to galaxies using our model’s average halo mass–UV luminosity
relation
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density excursion. Equation (2.20) underestimates the number of galaxies in very under-

dense regions (even giving unphysical negative densities at the smallest survey areas), and

it also underestimates the number of galaxies in very overdense regions. Equation (2.20)

underpredicts the number of galaxies in both wings, even though it is more reliable near

δb = 0, because the true bias distribution (at fixed magnitude) is closer to a log-normal.

However, where the deviation from the Gaussian approximation is most pronounced, Pois-

son shot noise usually dominates the error. Thus, for most applications, equation (2.20) (εcv)

adequately captures the behaviour of the conditional UVLF.

2.5.3 Comparison to other works

Here we compare our predictions of cosmic variance to those from two recent models in the

literature: Bhowmick et al. (2020) and Ucci et al. (2021).

Bhowmick et al. (2020) provide public estimates for cosmic variance in a redshift range

z = 7–14 and for apparent H-band magnitudes between mAB = 25 and 30. They determine

cosmic variance first by calculating the two-point correlation function of galaxies in their

simulation box. They then fit the correlation function to a power law and integrate it in a

pencil-beam volume (see their eq. 2) to estimate the relative cosmic variance . They provide

estimates of cosmic variance for all sources brighter than the listed magnitude, rather than

for sources at the listed magnitude. This choice means their estimates of cosmic variance

are higher than they would be at fixed magnitude, as cosmic variance increases for brighter

sources. However, when we mimic this cumulative method, we find the effect is relatively

small (cosmic variance ≲ 10% larger than fixed magnitude method).

Ucci et al. (2021) provide public estimates for cosmic variance in a redshift range z = 6–

12 and for apparent magnitudes mAB = 24–38 (at z = 9). Ucci et al. (2021) calculate cosmic

variance as the relative standard deviation of galaxy number counts in many pencil-beam

sub-volumes of their simulation box. They have a slightly more limited survey area coverage,

providing estimates between A = 1 and 1000 arcmin2. We compare to the predictions from

their “photoionization” model. These predictions include Poisson variance, making them an
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Figure 2.5: The relative cosmic variance of the UVLF εcv as a function of survey area for

various apparent magnitudes (solid lines, same as Fig. 2.4). The dotted lines show the effects

of switching to a z-independent version of star formation. The faded solid lines show the

linear bias method for estimating cosmic variance (eq. 2.21). The dashed lines show the

effects of using a different method for creating the CMF, specifically the “Press-Schechter

scaling” approach applied to the Trac et al. (2015) mass function (see eq. 2.7). The three

sets of lines correspond to magnitudes 32, 28, and 24 (bottom to top).
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Figure 2.6: The relative excursion from the average UVLF ⟨ϕ⟩ for a 3σ underdense region

(left) and a 3σ overdense region (right) at redshift 9. We compare the full treatment (solid

lines) and the linear approximation in equation (2.20) (dashed lines). In the left panel,

the linear approximation predicts there will be fewer galaxies than the full approach, and

can even predict unphysical negative galaxy number densities (when above the horizontal

black line). In the right panel, again the linear approximation underpredicts the expected

number of galaxies. The black ‘x’ marks the survey area where our model predicts there to

be ∼1 source in the corresponding magnitude bin. The solid and dashed lines show apparent

magnitudes 32, 29, and 26 (bottom to top).
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estimate of the total variance rather than just cosmic variance.

Figure 2.7 shows our predictions compared to those of Bhowmick et al. (2020) (blue

dotted lines) and Ucci et al. (2021) (yellow dashed lines) at z = 9, with a redshift window of

∆z = 1, at apparent magnitudes of mAB = 30 (lower, thick curves) and mAB = 27 (upper,

thin curves).

As Ucci et al. (2021) report total variance, their predictions should be compared with the

red dashed lines (our prediction plus Poisson noise). Our predictions agree closely with those

of Ucci et al. (2021) at mAB = 30, and agree within ∼50% at mAB = 27 (though worsening

towards low survey area). Our predictions diverge more significantly at a survey area of 100

arcmin2, where Ucci et al. (2021) have the fewest independent volumes in their simulation.

Also, note that differences in the underlying UVLF can strongly affect the strength of Poisson

noise; when Poisson noise begins to dominate, our results should not be too closely compared

with those of Ucci et al. (2021).

Our results (red solid lines) are systematically lower than those from Bhowmick et al.

(2020) (dotted blue lines). However, our predictions remain within ∼25% of each other

except at smaller survey areas. At mAB = 30, our predictions diverge at an area of ∼ 10

arcmin2. At mAB = 27, our predictions diverge for survey areas where Poisson noise begins

to dominate.

Numerical simulations have the benefit of being able to capture the non-linear bias of

haloes. This effect, along with differences in Poisson noise from differing mass functions,

could help explain the discrepancy between our predictions and those of the simulations at

small survey areas.

In comparison to estimates with numerical simulations, the principal benefit of our model

is its flexibility. We can test our model with any mass function or star formation and feedback

prescription. Simulations must also subtract their intrinsic Poisson noise (which is not known

perfectly) to estimate the cosmic variance, while analytic models can easily separate the two

effects. Finally, we cover a wider range of redshifts (z = 5–15) and magnitudes (mAB = 22–

38), and we can study larger volumes than simulations.
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Figure 2.7: Comparison of cosmic variance predictions at z = 9 (with a redshift window of

∆z = 1). The lower set of lines (thick) is at an apparent magnitude of mAB = 30, while

the upper set of lines (thin) is at mAB = 27. The dashed red lines show our cosmic variance

predictions with Poisson noise added, for comparison with Ucci et al. (2021).

Our results agree quite well with those of Ucci et al. (2021), over the range to which we

can compare, especially at faint luminosities. For bright sources, our estimates are slightly

below theirs, but the discrepancy is comparable to the apparent uncertainty in the CMF

(∼25%; see Section 2.5.2). We agree reasonably well with Bhowmick et al. (2020) on large

scales as well.

2.6 Impact on Future Surveys

Cosmic variance will provide an unavoidable source of error for next generation telescopes,

especially at the highest redshifts. It will dominate over Poisson noise for all but the brightest

sources, and it is not easily avoided with deeper observations. Instead, it can only be

minimized by probing larger volumes (at the cost of missing the more numerous faint sources)
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Figure 2.8: The effects of cosmic variance on the UVLFs of two high redshift surveys (UD

and SN). In the upper panel, the width of the curves represents the 1σ and 2σ (inner and

outer shading) ranges of intrinsic UVLFs that could be found in that survey’s volume. In the

lower panels, the lines show εcv (upper set of lines are at z = 12, lower set at z = 6). If the

UD survey is broken up into four independent pointings of JWST, each smaller sub-pointing

has a higher variance than a large mosaic, but they may be combined for an overall reduction

in measuring the average UVLF. This improvement is represented with the thin dashed lines.

The vertical black lines are the magnitude limits of the surveys. The shaded band provides

an estimate of Poisson shot noise. Cosmic variance acts as a noise floor for measuring the

average UVLF, bounded on the faint end by the magnitude limit, and on the bright end by

Poisson noise, except for the SN survey, which is entirely dominated by Poisson noise at high

redshift.
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or by splitting up surveys into multiple independent pointings (at the cost of missing large-

scale structure and making clustering measurements more difficult).

In this section, we perform a case study of the effects of cosmic variance on two upcoming

instruments, JWST and the Roman Space Telescope. We consider two potential high redshift

surveys: a JWST ultradeep (UD) survey (following Mason et al., 2015) along with a much

wider-field Roman Space Telescope survey (similar to their planned supernova survey, and

which we refer to as our SN survey). The UD survey has a detection limit of mAB ≈ 32.0

and survey area of A = 40 arcmin2, while the SN survey has a detection limit of mAB ≈ 28.3

and a survey area of A = 9 deg2. To begin, we assume that both are performed over a single

contiguous area, requiring at minimum four and 30 separate pointings (neglecting overlap

between the pointings).

Additionally, we present a method of fitting an average UVLF to data from the UD and

SN surveys simultaneously. Our method makes use of our model effectively as a “prior” on

the cosmic variance in each survey field. The fitting process also accounts for the difference

in shape between the local UVLF in each field and the average UVLF that we wish to fit.

2.6.1 Effects of cosmic variance on UD and SN surveys

We show the effects of cosmic variance on the UVLF of the UD and SN surveys in Figure 2.8.

The upper panels show the 1 and 2σ fluctuations of the UVLF at z = 6 and z = 12. The

lower panels show εcv for these surveys (lines) and Poisson shot noise (shaded bands11). The

vertical lines denote the magnitude limit of the surveys.

A given survey has access to the UVLF over a limited magnitude range, bound on the faint

side by the magnitude limit and on the bright side by Poisson noise. In between, the noise

floor of cosmic variance determines the maximum accuracy one can achieve in measuring the

average UVLF over the accessible magnitude range if using just the one survey.

Splitting up a survey into independent pointings can improve the measurement of the

11Poisson shot noise is model-dependent, so we represent it as a band that encompasses the predictions
from the three different feedback prescriptions described in section 2.4 as well as the variety of number counts
predicted from cosmic variance itself.
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average UVLF. While each individual pointing has higher cosmic variance than a large

mosaic, they may be combined, which results in a reduction by the square root of the

number of fields. The effect of splitting the UD survey into 4 pointings is represented by the

dashed lines in Figure 2.8. Robertson (2010) found a similar improvement in cosmic variance

when splitting surveys into independent volumes. See Section 2.6.4 for more details on the

benefits/drawbacks of splitting up surveys

When interpreting survey results, it is crucial to note that cosmic variance is correlated

across all magnitudes. If a survey probes a 1σ underdense region, the expected number

counts in each magnitude bin will be below the average by 1σ. In contrast, Poisson noise

is uncorrelated between each magnitude bin, depending only on the expected number of

sources in that bin.

2.6.2 Measuring the average UVLF

Here we introduce a method to account for cosmic variance in measuring the average UVLF

of the Universe given data from multiple independent survey volumes. As an example of this

method, we simulate mock UD and SN surveys of the UVLF and fit a model that extracts

the average UVLF parameters; we then repeat this many times and compare those fits to

the “true” parameters predicted by our model.

In this section, we model the average UVLF as a modified Schechter function:

ϕ(L)dL =
ϕ∗

L∗

(
L

L∗

)α

e−(L/L∗)ΓdL, (2.22)

where ϕ(L)dL is the number density of galaxies with luminosities in the range (L,L+ dL),

ϕ∗ is a normalization constant, L∗ is the location of the exponential cutoff, α is the faint

end slope, and Γ is a parameter that governs the strength of the exponential cutoff. Γ = 1

corresponds to a normal Schechter function. Our models are fit best with Γ = 0.5, so we will

use that value for this paper. We note that our use of Γ = 0.5 predicts a higher number of

bright galaxies than a normal Schechter function. This effect is reminiscent of recent studies

of very high-z surveys, which have found that the UVLF can be better fit by a double power-

law due to an excess of bright galaxies (Bowler et al., 2014, 2020). We do not use a double
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power law as our models are better fit by the modified Schechter function.

We explore four possible methods to measure the average UVLF of the Universe.

1. NoCV : We assume cosmic variance does not exist. Every region of the Universe has

the exact same underlying UVLF, so Poisson noise is the only source of error.

2. Naive: Cosmic variance exists, but we fit the average UVLF without attempting to

account for it.

3. Standard : We fit for the average UVLF using a common method to account for cosmic

variance

4. Full : Our fiducial method. We fit for the average UVLF parameters using the condi-

tional UVLF developed in this paper12 (eq. 2.20).

The NoCV method assumes (unrealistically!) that cosmic variance does not exist. We

simulate galaxy counts for the UD and SN surveys by drawing from the average UVLF that

our model predicts, adding Poisson noise, and then fitting equation (2.22) to the combined

mock data13. The solid curves in Figures 2.9 and 2.11 show the probability density functions

(pdfs) of the best fits of the UVLF to 2000 sets of simulated data with no cosmic variance

(for z = 9 and 12, solid lines). Unsurprisingly, this method recovers the “true” values (black

crosses) of the average UVLF parameters well, as the SN probes the bright end and the UD

the faint end, with some overlap between. Of course, cosmic variance does exist; this method

is only to be used as a comparison to our more realistic scenarios.

For the other three methods we use our model to simulate data for each survey, including

cosmic variance. We first draw from the distribution of possible density environments for the

UD survey p(δb|Re, z) (see Appendix 2.8) and then use equation (2.20) to generate the UVLF

12A similar method is implemented in Livermore et al. (2017); they consider cosmic variance in lensed
surveys, and construct a conditional luminosity function using cosmic variance estimates from Robertson
et al. (2014).

13We assume in this paper that the UD and SN surveys are perfect, in that they detect every galaxy and
are able to accurately place each source in a magnitude bin of width ∆mAB = 0.5 and a redshift bin of
∆z = 1. These are clearly not all accurate assumptions, especially the first one, but this treatment may be
taken as a best possible scenario.
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for that survey14. We then calculate the expected number of galaxies in each magnitude bin

and apply Poisson shot noise. We repeat these steps for the SN survey. We then repeat this

process 2000 times to generate many possible pairs of surveys.

In the Naive method, we simply joint fit equation (2.22) to the 2000 UD+SN mock data

pairs with no attempt to correct for cosmic variance. The red dotted lines in Figures 2.9–2.12

show the resulting best fit pdf for the average UVLF. The recovered parameter range is far

wider than the NoCV method because the Naive method completely ignores the effects of

cosmic variance; the measured luminosity functions in the two surveys are not the same so

cannot easily be reconciled by a single fit.

The Standard method, originally developed by Sandage et al. (1979) and used by e.g.

Efstathiou et al. (1988) and Bouwens et al. (2015), fits a universal shape to the UVLF,

ignoring the field-to-field normalization. Then, the normalization is fixed at the end to

reproduce the correct total number of galaxies across all surveys. Using this method, we fit

to the mock data with cosmic variance. The blue dashed lines in Figures 2.10 and 2.12 show

the pdfs of the best fit parameters for the average UVLF. This method recovers the average

UVLF parameters much more accurately than the Naive method.

While the Standard method is relatively robust to cosmic variance, it does not take into

account any changes in the shape of the UVLF due to environment. Additionally, it does not

incorporate any information about expected levels of cosmic variance, and it can produce

biased results, as seen in this example by its systematic underprediction of the values of ϕ∗

and α (most noticeably in Fig. 2.10, upper-left panel).

Finally, in the Full method, we fit equation (2.20) (with the modified Schecter function

in eq. 2.22 as ⟨ϕ(mAB)⟩) simultaneously to each of the pairs of mock surveys, allowing for

different values of δb for each survey. The green solid lines in Figures 2.10 and 2.12 show

the pdfs of best fit parameters for the average UVLF. Unsurprisingly (because we are fitting

with the same function used to generate the mock data), the “true” parameters are recovered

better than with the Standard method.

14For ⟨ϕ(mAB)⟩ in equation (2.20), we use the average UVLF predicted by our model, fit by equation (2.22)
to obtain the “true” parameters.
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The upper right panels of Figures 2.9–2.12 show the total emissivity of the Universe as

inferred from the parameters of the best fit (integrating down to mmin), compared to the

“true” average emmisivity that our model predicts (vertical line). The Full method does

a slightly better job at recovering the average emissivity of the Universe compared to the

Standard method, and both do much better than the Naive method.

While it is certainly to be expected that the Full method performs better than the

Standard method in our calculations (given that we use our model to generate the mock

data and to fit to the data), the Full method still has benefits. First, it provides estimates

of the dark matter overdensity δb for each survey field, while the Standard method by design

throws out field-to-field variance information. Thus, the Full method can be used to test

our understanding of cosmic variance, because it effectively has a prior on the level of cosmic

variance allowed. It penalizes very high field-to-field variance, unlike the Standard method

that effectively uses a flat prior on the amount of cosmic variance that is allowed during

fitting. If real data were fit with the Full and Standard methods, and the Standard method

provided a better fit, that would indicate that our understanding of cosmic variance is flawed.

We could use our model to investigate where and why our understanding of cosmic variance

breaks down in terms of our physically motivated inputs.

One could investigate the time evolution of UVLF parameters after determining the best

fit values at a variety of redshifts. However, this experiment would need to be done with

care, as Figures 2.9–2.12 show that the UVLF parameters are highly correlated. Thus, their

time evolution must be fit jointly and with a good estimation of their covariance. That

covariance can depend strongly on the treatment of cosmic variance.

2.6.3 The benefits of multiple surveys

Next we consider the importance of measuring the UVLF with multiple complementary

surveys. Figure 2.13 shows the range of best fit parameters for the z = 9 UVLF when fitting

to SN survey data alone (dotted contours), the UD survey alone (dashed contours), and with

both simultaneously fit (solid contours, identical to those in Figure 2.10). The SN survey
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Figure 2.9: Recovered luminosity function parameters and uncertainties in the NoCV (solid

contours) and Naive (red dotted contours) methods. The contours represent the distribution

of best fit average UVLF parameters (see eq. 2.22) for 2000 simulated pairs of UD and SN

surveys at z = 9. Cosmic variance adds a large amount of uncertainty to the determination

of the “true” parameters (black crosses) if not treated properly in the fitting technique. The

top-right panel shows the emissivity of each fit (integrated down to mmin), with the “true”

average emissivity shown as the vertical line. The contours in this and all other figures are

equally spaced between zero and the peak value of each normalized distribution.
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Figure 2.10: Recovered luminosity function parameters and uncertainties in the Full (green

solid contours), Standard (blue dashed contours), and Naive (red dotted contours) methods.

The contours represent the distribution of best fit average UVLF parameters (see eq. 2.22)

for 2000 simulated pairs of UD and SN surveys at z = 9. The Full and Standard methods

are significant improvements over the Naive method, though the Full method does the best

job recovering the “true” parameters (black crosses). The Standard method is also slightly

biased towards recovering a high L∗, low ϕ∗, and steeper α in this case.
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Figure 2.11: The same as Figure 2.9 but at z = 12.
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Figure 2.12: The same as Figure 2.10 but at z = 12. The difference between the Full,

Standard, and Naive models is less pronounced at z = 12, though the Full method still

performs best, and with the least amount of bias.
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alone provides good constraints on ϕ∗ and L∗, but the faint end slope α is constrained better

by the joint fit than either survey alone.

At z = 12, shown in Figure 2.14, the combination of these two surveys is even more

crucial, as neither survey can provide good constraints on any parameter by itself.

We also investigated the effects of splitting up the UD survey into four independent

pointings and re-running the Full and Standard methods. This method gives a significantly

better determination of the average number density of very faint sources. However, it only

results in a slightly better determination of the average UVLF parameters, because the

faint-end slope α is not very sensitive to cosmic variance, and the SN survey dominates the

constraints of ϕ∗ and L∗.

We see that tiered surveys, including both wide and deep strategies, will be essential for

providing an accurate census of the high-z galaxy population.

2.6.4 Time allocation and survey design strategies

One important use for our results is to identify survey design strategies that result in the

best constraints on the average UVLF parameters (Figs. 2.10 and 2.12). One could use

simulations of our model to optimize the design given constraints on telescope time, survey

depth, and area, but here we provide a strategy for a good initial guess.

Given a single magnitude bin and an error requirement ϵreq in measuring the average

number counts in that bin, there is a minimum survey area below which cosmic variance will

exceed the error requirement. For example, say we wish to design a survey that measures

the average UVLF at z = 9 (and ∆z = 1) at apparent magnitudes of 30 and 26 with

contributions from cosmic variance at those magnitudes below 15% and 10%, respectively.

Reading off Figure 2.4 or using our python package galcv, we find that these would require

∼300 arcmin2 and ∼2.8 deg2, respectively.

Alternatively, if we were willing to split each survey into independent pointings, we could

satisfy the same error requirements with four ∼3 arcmin2 surveys down to mAB = 30 and nine

∼0.11 deg2 surveys down to mAB = 26. This observing plan requires ∼25× less telescope
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sivities calculated from these distributions.
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time for the deep survey and ∼3× less telescope time for the wide-field survey. Splitting up

surveys is an especially efficient way to mitigate cosmic variance for narrow surveys because

the curves in Fig. 2.4 are flattest at small survey area, so there is little penalty for moving to

even narrower independent pointings. However, we do note that our model does not include

nonlinear clustering that may become more important in such narrow survey fields.

Unfortunately, splitting up a survey into smaller and smaller sub-pointings is not without

its drawbacks. Large mosaics can be used to measure clustering of galaxies; splitting up a

survey leaves many spatial scales inaccessible, and clustering is typically more difficult to

measure in the radial direction. Also, multiple small fields of view can miss interesting large-

scale structures such as proto-clusters. Splitting surveys also increases observing overhead

and survey design complexity. An efficient compromise would be a tiered approach: the

majority of a survey’s area is in one contiguous location, while a smaller fraction is split into

a few independent pointings to calibrate for cosmic variance.

2.7 Conclusions

Cosmic variance will be an unavoidable source of error for next generation telescopes when

measuring average properties of the Universe, especially at higher redshifts. Cosmic variance

will dominate over Poisson noise for all but the brightest sources. This study integrates cos-

mic variance into the galaxy model developed in Furlanetto et al. (2017). We first consider

how star formation rates vary with environment in the model. Next, we construct a condi-

tional UVLF and provide its linear approximation for a wide variety of survey parameters

with the parameter εcv via equation (2.20). We then study what parts of our model are most

important in determining εcv. Finally, we propose a method for using these estimates as a

prior on cosmic variance to improve fitting luminosity functions to high-z data.

In our model, the choice of star formation and feedback prescriptions has little effect on

the relative strength of cosmic variance, and haloes of fixed mass are similar in all environ-

ments. Therefore, the main driver of cosmic variance in the UVLF is cosmic variance in the

underlying dark matter halo population. The halo mass function is also the main driver in
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the uncertainty in our model; a more accurate conditional mass function would allow for a

better prediction of cosmic variance.

A simple dark matter halo bias function along with an average halo mass to UV lumi-

nosity relation can adequately describe the relative effects of cosmic variance in the UVLF,

except for density excursions exceeding ∼2σ. In those regions, cosmic variance becomes

non-Gaussian, and a full treatment is required.

We provide linear approximations of cosmic variance via εcv in terms of apparent (rest-

UV) AB magnitude, survey area, and redshift. This approximation may be easily applied

to any average UVLF via equation (2.20). We provide a public python package galcv for

easy access to our results. This package provides values of εcv over a wide range of redshifts,

magnitudes, survey areas, and redshift bin widths. It also includes two options for the

conditional mass function used, which can be used as an estimate of the model uncertainty

in the value of εcv (see Data Availability section for more details). We compare our results

with cosmic variance predictions from simulations (Bhowmick et al., 2020; Ucci et al., 2021)

and find good general agreement except at the smallest survey volumes (where Poisson noise

begins to dominate and non-linear halo bias could be significant), or at volumes that are

sizable fractions of their simulations’ box size.

We also present a method for using our model as a prior on cosmic variance when fitting a

UVLF to galaxy survey data. This method can inform our understanding of cosmic variance

while also improving the quality of and reducing the bias in fitting the UVLF. It allows

us to quantify the gains from splitting surveys into independent pointings and combining

independent observations. In particular, we have shown that the combination of a shallow

wide survey and a deep narrow survey is essential for fully constraining the UVLF. We

also show that splitting up a survey can be an effective way to reduce the effects of cosmic

variance.

Our model treats galaxy formation in a very simple manner. The primary simplifica-

tion is in modelling only the average galaxy population in a given environment. We also

ignore the effects of dust, mergers, scatter in the halo mass to UV luminosity relation, the
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evolution of the IMF, and the spatial distribution of star formation within a dark matter

halo. Fortunately, these shortcomings pertain to (1) the details of star formation, which we

have shown hardly affect the relative cosmic variance results εcv; and (2) individual galaxies,

which are likely averaged out (to an extent) when considering cosmic variance in an ensemble

of galaxies.

An understanding of cosmic variance is essential for quantifying the uncertainty in future

surveys with observatories like JWST and the Roman Space Telescope. We hope that our

flexible model, and the method we have introduced to incorporate cosmic variance explicitly

into fitting multiple fields, can offer better constraints not just on the galaxy luminosity

function but also on cosmic variance itself.

2.8 Appendix: The Eulerian Volume Correction

In this appendix we construct p(δb|Re, z)dδb, the fraction of volume in the Universe with linear

density between (δb,δb + dδb) when averaged over the Eulerian scale Re. This distribution is

in contrast to p(δb|R, z)dδb, the fraction of mass in the Universe with linear density between

(δb,δb + dδb) when averaging over the Lagrangian scale R.

As described in section 2.3.2, p(δb|R, z) is by definition equal to a zero-mean Gaussian

with variance σ2(M, z), where M is the mass of a region of radius R and average density.

Unfortunately, p(δb|R, z) considers a fixed mass scale R15, which corresponds to a density-

dependent range of different volumes.

Let us choose one fixed Eulerian scale Re. We consider that scale’s corresponding La-

grangian radii

R3 = R3
e(1 + δr), (2.23)

where δr is the true, nonlinear density of the region. Following Mo & White (1996), the

real density of a region may be related to the linear density via the following approximation

15R is a mass (Lagrangian) scale because it is defined as the radius of a region of mass M if that region
were at average density. In reality, regions of mass M can have different physical volumes depending on their
densities, as we will show in this Appendix.
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(assuming spherical collapse):

δb =− 1.35(1 + δr)
−2/3 + 0.78785(1 + δr)

−0.58661

− 1.12431(1 + δr)
−1/2 + 1.68647.

(2.24)

Inserting this value into equation (2.23), we now have R(δb|Re), a relation between linear

density and Lagrangian radius at fixed Eulerian radius. We convert R to σ via σ(M =

4π/3 ρ̄R3) and convert δb to δ0 via the growth function δ0 = δb/Fg(z). That process provides

σ2(δ0|Re, z), a locus in (σ2, δ0) space of constant Eulerian radius Re.

With σ2(δ0|Re, z), we can use the excursion set formalism to solve for fR(σ
2|Re, z), the

distribution of mass in the Universe that is associated with a region with σ2 (and thus

corresponding R and δ0) at fixed Re. The excursion set formalism describes a random walk

in dark matter density δ0 as one averages over first a very large volume (small σ), and then

successively smaller volumes (larger σ) centered at a single point in space (Bond et al.,

1991; Lacey & Cole, 1993). The distribution of random walks that first cross the barrier

σ2(δ0|Re, z) defines fR(σ
2|Re, z).

fR(σ
2|Re, z) has no analytic solution for an arbitrary barrier shape, so we approximate

σ2(δ0|Re, z) as a straight line,16

B(σ2|Re, z) = B0 +B1σ
2, (2.25)

where B is the density δ0, and B0 and B1 are fit parameters (corresponding to the y-intercept

and slope, respectively).

Fortunately, the first-crossing distribution fR for a linear barrier in (σ2, δ0) space has

been solved analytically by Sheth (1998):

fR(σ
2, |Re, z)dσ2 =

B(0|Re, z)√
2πσ2

exp
(
−B2(σ2|Re, z)

2σ2

)
dσ2

σ2
.

(2.26)

This is an Inverse Gaussian distribution.

16We approximate σ2(δ0|Re, z) as a line by fitting it to the barrier near where most trajectories cross the
barrier: δ0 = 0.
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We convert fR(σ
2|Re, z), a mass fraction distribution in σ2, to p(δb|Re, z), a volume

fraction distribution in δb, following equation (16) of Sheth (1998):

p(δb|Re, z)dδb =
1

(1 + δr)
fR(σ

2|Re, z)dσ2. (2.27)

In principle, dividing by the non-linear function (1+δr) can result in a p(δb|Re, z) that is not

normalized. In practice, p(δb|Re, z) remains normalized within 1% for all cases we consider.

For the range of redshifts and scales considered in this paper, p(δb|Re, z) is near to a

Gaussian with standard deviation σ(M = 4π/3 ρ̄R3
e). However, the distribution is skewed

towards negative densities, resulting in a boost in the negative wing and suppression in the

positive wing, an effect that is most significant for volumes with radii less than ∼10 Mpc

(see Fig. 2.15).

At z = 9, we find that for regions with scales Re = 5, 10, and 50 Mpc, the fraction of

volume in the Universe that is below average cosmic density is 56, 54, and 51%, respectively.

These fractions increase slightly at lower redshifts as underdense regions continue to expand

relative to overdense regions. This result indicates that surveys will be slightly more likely

to probe underdense regions. Using different methods, Muñoz et al. (2010) also found that

surveys are more likely to probe an underdense region because of those regions’ more rapid

cosmic expansion.
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Figure 2.15: Effects of the Eulerian correction at z = 9. The solid lines show p(δ0|Re, z),

the distribution of linear densities at fixed scale (densities are extrapolated to z = 0 via the

growth function). The dotted lines show the Lagrangian distribution of densities p(δ0|R, z):

Gaussian distributions with standard deviation σ(Re, z). The volume of the Universe that

is below average density at each scale is indicated in each panels.
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CHAPTER 3

A Framework for Simultaneously Measuring Field

Densities and the High-z Luminosity Function

This chapter can be seen in its published form (Trapp et al., 2022) here:

https://ui.adsabs.harvard.edu/abs/2022MNRAS.510.4844T/abstract

3.1 Abstract

Cosmic variance from large-scale structure will be a major source of uncertainty for galaxy

surveys at z ≳ 6, but that same structure will also provide an opportunity to identify and

study dense environments in the early Universe. Using a robust model for galaxy clustering,

we directly incorporate large-scale densities into an inference framework that simultaneously

measures the high-z (z ≳ 6) UV luminosity function and the average matter density of each

distinct volume in a survey. Through this framework, we forecast the performance of several

major upcoming James Webb Space Telescope (JWST) galaxy surveys. We find that they

can constrain field matter densities down to the theoretical limit imposed by Poisson noise

and unambiguously identify over-dense (and under-dense) regions on transverse scales of

tens of comoving Mpc. We also predict JWST will measure the luminosity function with a

precision at z = 12 comparable to existing Hubble Space Telescope’s constraints at z = 8

(and even better for the faint-end slope). We also find that wide-field surveys are especially

important in distinguishing luminosity function models.
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3.2 Introduction

The first billion years of galaxy formation is about to be explored as never before. The

James Webb Space Telescope (JWST), the Nancy Grace Roman Space Telescope, the Thirty

Meter Telescope, the European Extremely Large Telescope, the Giant Magellan telescope,

and many other next-generation observatories will open a new frontier at the beginning of

structure formation in our Universe.

Perhaps the most basic observable of this era is the galaxy luminosity function, which

tracks the growth of the galaxy population as a whole. The evolution of both its shape and

normalization have important implications for galaxy formation scenarios, so it has been

intensely studied by existing facilities (see e.g., Bouwens et al., 2015; Finkelstein et al., 2015;

Bowler et al., 2015; Livermore et al., 2017; Atek et al., 2018; Oesch et al., 2018; Behroozi

et al., 2019; Bouwens et al., 2021; Finkelstein et al., 2022). To date, these measurements

have pinned down the abundance of relatively bright galaxies at z ≲ 8 to a reasonable

precision. The results are largely consistent with simple extrapolations of galaxy physics at

lower redshifts (see e.g., Tacchella et al., 2013; Mason et al., 2015; Furlanetto et al., 2017;

Mirocha et al., 2017). A few bright galaxies have also been discovered at z ≳ 9, but they are

currently too rare for robust estimates of their abundance (Oesch et al., 2013, 2015; Bouwens

et al., 2015; Ishigaki et al., 2015; McLeod et al., 2015, 2016; Bouwens et al., 2019).

Despite the substantial progress in understanding these galaxies over the last several

years, the field is poised for a revolution with the launch of JWST and, beyond that, the

Roman Telescope. The extraordinary sensitivity of these facilities will allow galaxy searches

to extend both to significantly fainter sources and to higher redshifts (e.g., Behroozi & Silk

2015; Furlanetto et al. 2017; Kauffmann et al. 2020). It will be crucial to optimize these

efforts in order to constrain the luminosity function.

Going to higher redshifts comes with bigger challenges but also more opportunities.

Among the obstacles is the increase in uncertainty due to cosmic variance:1 large-scale

1In this paper, we follow common usage and apply the term “cosmic variance” to describe the fluctuations
in dark matter density between different volumes in our Universe and the consequences of that variance for
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dark matter densities affect the formation of dark matter haloes and thus change the nor-

malization and shape of the luminosity function for different volumes (see Figure 3.1, and

Trapp & Furlanetto, 2020). But this cosmic variance is not simply a nuisance, because it

reflects the large-scale structure that is itself a key driver of both galaxy formation and

reionization during the Cosmic Dawn. As such, different large-scale densities (if they can be

distinguished!) can serve as laboratories for discovery:

1. Because ionizing sources trace the large-scale density field, the reionization process is

heavily dependent on those densities (Furlanetto et al., 2004). In order to understand

that era, there is great interest in identifying over-dense regions that may host large

ionized bubbles or other unusual ionization environments (see e.g. Zitrin et al., 2015;

Jung et al., 2020; Tilvi et al., 2020; Hu et al., 2021; Endsley et al., 2021) as well as

large-scale underdensities that may be the last regions to be reionized (Becker et al.,

2018; Davies et al., 2018; Christenson et al., 2021).

2. The large-scale environment of galaxies appears to play a role in their evolution at later

times (e.g., assembly bias; Gao & White, 2007), and it may be even more important

at z ≳ 6. This is because feedback from large-scale radiation backgrounds can have

enormous effects on star formation at these times. Most importantly, photoheating

from reionization will suppress the formation of small galaxies inside ionized regions

(Thoul & Weinberg, 1996; Iliev et al., 2007; Noh & McQuinn, 2014). Measurements of

the large-scale density will allow detailed exploration of these mechanisms.

3. A region’s density provides information on its past and future – whether it will become

a galaxy cluster, its reionization history, etc. Understanding the assembly history of

unusual objects like galaxy clusters is therefore facilitated by measuring large-scale

densities at early times (e.g., Chiang et al. 2017).

4. Finally, while cosmologists understand the underlying dark matter density field fairly

well, the transformation from those densities to galaxy observables is more uncertain.

the galaxy population. More precisely, this is a particular case of sample variance, with cosmic variance
sometimes reserved for the errors intrinsic to having only one Universe to observe.
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Comparing large-scale density estimates from surveys with the cosmological predictions

can help identify any problems in theoretical models of galaxy formation (Trapp &

Furlanetto, 2020).

In order to deal with the uncertainties of and gain insights from cosmic variance, we need

a comprehensive way of modelling its effects on the galaxy population, starting with the

luminosity function and its measurement. In Trapp & Furlanetto (2020), we developed a

model of cosmic variance’s effects on the luminosity function, including important non-linear

effects and a correction for the elongated ‘pencil-beam’ shape of many survey volumes. Re-

cent simulations have also estimated the cosmic variance of galaxies (Bhowmick et al., 2020;

Ucci et al., 2021), and those results are comparable to our analytical estimates. However,

these estimates have not yet been fully integrated into luminosity function fitting methods.

A ‘standard method’ to fit the luminosity function assumes its shape is constant across

all fields, while ignoring the normalization of each one. At the end of the fitting process, a

normalization is chosen such that the correct total number of sources is recovered (see e.g.,

Finkelstein et al., 2015; Bouwens et al., 2015). This method ignores the dependence of the

shape of the luminosity function on the density of a region at higher redshifts (see Figure 3.1),

and it discards potentially useful information about field densities. As a result, the standard

method is effective in mitigating cosmic variance, but it leads to a sub-optimal (and slightly

biased) fit (Trapp & Furlanetto, 2020). Here, we develop a method that integrates priors on

cosmic variance into luminosity function inference, improving constraints and providing new

information on the large-scale densities.

In section 3.3, we use Bayesian statistics to incorporate cosmic variance into a luminosity

function fitting framework from the ground up. This framework simultaneously fits lumi-

nosity function parameters and individual field densities to data from multiple fields. We

also develop a method to combine multiple fields into a single ‘effective’ field to cut down

on computation time. We use our framework to forecast the performance of a selection of

upcoming galaxy surveys in section 3.4. We explore how well different combinations of the

surveys can measure the luminosity function and individual field densities, finding a fun-
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damental limit to measuring a field’s density that is due to Poisson noise. We present our

conclusions in section 3.5.

We take the following cosmological parameters: Ωm = 0.308, ΩΛ = 0.692, Ωb = 0.0484,

h = 0.678, σ8 = 0.815, and ns = 0.968, consistent with recent Planck Collaboration XIII

results (Planck Collaboration et al., 2016). We give all distances in comoving units. All

luminosities are rest-frame ultra-violet (1500 − 2800 Å)2 luminosities, and all magnitudes

are AB magnitudes.

3.3 Methods

In this section, we (i) define the luminosity function, (ii) create a posterior that includes the

luminosity function parameters as well as the densities of each field, (iii) develop a novel way

of combining the cosmic variance functions of separate fields, and (iv) discuss the challenge

of dealing with systematic offsets between datasets.

3.3.1 The luminosity function of galaxies

Let us assume that the average number of galaxies with absolute magnitudes between

(MAB,MAB + dMAB) is described by Φavg(MAB, z)dMAB, which has parameters ϕ⃗(z) that

are only functions of redshift. We organize the parameters of the luminosity function into

a vector for notational convenience; for a typical Schechter function, these would be the

normalization ϕ∗, the characteristic magnitude M∗, and the faint-end power-law slope, α:

Φavg(MAB, z)dMAB =

(0.4 ln10)ϕ∗[100.4(M
∗
AB−MAB)]α+1 exp[−100.4(M

∗
AB−MAB)]dMAB.

(3.1)

In a given volume V , the dark matter density may differ from the average, which then

makes the galaxy luminosity function dependent on that large-scale density (Lacey & Cole,

1993). This effect is called cosmic variance or sample variance. For large volumes, a linear

approach is sufficient to describe the conditional luminosity function (Mo & White, 1996;

2This wavelength range corresponds to H-band in the redshift range of z ≈ 5–9 and K-band for z ≈ 8–12.
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Figure 3.1: Cosmic variance as a function of apparent magnitude for redshifts 6, 9, 12

(bottom, middle, top thick solid lines). A cosmic variance value of e.g., εcv = 0.3 means a

region with a 1-σ over-density of dark matter will have 30% more galaxies than the Universe

average for such a volume (not accounting for Poisson noise). The thick solid lines are for

a 100 arcmin2 survey with ∆z = 1, and the thin dashed lines are for a 25 arcmin2 survey.

Cosmic variance becomes a stronger function of magnitude at higher redshift and smaller

volume, meaning cosmic variance can significantly affect the shape of the luminosity function

as well as the normalization. The ‘+’ markers indicate where we would expect to find only

∼1 source at the indicated magnitude in such a survey, an indicator of where Poisson noise

is clearly dominating.
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Trapp & Furlanetto, 2020):

Φloc(MAB, z, δ̃) = Φavg(MAB, z)(1 + δ̃εcv(MAB, z)), (3.2)

where δ̃ is a normally distributed random variable signifying the normalized relative dark

matter density in the volume V . The actual relative density δb = (ρ − ρ̄)/ρ̄ can be found

with δb = δ̃σPB, where σPB is the rms fluctuation of δb across many volumes of shape V at

redshift z. Finally, εcv(MAB, V, z) is the cosmic variance from Trapp & Furlanetto (2020).

The cosmic variance function εcv(MAB, V, z) is constructed by implementing non-linear

halo clustering theory into a self-consistent analytical galaxy model. The function also

includes a correction for the elongated ‘pencil-beam’ shape of many survey volumes and for

non-linear expansion/contraction of a region. The largest uncertainty in εcv comes from

non-linear halo clustering theory; εcv can vary ∼25% between different models. The choice

of galaxy model can also affect εcv, but to a lesser extent (εcv is a relatively weak function

of magnitude, although it gets stronger at higher redshifts, see Figure 3.1). See Trapp

& Furlanetto (2020) for more information on εcv and Bhowmick et al. (2020) and Ucci

et al. (2021) for recent cosmic variance estimations calculated from large volume galaxy

simulations.

The luminosity function that is actually measured depends on observational features

like the completeness and contamination functions, which we combine into a single function

f(MAB, z) that is unique to each survey volume. The luminosity function becomes:

Φobs(MAB, z, δ̃) = f(MAB, z)× Φloc(MAB, z, δ̃). (3.3)

In the next section, we use a Bayesian framework to fit this observed luminosity function to

data.

3.3.2 The posterior

Given data D⃗ from a large galaxy survey composed of Nf fields each with their own volume,

observational effects f(MAB, z), and local density δ̃, we would like to learn the parameters

ϕ⃗(z) of the average luminosity function. The data D⃗ is comprised of many galaxies with
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measured redshifts and magnitudes. Let us assume a sufficiently narrow redshift range that

we may ignore any redshift dependence within the measured volume (see Appendix 3.6).

We would like to determine the posterior p(ϕ⃗|D⃗): the probability density of the luminosity

function parameters given the data. We are also interested in p(δ⃗|D⃗): the probability density

of the normalized dark matter densities3 from the Nf fields given the data. A third set of

parameters arise from the halo-galaxy mapping performed by a galaxy evolution model (as

explored in Trapp & Furlanetto 2020). In this paper, we focus on understanding the large-

scale density field so do not include such parameters, but we do estimate their impact on

the constraints in section 3.4.6.

We then start then with the joint posterior p(ϕ⃗, δ⃗|D⃗). Using Bayes’ theorem:

p(ϕ⃗, δ⃗|D⃗) ∝ p(D⃗|ϕ⃗, δ⃗)× p(ϕ⃗)× p(δ⃗) (3.4)

where p(D⃗|ϕ⃗, δ⃗) is the likelihood of the data given the parameters of the average luminosity

function and the dark matter densities, and p(ϕ⃗) and p(δ⃗) are their respective independent

priors. We assume flat priors for the luminosity function parameters in this work. When

analysing real data, one should use a prior based on a previous and independent measurement

of the luminosity function, which would result in a tighter final posterior. We assume the

survey fields are separated on the sky such that their environments are independent of one

another. Under that assumption, the density prior p(δ⃗) is simply a multivariate Gaussian

centered at the origin with an identity covariance matrix of size Nf × Nf. We explore in

section 3.3.3.2 how to deal with adjacent survey fields with correlated densities.

We write the total likelihood as a product of each independent field’s likelihood:

L = p(D⃗|ϕ⃗, δ⃗) =
Nf∏
i

p(Di|ϕ⃗, δ̃i), (3.5)

with p(Di|ϕ⃗, δ̃i) as the likelihood that one has obtained data Di from a field with density δ̃i

3δ⃗ is a vector containing δ̃ for each survey. We omit the tilde when writing the vector for convenience.
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and global parameters ϕ⃗, which can be described by

p(Di|ϕ⃗, δ̃i) = (3.6)

P (ni galaxies are found in volume Vi|ϕ⃗, δ̃i) (3.7)

×p(distribution of MAB|ϕ⃗, δ̃i). (3.8)

The probability that ni galaxies are found in a volume follows the Poisson distribution with

expected value ni,exp,

P (ni galaxies are found in volume Vi|ϕ⃗, δ̃i) =
nni
i,exp

ni!
e−ni,exp (3.9)

where

ni,exp = Vi ×
∫ Mlim

−∞
fi(M

′)Φavg(M
′, ϕ⃗)(1 + δ̃iεcv,i(M

′, Vi))dM ′. (3.10)

The probability to find a particular distribution of magnitudes is found by multiplying the

relative probabilities that each individual source is found at that specific magnitude,

p(distribution of MAB|ϕ⃗, δ̃i) =
ni∏
j

fi(Mj)Φavg(Mj, ϕ⃗)(1 + δ̃iεcv,i(Mj, Vi))∫Mlim
−∞ fi(M ′)Φavg(M ′, ϕ⃗)(1 + δ̃iεcv,i(M ′, Vi))dM ′

,
(3.11)

where Mlim is the magnitude limit of the survey. Substituting in ni,exp/Vi for the integral

and plugging into equation (3.6), we find

p(Di|ϕ⃗, δ̃i) =
nni
i,exp

ni!
e−ni,exp×(

ni,exp

Vi

)−ni ni∏
j

fi(Mj)Φavg(Mj, ϕ⃗)(1 + δ̃iεcv,i(Mj, Vi)).

(3.12)

Inserting this into the full likelihood, taking the natural logarithm, and dropping terms that

don’t depend on ϕ⃗ or δ⃗ gives

lnL ∝
Nf∑
i

[
−ni,exp +

ni∑
j

(
lnΦavg(Mj, ϕ⃗) + ln(1 + δ̃iεcv,i(Mj, Vi))

)]
.

(3.13)
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We can then write the posterior as

p(ϕ⃗, δ⃗|D⃗) ∝ L× p(δ⃗)× p(ϕ⃗). (3.14)

Finally, we can marginalize over ϕ⃗ or δ⃗ to get p(δ⃗|D⃗) or p(ϕ⃗|D⃗), respectively.

A downside of considering the density of each field is the expanded dimensionality of the

parameter space. For example, given a luminosity function form that has m parameters and

a survey that has Nf sub-fields, the posterior has a dimensionality of m×Nf. However, each

sub-field’s δ̃i parameter is assumed to be independent, reducing the problem to Nf different

likelihoods each with dimensionality m+ 1, a drastic reduction. These likelihoods can then

quickly be combined to create the full posterior.

3.3.3 Combining fields

Unfortunately, sampling the posterior with many sub-fields can still be costly. For example,

imagine a parallel survey with dozens of independent pointings, each of which provides a

separate density and local luminosity function. To alleviate this limitation, we next describe

a method of combining multiple fields into a single ‘effective’ field with δ̃eff and εcv, eff. Com-

bining fields is a trade-off. We reduce the dimensionality of the posterior, but we also lose

the ability to measure individual field densities. This trade-off is well worth it when we

only care about the density of a select number of fields in a survey, or in the following two

cases: (i) the fields may be contiguous but at different depths (so that it might be useful

to combine them in order to improve the environment measurement), or (ii) they may be

widely separated and independent (but presumably shallow enough that no individual field

will provide a robust environment anyway). We begin with the latter case.

3.3.3.1 Independent fields

We begin with a method that is especially useful in combining fields from a large parallel

program, or from a handful of mosaics. Take Nf fields all at the same redshift, each with a

different effective volume curve Veff(MAB) (effective volume is the combined completeness/-
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contamination function f(MAB) times total volume V ). The fields are far apart from one

another on the sky so are in independent environments.

Choosing a single field, the number of sources in a small magnitude bin is

dN = Veff(MAB)Φavg(MAB)(1 + δ̃εcv(MAB, V ))dMAB. (3.15)

At fixed MAB, dN is essentially a ‘measurable’ with average value dNavg = VeffΦavgdMAB

and error in the measurement σerr = VeffΦavgεcvdMAB. Combining the Nf different fields,

we would have dNtot =
∑Ns

i dNi with the average value as dNtot,avg = dMABVeff, totΦavg and

Veff, tot(MAB) =
∑Ns

i Veff,i(MAB). Via standard propagation of errors,

σerr, tot = dMABVeff, totΦavg

√
(Veff,1εcv,1)2 + (Veff,2εcv,2)2 + ...

Veff, tot
. (3.16)

We can then write the total expected number number of galaxies in this bin as

dNtot = Veff, tot(MAB)Φavg(MAB)(1 + δ̃eff · εcv,eff(MAB))dMAB, (3.17)

with

εcv, eff(MAB) =

√∑Ns

i [Veff,i(MAB)εcv,i(MAB)]2

Veff, tot(MAB)
(3.18)

as the effective cosmic variance function of the combined fields and δ̃eff a normally-distributed

random variable. Not unexpectedly, the effective cosmic variance function is just the individ-

ual functions added in quadrature and weighted by volume. Now, we may combine the data

from Nf independent fields and treat it as a single field using the ‘effective’ cosmic variance

function and the total effective volume curve (which is just all of the individual curves added

together).

Unfortunately, this method is technically correct only if all fields’ effective volume curves

Veff (or completeness functions f(MAB)) have the exact same shape (though they may have

different normalization). This is because eqs. 3.15-3.18 are evaluated at a single magnitude.

At some other magnitude, the surveys’ fractional contribution to the total effective volume

may be different, which would mean a different effective environment δ̃eff. Fields that have

very different effective volume curves should not be combined in this way. However, we find

that fields that have consistent effective volume curves over the majority of their magnitude
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coverage can be combined this way with accurate results, even if one field goes ∼1 magnitude

deeper than others.

3.3.3.2 Contiguous fields

Now we turn to the case in which volumes are contiguous with each other (as may occur

with “wedding cake” surveys with embedded deep fields). Because the fields are contiguous,

their densities are similar. Again, we take Nf fields, each with a different effective volume

curve Veff(MAB). For one field, the number of sources in a small magnitude range is

dN = Veff(MAB)Φavg(MAB)

[
1 +

δb
σPB

εcv(MAB)

]
dMAB (3.19)

where this time, we have explicitly written the density δ̃ = δb/σPB (see section 3.3.1). Putting

the fields together,

dNtot = dMABΦavg

(
Veff, tot +

Ns∑
i

Veff,i
δb,i
σPB,i

εcv,i

)
. (3.20)

We now make the assumption that δb,i = δtot, i.e., the dark matter density is the same in all of

the contiguous fields because they are near each other. This is only valid if σPB[within] ≪ 1,

where σ2
PB[within] = σ2

PB[smallest field] − σ2
PB[total survey volume] is the 1-σ fluctuation

of dark matter density when zooming in from the entire contiguous survey to the smallest

field. Of course, in reality the different fields will not have the same density, though they

will be correlated with each other. The assumption of a uniform density is a simplification

useful for forecasting results; the inferred density will then be a weighted combination of the

different parts of the field. If the true densities are of interest, our method can be extended

to include these correlations (see section 3.4.4).

Re-writing again, we find

dNtot = dMABVeff, totΦavg(1 +
δtot

σPB,tot

Ns∑
i

Veff,i

Veff, tot

σPB,tot

σPB,i
εcv,i). (3.21)

In other words,

dNtot(MAB) = dMABVeff, tot(MAB)Φavg(MAB)[1 + δ̃effεcv, eff(MAB)], (3.22)
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with

εcv, eff(MAB) =
Ns∑
i

Veff,i(MAB)

Veff, tot(MAB)

σPB,tot

σPB,i
εcv,i(MAB). (3.23)

and δ̃eff = δtot/σPB,tot is just a normal random variable. This time, the effective cosmic

variance function is weighted by both the effective volume and the individual fields’ rms

dark matter variation.

Again, we may combine the data from Nf contiguous fields and treat them as a single field

using the ‘effective’ cosmic variance function and the total effective volume curve. However,

we must ensure our assumption of σPB[within] ≪ 1 is valid. Through testing with our public

cosmic variance calculator galcv (Trapp & Furlanetto, 2020), σPB[within] < 0.2 gives an

effective cosmic variance function within 10% of the “correct” answer.

Finally, a mixture of independent and contiguous fields may be combined into an effective

field by applying these methods one after another, always starting with the contiguous

combinations. The value of εcv, eff may also be used to forecast the aggregate effects of

cosmic variance on any set of surveys before they are observed (given an estimate of their

effective volumes).

To summarize, in this section we have introduced simple ways to combine several fields

for a joint analysis. We emphasize that these simplifications are largely for computational

convenience; given the approximations already inherent to forecasting future surveys, they

are certainly useful at this stage, but they may not be useful once the data are in hand.

3.3.4 Systematic offsets between fields

Unknown systematic offsets between fields complicates the measurement of their densities.

Our framework determines a field’s density by comparison with other fields. If data from all

fields are reduced in a consistent manner, any systematic errors in normalization would not

affect this comparison. However, when applying our framework to systematically distinct

datasets, a normalization offset could result in erroneous density measurements.

The parameter that holds these systematics is the effective volume Veff, which unfortu-

nately cannot be measured, only modeled. Most often it is modeled by inserting artificial
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sources into simulations, taking a virtual observation of those simulations, and recording the

number of correctly and incorrectly recovered sources (e.g. Finkelstein et al., 2015; Bouwens

et al., 2015). This method is robust and well developed, but the versions from different

groups would ideally be tested on identical datasets to estimate their systematics and there-

fore uncertainties, which could then be accounted for in fitting.

Another source of potential systematic bias involves the galaxy selection process. In

the same field, different selection criteria can identify different galaxy populations, which

may have separate associated luminosity functions that should not be fit to with a single

model. We do not attempt to model such differences in our forecasts below, but they will be

important to understand in future data. For simplicity, we assume that surveys are “perfect”

in that they can reliably identify all galaxies in the survey volume, aside from incompleteness

at the faint end (modeled by Veff). In other words, we assume that the galaxy selection criteria

used in the surveys do not “miss” galaxy populations due to dust, old stars, etc. Kauffmann

et al. (2020) find that this assumption is a reasonable one for predicting JWST survey results.

3.4 Applications for JWST and beyond

In this section, we test our framework by simulating a set of upcoming JWST surveys and

one Nancy Grace Roman Space Telescope survey in the range 6 ≤ z ≤ 12. These simulations

are designed to predict the performance of these surveys in regards to measuring the average

luminosity function and field densities. It also serves as an example of how to apply our

framework.

3.4.1 Simulating surveys

We simulate upcoming surveys in a very simple manner, and as such, our forecasts cannot

be seen as authoritative. However, they should provide reasonably accurate estimates of the

expected precision of future measurements, and the general trends and qualitative relation-

ships we find are robust and can be used as a tool to better plan future surveys. Kauffmann

et al. (2020) contains a more detailed forecast for a smaller set of surveys.
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We simulate 6 upcoming JWST surveys:

1. the CEERS survey (∼100 arcmin2)

2. the JADES survey (∼236 arcmin2)

3. the PRIMER survey (∼695 arcmin2)

4. the PANORAMIC parallel survey (∼1500 arcmin2)

5. the WDEEP deep-field survey (∼10 arcmin2)

We also simulate one Nancy Grace Roman Space Telescope survey: the Roman Supernova

(RSN) survey (∼32400 arcmin2). All survey features are described in Table 3.1, though note

that the RSN parameters are only estimates as the survey has not been finalized. We do

not consider a comprehensive list of JWST galaxy surveys, choosing instead a representative

sample. Other surveys will be useful (such as COSMOS-Webb) and more will be scheduled

for later cycles.

We simulate these surveys by first choosing a “true” luminosity function Φavg to be a

Schechter function with redshift-dependent parameters from Finkelstein et al. (2015) (see

Table 3.2). This choice does not strongly affect our results; we examine other “true” lumi-

nosity functions in section 3.4.6. For each field, we define a local luminosity function Φloc (see

eq. 3.2) and draw a random value from a normal function for δ̃; εcv for each field is calculated

with the python package galcv (Trapp & Furlanetto, 2020), which uses the energy-regulated

galaxy model of Furlanetto et al. (2017) and the halo mass function of Trac et al. (2015)

converted into a conditional halo mass function with a scaling method from Tramonte et al.

(2017). Finally, we draw sources randomly from each field’s “observed” luminosity function

Φobs (see eq. 3.3) with completeness curve f(MAB) by splitting Φobs into small magnitude

bins (0.05 magnitudes per bin) and drawing galaxies from a Poisson distribution around the

expected value for each bin.

We create completeness curves f(MAB) by scaling the HST completeness curves from

Finkelstein et al. (2015) to the appropriate magnitude limits. This procedure is only approx-

imate but should serve as a reasonable stand-in for our purposes. All sources in the z = 6
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Table 3.1: Simulated survey parameters. The rms fluctuation of the dark matter density field

at redshift 6 (σPB(z = 6)) assumes ∆z = 1; this value will differ at higher redshifts both due

to the growth of structure and to the smaller volume at higher redshift for fixed angular area

and ∆z. The value of σPB(z = 6) and εcv(m = 26, z = 6) for these surveys illustrate that

we are in the linear regime. Contrary to what one might infer from the growth of structure

over cosmic time, εcv(m = 26, z = 6) increases with redshift, as the volume decreases (with

fixed area and ∆z) and becomes less elongated (see Figure 3.1).

Survey Sub-Fields App. mag lim. Area σPB(z = 6) εcv(m = 26, z = 6)

[mag] [arcmin2] rms den. fluc. cosmic variance

WDEEP - 30.75 10 0.055 0.32

CEERS - 28.97 100 0.038 0.25

JADES 236 - -

North medium 28.8 95 0.039 0.23

South medium 28.8 95 0.039 0.23

South deep 29.8 46 0.045 0.26

PRIMER 695 - -

COSMOS shallow 28.89 144 0.036 0.21

COSMOS medium 29.11 108 0.038 0.23

COSMOS deep 29.51 33 0.047 0.28

UDS shallow 28.48 234 0.032 0.19

UDS medium 28.89 175 0.034 0.21

PANORAMIC 150x parallel <29.5 1,500 0.055 each 0.32 each

RSN - 28.8 32,400 0.005 0.03

Table 3.2: Schechter parameters from Finkelstein et al. (2015).

Parameter Redshift Dependence

log10[ϕ∗] −1.58± 0.3− (0.31± 0.07)z

α −0.79± 0.21− (0.19± 0.04)z

M∗ −20.27± 0.42− (0.12± 0.09)z
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bin are drawn from the z = 6 luminosity function, and likewise for the other redshifts. We

use a redshift bin width of ∆z = 1 for defining the volume of the surveys. In reality, the

luminosity function is changing throughout that range, but that effect is small in practice

(see Appendix 3.6).

We consider many forthcoming surveys and combine them in various subsets (in the

manner described in sections 3.3.3.1 and 3.3.3.2). Many of the surveys themselves have

subcomponents. For the purposes of computational efficiency in making our forecasts, we

treat these surveys and their subcomponents in the following manner:

(i) The WDEEP, CEERS, and Roman SN fields are each treated as single independent

volumes.

(ii) For the JADES survey, we combine the JADES South medium and deep fields con-

tiguously. We combine this independently with the Jades North medium field.

(iii) For the PRIMER survey, we combine the COSMOS shallow, medium, and deep

fields contiguously, and we combine the UDS shallow and medium fields contiguously.

(iv) PANORAMIC has approximately 150 separate pointings. We separate these into

two groups by depth and combine each subset independently.

When we combine many surveys, we make some additional combinations for compu-

tational convenience. In particular, we combine the PRIMER COSMOS, PRIMER UDS,

JADES North, and JADES South fields together independently when all four fields are

present in one survey combination. When the PANORAMIC survey is combined with other

surveys, the two separate depth groups are combined independently. Figure 3.2 shows the

simulated data for one of the combinations of surveys.

We apply the framework described in section 3.3 to many simulated survey combinations

to obtain Schechter parameter ϕ⃗ posteriors for the average luminosity function and density

δ⃗ posteriors for the individual fields. We are interested in the width of these posteriors as

a measure of how well that survey combination constrains the luminosity function and field

densities. However, each instance of simulated surveys is affected by both cosmic variance

and Poisson noise; different realizations of the same surveys will have differently-shaped
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posteriors. In order to get an understanding of how well a survey combination does on

average, we repeat this whole process N times for each survey. We choose N such that the

standard error in determining the average posterior width for each parameter is less than

10%.

In Table 3.1, the 2 right-most columns shows the rms linear density fluctuation σPB (at

z = 6) and cosmic variance (at apparent magnitude 26) for each of the fields. The values

of σPB are all much less than unity, indicating we are within the linear regime of structure

formation. εcv also remains well below unity, indicating our assumption of a gaussian local

luminosity function (eq. 3.2) is valid in these cases. However, as redshift increases, so does εcv

(for fixed area and ∆z); when εcv becomes larger than ∼0.5, the assumption of a gaussianity

becomes worse. Fortunately, when εcv becomes larger than 0.5, Poisson noise typically takes

over as the dominant source of uncertainty (see Figure 3.1).

Finally, for a real-data comparison, we have applied our framework to the multi-field

Hubble Space Telescope data set from Finkelstein et al. (2015) (6 ≤ z ≤ 9 only) and the

wide-field ground-based data from Bowler et al. (2015). We describe the procedure fully in

Trapp et al. (in prep.); here we include the results only for context in understanding the

improvements JWST will provide.

3.4.2 Survey posteriors and validation

In this section we verify that our framework recovers the input “true” luminosity function

parameters and randomly drawn field densities. In the next sections, we explore how well

the framework constrains these parameters.

Figure 3.3 shows the posterior of the Schechter parameters (marginalized over field den-

sities) for the average luminosity function at z = 9 for one of the simulated survey combina-

tions. The “correct” input values (from Finkelstein et al., 2015) are shown as vertical black

lines. For this survey combination, there is a strong degeneracy between the normalization

and the location of the faint-end cut-off (bottom left panel). In general, our framework

successfully recovers the correct input Schechter values except for cases where the surveys
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sample only the faint-end of the luminosity function, making the exponential cutoff impossi-

ble to localize. In these cases, the faint-end slope is still well recovered, but a two-parameter

power-law model should be used instead of a full Schechter function. In the cases where the

exponential cutoff is just barely covered by data, the fitting framework is biased towards

choosing a larger normalization, shallower faint-end slope, and lower-luminosity exponential

cutoff. This happens for the smaller-area (A ≲ 500 arcmin2) survey combinations at z ≳ 9.

In this work, we do not explicitly compare our inference framework to other fitting

methods. However, in Trapp & Furlanetto (2020), we found fitting with cosmic variance in

mind can result in a less biased recovery and better overall fit of the luminosity function

than the standard method used by e.g., Bouwens et al. (2015), Finkelstein et al. (2015),

which assumes the luminosity function has the same shape in all environments. This result

becomes more important at higher redshifts, which is reflected in Figure 3.1: the luminosity

function’s shape changes with environment, and more-so as redshift increases (see Trapp &

Furlanetto, 2020, for more details).

Figure 3.4 shows the posterior of the field densities at z = 9 for one of the simulated

surveys. The “correct” input values (drawn randomly for each field) are shown as vertical

black lines for fields that have not been combined with others. Our framework’s density pos-

teriors consistently recover the correct input density values. The resulting density posterior

for PANORAMIC is not very informative. This is because PANORAMIC’s density is an

effective density, a combination of multiple independent fields as described in section 3.3.3.

PANORAMIC’s density is less well constrained than the other fields because it has a very

small εcv, eff value, meaning a change in density is very difficult to distinguish from Poisson

noise.

3.4.3 Measuring the luminosity function

A primary goal of JWST’s extragalactic mission is to understand the physics and formation

of high-z galaxies. The luminosity function is the cornerstone of this effort and the key

observable that models and simulations compare to. We now examine the constraining
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Figure 3.2: Data from one simulation of the CEERS+JADES+PRIMER+

PANORAMIC+WDEEP surveys at z = 9. Black line: input luminosity function;

blue line: best fit luminosity function. In this case, the WDEEP pointing happens to be a

very under-dense region (see Figure 3.4), but the “true” input luminosity function is still

recovered.
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Figure 3.3: The Schechter parameter posterior (marginalized over all densities) for one sim-

ulation of the CEERS+JADES+PRIMER+PANORAMIC+WDEEP surveys at z = 9. The

vertical black lines and the ‘+’ marks show the “true” input values. At this redshift, the

bright-end cutoff is barely covered by the data (see Figure 3.2), leaving a large (and tight)

degeneracy between the normalization and characteristic luminosity.
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vertical black lines on the histograms show the “correct” input density for CEERS and

WDEEP. The “correct” densities for JADES+PRIMER and PANORAMIC are not shown

as they are effective densities, not physical ones.
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power of the simulated JWST surveys described in the previous sections. Individual JWST

surveys will be effective tools for measuring the luminosity function, but combining surveys

gives even better constraints. We quantify those improvements by comparing the widths

for the luminosity function parameters. We first compare the PRIMER, CEERS+JADES,

and PANORAMIC individual performances. Then, we test various combinations of surveys

using the PRIMER+CEERS+JADES survey as a baseline.

Figure 3.5 displays the 68.27% confidence interval widths of the posterior of the luminos-

ity function parameters for redshifts z = 6−12 for the simulated PRIMER, CEERS+JADES,

and PANORAMIC surveys. PRIMER and CEERS+JADES perform similarly, with PRIMER

providing a slightly better measurement of the exponential cutoff due to its larger vol-

ume. Both PRIMER and CEERS+JADES would halve the uncertainty in the faint-end

slope compared to HST at z = 8 and significantly improve the normalization measurement.

PANORAMIC by itself offers a significant improvement over PRIMER or CEERS+JADES

(see Figure 3.5). The combination of all JWST surveys is shown for comparison.

Figure 3.6 shows several additional survey combinations. Combining CEERS+JADES

with PRIMER (C+J+P) offers a significant improvement (green line). Adding WDEEP

to C+J+P improves the measurement of the faint-end slope much more than the other

two parameters, because it goes significantly deeper than any other survey. Adding just

PANORAMIC to C+J+P improves the constraints on all parameters. When combining all

JWST surveys, we (unsurprisingly) get the best constraints (black line). With all surveys

combined, JWST will measure the faint-end slope at z = 12 to similar precision as HST

measures at z = 6–7. JWST will measure the normalization and exponential cutoff at

z = 12 to similar precision as HST measures at z = 8.

We add one additional further-future survey, the Roman SN survey, which will vastly

improve the measurement of the exponential cutoff and normalization due to its large volume.

Perhaps surprisingly, the faint-end slope is also much better measured. With the degeneracy

between the exponential cutoff and normalization broken, the faint-slope is easier to pin

down with the JWST surveys. This effect highlights the importance of wide-field searches

for the brightest objects (see also Kauffmann et al., 2020).
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Figure 3.5: The 68.27% confidence interval width of the Schechter parameters (averaged over

many simulations) for different survey combinations as a function of redshift. The error bars

represent the standard deviation of the posterior widths between simulations, which is due

to Poisson noise as well as different random draws of the individual fields’ densities. The

black points are results from applying our framework to data from Finkelstein et al. (2015)

and Bowler et al. (2015) for a comparison to HST’s capabilities. Curves are shifted slightly

in the x-direction to avoid overlapping error bars.

One may wonder how much the parallel nature of PANORAMIC helps in the constraints.

To test this, we also considered an artificial survey that is identical to the PANORAMIC

survey but in two contiguous fields (one incorporating the deeper pointings and one the

shallower ones). The constraints are nearly identical to those from the full PANORAMIC,

likely due to the fact that the area is so large (1500 arcmin2) that cosmic variance’s effects

are small even if it were a contiguous field. However, the parallel nature of PANORAMIC

provides other unique opportunities (see section 3.4.5).

3.4.4 Measuring field densities

We have now seen that, in the JWST era, galaxy abundances throughout the Cosmic Dawn

will be measured to unprecedented precision. But our new method also opens an entirely new

window onto that era, by providing measurements of the large-scale environments of survey

fields. At least in principle, such environmental measurements will allow us to associate
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Figure 3.6: Same as Figure 3.5 but showing different combinations of surveys. The order of

the lines in the legend (top to bottom) is the same as the order of the lines at z = 8 (top to

bottom) for all three panels.

galaxies with their ionization environments, their future descendant populations, and to

conduct searches for how galaxy evolution depends on those environments.

The density of a single field can only be determined in comparison to other fields. As

more fields are added, the measurement of the average luminosity function’s normalization

gets better, and so too does the measurement of an individual field’s density. This effect

can be seen in the density posteriors for our fields. Figure 3.7 shows the 68.27% confidence

interval width of the marginalized posterior for the CEERS and WDEEP densities as a

function of redshift for various combinations of surveys. The errorbars reflect the natural

variance in the posterior widths from the effects of sample variance and Poisson noise.

With CEERS and JADES alone, the CEERS environment can be measured with a pos-

terior width4 of 0.6–0.7. Combining CEERS+JADES with PRIMER improves this measure-

ment significantly. Adding a large parallel survey like PANORAMIC does an even better job

at improving the density measurement of the CEERS field. Adding a deep field like WDEEP

to C+J+P does not greatly increase the measurement of the environment as WDEEP is a

small volume with large cosmic variance and thus does not help constrain the normalization

4δ̃ is in units of standard deviations away from mean density. An over-density of δ̃ means there are a
factor of (1 + εcvδ̃) more/fewer galaxies than average. The prior on δ̃ is a normal with width σδ̃ = 1.
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as well as other surveys. When combining all surveys’ data, JWST can measure the density

of a 100 arcmin2 field (like CEERS) to a precision of 0.3 and 0.6 at z = 6 and 12, respectively,

and a deep 10 arcmin2 field (like WDEEP) to a precision of 0.35 or 0.45 at z = 6 and 12,

respectively.

Clearly, more data result in tighter constraints on the density of any given field. However,

the results appear to asymptote as more and more surveys are added, indicating there is a

fundamental limit to measuring a field’s density. That fundamental limit is Poisson noise,

plotted as the gray dashed line. This “Poisson floor” is calculated by simulating a survey

field with Poisson noise and some density δ̃ drawn from a normal distribution. Then, the

posterior of δ̃ is calculated in a similar manner to the posterior calculation in section 3.3.2,

but assuming perfect knowledge of the luminosity function. The width of that posterior

represents the best-case determination of the density, which we refer to as the ‘Poisson

floor’. This floor depends slightly on the field’s actual density (which was drawn randomly),

and the variance from that effect is represented by the error-bars in the Poisson floor. The

Poisson floor also depends weakly on the assumed luminosity function and strongly on the

completeness function of the survey.

We plot the Poisson floor for a variety of our fields in Figure 3.8. From testing with our

framework, we find JWST will be able to measure all of its fields’ densities to near this limit

when multiple surveys are combined.

3.4.5 Testing galaxy physics in different environments

A large parallel survey like PANORAMIC will probe a wide range of densities (150 indepen-

dent pointings). After measuring the global luminosity function as in section 3.4.3, we can

go back and measure the density of each of the PANORAMIC fields using equations (3.13)

and (3.14). This time, the luminosity function prior is determined by the earlier global fit,

over whose errors we can marginalize.5

5An individual PANORAMIC field contributes so little to the global fit of the luminosity function that
it can safely be considered independent, as this description is assuming.
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Figure 3.7: The 68.27% confidence interval widths of the CEERS and WDEEP field densities

(averaged over many simulations) for different survey combinations as a function of redshift.

The error bars represent the standard deviation of the width in the posterior between runs,

which is due to Poisson noise as well as different random draws of the individual fields’

densities. The dashed black line shows the maximum accuracy in determining the field

density (see section 3.4.4). Curves are shifted slightly in the x-direction to avoid overlapping

errorbars.
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Figure 3.8: The best possible precision in measuring the density for various contiguous JWST

fields (see section 3.4.4). This limit is due to Poisson noise only; the luminosity function is

assumed to be perfectly known. The prior on the density is σ∂ = 1. A deeper survey has a

lower and flatter curve (at fixed area), and a larger area survey has a lower curve (at fixed

depth). Curves are shifted slightly in the x-direction to avoid overlapping errorbars.
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While an individual PANORAMIC pointing will have an uncertainty in its density

(σδ̃ ∼0.4-0.8, from testing), they can be sorted from least to most dense. One can then

search for correlations between dark matter density and galaxy properties, ionization his-

tory, etc. A similar procedure could be applied to large contiguous fields like PRIMER,

with the added complication that the field densities are correlated, being physically next to

one-another.

We do caution the reader that we have not incorporated uncertainties in the galaxy

models themselves into our inference framework; in particular, we assume a perfectly known

cosmic variance function as expressed by εcv. In the future, uncertainties in the galaxy model

should be marginalized over. Fortunately, they are not large (see section 3.3.1), and at least

in principle can be separated because the cosmic variance functions depend on halo mass

(and hence galaxy luminosity).

3.4.6 Limitations and future improvements

In our simulations, we use a luminosity function calibrated at low redshift (z ≈ 5 − 9) and

extrapolated to higher redshift (Finkelstein et al., 2015, see our Table 3.2). We cannot know

if this extrapolation holds beyond the redshift where we have data, and we will not know

until JWST and other observatories make their measurements. However, this extrapolation

has reported uncertainties, so we re-do our analysis for a more slowly-evolving and more

rapidly-evolving case based on those uncertainties. The slowly-evolving case has a shallower

(increased) slope with redshift and decreased y-intercept for all Schechter parameters, and the

rapidly-evolving case has steeper (decreased) slope and increased y-intercept (see Table 3.2).

The slowly-evolving case is similar to the fiducial case when measuring log10(ϕ
∗) and

M∗, but it generally has a worse determination of the faint-end slope α with up to ∼30%

wider posteriors, depending on the combination of surveys and the redshift considered. The

rapidly-evolving case is similar to the fiducial case when measuring α, but it generally has a

worse determination of log10(ϕ
∗) and M∗ with up to ∼40% wider posteriors, again depending

on the survey combination and redshift. These variations are usually smaller in scale than
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the variations between individual trials of the surveys, meaning our predictions are relatively

robust to different luminosity functions.

As discussed in section 3.3.1, the cosmic variance function εcv has an estimated uncer-

tainty of ∼25%. To test the effects of a different “true” cosmic variance function, we re-do our

analysis again with a 25% lower/higher value for εcv (when generating simulations). We find

that we recover log10(ϕ
∗) and M∗ to similar precision as the fiducial case, but generally have

a worse determination of the faint-end slope α with up to ∼25% wider posteriors depending

on survey combination and redshift.

One of the benefits of our framework is its potential for constraining the cosmic vari-

ance function itself from the data by treating it as a free parameter with a prior based on

its estimated uncertainty and marginalizing the posterior space over all other parameters.

However, we do not explore that potential constraining power in this work.

In our calculation of the posterior, we assume that all measurements of galaxy magnitudes

(real and simulated) have no uncertainty. Taking these uncertainties into account would make

the measurement of the bright end of the luminosity function (where it is steepest) more

realistic, but also more uncertain and require more computation time. We plan to explore

this trade-off in the future.

We have described the conditional luminosity function (eq. 3.2) as being gaussian with re-

spect to the density δ̃. However, as εcv approaches unity, the conditional luminosity function

(at fixed magnitude) is better described by a log-normal or gamma function with standard

deviation equal to εcv (see Figure 6 in Trapp & Furlanetto, 2020). To correct for this, we

switch from gaussian to log-normal when (1 + δ̃εcv) ≤ 0 (when the number density becomes

negative). This correction is approximate; a full treatment requires the full conditional lu-

minosity function (see Trapp & Furlanetto, 2020). However, this problem will affect only

the brightest sources in the smallest volumes where Poisson noise is typically dominating

anyway.

We use a very simple estimate of the completeness function for the JWST surveys. Actual

completeness functions will require detailed knowledge of the telescope’s performance and
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sophisticated simulations (see Kauffmann et al., 2020, for detailed predictions of JWST’s

completeness). If our estimates are off in normalization, that will increase the effect of Poisson

noise but should not change the qualitative results much. If the shape of our completeness

function is wrong, it will likely only affect the faint end of the luminosity function where the

completeness function deviates significantly from its maximum value. The completeness can

also moderately affect the Poisson floor which is sensitive to the faint-end of the luminosity

function where the largest number of sources are found.

3.5 Conclusions

We develop a framework that calculates the posteriors of the average galaxy luminosity func-

tion and field densities simultaneously. We also develop a method to combine independent

and/or contiguous fields into “effective” fields with their own cosmic variance functions, re-

ducing computation time and providing an estimate for the effects of cosmic variance on a

complicated set of surveys.

We find that JWST will improve and extend measurements of the luminosity function,

with precision at z = 12 roughly equal to what HST is capable of at z = 8. With all early-

cycle JWST programs combined, we expect to measure the normalization of the luminosity

function to a precision of 0.05 and 0.6 dex at z = 6 and 12, the faint-end power-law index

to a precision of 0.03–0.10 over the same redshift interval, and the characteristic magnitude

to a precision of 0.08 and 0.55 at z = 6 and 12 (see Figure 3.6).

Large-area surveys are most important for breaking the degeneracy between the normal-

ization and the bright-end cutoff. For the highest redshifts (z ≳ 9), a single power-law fit

will likely be better than a Schechter fit even if the underlying population is a Schechter

function, as probing the bright-end cutoff will require Roman-sized survey areas. Parallel

surveys are subject to less cosmic variance than contiguous surveys, but at sufficiently large

area, contiguous surveys are mostly unaffected by cosmic variance.

When combined, early-cycle JWST galaxy surveys will be able to measure the normalized

densities δ̃ of individual survey fields with a 68.27% confidence interval of ∼0.4 for deep fields
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such as WDEEP, and ∼0.5 for larger fields like CEERS, nearly their theoretical maximum

precision (see Figures 3.7 and 3.8). For these purposes, consistent data reduction between

different surveys will be crucial, as the determination of field density depends on the relative

normalization between surveys.

Measurements of large-scale environments will open new opportunities to study galaxy

evolution during the Cosmic Dawn. Most importantly, reionization is driven by the under-

lying matter distribution (through the biased formation of galaxies; Furlanetto et al. 2004),

so density measurements can also provide estimates of the local ionization state (albeit in

a model-dependent fashion). Interestingly, the transverse scales of many anticipated fields

are comparable to the ionized bubbles that appear through reionization – for example, a

comparison to Lin et al. (2016) and Davies & Furlanetto (2022) shows that WDEEP and

PANORAMIC fields are comparable in extent to bubbles halfway through reionization, while

CEERS and JADES fields are close to the sizes in the later stages. Studies across such fields

will allow exploration of the effects of reionization on the local galaxy population – which

has long been expected (e.g., Thoul & Weinberg 1996; Iliev et al. 2007; Noh & McQuinn

2014) but never observed directly. Density measurements will also allow studies of more

conventional effects of environment on galaxy evolution and the quantitative association of

high-z environments with their descendants.

Finally, density measurements allow targeted exploration of unusual environments (such

as protoclusters) whose histories have long been studied. While our method provides only

a first step toward such ambitious goals, it demonstrates that such inferences will soon be

possible with forthcoming observational programs.

Our forecasts demonstrate the transformative potential of future galaxy surveys in under-

standing the Cosmic Dawn on both large and small scales. While harvesting this information

will require improvements to the model (such as localizing galaxies in the radial direction,

accounting for correlations between neighboring volumes, and incorporating uncertainties in

the galaxy physics itself), the enormous potential provides strong motivation for such future

efforts.
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Figure 3.9: The change in redshift (towards lower redshift) that corresponds to a 10% growth

in the luminosity function. The dotted lines are the same but for the more slowly-evolving

luminosity function (see section 3.4.6).

3.6 Appendix: Choosing Optimal Redshift Bins

It is ideal to measure the luminosity function in as narrow a redshift range as possible, as

the luminosity function is constantly evolving. However, it is often necessary to use large

redshift bins to get a sufficient number of galaxies for fitting. How large then is too large?

We define a function ∆z10(z,MAB): the redshift change that corresponds to a 10% growth

in the luminosity function at magnitude MAB. Figure 3.9 shows ∆z10(z,MAB) for a selection

of magnitudes. Figure 3.9 would suggest that ∆z should be below one, especially for the

bright end of the luminosity function. However, this can be mitigated by averaging over a

wider bin.

We calculate the volume averaged luminosity function over the redshift range ∆z centered

at zc and then find the corresponding redshift with the same luminosity function value,

defining that redshift as the ‘effective’ redshift of the range zeff(MAB,∆z, zc). The ‘effective’

redshift is a function of magnitude, and it is what should be used as the true center redshift,
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Figure 3.10: The ratio of the luminosity function at zeff (the effective center of a bin centered

at zc with ∆z = 1) and the luminosity function at zc. The dotted lines are the same but for

the more slowly-evolving luminosity function (see section 3.4.6).

not zc. For survey estimates, the key question is the error introduced by using the central

redshift instead of this (magnitude-dependent) effective value zeff.

We plot the ratio between the luminosity function at zeff and zc for a variety of magnitudes

and redshifts in Figure 3.10. We find no significant difference (≲2%) when using a redshift

bin width of ∆z = 1. Increasing ∆z to 2 results in deviations increasing to ∼7% for the

brightest sources.

These calculations depend on the shape and evolution of the luminosity function. By

default, we use the Schechter function fit from Finkelstein et al. (2015). The dotted lines in

Figures 3.9 and 3.10 are the same but for the more slowly-evolving luminosity function (see

section 3.4.6); this effect does not strongly depend on luminosity function choice.

Because the errors introduced by the redshift binning are much smaller than our expected

uncertainties, we use a constant zc in the main text.
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CHAPTER 4

The first joint measurement of galaxy luminosity

functions and large-scale structure during the Epoch of

Reionization

4.1 Abstract

One of the most exciting advances of the current generation of telescopes has been the de-

tection of galaxies at the tail end of reionization, using deep fields that have pushed these

instruments to their limits. It is essential to optimize our analyses of these fields in order to

extract as much information as possible from them. In particular, standard methods of mea-

suring the galaxy luminosity function discard information on large-scale dark matter density

fluctuations, even though this large-scale structure drives galaxy formation and reionization

during the Cosmic Dawn. Measuring these densities would provide a bedrock observable,

connecting galaxy surveys to theoretical models of the reionization process and structure

formation. Here, we use existing Hubble deep field data to simultaneously fit the universal

luminosity function and measure large-scale densities for each Hubble deep field at z = 6–8

by directly incorporating priors on the large-scale density field and galaxy bias. Our fit of the

universal luminosity function is consistent with previous methods but differs in the details.

For the first time, we measure the underlying densities of the survey fields, including the

most over/under-dense Hubble fields. We show that the distribution of densities is consistent

with current predictions for cosmic variance. This analysis on just 17 fields is a small sample

of what will be possible with the James Webb Space Telescope, which will measure hundreds

of fields at comparable (or better) depths and at higher redshifts.
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4.2 Introduction

Over the past three decades, astronomers have put enormous effort – and time with facilities

like the Hubble Space Telescope (HST) – into observing the most distant galaxies. As we

approach the era of the James Webb Space Telescope (JWST), we expect a revolution in

our understanding of the early Universe. JWST’s first observational campaigns will uncover

many interesting and complex phenomena in the Cosmic Dawn, but interpreting these new

observations will require a solid bedrock of survey analysis.

A key observable of the Cosmic Dawn is the galaxy luminosity function, which describes

the galaxy population and its growth as a whole. Much effort has been put into its study, as

its evolution in shape and normalization have important implications for the ways galaxies

form and evolve (see e.g., Schenker et al., 2013; McLure et al., 2013; Bouwens et al., 2015;

Finkelstein et al., 2015; Bowler et al., 2015; Livermore et al., 2017; Atek et al., 2018; Oesch

et al., 2018; Behroozi et al., 2019; Bouwens et al., 2021; Finkelstein et al., 2022). These

studies have pinned down the abundance of relatively bright galaxies at z ≲ 8, with results

largely consistent with models extrapolated from lower redshift (see e.g., Tacchella et al.,

2013; Mason et al., 2015; Furlanetto et al., 2017; Mirocha et al., 2017). However, above

z ≳ 9, galaxies are currently too rare to decisively measure their abundances, although the

observations still provide important insights into early galaxies (Oesch et al., 2013, 2015;

Bouwens et al., 2015; Ishigaki et al., 2015; McLeod et al., 2015, 2016; Bouwens et al., 2019;

Roberts-Borsani et al., 2022). These measurements have been possible thanks to several

large observing campaigns across several fields: only by combining many such efforts have

astronomers managed to obtain the current constraints.

One of the (many) challenges in measuring the luminosity function is the uncertainty

due to cosmic variance1: the normalization and shape of the luminosity function differ be-

tween distinct volumes due to fluctuations in the large-scale dark matter density field (see

1In this paper, we use the term “cosmic variance” to describe dark matter density fluctuations between
volumes in our Universe and the subsequent consequences for the galaxy population. To be precise, this is
a case of sample variance. The term cosmic variance is sometimes reserved for the errors stemming from
having only one Universe to observe.
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Figure 4.1: The strength of cosmic variance as a function of apparent magnitude for redshifts

6 and 8. A value of e.g., 0.3 corresponds to a galaxy over-density of 30% for a 1-σ over-dense

region (not accounting for Poisson noise). Thick solid lines are for a 50 arcmin2 survey and

thin dashed lines are for a 5 arcmin2 survey, both with ∆z = 1. The strength of cosmic

variance becomes more dependent on magnitude at higher redshift and for smaller volumes;

cosmic variance significantly affects the shape of the luminosity function in these cases. The

‘+’ markers show where we would expect to find ∼1 source at the indicated magnitude in a

survey. This is to mark where Poisson noise dominates.
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Figure 4.1, and Trapp & Furlanetto, 2020). However, to the extent that it reflects real

large-scale structure in the Universe, cosmic variance is not just a nuisance; it is itself a key

driver of both galaxy formation and reionization during the Cosmic Dawn. If large-scale

densities can be measured, they can complement the luminosity function as another bedrock

observable. The insights to be gained from such measurements include: (i) Reionization

likely began in the densest parts of the Universe and ended in the largest voids. Identify-

ing such over/under-densities is an area of great interest (see e.g. Zitrin et al., 2015; Jung

et al., 2020; Tilvi et al., 2020; Hu et al., 2021; Endsley et al., 2021; Becker et al., 2018;

Davies et al., 2018; Christenson et al., 2021). (ii) Large-scale feedback mechanisms, driven

by large-scale structure, are likely to strongly affect the galaxy population before and dur-

ing reionization (Thoul & Weinberg, 1996; Iliev et al., 2007; Noh & McQuinn, 2014). (iii)

Measuring large-scale densities at early times facilitates the understanding of the assembly

history of rare objects like galaxy clusters (e.g., Chiang et al. 2017), which form from the

densest environments. (iv) Finally, comparing large-scale density measurements from sur-

veys with theoretical predictions of cosmic variance can help test models of the galaxy–halo

connection (Trapp & Furlanetto, 2020).

In Trapp et al. (2022), we developed a framework that simultaneously measures field den-

sities and the high-z luminosity function given a set of galaxy surveys. Unlike the standard

approach to estimating luminosity functions, which acknowledges the existence of cosmic

variance but does not attempt to model it, our new framework uses Bayesian statistics to

fold in a comprehensive model of cosmic variance (Trapp & Furlanetto, 2020) and its effect on

the galaxy population (which changes the shape of the luminosity function, see Figure 4.1).

As a result, our method also measures the large-scale densities of the survey fields. We

then predicted the precision of various JWST cycle-1 surveys, finding that these surveys can

measure field densities to the maximum precision allowed by Poisson noise. We also found

these surveys can measure the luminosity function at z = 12 with comparable precision to

HST’s existing constraints at z = 8, but only if the data sets can be combined effectively.

In this paper, we apply that same framework to existing HST galaxy data from Bouwens
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et al. (2021)2 and Finkelstein et al. (2015) (see Table 4.1). We obtain a new measurement

of the galaxy luminosity function for z = 6–8 and, for the first time, measure the underlying

large-scale density of every HST survey field in this data set. This work also demonstrates

the power of measuring field densities, with an eye forward to the much larger, deeper, and

more comprehensive data set that will be arriving in cycle-1 of JWST, allowing for many

more densities to be measured at higher precision.

After analyzing the existing data with our framework, we compare to earlier luminosity

estimates and present the environment measurements. We also develop a new method of

calculating individual field densities after a global luminosity function fit. This method

drastically reduces computation time required to obtain field densities with a minimal loss

in precision.

In section 4.3, we describe the data sets we use, briefly summarize the framework from

Trapp et al. (2022), and describe the new method of measuring environments. In sections 4.4

and 4.5, we present our new measurements of the z = 6–8 luminosity function and field

densities. In section 4.6 we discuss our results.

We use the following cosmological parameters: Ωm = 0.308, ΩΛ = 0.692, Ωb = 0.0484,

h = 0.678, σ8 = 0.815, and ns = 0.968, consistent with recent Planck Collaboration XIII

results (Planck Collaboration et al., 2016). We provide all distances in comoving units.

We present all luminosities as rest-frame ultra-violet (1500− 2800 Å)3 luminosities, and all

magnitudes are AB magnitudes.

2For z = 6–8, the data-set from Bouwens et al. (2021) is the same as Bouwens et al. (2015) with the
addition of the COSMOS, UDS, and EGS fields.

3This wavelength range corresponds to H-band in the redshift range of z ≈ 5–9 and K-band for z ≈ 8–12.
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Table 4.1: The area, magnitude limit, and source counts of each field. For fields with both

Bouwens et al. (2021) and Finkelstein et al. (2015) data, the latter number count is in

parentheses. Finkelstein et al. (2015) uses redshift bins of size ∆z = 1 centered at z = 6, 7,

8. Bouwens et al. (2021) use redshift intervals of 5.5 < z < 6.3 for their z ∼6 sample, 6.3

< z < 7.3 for their z ∼7 sample, and 7.3 < z < 8.4 for their z ∼8 sample.

Field Area approx depth Number

[arcmin2] [rest-UV] z = 6 z = 7 z = 8

Bouwens (Finkelstein)

CANDELS-GS-DEEP 64.5 27.9 198 (142) 77 (48) 26 (16)

ERS 40.5 27.8 61 (80) 46 (48) 5 (6)

CANDELS-GS-WIDE 34.2 27.4 43 (40) 5 (4) 3 (1)

CANDELS-GN-DEEP 68.3 28.1 188 (180) 134 (92) 51 (18)

CANDELS-GN-WIDE 65.4 27.4 69 (63) 39 (24) 18 (14)

HUDF/XDF 4.7 29.7 97 (94) 57 (40) 29 (15)

HUDF09-1 4.7 28.8 38 (35) 22 (16) 18 (4)

HUDF09-2 4.7 28.9 32 (31) 23 (10) 15 (3)

MACS0416-Par 4.9 29.0 25 (24) 19 (8) 4 (1)

Abell 2744-Par 4.9 28.9 20 (13) 11 (8) 4 (1)

Bouwens only

CANDELS-UDS 151.2 26.8 33 18 6

CANDELS-COSMOS 151.9 26.8 48 15 9

CANDELS-EGS 150.7 26.9 50 43 9

MACS0717-Par 4.9 28.8 41 21 10

MACS1149-Par 4.9 28.8 36 31 6

Abell S1063-Par 4.9 28.8 40 20 7

Abell 370-Par 4.9 28.8 47 20 3
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4.3 Methods and Data

4.3.1 Fitting the luminosity function

We fit a Schechter luminosity function to galaxy catalogs using a Bayesian fitting framework.

This framework is described in detail in section 2.1 and 2.2 of Trapp et al. (2022), but we

summarize it here.

Let us assume that the average number density of galaxies with absolute magnitudes be-

tween (MAB,MAB+dMAB) is described by Φavg(MAB, z)dMAB, which is a Schechter function

with the following redshift-dependent parameters ϕ⃗(z): (i) the normalization ϕ∗, (ii) the

characteristic magnitude M∗, and (iii) the faint-end power-law slope α:

Φavg(MAB, z)dMAB =

(0.4 ln10)ϕ∗[100.4(M
∗
AB−MAB)]α+1exp[−100.4(M

∗
AB−MAB)]dMAB.

(4.1)

The luminosity function that can actually be observed also depends on: (i) the effects

of cosmic variance and (ii) observational features like the completeness and contamination

functions (which we combine into a single function f(MAB, z)) that are unique to each survey

volume. The luminosity function in each survey volume becomes:

Φobs(MAB, V, z, δ) =

f(MAB, z) · Φavg(MAB, z)

(
1 +

δ

σPB
εcv(MAB, V, z)

)
.

(4.2)

where δ = (ρ − ρ̄)/ρ̄ is the relative linear dark matter density in the volume V , σPB is the

rms fluctuation of the linear dark matter density field on the scale V (and ‘PB’ refers to the

pencil-beam shape typical of real surveys), and εcv(MAB, V, z) parameterizes the luminosity-

dependent cosmic variance using the model from Trapp & Furlanetto (2020).

The cosmic variance function εcv(MAB, V, z) combines non-linear halo clustering with

a self-consistent analytical galaxy model. It also corrects for the ‘pencil-beam’ shape of

survey volumes. The largest uncertainty in εcv comes from the models of non-linear halo

clustering; εcv varies ∼25% between models. The galaxy model can also affect εcv, although

to a much lesser extent because εcv is not a strong function of magnitude (at increasing
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redshift, however, εcv’s dependence on magnitude increases). For more information on εcv,

see Trapp & Furlanetto (2020). See also Bhowmick et al. (2020) and Ucci et al. (2021) for

recent simulation-based estimations of cosmic variance.

Given data D⃗ from a large suite of galaxy surveys composed of Nf fields each with their

own volume, f(MAB, z), and density δ, we would like to determine the probability density of

the luminosity function parameters given the data: p(ϕ⃗|D⃗), where D⃗ contains many galaxies

with measured magnitudes and redshifts.. We are also interested the probability density

of the dark matter densities of the Nf fields given the data: p(δ⃗|D⃗), where δ⃗ is a vector

containing δ for each survey. Starting with the joint posterior p(ϕ⃗, δ⃗|D⃗) and applying Bayes’

theorem, we have:

p(ϕ⃗, δ⃗|D⃗) ∝ p(D⃗|ϕ⃗, δ⃗)× p(ϕ⃗)× p(δ⃗) (4.3)

where p(D⃗|ϕ⃗, δ⃗) is the likelihood L given the average luminosity function parameters and

densities, and p(ϕ⃗) and p(δ⃗) are their priors. We assume flat priors for each luminosity

function parameter. The prior for each density p(δi) is simply a normal function centered at

zero with standard deviation equal to σPB,i.

From Trapp et al. (2022), the log likelihood is

lnL ∝
Nf∑
i

{
− ni,exp+

ni∑
j

[
lnΦavg(Mj, ϕ⃗) + ln

(
1 +

δi
σPB,i

εcv,i(Mj, Vi)

)]}
,

(4.4)

where the first sum is over each field, and the second sum is over each source in the ith field.

Also, ni,exp is the number of sources expected in the ith field given the average luminosity

function parameters ϕ⃗avg and the local density δi. We can then write the posterior as

p(ϕ⃗, δ⃗|D⃗) ∝ L× p(δ⃗)× p(ϕ⃗). (4.5)

Finally, we can marginalize over ϕ⃗ or δ⃗ to get p(δ⃗|D⃗) or p(ϕ⃗|D⃗), respectively.

At these high redshifts, the exponential cutoff can be poorly sampled by data. If M∗ is

brighter than the brightest galaxy in the sample, the data would be better fit by a single

power-law. This results in an extreme degeneracy between the normalization ϕ∗ and cutoff
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Figure 4.2: The best fit Schechter functions (solid blue line) for the Bouwens et al. (2021) (left

column) and Finkelstein et al. (2015) (right column) data sets at z = 6–8 (top-to-bottom).

The dashed lines are the best-fit local luminosity functions for each composite survey.
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location M∗. To address this, we restrict the value of M∗ in our fits to be fainter than the

brightest galaxy in our sample.

When εcv becomes large, the factor (1 + δ/σPB · εcv) can become negative for moderate

under-densities, implying a negative expectation value for the number of galaxies. This is

a limitation of the Gaussian approximation to cosmic variance: in reality, we must have

δ ≥ −1. The dark matter fluctuations on the relevant scales (of the survey fields) are much

smaller than this, but the relative density of highly-biased, luminous galaxies can reach this

limit. Cosmic variance’s effects on a local luminosity function are better described by a

distribution function in which the probability density vanishes at negative number counts

but reduces to a Gaussian when εcv is small, like a log-normal or gamma distribution. In

this paper, we use the latter, and the observed luminosity function becomes

Φobs(MAB, V, z, δ) = f(MAB, z) · fΓ(x, k, θ), (4.6)

where the gamma distribution fΓ is defined as

fΓ(x) =
1

Γ(k)θk
xk−1e−x/θ. (4.7)

The mean of this distribution is kθ and the variance is kθ2. We choose k and θ such that those

values match the Gaussian case: kθ = Φavg(M, z) and kθ2 = Φ2
avg(MAB, z)ε

2
cv(MAB, V, z).

Γ(k) is the gamma function. The variable x is chosen such that the the gamma cumulative

distribution function at x is equal to the normal cumulative distribution function at δ/σPB.

This switch also carries over to the likelihood function in the following way:

lnL ∝
Nf∑
i

[
−ni,exp +

ni∑
j

lnfΓ(x, k, θ)

]
. (4.8)

4.3.2 Data Sets

Our analysis makes use of existing data in the redshift range z = 6–8. We use the public

galaxy catalogs from Bouwens et al. (2021) and Finkelstein et al. (2015). Table 4.1 lists the

fields used and the number counts of galaxies in those fields from each group. These catalogs

contain photometric redshift and rest-frame UV magnitudes for each galaxy in their samples.
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We also use the completeness and contamination functions calculated for each field by those

groups. These functions are obtained by simulations and become uncertain for very faint

galaxies, which can affect the results. For Finkelstein et al. (2015)/Bouwens et al. (2021),

we discard all sources fainter than the magnitude at which the effective volume curve drops

below 50%/33%, respectively.

The Bouwens et al. (2021) data set contains all the fields covered by Finkelstein et al.

(2015), plus four additional HST parallel fields and three shallow wide field surveys4. Where

they overlap, these two groups start with similar raw data, but use different selection criteria

and reduction pipelines. We consider both final data sets in parallel to compare their results

and to test the robustness of our method for calculating large-scale environments in regards

to these systematic choices.

A challenge of considering the density of each field is the expanded dimensionality of

the parameter space; each field introduces a new density parameter to the fit. That new

parameter has a tight prior, however: a normal distribution centered at zero with standard

deviation equal to σPB,i, as all of these fields are large enough to be in the linear regime.

Unfortunately, sampling the posterior with many sub-fields can still be costly. To alleviate

this limitation, in Trapp et al. (2022) we developed a method to combine many different fields

into “composite” fields with a single density parameter and an “effective” cosmic variance

value, with the treatment of the combination depending on whether the fields are contiguous

or treated as independent. In this work, we combine the following groups of fields into

“composite” fields:

1. GS: CANDELS-GS-DEEP, ERS, and CANDELS-GS-WIDE are combined contigu-

ously.

2. GN: CANDELS-GN-DEEP and CANDELS-GN-DEEP are combined contiguously.

3. PAR: HUDF09-1, HUDF09-2, MACS0416-Par, and Abell 2744-Par are combined in-

dependently. For fits with Bouwens et al. (2021) data, this grouping also includes

4We do not include BoRG sources (Roberts-Borsani et al., 2022) at z = 8, as their updated effective
volume curves are not yet available.
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Figure 4.3: Our posterior of the Schechter parameters using the z = 6 Bouwens et al. (2021)

data set.

MACS0717-Par, MACS1149-Par, Abell S1063-Par, and Abell 370-Par.

4. XDF: The HUDF/XDF field is not combined with any others.

5. UCE: For fits with Bouwens et al. (2021) data, the CANDELS-UDS, CANDELS-

COSMOS, and CANDELS-EGS fields are combined independently.

We test the effects of these combinations in section 4.5.2. In short, we find that combining

fields can have a non-negligible effect, but the changes are well within the current uncertain-

ties, so the existing HST data do not demand a more intensive treatment.
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4.3.3 Measuring environments

In the previous section, we combined survey fields in order to speed up the calculation of

the luminosity function posterior. Unfortunately, the densities of the individual fields are

lost when combining them in this way (except for HUDF/XDF, which is not combined with

other fields). In this section, we introduce a new “post-processing” method to measure their

densities efficiently.

We want p(δi|Di) for the ith field. The likelihood Li = p(Di|δi, ϕ⃗) of the data is similar

to equation (4.4), but applied only to one field:

lnLi ∝ −ni,exp +

ni∑
j

lnfΓ(x, k, θ). (4.9)

The posterior for the density of the ith field then becomes

p(δi|D⃗) ∝ p(δi)

∫
Li × p(ϕ⃗)dϕ⃗, (4.10)

where the prior on the Schechter parameters p(ϕ⃗) is the posterior on those parameters that

were found using section 4.3.1. Technically, the Schechter parameter prior p(ϕ⃗) and the

likelihood Li are not completely independent, as the data from the ith field was used to

create p(ϕ⃗). The correct thing to do is recalculate the p(ϕ⃗) using all fields except the field for

which we wish to measure the density. However, this procedure would require re-calculating

p(ϕ⃗) Nf times, which would be very computationally expensive. Further, each individual

field is only a small part of the data set, having a small effect on the calculation of p(ϕ⃗),

making them only weakly correlated. We verify this claim in section 4.5.2.

4.4 Measurements of the Luminosity Function

We plot the Bouwens et al. (2021) and Finkelstein et al. (2015) data with our best-fit average

luminosity functions and each composite field’s luminosity function in Figure 4.2. Figure 4.3

is an example of the Schechter function parameter posteriors produced by our framework.
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Figure 4.4: Marginalized posteriors of luminosity function parameters for z = 6, 7, 8 (top,

middle, bottom row). The black and orange squares are our results using the Bouwens et al.

(2021) and Finkelstein et al. (2015) data sets, respectively. The purple and green points are

the results of Bouwens et al. (2021) and Finkelstein et al. (2015), respectively. These data

points are available in table 4.2.
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Table 4.2: Constraints on luminsosity functions from various survey combinations. All error

bars are 68% confidence intervals

Redshift Data Set Parameter Posteriors

ϕ∗ × 104 α M∗

6

Bouwens et al. (2021) 5.1+1.2
−1.0 -1.93+0.08

−0.08 -20.93+0.09
−0.09

Bouwens 3.5+1.3
−1.0 -1.96+0.08

−0.07 -21.23+0.18
−0.20

Finkelstein et al. (2015) 1.9+0.9
−0.8 -2.02+0.1

−0.1 -21.13+0.25
−0.31

Finkelstein 2.4+1.2
−0.9 -1.96+0.10

−0.10 -21.11+0.25
−0.29

7

Bouwens et al. (2021) 1.9+0.8
−0.6 -2.06+0.11

−0.11 -21.15+0.13
−0.13

Bouwens 2.2+1.1
−0.8 -1.95+0.10

−0.09 -21.26+0.23
−0.28

Finkelstein et al. (2015) 1.6+1.5
−1.0 -2.03+0.21

−0.20 -21.03+0.37
−0.50

Finkelstein 2.2+1.7
−1.1 -2.00+0.19

−0.18 -20.91+0.32
−0.39

8

Bouwens et al. (2021) 0.9+0.9
−0.5 -2.23+0.20

−0.20 -20.93+0.28
−0.28

Bouwens 1.9+1.3
−0.9 -1.93+0.17

−0.16 -20.72+0.28
−0.33

Finkelstein et al. (2015) 0.7+2.5
−0.7 -2.36+0.54

−0.40 -20.89+0.74
−1.08

Finkelstein 2.8+4.2
−2.0 -2.20+0.44

−0.38 -20.32+0.45
−0.56
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4.4.1 Comparison of luminosity function parameters

Figure 4.4 compares the Schechter function parameter measurements using our method with

the results of Finkelstein et al. (2015) and Bouwens et al. (2021). While our results agree

broadly with these works, we do differ in the details. This is not surprising, as our method is

more constrained when it comes to the normalization of each individual field and allows for

slightly different luminosity function shapes through cosmic variance (Trapp & Furlanetto,

2020; Trapp et al., 2022). In particular, compared to Bouwens et al. (2021), our framework

prefers a 1-σ lower ϕ∗ and 1.5-σ lower M∗
AB at z = 6. At z = 7, our framework prefers a 1-σ

higher ϕ∗ and 1.5-σ shallower α. At z = 8, our framework prefers a 1-σ higher ϕ∗ and 1-σ

shallower α. In their work, Bouwens et al. (2021) includes a treatment of the uncertainty

in measured source luminosity, an effect not considered in this work. This would have the

strongest effect at the bright end of the luminosity function, and could contribute to the

different findings for the highly-correlated M∗
AB and ϕ∗. Despite these differences, our best-

fit luminosity function matches the total number density of sources measured by Bouwens

et al. (2021) between mapp = 26−29 within 10% at all redshifts. Our framework recovers the

Finkelstein et al. (2015) results within 1-σ across the board. However, our best-fit luminosity

function predicts 10%, 20%, and 35% more sources than Finkelstein et al. (2015)’s at z = 6,

7, and 8, respectively (between mapp = 26− 29).

We expect a systematic offset to occur when combining any source catalogs that use

different selection and reduction techniques. For example, the results reported in Bouwens

et al. (2021) and Finkelstein et al. (2015) agree with one another at the level of 1-2-σ,

with Finkelstein et al. (2015) preferring a lower normalization parameter and steeper faint-

end slope. At z = 6, 7, and 8, the best fit luminosity functions from Finkelstein et al.

(2015) predict 45%, 32%, and 3% fewer sources than the best fit luminosity functions from

Bouwens et al. (2021) in the range mapp = 26 − 29. Similarly, at z = 6, 7, and 8, the best

fit luminosity function from Finkelstein et al. (2015) predicts 37% less, 36% less, and 45%

more total star formation rate density than the best fit luminosity function from Bouwens

et al. (2021) (integrating down to Mabs = −13). The exact reasons for these differences
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Figure 4.5: The relative overdensities of each field and their 68% confidence intervals.

are not clear, and may be a combination of one or more of the following: (i) differences in

methodology for generating effective volume curves (which is most important at the faint-end,

see Finkelstein et al., 2015; Bouwens et al., 2021, for details about these methodologies); (ii)

differences in redshift intervals being probed, leading to sampling different physical volumes

(see Table 4.1); (iii) groups may be sampling slightly different galaxy population due to

different selection criteria; and (iv) other systematics. In the next section, we analyze the

individual environments of each field using both groups’ data sets. Discrepancies in these

densities could help illuminate differences between the groups.

Some studies have found an excess of bright sources, making the data inconsistent with a

Schechter function’s exponential cutoff (see e.g., Bowler et al., 2014, 2015, 2020). To test this,

we fit the data again using a modified Schechter function where we change the exponential

factor to e(L/L
∗)Γ , with Γ a constant parameter. When Γ is less than one, this has the

effect of flattening out the exponential cutoff, resulting in more bright galaxies. We find

adding this extra parameter is disfavored given the data-set we use, increasing the Bayesian

Information Criteria (BIC) by ∼5.

4.4.2 Exploring systematics

There are many subtleties that affect the measurement of the luminosity function. For

example, in our framework, the choice of where to cut off the faintest sources when fitting
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the luminosity function can have a ∼1-σ effect on the resulting parameters, especially for

the faint-end slope. This systematic will be immediately improved in the first cycle of

JWST data, with multiple large and deep galaxy surveys like PRIMER, CEERS, JADES,

PANORAMIC, WDEEP, and COSMOS-Webb. At present, differing treatments of the faint

end contribute to the differences between methods shown here.

Different groups also have different selection criteria and analysis pipelines. They may

therefore be probing slightly different populations of galaxies or physical locations. Empiri-

cally, this appears to have had a ∼1-σ effect on the luminosity function fit and a correspond-

ing ∼30% difference in total number density and ∼40% difference in total star formation

rate density (see section 4.4). This reasons behind these differences are difficult to disentan-

gle, thanks to the many steps in galaxy observations and data reduction, and they are not

something we can explore fully in this work. However, measuring the density of individual

fields and comparing between groups can help illuminate differences, as we show next.

Some studies of the high-z galaxy distribution have found evidence that a Schechter

function does not provide a good fit to the bright end of the luminosity function (e.g, Bowler

et al. 2015). Using our method, the existing data do not justify adding another parameter

to flatten out the bright end of galaxies. JWST alone will provide strong constraints on the

shape of the luminosity function at the bright-end, especially at z ∼ 6. At higher redshifts,

the Roman Telescope will be crucial in measuring the bright-end of the luminosity function,

especially because its data will be easily comparable to JWST due to the considerable overlap

in their observable magnitudes. Wide-field ground-based surveys will also help in measuring

the brightest galaxies. However, these ground-based surveys are limited in the redshifts they

can reach, and when combining deep but narrow space-based images with shallow but wide

ground-based images, one must consider carefully potential systematic normalization offsets

between space- and ground-based measurements.
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4.5 Measurements of Large-Scale Structure

4.5.1 Survey Field Environments

Figure 4.5 shows the physical dark matter densities of each Hubble field ρ relative to the

average dark matter density of the Universe ρ̄. We list the numerical results in Table 4.3.

We display the results when using the Bouwens et al. (2021) data-set as well as when using

the Finkelstein et al. (2015) data-set. In general, the results are consistent between groups,

with a few exceptions that will be discussed below. The normalized relative densities (in

units of standard deviations σPB from average) are also given in Table 4.3.

We convert from a dark matter over/under-density to a theoretical M∗ galaxy num-

ber over/under-density using the bias value calculated using our public Python package

galcv (Trapp & Furlanetto, 2020). Typical bias values for an M∗ galaxy these surveys are

6–9. At z = 6, the densest Bouwens et al. (2021) field is Abell 370, with 9% more dark

matter than the Universe average for that volume, corresponding to a 60% overdensity in

M∗ galaxies. The least dense fields are Abell 2744 and GOODS-North Wide, with 7%/7%

less matter than average and 43%/48% fewer M∗ galaxies. At z = 7, the densest field is

MACS1149 with 10% more matter and 80% more M∗ galaxies than average, and the least

dense field is GOODS-South Wide with 11% less matter and 90% fewer M∗ galaxies than

average. Finally, at z = 8, the densest field is HUDF091 with 6% more matter and 45%

more M∗ galaxies than average, and the least dense field is Abell 370 with 6% less matter

and 47% fewer M∗ galaxies than average. At z = 8 however, the uncertainty is much higher

in these measurements and there is more disagreement between the data-sets.

We find, in general, our measurements of the dark matter density are consistent when

using data from Finkelstein et al. (2015) or Bouwens et al. (2021). However, GSD at z =

6 and 8, and ERS at z = 7, have very discrepant density measurements between the two

analyses. The exact reasons for these differences are unknown; the potential culprits are

likely the same as those for the differences in the determination of the luminosity function

discussed in section 4.4.1.
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Table 4.3: The real field densities, δ = (ρ− ρ̄)/ρ̄, and the normalized field densities, δ/σPB

with their uncertainties.

Field & Data-set z = 6 z = 7 z = 8

[B]ouwens or [F ]inkelstein [norm] [real] [norm] [real] [norm] [real]

CANDELS-GS-DEEP [B] 0.8±0.5 0.03±0.02 -1.2±0.6 -0.05±0.02 -1.5±0.7 -0.06±0.03

CANDELS-GS-DEEP [F ] -0.8±0.7 -0.04±0.03 -1.0±0.7 -0.04±0.03 0.4±0.8 0.01±0.03

ERS [B] -0.4±0.6 -0.02±0.03 -0.9±0.6 -0.04±0.02 -0.6±0.8 -0.02±0.03

ERS [F ] -0.2±0.7 -0.01±0.03 1.4±0.8 0.06±0.03 -1.0±0.8 -0.04±0.03

CANDELS-GS-WIDE [B] -0.9±0.6 -0.04±0.03 -2.5±0.7 -0.11±0.03 -0.7±0.8 -0.03±0.03

CANDELS-GS-WIDE [F ] -1.1±0.6 -0.05±0.03 -1.8±0.8 -0.08±0.04 -0.5±0.9 -0.02±0.04

CANDELS-GN-DEEP [B] 0.6±0.5 0.03±0.02 0.9±0.6 0.03±0.02 0.3±0.7 0.01±0.02

CANDELS-GN-DEEP [F ] -0.4±0.7 -0.02±0.03 0.8±0.8 0.03±0.03 0.2±0.8 0.01±0.03

CANDELS-GN-WIDE [B] -1.8±0.5 -0.07±0.02 -0.6±0.6 -0.02±0.02 0.5±0.8 0.02±0.03

CANDELS-GN-WIDE [F ] -1.5±0.7 -0.06±0.03 -0.8±0.7 -0.03±0.03 1.0±0.9 0.04±0.03

HUDF/XDF [B] 0.8±0.6 0.05±0.03 0.1±0.7 0.01±0.04 0.5±0.7 0.02±0.04

HUDF/XDF [F ] 1.6±0.7 0.10±0.04 0.7±0.7 0.04±0.04 -0.1±0.9 -0.00±0.05

HUDF09-1 [B] 0.2±0.6 0.01±0.04 0.7±0.7 0.04±0.04 1.1±0.7 0.06±0.04

HUDF09-1 [F ] 1.2±0.7 0.07±0.04 1.1±0.8 0.06±0.05 0.4±0.9 0.02±0.05

HUDF09-2 [B] -0.2±0.6 -0.01±0.04 0.4±0.7 0.02±0.04 0.8±0.7 0.04±0.04

HUDF09-2 [F ] 0.2±0.7 0.01±0.04 0.7±0.7 0.04±0.04 -0.3±0.9 -0.01±0.05

MACS0416-Par [B] -0.6±0.7 -0.03±0.04 0.0±0.7 0.00±0.04 -0.8±0.8 -0.05±0.04

MACS0416-Par [F ] 0.2±0.7 0.01±0.04 -0.7±0.8 -0.04±0.04 -0.5±0.9 -0.02±0.05

Abell 2744-Par [B] -1.1±0.7 -0.07±0.04 -0.6±0.7 -0.03±0.04 -0.8±0.8 -0.04±0.04

Abell 2744-Par [F ] -0.7±0.7 -0.04±0.04 -0.2±0.8 -0.01±0.04 -0.5±0.9 -0.03±0.05

CANDELS-UDS [B] -0.9±0.7 -0.03±0.02 -1.3±0.7 -0.04±0.03 0.0±0.9 0.00±0.03

CANDELS-COSMOS [B] 0.1±0.7 0.01±0.02 -1.5±0.7 -0.05±0.02 0.2±0.9 0.01±0.03

CANDELS-EGS [B] -0.1±0.7 -0.01±0.02 0.4±0.7 0.01±0.02 0.8±0.8 0.03±0.03

MACS0717-Par [B] 0.8±0.6 0.05±0.04 1.0±0.7 0.06±0.04 0.3±0.7 0.02±0.04

MACS1149-Par [B] 0.9±0.6 0.05±0.04 1.9±0.7 0.10±0.04 -0.4±0.8 -0.02±0.04

Abell S1063-Par [B] 0.6±0.6 0.03±0.04 0.6±0.7 0.03±0.04 -0.2±0.8 -0.01±0.04

Abell 370-Par [B] 1.6±0.6 0.09±0.04 0.6±0.7 0.03±0.04 -1.1±0.8 -0.06±0.04
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Figure 4.6: Data and best-fit luminosity functions Φobs for the three fields with the most

extreme environments at z = 6 in the Bouwens et al. (2021) data set. The black curve

is the best-fit average luminosity function. Abell370 and Abell2744 are clearly offset in

normalization, but have very similar shapes in the magnitudes they cover. GNW is under-

dense (orange-dashed curve lies directly beneath red-dashed curve), but its data points differ

significantly from its best-fit luminosity function due to Poisson noise on the bright and faint

ends.

Finally, we find the most and least-dense fields have luminosity functions that are distin-

guishable by their normalization, but not by their shape (see Fig. 4.6). JWST will be able

to measure individual fields to much higher precision, potentially being able to distinguish

over/under-densities by the shapes of their luminosity functions.
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4.5.2 Validation

4.5.2.1 Compositing surveys

In section 4.3.2, we described creating composite surveys that cut down on the time it takes

to fit the luminosity function. We tested the effect of combining surveys in this way by using

an alternate grouping: folding the HUDF/XDF field into the PAR composite group. At all

redshifts, this re-grouping does not affect the width of the resulting posterior, but it does

shift its position in the following way. At z = 6, the parameters ϕ∗, α, and M∗ decrease

by 0.10σ, 0.18σ, and 0.15σ. At z = 7, the same parameters decrease by 0.51σ, 0.76σ, and

0.48σ, respectively. Finally, at z = 8, the same parameters increase by 0.25σ, 0.47σ, and

0.30σ, respectively. This difference most likely occurs because the XDF is significantly deeper

than the other PAR fields, so its completeness function is reasonably different from the other

fields as well. Fields should only combined into composite fields if they have similarly-shaped

effective volume curves and cover similar magnitude ranges, as is the case for the rest of our

composite fields. Even so, the modest changes resulting from the different treatment of the

XDF demonstrate that our results are robust to the details of the composite fields.

4.5.2.2 Post-processed environments

In section 4.3.3, we describe a process to measure the densities of each individual field,

marginalizing over the posterior of the luminosity function p(ϕ⃗|D⃗). Technically, this “double-

counts” the fields, as each field was used to create that posterior in the first place. We test

this by comparing the density of XDF generated by the full fitting framework (not double-

counted) with the density of XDF using the “post-processing” described in section 4.3.3

(double-counting). The densities are the same within 0.02σ at all redshifts, showing the

process is robust despite the double-counting. As described previously, the XDF has a

relatively strong effect on the determination of p(ϕ⃗|D⃗), so the double-counting effect is even

smaller for less-influential fields.
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4.5.2.3 Measuring cosmic variance

We can evaluate our model of cosmic variance with our results by calculating the standard

deviation of all of the normalized density measurements (δ/σPB) weighted by the sizes of the

error bars. By definition, the standard deviation of the normalized densities should equal

unity. If our model for cosmic variance gave values that were globally too large, we would

expect the standard deviation of our measured normalized densities to be less than one, or

greater than one if our model for cosmic variance was too small. The standard deviation of

the measured normalized densities is 0.92±0.09. Therefore, the data do not prefer globally

larger or smaller cosmic variance model. Doing the same calculation but splitting out into the

different redshifts gives us standard deviation values of 0.90±0.16, 1.06±0.19, and 0.74±0.13

for redshifts 6, 7, and 8, respectively. Redshifts 6 and 7 do not prefer larger or smaller values

of cosmic variance, but redshift 8 prefers a 2-σ smaller value for cosmic variance.

4.6 Conclusions

We measure the universal luminosity function of galaxies for z = 6–8 using existing data

Finkelstein et al. (2015); Bouwens et al. (2021). We use a new fitting method that is more

constrained than existing methods and also incorporates the density of individual fields or

composited groups of fields (Trapp et al., 2022). Our results are consistent with existing

studies (Finkelstein et al., 2015; Bouwens et al., 2021), but differ in the details (see Fig. 4.4).

Our method has the benefit of considering the shape change of the luminosity function for

different densities, an effect that will become more pronounced at higher redshift (Trapp &

Furlanetto, 2020).

We measure the dark matter density of most deep Hubble galaxy fields from z = 6–8.

We find the least/most-dense Hubble deep fields at z = 6, 7, 8 are GNW/Abell370, GSW/-

MACS1149, and Abell370/HUDF091, respectively. These fields have expected dearths/ex-

cesses of M∗ galaxies of -48%/60%, -90%/80%, and -47%/45%, respectively. We find dark

matter densities are distributed in a way that is consistent with current estimations of cos-
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mic variance (Trapp & Furlanetto, 2020; Bhowmick et al., 2020; Ucci et al., 2021). JWST

will obtain many more dark-matter measurements of survey fields and at a higher precision

than currently possible. These densities can be sorted and used to compare many statisti-

cal aspects of galaxies in under/over-dense environments, from the shape of the luminosity

function, to the star-formation histories of galaxies, to the number of LAEs or QSOs in a

region.

The pencil-beam shape of these volumes make interpreting a high density complicated, as

galaxies are likely clustered radially within the pencil-beam. If galaxies can be sorted more

precisely in redshift space (through accurate photometric redshifts, for example), it will

be possible to make field density estimates on smaller, more spherical volumes, which will

allow for closer comparison to observations. In particular, our method could be improved

to incorporate the probability distributions of photometric redshifts (and luminosities) as

measurements improve.

We do not analyze the density sub-structure of fields, something that would be especially

useful for large contiguous fields like COSMOS-Webb. This is in-principle doable, as we will

have 3-D positions of each source in each field. We do not attempt this here because of the

substantial radial widths of the HST fields, but it should be possible with JWST.
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CHAPTER 5

Lyman-α Emitters in Ionized Bubbles: Constraining

Environment and Ionization Fraction

5.1 Abstract

Lyman-alpha emitters (LAEs) are excellent probes of early ionized regions, as they must be

surrounded by large ionized bubbles in order to be visible. Large ionized regions are thought

to be very over-dense, and may be (or contain) protoclusters, making them interesting test-

beds for early massive structures. For these reasons, close associations containing several

LAEs are often assumed to mark ionized bubbles. Here, we develop the first framework

to quantify the ionization and density fields of high-z galaxy associations, and we study

how these galaxies can be used to learn about the progress of reionization. We explore

the interplay between (i) the large-scale density of a survey field, (ii) Poisson noise due to

the small number density of sources at high redshifts (z ∼ 7), and (iii) the effects of the

ionized fraction on the observation of LAEs. We use Bayesian statistics, a simple model of

re-ionization, and a Monte-Carlo simulation to construct a more comprehensive method for

calculating the large-scale density of LAE regions than previous works. We find that Poisson

noise has a strong effect on the inferred density of a region if there are a small number of

sources used to calculate the density and show how the ionized fraction can be inferred. We

then apply our framework to the strongest association yet identified: Hu et al. (2021) found

14 LAEs in a volume of ∼50,000 cMpc3 inside the COSMOS field at z ∼ 7. We show that

this is most likely a 2σ over-density (despite there being a 5× over-density in the number

of visible LAEs in that region) inside of an ionized or nearly ionized bubble. We also show

that this LAE association implies that the global ionized fraction is Q̄ = 0.70+0.14
−0.09, within
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the context of our reionization model. Our approach provides the first step in quantifying

the implications of LAE association for reionization.

5.2 Introduction

The Cosmic Dawn is about to be explored as never before, and a spotlight shines on re-

ionization. The search for rare, large ionized regions and the first large-scale objects like

protoclusters is of particular interest (Ouchi et al., 2005; Calvi et al., 2019; Tilvi et al., 2020;

Jung et al., 2020; Hu et al., 2021; Endsley et al., 2021). These extreme regions may serve as

test-beds for the physics of early galaxy and cluster formation. By measuring the large-scale

densities of these regions, we can learn about the assembly history of galaxy clusters and

other large, rare objects (e.g. Chiang et al., 2017). Also, feedback on the scale of these

extreme regions, driven by underlying large-scale structure, is likely to affect the galaxy

population strongly during re-ionization (Thoul & Weinberg, 1996; Iliev et al., 2007; Noh &

McQuinn, 2014).

Lyman-alpha emitters (LAEs) are an exciting probe of reionization (as well as galaxy

formation). The young galaxies present in the reionization era are likely to have large

intrinsic Lyman-α luminosities (Partridge & Peebles, 1967; Ouchi et al., 2020), but those

photons are subject to substantial absorption by the intergalactic medium (IGM) before

reionization is complete, thanks to the enormous optical depth of remaining neutral islands

(Gunn & Peterson, 1965). We therefore expect to see a decline in the abundance of LAEs

as we penetrate further into the reionization era, making these galaxies an effective probe of

the ionization state (Madau & Rees, 2000; Haiman, 2002; Santos, 2004).

The number counts of LAEs evolve rapidly above z ∼ 5, which may in part be attributable

to reionization (Malhotra & Rhoads, 2004; Kashikawa et al., 2011; Itoh et al., 2018). However,

the evolution of the overall number density of LAEs is difficult to disentangle from the overall

evolution of the galaxy abundances. For that reason, attention has shifted (when possible)

to more sophisticated ways to leverage LAEs. One possibility is to study the fraction of

photometrically-selected galaxies with Lyman-α lines (Pentericci et al., 2011; Stark et al.,
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2011; Ono et al., 2012). These studies have typically found that the Universe must have

a substantial neutral fraction at z ∼ 7, though the inferences depend on the reionization

model (Mason et al., 2018).

Another exciting prospect is that the inhomogeneous ionization field will modify the

spatial distribution of LAEs. In order for their Lyman-α lines to survive, the host galaxy

must be embedded in a large ionized region, which, in most reionization models, corresponds

to an over-dense region (Furlanetto et al., 2004; Wyithe & Loeb, 2005). Galaxies outside

of such large regions may produce Lyman-α photons, but they will not escape. Thus the

ionization field modulates the clustering of LAEs (Furlanetto et al., 2006; McQuinn et al.,

2007). Unfortunately, these clustering measurements are challenging and require a large

number of sources (e.g., Yoshioka et al. 2022).

A particularly interesting aspect of this modulation is that it exaggerates the existing

clustering: galaxies in over-dense regions (which host large ionized bubbles) will remain

visible, while even galaxies inside modest over-densities will disappear early enough in reion-

ization. This suggests that focusing on identifying rare ionized regions can be a powerful

probe of reionization (e.g., Mesinger & Furlanetto 2008).

Meanwhile, surveys for LAEs, typically with narrowband filters, are now common, with

large enough areas that unusual regions can be found. Of particular interest for us, several

teams have discovered candidate ionized bubbles hosting apparently significant over-densities

of LAEs (e.g., Tilvi et al. 2020; Jung et al. 2020; Hu et al. 2021; Endsley et al. 2021).

Perhaps the most compelling such region has recently been identified by Hu et al. (2021),

who found 14 LAEs in a region with volume V ∼ 50, 000 cMpc3 at z = 6.93 (∼ 200 pMpc3),

across a larger field with approximately 20 volumes of the same size. The expected number of

LAEs to be found in this volume is just N exp,avg = 2.9±1.1. This is thus a clear over-density

in the LAE counts, and hence very likely a large ionized bubble.

However, to date such inferences are purely qualitative, with only simple efforts to trans-

form observed features in the galaxy distribution to a quantitative constraint on the under-

lying ionization and density fields.
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Finding and analysing these regions, and then connecting the visible sources to the total

population of galaxies that are ionizing the Universe will be challenging on many fronts. The

bulk of ionizing photons are coming from galaxies that we cannot see with HST nor JWST

(see e.g., Behroozi & Silk, 2015; Furlanetto et al., 2017). In a partially-ionized Universe,

even strong Lyα lines can be obscured by intervening neutral Hydrogen, leaving only a small

number of the brightest LAEs in the most ionized regions visible. The observed number

density of these LAEs is then strongly affected by Poisson noise. Poisson noise is uncorrelated

between magnitude bins, meaning an over-density of a few bright LAEs does not necessarily

mean an over-density in the much-larger underlying population of faint or obscured sources.

In other words, determining the large-scale density of a region from a small number of LAEs

requires a simultaneous treatment of (i) cosmic variance and the corresponding galaxy bias

of those LAEs, (ii) Poisson noise, and (iii) the effects of a partially ionized Universe on the

visibility of LAEs.

The first two of these points are more general than LAEs: efforts to find “protoclusters"

or other unusual environments from galaxy distributions suffer from Poisson noise as well.

Such efforts to identify protoclusters are useful for tracing the history of the most massive

structures in the Universe today (Ouchi et al., 2005; Trenti et al., 2012; Chiang et al., 2017;

Calvi et al., 2019; Hu et al., 2021), but the associations have also been largely qualitative.

In this paper, we develop the first quantitative, statistically robust framework to infer

the underlying density and ionization environment of observed galaxy associations during

the reionization era. This framework can be applied both to LAEs (which probe both the

ionization state and the density) and to other surveys (which probe only the density).

In section 5.3, we construct an analytic form of the posterior for the large-scale density

of a region, ignoring any effects of inhomogeneous reionization. We apply this method to the

Hu et al. (2021) region in section 5.4. We then expand our method to the partially-ionized

case using a simple model of re-ionization and a Monte-Carlo (MC) simulation in section 5.5.

This MC simulation also has the ability to constrain the ionization fraction of the Universe

(in the context of our simple model of re-ionization). In section 5.6, we apply the MC

simulation method to the same region from Hu et al. (2021), obtaining a new measurement
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of its density and local ionization field as well as a constraint on the ionization fraction of

the Universe.

We use the following cosmological parameters: Ωm = 0.308, ΩΛ = 0.692, Ωb = 0.0484,

h = 0.678, σ8 = 0.815, and ns = 0.968, consistent with recent Planck Collaboration XIII

results (Planck Collaboration et al., 2016).

5.3 Inference of the local density field from galaxy associations

We begin by ignoring reionization and just imagining inferring the underlying dark matter

density of a field with some set of observed sources. Take the average number density

of bright LAEs at a given redshift to be navg. In a volume V , one would expect to find

N exp,avg = V · navg bright LAEs. Now, assume one completes an observational campaign of

size Nvols × V , finding that the most dense region of size V has Nobs > N exp,avg. What can

we infer about that region? Does the ratio of Nobs/N exp,avg carry through to those sources

below the magnitude limit of the survey? Can we measure the excess amount of dark matter

in this region using a bias function and infer whether the region will collapse into a cluster

by z = 0? To answer these questions, one must consider Poisson noise and cosmic variance

jointly.

In the gaussian approximation of cosmic variance, the expected number of sources in

some region V with linearized relative density δ = (ρ− ρ̄)/ρ̄, is

Nexp = N exp,avg(1 + δ · b(V )), (5.1)

where b(V ) is the bias of those sources1 (Mo & White, 1996). However, when one observes

a region of density δ and corresponding Nexp, one does not always find Nobs = Nexp. The

observed number is drawn from the Poisson distribution with λ = Nexp; explicitly,

P (Nobs|λ = Nexp) =
NNobs

exp e−Nexp

Nobs!
. (5.2)

1The bias also typically depends on the luminosity or mass of the objects being considered. However, for
a set population defined by a magnitude range, there is an effective bias value for that population.
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One can infer the value of Nexp given Nobs using Bayes’ theorem,

p(Nexp|Nobs) ∝ P (Nobs|λ = Nexp)p(λ = Nexp), (5.3)

where p(λ = Nexp) is the prior on Nexp. From equation (5.1) and the fact that the cos-

mological density field is a Gaussian (at least in the linear approximation appropriate

on large scales), that prior is a Gaussian centered at N exp,avg with standard deviation

σNexp = N exp,avg · b · σδ,

p(Nexp) =
1

σNexp

√
2π

exp

[
−1

2

(
Nexp −N exp,avg

σNexp

)2
]
, (5.4)

where σδ is the r.m.s. fluctuation of δ for the geometry matching the survey volume (see

Newman & Davis, 2002; Stark et al., 2007; Muñoz et al., 2010; Robertson, 2010; Trapp &

Furlanetto, 2020, for calculations of non-spherical density fluctuations). Multiplying equa-

tions (5.2) and (5.4), taking the natural log, and dropping terms that do not depend on

Nexp gives the log likelihood. Changing the inferred quantity to the underlying dark matter

density δ via equation (5.1), we find

lnp(δ|Nobs) ∝ Nobsln(1 + δ · b)−N exp,avg · δ · b−
1

2

(
δ

σδ

)2

. (5.5)

The above equation gives the full posterior of the region’s dark matter density given an

observed number of sources Nobs, an average expected number of sources N exp,avg, a bias

value b for those sources, and knowledge of the r.m.s. fluctuation in the linear dark matter

density field σδ.

If there is uncertainty in one of those parameters – say the bias value b – its probability

distribution p(b) can be marginalized over in the following way:

p(δ|Nobs) =

∫
p(δ, b|Nobs)db =

∫
p(δ|b,Nobs)p(b)db. (5.6)

So far, we have imagined a simple experiment in which only the total number of sources

is known. We will restrict ourselves to this simple case in this paper, but it is easy to

extend the formalism to more sophisticated experiments. In a more ideal case, the average

luminosity function of these sources Φavg is known, with corresponding local luminosity
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function Φloc(M) = Φavg(M)(1 + δ · b(M,V )), where M is the absolute magnitude of the

sources. In this case, with Nobs observed sources, each with Mj, the posterior becomes

lnp(δ|Nobs) ∝ −N exp,avg · δ · b−
1

2

(
δ

σδ

)2

+

Nobs∑
j

[
lnΦavg(Mj) + ln [1 + δ · b(Mj, V )]

]
.

(5.7)

5.4 Applying the density inference framework

In Hu et al. (2021), 14 LAEs were found in a region with volume V = 66×30×26 cMpc3 at z =

6.93 (∼ 200 pMpc3), embedded within a larger survey field with approximately 20 volumes

of the same size. Henceforth, for convenience we will refer to this specific over-dense volume

of 14 sources as the “Hu et al. (2021) volume”, and in general we will call a group of LAEs

found at high-z an “association”. The expected number of LAEs to be found in this volume

– using the number density in the larger COSMOS field – is N exp,avg = 2.9± 1.1 (boosted to

account for redshift-space distortions, see below). Hu et al. (2021) calculates a galaxy over-

density of δg = 5.11+2.06
−1.70 for the region with 14 sources. Combining this with a bias value

of breal = 4.54 ± 0.63 and a redshift-space distortion correction C = 0.79 via the equation

1+brealδreal = C(1+δg), they find the dark-matter over-density to be δreal = 0.87. Converting

this real over-density to a linear over-density via Mo & White (1996) gives δ = 0.54. Given

the r.m.s. fluctuation in the linear density field for the Hu et al. (2021) volume σR =0.074,

this corresponds to a 7.3 σR over-density, a very large excursion.

We adopt the bias value used in Hu et al. (2021), though convert it to a linear bias value

b = 7.31± 1.02 via (1+ δreal · breal) = (1+ δ · b). With these parameters, using equation (5.5)

and marginalizing over the uncertainty in b and N exp,avg, we plot the posterior of the density

of this region in Figure 5.1 in magenta, finding a density and 68.27% confidence interval

of δ = 0.16 ± 0.05, much lower than estimated in Hu et al. (2021) (shown by the vertical

dashed orange line). Given the r.m.s. density fluctuation in the linear density field for the

Hu et al. (2021) volume σR =0.074, this corresponds to a 2.2 ± 0.7 σR over-density. The

Figure also shows the likelihood in red (eq. 5.5 without the final term, still marginalized over
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b and N exp,avg) and the prior on the density in blue.

Our posterior is prior-dominated, as the likelihood is much broader than the prior, even

with 14 observed sources. The vertical dashed black line indicates the approximate density

required for this region to collapse into a cluster by z = 0, δpc = 0.27 (assuming the spherical

collapse model), a situation that is disfavored by the posterior. If we do not marginalize

over the uncertainty in b and N exp,avg, the posterior changes very slightly, still giving δ =

0.16 ± 0.05. This is not surprising, given we are in the prior-dominated regime. If we

significantly change the bias value to b = 5.0± 0.7 – the bias for a ∼ 4× 1011M⊙ halo – the

density inference still shifts very little, to δ = 0.15± 0.06

In Figure 5.1, the likelihood and prior are very far apart, indicating that this volume is a

rare find. In fact, the probability of a single region of this volume to host 14 or more sources

given the estimates of N exp,avg, b, σR (including the uncertainties in these quantities), and

Poisson noise, is 0.3%. The probability of finding at least one such region in a larger survey

of 20 similar volumes is 5%, about a ∼ 2σ excursion. This is surprising enough that one

might ask if another factor might change the probability – such as a patchwork of ionized

bubbles modulating the LAE surface density.

Using the best-fit luminosity function from Trapp & Furlanetto 2022b (in prep.) and the

UV galaxy bias function from Trapp & Furlanetto (2020), integrating down to MUV = −13,

we estimate that this region has an excess in UV light production of 40± 13% over average.

5.5 Inference of the ionization field from LAE associations

The last section assumed that no LAEs in the COSMOS field were blocked by intervening

neutral hydrogen, or in other words that the Universe was completely ionized. In reality, at

z = 6.93, the Universe is thought to be only partially ionized (e.g., Davies et al. 2018). In

this case, we would expect only a fraction F̄surv of LAEs to actually be visible. Thus, we

would expect the true underlying N exp,avg to actually be larger than the visible density of

LAEs, N exp,avg = Nexp,avg,vis/F̄surv with Nexp,avg,vis = 2.9± 1.1. By itself, this would have the

effect of shifting the density posterior of the Hu et al. (2021) volume to smaller over-densities.

119



Figure 5.1: The inferred density for the Hu et al. (2021) volume, assuming no effect from

reionization. The magenta curve shows posterior of the linear density, which has 68% con-

fidence interval δ = 0.16 ± 0.05. The vertical dashed black line indicates the approximate

density required for this region to collapse into a cluster by z = 0, δpc = 0.27, which is

disfavored by the posterior. The vertical dashed orange line shows the density estimate of

Hu et al. (2021). The red and blue curves show the likelihood and prior, respectively; we

are in the prior-dominated regime, given the likelihood’s large breadth. The likelihood and

prior are very far apart, indicating that this volume is a rare find; we show in the text that

the probability of finding at least one such region in a larger survey of 20 similar volumes

(the COSMOS field) is 5%.
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However, in this context a region with an over-density of visible LAEs must also be

mostly ionized in order to see the sources inside it. In the standard picture of reionization

(e.g., Furlanetto et al. 2004) it must have a high density in order to be mostly ionized. More

generally, in a fully ionized Universe, the clustering of LAEs is due to cosmic variance and

Poisson noise alone. In a mostly neutral Universe, (Q̄ ≪ 1), we would expect to find nearly

all of the visible LAEs (if indeed any could be found!) in a small number of large ionized

regions – or, in other words, more highly clustered. We found in section 5.4 that the volume

found in Hu et al. (2021) is highly clustered when compared to its surroundings, so that the

probability of finding such a region among 20 same-sized regions in a fully ionized Universe

is only 5%. If ionized regions exaggerate the clustering, there must be a value for Q̄ < 1 that

is most likely to produce a comparable LAE association once within a larger survey volume.

Incorporating these considerations into the density posterior requires a mapping between

between Q̄ and F̄surv (sec. 5.5.1) and a treatment of Fsurv for an individual region the size of

the Hu et al. (2021) volume (sec. 5.5.2).

5.5.1 LAEs in a simple reionization model

For a mapping between Q̄ and F̄surv, one first needs a model of reionization. In this sec-

tion, we construct a very simple such model. Our prescription can be made more rigorous

by comparing to more detailed reionization models, such as those generated by 21cmFAST

(Mesinger et al., 2011; Davies et al., 2021), but we focus here on a very simple prescription

to make the inference framework as transparent as possible. This model was inspired by the

measurement of a short mean free path for ionizing photons, λi = 0.75+0.65
−0.45 pMpc at z = 6.0

(Becker et al., 2021).

Let us assume that for an LAE to be visible, it must be inside an ionized bubble with

R > Rα where Rα = 1 pMpc, allowing for its Lyα photons to redshift out of resonance

(Miralda-Escudé, 1998). Let us further assume that the ionizing photon mean free path

is smaller than Rα. This means that for an ionized bubble to grow large enough to allow

transmission of Lyα photons, all of the ionizing photons that generate the bubble have to
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come from sources inside of it. Also, every region of size Rα is independent of its neighbors.

In reality, some high-frequency photons will be shared between regions, but for the sake of

simplicity we ignore them here.

We make another simplifying assumption that the ionized fraction of hydrogen Q in

an independent region depends linearly on the fraction of baryons that have collapsed into

haloes fcoll via an efficiency parameter ζ:

Q = ζ · fcoll. (5.8)

This expression implicitly assumes that the ionizing efficiency of galaxies is independent of

their mass. This is very unlikely to be true of real galaxies (e.g., Trenti et al. 2010; Tacchella

et al. 2013; Mason et al. 2015; Behroozi & Silk 2015; Furlanetto et al. 2017), but it allows

for a very simple reionization model. In particular, within the Press-Schechter model (Press

& Schechter, 1974; Lacey & Cole, 1993),

fcoll(δ, Rα, z) = erfc

 δcrit(z)− δ0√
2(σ2

min − σ2
Rα

)

 , (5.9)

where δcrit(z) is the linearized density threshold for spherical collapse (approximately 1.69

divided by the growth factor of dark matter structure, Eisenstein & Hu, 1998), δ0 is the

linearized density of the region δ scaled to z = 0 (again, via the growth factor), σRα is the

linear r.m.s fluctuation of the dark matter density field on the scale of Rα, and σmin is the

same on the scale of the smallest virialized halo allowed to form a galaxy. We take that

smallest scale to correspond to a halo virial temperature Tvir = 104K, when atomic line

cooling becomes efficient enough for gas clouds to collapse and fragment for star formation

(Loeb & Furlanetto, 2013).

In this simple model in which the ionized fraction increases monotonically with the local

collapse fraction, a region is fully ionized if it has a sufficiently high density. Setting Q = 1,

we obtain a relationship between the efficiency ζ and fcoll,vis, the collapse fraction required

to ionize a region of size Rα: ζ = 1/fcoll,vis (see Fig. 5.2). From equation (5.9), we can also

obtain p(fcoll|z, R).
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Figure 5.2: Properties of our simple reionization model. The red curve shows the ionizing

efficiency required to ionize an independent region as a function of its collapse fraction (see

eq. 5.8). The blue curve shows p(fcoll|R = Rα), the (un-normalized) probability distribution

of collapse fractions for regions of size R = Rα. The black dashed curve shows the average

collapse fraction at z = 7.
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Choosing a value for fcoll,vis then defines the fraction of equal-mass regions at each redshift

that can contain visible LAEs:

F̄vis(z) =

∫ 1

fcoll,vis

p(fcoll|z,Rα)dfcoll. (5.10)

Weighting by the number of LAEs inside a region of fcoll gives the fraction of LAEs in that

are visible at each redshift:

F̄surv(z) =
1

N exp,avg

∫ 1

fcoll,vis

Nexp(fcoll) · p(fcoll|z,Rα)dfcoll, (5.11)

where N exp,avg is the average number of LAEs in a region of size Rα and Nexp(fcoll) is the

number of LAEs in a region of size Rα but with collapse fraction fcoll. Since each collapse

fraction has a unique δ value on this scale, Nexp(fcoll(δ)) = N exp,avg(1 + δ · b) (like eq. 5.1).

Similarly, we can weight by the ionization of each region through Q = fcoll/fcoll,vis (taking

Q = 1 for fcoll > fcoll,vis) to obtain the average ionization of the Universe at some redshift:

Q̄(z) =

∫ 1

0

fcoll

fcoll,vis
· p(fcoll|z, Rα)dfcoll. (5.12)

Note that Q̄ is not simply the globally-averaged collapse fraction multiplied by ζ, because

some photons in over-dense regions are wasted thanks to absorption by small-scale features:

this is important because we have assumed λi to be smaller than the size of the independent

regions.

Finally, we obtain a relationship between the average ionized fraction of the Universe

Q̄(z) and the fraction of LAEs that are visible F̄surv(z) (averaged across the Universe) for

any choice of fcoll,vis (as shown in Fig. 5.3). Higher bias values result in a larger fraction

of all LAEs being visible for a given ionization fraction of the Universe. We also plot in

Figure 5.3 the total ionizing photon production rate relative to the number of hydrogen

atoms, ζ · fcoll,avg. A value above the line x = y implicitly means photons are escaping their

host galaxies, but being absorbed before contributing to reionization. The most over-dense

Rα regions are overproducing photons but can’t help their neighbors reionize. This effect is

only significant once the Universe is mostly reionized.
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Figure 5.3: The fraction of LAEs that are visible F̄surv as a function of average ionization

fraction Q̄ for various bias values. Higher bias values result in a larger fraction of all LAEs

being visible for a given ionization fraction of the Universe. The red line shows the total

ionizing photon production rate ζ ·fcoll,avg, for which a value above the line x = y means pho-

tons are escaping their host galaxies but being absorbed before contributing to reionization.

The most over-dense Rα regions are overproducing photons but can’t help their neighbors

reionize. This effect is only large when the Universe is mostly reionized.
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5.5.2 LAE galaxy associations in a partially ionized Universe

In the previous subsection, we examined the visibility of LAEs in regions of size Rα, the

minimum ionized bubble size to host such sources. But in practice, galaxy associations may

subtend significantly larger scales in real surveys. The Hu et al. (2021) volume is larger

than Rα, meaning it may have some sub-chunks that are ionized, and some that are not. In

this section, we consider the distribution of Fsurv(δ, R > Rα): the fraction of LAEs that are

visible in a region of size R > Rα and density δ.

Such a region has N = (R/Rα)
3 sub-chunks of size Rα, each with a density δi distributed

around δ with standard deviation σw =
√

σ2
Rα

− σ2
R, where σRα and σR are the rms density

fluctuation of the dark matter on a scale of Rα and R, respectively. Each chunk then also has

corresponding fcoll,i. Each of those sub-chunks are either ionized (fcoll,i > fcoll,vis, allowing

LAEs to be visible) or not (so that their LAEs are invisible). We can then calculate Fvis,

Fsurv, and Q for the region of size R via weighted averages over the sub-chunks rather than

integrals (as we did in the last section).

In Figure 5.4, we show that Fsurv can vary widely between volumes of the same size R

and overall density δ (more-so than Q in those regions!), due to the effects of Poisson noise

and density fluctuations on the sub-chunk scale Rα. When the value of fcoll,vis is large (or

equivalently when δvis is large and Q̄ ≪ 1), the distribution of Fsurv can become bimodal,

with a large fraction of regions having zero visible LAEs and all of the visible LAEs confined

to a few very over-dense regions.

5.5.3 The inference framework

Within the framework described above, we now imagine that a survey has found an associa-

tion of LAEs, and we use the model in order to measure three interesting quantities: (a) the

local density of the region (as in section 5.4), (b) the local ionized fraction in the region, and

(c) the global ionized fraction. We next describe how we make such inferences in practice.

This procedure must be tuned to the specific construction of the survey; here, we imagine

the simple case of choosing the most extreme apparent over-density in a survey, similar to
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Figure 5.4: The distribution of the LAE survival fraction Fsurv (blue histograms) and local

ionized fraction (red histograms) for regions matching the Hu et al. (2021) volume. The

panels vary the density δreg of that region (left to right) and the density required for a region

of size Rα to fully ionize, δvis (top to bottom). Fsurv can vary widely between regions of the

same size and density (more-so than Q in those regions!), due to the effects of Poisson noise.

When the value of δvis is large (Q̄ ≪ 1), the distribution of Fsurv can become bimodal, with

a large fraction of regions having zero visible LAEs.
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the method of Hu et al. (2021).

We generate the likelihood of finding NLAE sources in a region with (i) radius R > Rα

pMpc among a larger survey with Nvols regions of the same size, (ii) average visible LAE

number Nexp,avg,vis, (iii) density δ, and (iv) collapse fraction required for sub-chunks to be

ionized fcoll,vis by running a Monte-Carlo simulation.

1. First, we choose a value for fcoll,vis, which defines F̄surv and Q̄. As shown in Figure 5.2,

this implicitly determines the effective ionizing efficiency ζ. This also defines the actual

expected number of LAEs through N exp,avg = Nexp,avg,vis/F̄surv.

2. Next, we generate a set of Nvols volumes each with a dark matter density δ drawn

from a normal function with standard deviation σR. Each of those volumes has Nsub =

(R/Rα)
3 sub-chunks with densities δsub drawn from a normal2 at δ with standard

deviation σw. These densities each have corresponding fcoll,sub.

3. The number of sources expected per sub-chunk is Nexp,sub = Navg, sub(1 + b · δsub), with

Navg, sub = N exp,avg/Nsub. We then draw from a Poisson distribution for each subchunk

with λ = Nexp,sub to get the number of LAEs per subchunk Ndraw,sub. Finally, we

sum all LAEs in subchunks with fcoll,sub > fcoll,vis to get the total number of observed

LAEs. Then, out of the Nvols volumes, we keep the one with the most observed LAEs,

mimicking the procedure of Hu et al. (2021).

4. We repeat (i) - (iii) many times, each time choosing a random value for Nexp,avg,vis and

b according to their uncertainty. The likelihood P (NLAE|b, fcoll,vis) is the fraction of

volumes chosen in step (iii) that have the correct number of observed LAEs (Nobs =

NLAE) This step implicitly marginalizes over the density δ and uncertainty in Nexp,avg,vis

and b.

2When drawing this way, the sub-chunk densities δsub will not add up to exactly δ. However, with the
large number of sub-chunks considered in this paper, the deviation is small. When Nsub is small, δ must
be re-calculated from the average of all δsub values. However, this process imposes a broadening in the
distribution of δ that must be corrected for.
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5. We then repeat (i)-(iv) for many values of fcoll,vis, each having a corresponding F̄surv

and Q̄ (depending on the random draw of b). This allows us to construct the likelihood

as a function of Q̄.

6. In order to transform the likelihood into a posterior distribution, we require a prior

on the intrinsic LAE density. Many such choices are possible; below, we multiply by a

prior that enforces that the number density of LAE hosts (whether visible as LAEs or

not) must increase monotonically as redshift decreases (see below for an explanation

of this prior).

7. Finally, we take all volumes selected above across every value of fcoll,vis, weight by

our prior, and make a histogram of the densities δ. This histogram is the posterior

of δ marginalized over Q̄. Similarly, we take these volumes, weight by the prior, and

construct the posterior around the ionized fraction of the LAE association, marginalized

over Q̄ and δ.

5.5.4 The choice of priors

The most important prior in our framework is that on the underlying density of a region,

which is, to linear order, simply a gaussian centered at zero with standard deviation σR. This

prior is determined by integrating the power-spectrum of dark matter fluctuations over the

desired physical scale (see e.g., Newman & Davis, 2002; Stark et al., 2007; Muñoz et al., 2010;

Robertson, 2010; Trapp & Furlanetto, 2020) to obtain σR. This prior is highly constraining;

in sections 5.4 and 5.6, the posterior of the density is prior-dominated. Fortunately, this

prior is also very well-specified by a variety of cosmological probes.

A second prior, limiting the underlying galaxy density, also turns out to be important.

In practice, one reasonable solution for a survey with a single, large LAE association and no

other visible LAEs would be a highly neutral Universe with a single large ionized bubble.

However, this would require that the true number density of LAE hosts be much larger than

the observed density, because most of the Lyman-α lines are attenuated by the IGM. It is

thus helpful to include a prior on the underlying density of the host galaxies. There are a
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variety of ways one can do this; we make a conservative choice here.

In particular, we include a prior requiring that there are not intrinsically more LAEs –

for example – at z = 6.93 than at z = 5.7. In reality, there are likely many more LAEs at

z = 5.7 than z = 6.93, because the underlying luminosity function of galaxies is evolving

rapidly, so this serves as a conservative bound. Wold et al. (2022) finds the LAE luminosity

density ratio between z = 6.9 and 5.7 to be ρz=6.9/ρz=5.7 = 0.63+0.13
−0.15. As long as the number

density of LAEs stayed constant or increased from z = 6.9 to 5.7, this measurement can be

converted to a lower-bound on the value of F̄surv(z = 6.9) > 0.63−0.15. We then convert to

a lower bound on Q̄ using our mapping between F̄surv and Q̄ (see Fig. 5.3). Again, this is a

conservative approach, because there are many fewer galaxies overall at z ∼ 7 than at z ∼ 6.

One could incorporate a full model for the LAE population as a more sophisticated prior, or

else simultaneously constrain both the overall galaxy evolution and the LAE distribution.

Finally, we use the bias value and its uncertainty from Hu et al. (2021) (in turn taken

from Ouchi et al., 2018) of b = 7.31± 1.01 (after converting to a linear bias). A theoretical

model of cosmic variance predicts a value of the linear bias between 2-4 for halo masses

between 109 and 1011M⊙ at this redshift and scale (Trapp & Furlanetto, 2020), significantly

lower than the observationally obtained value. However, we have shown in section 5.4 and

will show in section 5.6 that switching to a lower bias value has little effect on the posteriors,

likely owing to the fact that the prior on the linear density is dominating.

5.6 Applying the full inference framework

As an example of the inference framework, we now apply our procedure to the LAE associa-

tion observed by Hu et al. (2021). In this case, R = 3.7 pMpc giving Nsub = 51, Nvols = 20,

Nexp,avg,vis = 2.9± 1.1, and b = 7.31± 1.02.
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5.6.1 What can we learn about reionization?

Figure 5.5 shows the likelihood and posterior of the globally-averaged ionized fraction of

the Universe at z = 6.93. The median and inner 68.27% probability of the posterior is

Q̄ = 0.70+0.14
−0.09. At Q̄ ≲ 0.7, the posterior is prior-dominated. The prior represents a case

where the number density of LAEs stayed the same between z =6.9 and 5.7. In reality, the

number density likely increased dramatically, which would push the posterior to even higher

values of Q̄.

We note that our analysis disfavors both small ionized fractions (largely due to the prior

on the LAE abundance) and a nearly ionized Universe. The latter is perhaps the most

interesting aspect, as the constraint comes from finding a single region with so many LAEs

and is not driven by any of our priors. Thus our simple model agrees with other measurements

that suggest reionization is incomplete (but relatively advanced) at z ∼ 7 (Greig et al., 2017;

Inoue et al., 2018; Mason et al., 2018; Davies et al., 2018).

5.6.2 Is the association inside a large ionized bubble?

Figure 5.6 shows the histogram of the ionization states Q from each MC simulation that

resulted in finding 14 sources, weighted by the prior on Q̄, and the same for Fsurv, the fraction

of LAEs in the Hu et al. (2021) volume that are visible. The 95.45% confidence lower limits

for these quantities are Q > 0.75 and Fsurv > 0.61. Thus the qualitative association of

this LAE association with a large ionized region is largely validated: the modal outcome is

in fact a completely ionized region, and the volume is highly ionized with high confidence.

Moreover, the fraction of LAE hosts that are visible as line emitters is also quite large.

5.6.3 Is the association a protocluster?

Figure 5.7 shows the posterior of the density, which yields a 68% confidence interval of

δ = 0.13±0.05, only slightly lower than the results from the fully-ionized case (see Fig. 5.1).

Given the r.m.s. density fluctuation in the linear density field for the Hu et al. (2021) volume
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Figure 5.5: Constraints on the global ionized fraction Q̄ from the Hu et al. (2021) observa-

tion. The magenta curve shows the posterior on the ionization of the Universe and 68.27%

confidence interval Q̄ = 0.70+0.14
−0.09. The red curve shows the likelihood of finding 14 sources

given the average ionization of the Universe Q̄ at z = 6.93 and other model parameters,

while the blue curve shows the prior on the ionized fraction of the Universe, assuming the

intrinsic number of LAEs increased from z = 6.93 to 5.7. At Q̄ ≲ 0.7, the posterior is

prior-dominated.
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Figure 5.6: The Hu et al. (2021) volume is highly ionized with most bright LAEs visible as

line emitters, as suspected by those authors. The magenta histogram shows the ionization

states Q from each MC simulation that resulted in finding 14 sources, weighted by the prior

on Q̄. The blue curves the same but for Fsurv, the fraction of LAEs that are visible. The

vertical bars indicate the 95.45% lower limits of these quantities, Q > 0.75, Fsurv > 0.61.
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Figure 5.7: Constraints on the overall density of the Hu et al. (2021) volume. The magenta

curve shows the histogram of all densities that resulted in finding 14 sources in the MC

simulation described in section 5.5.3, weighted by the prior on Q̄. This gives a 68% confidence

interval of δ = 0.13 ± 0.5, only slightly lower than the results from the fully-ionized case

(see Fig. 5.1). The entire region is not likely to have collapsed into a single cluster by z =

0, which would require a linear density of δpc = 0.27 (black dashed line). The prior on the

density is shown in blue.

σR =0.074, this corresponds to a 1.8 ± 0.7 σR over-density. Despite its extreme apparent

over-density, the entire region is not likely to have collapsed into a single cluster by z = 0,

which would require a linear density of δpc = 0.27. However, it is possible that one or more

sub-regions within this larger volume are at sufficiently high density to collapse into clusters

by z = 0.

5.6.4 Sensitivity to model parameters

We explore the sensitivity of our results to model choices by re-running our inference in the

following cases:
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1. No marginalization: when re-doing our inference without marginalizing over the un-

certainty in Nexp,avg,vis nor b, the posterior on the ionization moves to Q̄ = 0.69+0.13
−0.09.

The density posterior becomes δ = 0.14± 0.05.

2. Reduced bias: when changing the bias values from b = 7.31 to 5 (with same relative

uncertainty), the posterior on the ionization moves to Q̄ = 0.70+0.12
−0.09. The density

posterior becomes δ = 0.14± 0.05.

3. Rα = 0.75 Mpc: when reducing the parameter Rα, the posterior on the ionization

moves to Q̄ = 0.67+0.17
−0.11. The density posterior does not change at all, staying at

δ = 0.14± 0.05.

4. Rα = 1.5 Mpc: when increasing the parameter Rα, the posterior on the ionization

moves to Q̄ = 0.76+0.10
−0.07. The density posterior does not change at all, staying at

δ = 0.14± 0.05.

Nexp,avg,vis and the bias value b do not appear to have a strong effect on the inference of the

Hu et al. (2021) region’s density nor the average ionization Q̄. The choice of Rα has a larger

effect on the results, though not dramatically.

In equation (5.8), we assume all galaxies contribute equally to reionization. A more

realistic model of reionization would change the mapping between Q̄ and F̄surv (see Fig. 5.3).

However, this change might only have a small effect on our results, given that they do not

vary strongly with the choice of bias, which modifies the mapping between Q̄ and F̄surv

significantly. A more realistic model of reionization would likely have more of an effect on

our results through Fsurv, the distribution of which is important in our model and is evaluated

on a small scale that is thus more subject to potentially complex behaviors of reionization.

In our MC simulation, we included a treatment of the “look-elsewhere” effect. That is,

the Hu et al. (2021) volume was chosen out of a much larger volume because it had the

most sources. This could potentially bias the inference of the region’s density, ionization,

etc. (especially because this volume was selected “by eye" rather than in a blind tiling of the

survey volume). If we remove the treatment by choosing Nvols = 1 in (ii) of section 5.5.3
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instead of Nvols = 20, the peak in the likelihood for Q̄ is shifted significantly from ∼ 0.5 → 0.3.

However, because our prior rules out those values, the resulting effect on the posterior is very

small, shifting it to lower Q̄ by only ∼ 0.01. Thus the most crucial aspect of our model is

likely the prior on the underlying galaxy density, which is essential to interpreting the Fsurv

values.

5.7 Conclusions

There is a long history of close study of “extreme" objects in astrophysics, as they can offer

sharp tests of our physical paradigms. At high redshifts, associations of bright galaxies

are often labeled as “protoclusters,” although the mapping to present-day clusters has only

been qualitative. Because the neutral IGM modulates Lyman-α absorption, associations

of LAEs have similarly been suspected to identify large ionized regions. In this paper, we

have introduced a framework to make these identifications in a statistically rigorous manner.

We first construct an analytic form of the posterior for the underlying density of a region

given a finite number of observed galaxies, ignoring any modulation from reionization. This

framework combines the effects of cosmic variance and Poisson noise, making use of a strong

prior on the density of a region.

Inferences about the ionization field require a model of the reionization process. Here

we have used a simple model motivated by the recent measurement of a surprisingly short

mean free path for ionizing photons during this era (Becker et al., 2021). Using this model

in a Monte Carlo simulation, we found that sufficiently large LAE associations can not only

identify ionized volumes with high reliability but also constrain reionization on a global scale.

Assuming a fully-ionized Universe at z = 6.93, we calculate the linear dark-matter density

of the Hu et al. (2021) volume to be δ = 0.16 ± 0.05. When considering a partially-ionized

Universe via a simple model of re-ionization, we calculate the density to be slightly lower,

δ = 0.13± 0.05. These densities are > 2σ below the required linear density of δpc = 0.27 for

this region to collapse into a single virialized object by z = 0. The Hu et al. (2021) volume

gives a constraint on the ionized fraction of the Universe at z = 6.93, Q̄ = 0.70+0.14
−0.09. This
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result is strongly prior-dominated at low values of Q̄, and should only be interpreted in the

context of our very simple model of re-ionization. We constrain the ionization of the Hu

et al. (2021) volume itself to be Q > 0.75 at 95.45% confidence.

Our inferences about reionization are subject to systematic uncertainties about the under-

lying reionization model, but we already find that even a single well-defined LAE association

offers competitive constraints on the global ionized fraction at z ∼ 7 (Greig et al., 2017; In-

oue et al., 2018; Mason et al., 2018; Davies et al., 2018); our results are consistent with other

methods and have similar uncertainties. Our approach is more similar to a “counts-in-cells"

method that leverages the non-gaussianity that reionization induces in the LAE distribution.

An advantage of our framework is that it identifies ionized regions in well-specified loca-

tions on the sky – providing targets for detailed studies of the effect of these ionized regions

on the galaxy populations.

The constraints from the simple exercise in this paper suggest that the counts-in-cells

approach may be very powerful. We have focused on a single association using a sim-

ple model. Future improvements to this framework could include: (i) a more complete

reionization/Lyman-α absorption model, (ii) incorporating the distribution of source lumi-

nosities with a LAE luminosity function, (iii) considering all observed regions simultaneously

rather than just a single association (or in other words implementing a full counts-in-cells

framework), (iv) simultaneously incorporating information from photometric galaxy selection

(e.g., Yoshioka et al. 2022) and LAE surveys, and (v) considering the expansion/contrac-

tion of a region depending on its density, which increases the relative odds of finding an

under-dense region (Muñoz et al., 2010; Trapp & Furlanetto, 2020).

Future observations with JWST and other telescopes will discover many LAEs. This

hugely increased sample – combined with a more accurate model of re-ionization – is a

promising avenue for calculating the ionized fraction of the Universe throughout re-ionization.
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CHAPTER 6

Conclusion

The models and frameworks developed in this dissertation were calibrated and tested using

currently available data, but are intended mainly as a tool for future observations, especially

those made by JWST and the Roman Space Telescope. Together, these instruments will

delve deeper, search wider, and measure finer than any combination of current observatories.

Of particular interest are the hundreds of large-scale density measurements that JWST will

provide at a variety of redshifts (see Chapter 3). These densities are caused by the small

inhomogeneities in the soup before the cosmic dawn and are the larger cousins of the seeds

of galaxies themselves. We expect these densities to play an important role in reionization,

both due to their direct effect on its progression (Becker et al., 2018; Davies et al., 2018;

Christenson et al., 2021) and due to their effects on large-scale radiation backgrounds that

can suppress star-formation at these early times (Thoul & Weinberg, 1996; Iliev et al.,

2007; Noh & McQuinn, 2014). Further, understanding the assembly history of unusual

objects like galaxy clusters is facilitated by measuring these large-scale densities (e.g., Chiang

et al., 2017). We forecast the effectiveness of future JWST surveys in measuring these

densities in Chapter 3, finding they will do so to the maximum precision set by Poisson

noise. Simultaneously, they will measure the luminosity function of galaxies to extreme

precision (if all surveys can be effectively combined).

In Chapter 5, we develop a statistically robust method for measuring the over/under-

density of a region with some observed number of LAEs (or normal galaxies). When com-

bined with a model of reionization, this model can also produce posteriors for the ionization

of such a region and the average ionization fraction of the Universe. We apply this method

to one such association of LAEs, finding that while still prior-dominated in this case, our
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single inference can still meaningfully constrain the ionization of the Universe (in the context

of our simple model of reionization) as well as that region’s density. JWST will find many

more such regions and with higher precision in nearly all aspects, the inferences from which

can be combined for a more accurate measure of the average ionization of the Universe.
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