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Ecological forecasts for marine resource
management during climate extremes

Stephanie Brodie 1,2,3 , Mercedes Pozo Buil1,2, Heather Welch1,2,
Steven J. Bograd 1,2, Elliott L. Hazen 1,2, Jarrod A. Santora4,5, Rachel Seary1,2,4,
Isaac D. Schroeder1,2 & Michael G. Jacox 1,2,6

Forecastingweather has become commonplace, but as society faces novel and
uncertain environmental conditions there is a critical need to forecast ecology.
Forewarning of ecosystem conditions during climate extremes can support
proactive decision-making, yet applications of ecological forecasts are still
limited. We showcase the capacity for existing marine management tools to
transition to a forecasting configuration and provide skilful ecological fore-
casts up to 12 months in advance. The management tools use ocean tem-
perature anomalies to help mitigate whale entanglements and sea turtle
bycatch, and we show that forecasts can forewarn of human-wildlife interac-
tions caused by unprecedented climate extremes. We further show that
regionally downscaled forecasts are not a necessity for ecological forecasting
and can be less skilful than global forecasts if they have fewer ensemble
members. Our results highlight capacity for ecological forecasts to be
explored for regions without the infrastructure or capacity to regionally
downscale, ultimately helping to improve marine resource management and
climate adaptation globally.

Climate variability and change is altering the structure and function of
ecosystems globally causing disruption and uncertainty to human and
ecological communities1–3. There is a critical need for forward-looking
information on ecosystem conditions to support resource manage-
ment and decision-making. To meet this demand, sub-seasonal to
decadal forecasting of atmospheric andocean physics and ecology has
rapidly advanced. There are now forecast products designed to sup-
port flexible management frameworks and resilient communities that
are capable of responding to climate-driven change4–7.

Ocean forecasting efforts are at the forefront of this new research
agenda. A range of physical and ecological properties provides
enhanced predictability of marine ecosystems for seasonal (e.g. ocean
memory, life history traits)8–10 to decadal11–13 lead times. Forewarning of

ocean and ecosystem conditions at such lead times can support
proactive decision-making for the blue economy4,11,14,15. Yet, uptake of
these forecasts by end-users can be impeded by technical debt,
inadequate representation and communication of uncertainty, and
compatibility of a forecast with the needs of its targeted end-user5,16–18.
Indeed, one of the barriers to forecast development is a common
presumption that high-resolution regional ocean forecasts are
required to develop marine forecasting applications. Yet, high reso-
lution regional forecasts are often not readily available for both the
hindcast and operational configurations required. Furthermore, stu-
dies have shown that global forecasts have some utility for regional
ecological forecasting applications7,19,20. There is thus value in further
understanding the limitations and applicability of readily available
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operational global physical forecasts as compared to downscaled
forecasts for regional applications.

Here, we use two case studies to explore the potential
for transitioning existing management tools from nowcast
application to forecasting application using downscaled (~10 km
resolution) and global (~100 km resolution) model forecasts
with 0.5-11.5 months lead time. The tools are: (1) the Habitat
Compression Index (HCI; Fig. 1)21,22, which identifies when cool
thermal habitat area used by whales is compressed nearshore,
increasing entanglement risk in a fixed gear crab fishery; and (2)
the Temperature Observations to Avoid Loggerheads tool
(TOTAL, Fig. 1)23, designed to guide the timing of a drift gillnet
fishery closure to reduce bycatch risk of loggerhead sea turtles
(Caretta caretta). Both tools use sea surface temperatures and are
based in the California Current Ecosystem (CCE) - a highly pro-
ductive ecosystem in the Northeast Pacific that is characterized
by seasonal upwelling of cool, nutrient-rich waters24,25, and for
which skilful forecasts of sea surface temperatures (SST) are
possible with lead times of several months26. The CCE is a critical
foraging ground for culturally, socially, and economically
important protected species that are under threat from diverse
anthropogenic activities27. We show how forecast configurations
of these two management tools can be skilfully forecast up to
12 months in advance and are capable of forewarning human-
wildlife interactions caused by unprecedented climate extremes.
Advanced warning of potential threats to these species is key to
developing proactive rather than reactive management strategies
that can help to reduce uncertainty and anxiety in the face

of novel ocean conditions and novel resource management
challenges.

Results
Skilful global forecasts during climate extremes
Global forecasts of SST can be applied to two resource management
tools to skilfully forecast ocean conditions up to 11.5 months in
advance. For theHCI, forecasts ofhigh compression events –which are
associated with high whale entanglement risk – were typically skilful
from 0.5 to 1.5 months lead time across all months of the year
(Fig. 2B–D). Significant forecast skill of high compression events
extends out to 8.5 months for forecasts in February-March. Overall we
see that forecast skill varies depending on the metric of skill used
(Fig. 2B–D) but in general skill is higher in winter and spring, which are
important seasons for mitigating whale entanglement risk as they
coincide with both fishing activity and whale migrations (Fig. 2B-D). If
an advanced warning system was in place (i.e., an operational HCI
forecast), there could have been 0.5-11.5 months warning of historical
high compression events. For example, high habitat compression was
observed during May 2005, and was correctly predicted 0.5, 1.5, and
3.5 months in advance. In another example, continuous high habitat
compression was observed during a large marine heatwave (Mar
2014–Dec 2016) and 94% of our forecasts (n = 193) correctly identified
high habitat compression over this 33-month period (Fig. 2A). These
HCI forecasts correctly predicted high compression up to 11.5 months
in advance,withmost falsenegatives (wherehigh compressionwasnot
predicted) occurring during the onset of the marine heatwave in early
2014 (Fig. 2).

Fig. 1 | Conceptual outline of the study highlighting forecast fields and case
studies. A Global SST forecasts and (B) downscaled SST forecasts were used in (C)
four configurations for two management tools to test how the spatial resolution
and ensemble size affect forecast skill. The two management tools are the (D)
Habitat Compression Index (HCI), and (E) Temperature Observations to Avoid
Loggerheads (TOTAL).Maps of SST forecasts represent ensemblemember 2 of the
CanCM4models at lead time 0.5 for 2010-01-01. Black box on SSTmaps represents

the spatial domain of the TOTAL tool, and the white dashed line the loggerhead
turtle closure. Blue and green lines represent the domain (75 km and 150 km from
shore, respectively) of the HCI tool. For the case studies, the red line on HCI indi-
cates the long-term mean with values below this considered as high habitat com-
pression; and the red line on TOTAL indicates the threshold to enact a potential
closure. Source data are provided as a Source Data file.
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In our second case study, TOTAL closure conditions were skilfully
forecast at 6.5months lead time, with significant skill extending out to
11.5 months by some metrics (Fig. 3). TOTAL is the average of tem-
perature anomalies across the 6 months preceding the target month
(June, July, or August), with closures recommended when anomalies
exceed a threshold. If an operational forecast system was in place for
TOTAL, we could have had up to 11.5 months warning of potential
closures. For example, a closure was enacted in August 2014 and our
TOTAL forecast correctly predicted the closure as early as November
2013 (Fig. 3). During the marine heatwave of 2014-2016, TOTAL clo-
sures were enacted in Jun-Aug 2015 and 2016, and our retrospective
TOTAL forecasts correctly predicted all these closures 11.5 months in
advance (Fig. 3).

Downscaled versus global forecasts
Comparing the performance of downscaled versus global forecasts
identified advantages and disadvantages of downscaling for these
short-term forecasts, and highlighted the utility of global forecasts
despite their coarse spatial resolution. For our two case studies, the full
global forecast ensemble was typically more skilful than the

downscaled ensemble. The increased skill arises from the greater
number of ensemble members available (73 versus 3 ensemble mem-
bers; Fig. 4; S1, S2). Forecast skill of the global models based on only 3
ensemble members showed a dramatic reduction and performed
worse than the downscaled forecasts (Fig. 4; S1; S2). Thus, while
downscaling does appear to improve the skill of individual ensemble
members, the lower skill of global ensemblemembers can be offset by
the availability of a greater number of ensemble members that better
characterize environmental variability.

Discussion
We show that two resource management tools configured to forecast
can provide accurate forward-looking information 0.5-11.5 months in
advance. Our approach demonstrates the value of operational forecast
systems to support decision-making for ocean end-users faced with
uncertain and variable future conditions. Importantly for both tools,
accurate predictions could be made using readily available global
forecasts even though they have relatively coarse resolution. While
regional downscaling did offer value for increasing forecast skill
(especially for the TOTAL forecast), the improvements afforded by

Fig. 2 | Skilful forecasts of the Habitat Compression Index. Observed and fore-
cast Habitat Compression Index using global sea surface temperature forecasts,
and its associated skill assessment. A Time-series of observed (black) and forecast
Habitat Compression Index (HCI) at three example lead times (0.5, 6.5, 11.5 months
corresponding to red, green, and blue colors) with gray shading indicating high
compression during a marine heatwave (Mar-2014 to Dec-2016). Horizontal lines
indicate the long-termmean of HCI, with high compression as any values below the
long-term mean, with colors matching their corresponding forecast lead time.
Forecast HCI is the ensemble mean of 73 global forecast models. B–D Skill

assessment of forecast HCI for each target month and each lead time, showing the
correlation coefficient, forecast accuracy, and SEDI (Symmetric Extremal Depen-
dence Index) calculated across all years (1981–2020). For correlation values, black
dots indicate forecast skill is significantly greater than zero (95% confidence).
Accuracy values > 0.5 and SEDI values > 0 indicate the forecast is better than ran-
dom chance, with black dots indicating skill is significantly greater than random
forecasts (95% confidence). Gray SEDI squares are months when there are no false
positives and SEDI can’t be computed. Source data are provided as a Source
Data file.
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downscaling were overshadowed by the ability of global forecasts to
use a much larger number of ensemble members from global fore-
casts. The results of our study help to lower barriers to implementing
marine ecological forecasting tools in the California Current and other
regions, as we demonstrate that researchers and practitioners can
work with readily available global forecasts for some applications
without the need for costly downscaling. However, we discuss below
the pros and cons of global and regionally downscaled forecasts, with
the aim of helping practitioners decide whether to invest in regional
downscaling for marine ecological forecasts. Researchers should test
the performance of available forecasts before assuming their resolu-
tion precludes a specific application. Providing demonstrable exam-
ples of marine ecological forecasting applications with open-access
forecasts will help to increase accessibility and capacity to advance the
field globally.

Climate extremes interactingwith longer-termclimate change are
leading to unprecedented environmental conditions globally28. To
adapt to these uncertain and variable conditions, there is a need to

develop tools that provide seasonal to annual information on future
ocean conditions29. Here, we demonstrate that forecast configurations
of two existingmanagement tools have the capacity to skilfully predict
highly variable SST ocean conditions and provide advanced warning
for a prolonged marine heatwave that had an unprecedented number
of whale entanglements and loggerhead turtle bycatch events. For the
HCI, forecasts of high compression events could be used within the
current decision framework (the RAMP: Risk Assessment and Mitiga-
tion Program) that meets monthly to guide fishing closures30,31. These
monthly meetings consider historical and current conditions in the
CCE, but an operational HCI forecast system would allow the RAMP to
integrate the likelihood of future compression events when deciding
on entanglement mitigation actions (e.g. gear usage, fishery closures,
fishing season delays; https://www.opc.ca.gov/risk-assessment-and-
mitigation-program-ramp/)30. Importantly, an operational HCI fore-
cast would allow more proactive management (i.e., a closure with
advanced warning because of high-risk conditions) rather than reac-
tive management (i.e., closures following an entanglement event). The

Fig. 3 | Skilful forecasts of the sea turtle bycatch closures using TOTAL (Tem-
peratureObservations toAvoid Loggerheads). ATime-series of observed (black)
and forecast (color) sea surface temperature anomalies (SSTA) averaged by
6-months at three example lead times (6.5, 8.5, 11.5 months corresponding to red,
green, and blue colors). Gray shading indicates a marine heatwave from Mar-2014
to Dec-2016. Straight lines indicate the 74% lead-time specific quantile threshold to
enact a closure in either June, July, or August, with colors matching their corre-
sponding forecast lead time. Forecast SSTA is the ensemble mean of 73 global

forecast models. B–D Skill assessment of forecast TOTAL for each closure month
and each lead time, showing the correlation coefficient, forecast accuracy, and SEDI
(Symmetric Extremal Dependence Index) calculated across all years (1981–2020).
For correlation values, black dots indicate forecast skill is significantly greater than
zero (95% confidence). Accuracy values >0.62, and SEDI values > 0 indicate the
forecast is better than random chance. Source data are provided as a Source
Data file.
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consequences of these mitigation actions are steep, and decision
makers must navigate trade-offs between the conservation of species
legally protected under the U.S. Marine Mammal Protection Act, and
the socio-economic importance of California’s most lucrative
fishery30–32. Important next steps would be to begin co-developing an
operational HCI forecast with the RAMP end-users to provide critical
insight into how a product could be produced for improved use and
uptake5. Ecosystem-based management could be advanced by
improved integration of forecasts of ecosystem conditions33,34. Thus,
the value of an operational HCI forecast could be a linchpin towards
developing climate-ready ecosystem-based management approaches
in the face of increased climate impacts33,35.

Likewise, the TOTAL tool has potential to act as an ecosystem
indicator for the Southern California Bight. TOTAL was designed to
indicate increased likelihood of loggerhead presence to guide the
timing of fishery closures to reduce turtle bycatch in the Drift Gillnet
fishery. However, due to adramatic reductionoffisheryeffort in recent
years36 there may be no need to support an operational configuration
of this tool. However, our demonstration of good skill for the TOTAL
forecast may lead to increased capacity to modify the tool to support
alternative resource management decisions. For example, the rare
occurrenceof loggerheads in the SouthernCalifornia Bight hasmade it
challenging to create observational and sampling programs, and a
TOTAL forecast indicating increased likelihood of loggerhead turtle
presence would provide the necessary lead time to prepare and con-
duct required monitoring.

Regional downscaling of physical and biogeochemical fields can
resolve fine-scale features in response to large-scale forcing from
global climate models8,37. Our results show how downscaling can
improve the skill of individual ensemble members, but that using a
greater number of ensemble members from global forecasts has the
capacity to improve skill beyond that of downscaled forecasts. We
attribute this improvement in skill to an increased characterization of
environmental variability derived from the greater number of ensem-
ble members. Our results indicate that the best approach to maximize
skill for ecological forecasting applications would be to regionally
downscale all available ensemble members. However, this is not
logistically or computationally feasible, which raises the question of
how best to determine whether to invest in regional downscaling for
marine ecological forecasts. We have developed a table to support
practitioners faced with this question (Fig. 5) and highlight the need to

consider the environmental fields required, the spatiotemporal scale
of the tools, and the accessibility of knowledge required, in order to
determine whether downscaling is necessary for a particular applica-
tion or region (Fig. 5). For example, the coarse spatial and temporal
resolution of the two management tools doesn’t require the 0.1°
resolution of the regionally downscaled fields. Tools that requiremore
finely resolved fields (<1° resolution), or for regions where fine-scale
physical processes need to be captured (e.g. tides or shelf-processes),
will likely benefit from downscaled forecasts, and tests should be
performed in those cases to ensure downscaling is providing added
value (Fig. 5) (e.g. ref. 38). We only explored SST as a variable but if
biogeochemical fields are needed for ecological forecasts (e.g. oxy-
gen), then downscaling may be needed to ensure coupling between
the required physical and biogeochemical models9,15,34. We recognize
that our case studies are limited to theCCS, which is characterized by a
relatively narrow shelf and exposed to basin-scale dynamics that
confer greater predictability26. However, SST anomalies can be skill-
fully forecast in many coastal ecosystems worldwide, including for
shelf-seas10; in those systems we suggest that researchers first test the
performance of available global forecasts before assuming their
resolution precludes application.

The field of ecological forecasting is still in its infancy, and with
increasing social-ecological costs of climate change there is a critical
need to provide forward looking information to conservation practi-
tioners and resourcemanagers facedwith increased uncertainty about
the future. We demonstrate the capacity to configure two applied
resource management tools to forecasting systems with the ability to
forewarn changing ecological conditions caused by unprecedented
climate extremes. These successful case studies demonstrate that
transitioning regional operational tools to forecasts can be logistically
and economically feasible by relying on open-access operational glo-
bal forecasts. Importantly, our results highlight capacity for ecological
forecasting applications to be explored for nations and regions with-
out the infrastructure or capacity to regionally downscale (e.g.,
developing nations), ultimately helping to improve marine resource
management and climate adaptation globally.

Methods
Summary
We configure two existing resource management tools, originally
configured to use observed (historical) ocean temperatures, to a

Fig. 4 | Improved skill from increasing number of ensemble members. Skill
assessment comparison among three forecast configurations (Downscaled
Ensemble with 3 ensemble members, Global Full Ensemble with 73 ensemble
members, and Global Reduced Ensemble with 3 ensemble members) for the
Habitat Compression Index (HCI) tool. Skill assessments include correlation coef-
ficients, forecast accuracy, and SEDI. Values are for eachmonth and lead time from
1981 to 2010 for the HCI tool (n = 24 forecasts). We only show global forecasts that
were initialized in January and July to facilitate comparisons with the downscaled

forecasts. Values for Temperature Observations To Avoid Loggerheads (TOTAL)
are not shown as too few forecasts were available for boxplot comparison (n = 3),
but see Fig. S2. Boxplots show themedian as a solid black line, the lower and upper
hinges are the first and third quartiles, whiskers extend from the smallest/largest
value no further than the 1.5*interquartile range,withoutliers (black circles) beyond
the edge of whiskers plotted individually. Source data are provided as a Source
Data file.
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forecasting system and conduct a retrospective forecast to test
their skill. We first conducted a retrospective forecast using glo-
bal forecasts (73 ensemble members) across the full historically
available period (1981–2020) – termed the Global model. We then
compared the performance of three forecast configurations: First,
we used global forecasts (73 ensemble members) across a
reduced historical period (1981–2010) – termed the Global Full
Ensemble. Second, we used forecasts regionally downscaled (3
ensemble members) to the CCE for the same reduced historical

period (1981–2010) – termed the Downscaled Ensemble. Third, we
used a reduced subset of the global forecasts (3 ensemble
members) for the same reduced historical period (1981–2010) –

termed the Global Reduced Ensemble. All forecasts are compared
to SST observations, extracted from a CCE regional reanalysis39.
This reanalysis is based on the Regional Ocean Modeling System
(ROMS) and covers the west coast of the U.S. (30-48˚N, 134-
115.5˚W) with 0.1 degree (~10 km) horizontal resolution and 42
terrain-following vertical levels40.

Fig. 5 | Considerations to support practitioners deciding whether to invest in regional downscaling for marine ecological forecasts. For global and downscaled
forecasts, colors indicate a dichotomy of superior (green) compared to inferior (red).
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Global forecasts
Global forecasts of monthly sea surface temperature were obtained
from the North American Multimodel Ensemble (NMME; Table S1;
https://www.cpc.ncep.noaa.gov/products/NMME/)41. We selected six
global forecastmodels from theNMME (Table S1), which are initialized
every month and, depending on the model, predict 9–12 months into
the future at a monthly resolution. These six models were chosen as
they have multidecadal retrospective forecasts with which we can
assess skill and are currently active in the NMME. Each global model
has up to 24 ensemble members (Table S1), with each ensemble
member starting from slightly different initial conditions to char-
acterize natural climate variability.We used forecasts froma total of 73
ensemble members (Table S1) across the six models. Forecast spatial
resolution is 1°,with forecasts available from 1981 topresent day (exact
date varies among models; Table S1). Three of these 73 ensemble
members were chosen for the Downscaled Ensemble and Global
Reduced Ensemble configurations (see below).

Regional forecasts
A subset of forecasts was dynamically downscaled using ROMS with
the 0.1° configuration described above for the CCE regional reanalysis.
Due to computational limitations of producing and storing down-
scaled forecasts, the suite of ensemblemembers and initializations had
to be reduced relative to what is available for global forecasts. The
global forecastmodel chosen to be downscaledwas the fourth version
of the CanadianCenter for ClimateModeling Analysis’ coupled climate
model (CanCM4i; Table S1)42. CanCM4i has been shown to produce
skilful SST forecasts in the CCE26. Three ensemble members (2, 8, and
10) from the CanCM4i output were downscaled (chosen to capture the
approximate spread in skill of all 10 ensemblemembers); and forecasts
were initialized twice per year - once in summer (July) and once in
winter (January). For each forecast, atmospheric and oceanic output
was obtained from each single ensemble member of the global model
andwasbias correctedbefore beingused to forceROMS43. Specifically,
global forecast anomalies were calculated relative to their own clima-
tology, and then the global forecast anomalieswere added toobserved
historical climatologies derived from high-resolution atmospheric and
oceanic reanalyses. These bias corrected fields were then used to force
ROMS at the surface and lateral ocean boundaries. High-resolution
climatologies were extracted from the European Center for Medium-
RangeWeather Forecasts version 5 atmospheric reanalysis (ERA-5)44 at
hour resolution and from the Simple Ocean Data Assimilation version
2.1.6 ocean reanalysis (SODA)45 at monthly resolution. Downscaled
forecast spatial resolution is 0.1°, with forecasts available from 1981-
2010 at daily resolution.

Case study 1: Habitat Compression Index
The Habitat Compression Index (HCI) is a regionally resolved
measure of cool thermal habitat along the U.S. West Coast; the
index presented here monitors surface water conditions off
California (35–40°N). The HCI is used to assess the degree to
which upwelling habitat (indicated by cool water) is compressed
against the coast, as nutrient-rich upwelled waters attract whales
seeking enhanced foraging opportunities. When upwelling habi-
tat is compressed against the coast, it can increase overlap
between whales and human activities, leading to entanglement in
fishing gear21,22,46. Further, the HCI relates to the distribution and
abundance of anchovy and other coastal pelagic species, pro-
viding inference on potential ecosystem shifts in the forage
base22. The HCI was calculated as the number of grid cells with
SST lower than a monthly SST threshold within 150 km of the
coastline (Fig. 1 green line). The HCI was normalized by the total
number of grid cells of the 150 km domain to scale values from 0
to 1. Monthly SST thresholds are the mean monthly SST from
1981-2010 from the coast to 75 km offshore (Fig. 1 blue line). Low

HCI values represent high compression, or reduction of cool
thermal habitat, and are the primary interest to resource man-
agers tasked with mitigating whale entanglement risk (Fig. 1). The
long-term mean of the HCI is used to identify a high compression
event (i.e. values below the mean)21,22.

Case study 2: TOTAL tool
The Temperature Observations to Avoid Loggerheads (TOTAL) tool
monitors anomalously high SST in the Southern California Bight (31-
34°N, 120-116°W) as an indicator of turtle bycatch risk and to recom-
mend potential implementation of a fishery closure23. In response to
historical loggerhead bycatch events in the California drift gillnet
fishery during warm water years, the Loggerhead Conservation Area
was created – which is a spatial closure enacted during months when
water temperatures are anomalously warm (Fig. 1). TOTAL was calcu-
lated as the 6-month rolling mean of SST anomalies in the Southern
California Bight domain. The spatial closure is potentially enacted
during three months of the year (June, July, August) based on SSTA of
the preceding six months. If SSTA exceeds a threshold, calculated as
the minimum monthly anomaly value preceding three historical clo-
sure periods (Aug 2014, Jun-Aug 2015, & Jun-Aug 2016), a closure is
recommended23.

Forecast comparison
We conducted a retrospective forecast for the Global model (73
ensemble members for 1981–2020), as well as for the three forecast
configurations that aimed to compare the performance of global and
downscaled forecasts (Fig. 1; 1981–2010).

The HCI was forecast for 0.5–11.5 month lead times, starting from
each forecast initialization, using forecast SST. The HCI was calculated
for each of the globaI (n = 73) and downscaled (n = 3) ensemble
members, and then individual members were averaged together to
create ensemble mean HCI forecasts for the different forecast con-
figurations. The monthly SST thresholds (mean monthly SST from
the coast to 75 km offshore) used to calculate the HCI were based on
years 1981–2010. Monthly SST thresholds were specific to each fore-
cast ensemble member and to each lead-time to account for model
drift10. A lead-time specific long-term mean of the HCI was used to
identify a high compression event (i.e., HCI values below the long-
term mean).

For TOTAL, mean SSTA of the 6 months preceding potential
closure months (Jun, Jul, Aug) was forecast. For global models, this
resulted in forecasts with up to 11.5months lead time (i.e., TOTAL used
SSTA from lead months 0.5–5.5, 1.5–6.5,…, 5.5–11.5). For downscaled
models, only two initialization dates were run (January and July) which
limits the number of forecasts available (Table S2). That is, June closure
estimates were the mean SSTA from Dec to May (lead 5.5 from July
initialization and lead 0.5–4.5 from January initialization). July closure
estimates were the mean SSTA from Jan to Jun (lead 0.5–5.5 from
January initialization). August closure estimates were the mean SSTA
from Feb-July (lead 1.5–6.5 from January initialization). TOTAL was
calculated for each of the global (n = 73) and downscaled (n = 3)
ensemble members, which were then averaged together to create
ensemble mean forecasts. The monthly climatology used to calculate
SSTA for TOTAL varied between configurations, where 1981-2020 was
used for the Global model, and 1981-2010 was used for the remaining
three configurations (Global Full Ensemble, Global Reduced Ensemble,
andDownscaled Ensemble; Fig. 1). The threshold to identify a potential
closure was calculated at each lead time, based on the forecast
ensemble mean.

Skill assessment
Forecast skill of each management tool was assessed by comparing
observed and forecast values using three metrics: (1) correlation
coefficient, which provides a statistical measure of the strength of a
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linear relationship between observed and forecast values; (2) forecast
accuracy, which indicates the fraction of correct forecasts; and (3) the
Symmetric Extremal Dependence Index (SEDI) which has several
properties that make it well suited to quantifying skill for rare
events7,47. Details and equations for metrics are described below. Each
skill metric was calculated across forecast years (n = 41 for the Global
model; n = 31 for Global Full, Global Reduced, and Downscaled
Ensemble). Pearson correlation coefficients (two-sided) were calcu-
lated fromobserved and forecastHCI values, and in the case of TOTAL,
observed and forecast SSTA. The significance of correlation coeffi-
cients were assessed after first accounting for sample autocorrelation
by calculating the effective degrees of freedom (Neff):

48

Nef f =
N

PN�1
t =0 1� t

N

� �
rFt r

O
t

ð1Þ

Where N is the number of samples in the forecast timeseries, and rFt
and rOt are autocorrelation coefficients for the forecast (F) and
observed (O) timeseries at lag t. We then use the CorCI function in the
DescTools R package49 to calculate 95% confidence intervals for the
correlation coefficients based on a Fishers Z transformation, which
follows a z distribution with Neff -3 degrees of freedom10. If the lower
confidence interval is greater than zero, then forecast skill is
significant.

The remaining two metrics, forecast accuracy and SEDI, use a
categorical assignment to a contingency table for skill evaluation. That
is, the classification of whether an event did or didn’t occur, and
whether we did or didn’t forecast that event. For HCI, we categorize a
high compression event as any forecast HCI below or equal to the lead-
dependent long-term mean HCI (1981–2010 or 1981–2020). This cal-
culation of theHCI is consistent with the existingmanagement tool for
assessing whale entanglement risk in the California Dungeness crab
fishery21,22. For TOTAL, we categorizewarmevents as those that exceed
a threshold based on the minimummonthly anomaly value preceding
three observed historical closure periods (Aug 2014, Jun–Aug 2015, &
Jun–Aug 2016)23. This calculation of the TOTAL threshold is informed
by sea turtle sightings data and is consistent with the existing man-
agement tool for assessing bycatch risk in the Swordfish drift
gillnetfishery23. The observed SSTA threshold is0.41, which is the 82nd
percentile for observed SSTA from 1981 to 2010, and 74th percentile
for observed SSTA from 1981 to 2020. We converted this absolute
value of SSTA to a percentile to facilitate TOTAL comparisons among
forecasts.

Forecast accuracy is the sum of true positives and true negatives,
divided by the total number of forecasts. In other words, it is the
fraction of forecasts that are correct. Forecast accuracy varies between
0 and 1, with 1 being perfect. Forecast accuracy can be strongly influ-
enced by the frequency at which the event being forecast occurs (f).
For reference, the expected forecast accuracy for a randomly gener-
ated forecast is:

FArand = f
2 + ð1� f Þ2 ð2Þ

For HCI, high compression occurs approximately 50% of the time
(f =0.5), so forecast accuracy above 0.5 indicates skill is better than
random chance. For TOTAL, with the SSTApercentile for closure set at
74% (f =0.26, used for the Globalmodel), forecast accuracy above 0.62
indicates skill is better than randomchance. For the Global Full, Global
Reduced, and Downscaled forecast ensembles, the SSTA threshold is
set at 82% (f =0.18), so skill above 0.71 is better than random.

SEDI is a useful metric for assessing the skill of forecasting
extreme events7,47. It is non-degenerate, meaning that it does not trend
towards zero or infinity as rarity increases; it is not influenced by
changes in the frequency of events (known as base-rate indepen-
dence); and it is equitable,meaning that all forecasts including random

forecasts receive the same expected score (zero), irrespective of what
method is used to generate random forecasts50. SEDI is calculated as:

SEDI =
log F � logH � logð1� FÞ+ logð1� HÞ
log F + logH + logð1� FÞ+ logð1� HÞ ð3Þ

WhereH is the hit rate (ratio of true positives to total observed events)
and F is the false alarm rate (ratio of false positives to total observed
non-events), and was calculated using the verify function in the ver-
ification R package (v1.42)51. The highest SEDI score is one and scores
above zero indicate forecasts better than random chance.

The significance of two skill metrics, forecast accuracy and SEDI,
were quantified using bootstrapping. For every month and lead time,
we sampled random forecasts (as either a 1 or 0 to classify whether an
event did or didn’t occur) from the observed events for every year and
calculated forecast accuracy and SEDI. This was repeated 1000 times.
The 95%confidence intervalswere calculated from the skill of the 1000
random forecasts, where significance was defined as skill exceeding
the 97.5 percentile of the random forecasts.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Global SST forecasts can be accessed at the North American Multi-
Model Ensemble (http://iridl.ldeo.columbia.edu/SOURCES/.Models/.
NMME/). Output from the UCSC CCS reanalysis is available from
https://oceanmodeling.ucsc.edu. The downscaled SST forecasts and
forecasts of HCI and TOTAL generated in this study have been
deposited in dryad52. Source data are provided with this paper. The
real-time HCI (https://oceanview.pfeg.noaa.gov/whale_indices/) and
TOTAL (https://coastwatch.pfeg.noaa.gov/loggerheads/index.html)
management tools are publicly accessible. Source data are provided
with this paper.

Code availability
Code used to make forecasts and figures is available on GitHub53.
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