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ABSTRACT OF THE DISSERTATION 

Modeling Strength Degradation of Reinforced Concrete Structural Walls 

by 

Amin Safdari 

Doctor of Philosophy in Civil Engineering 

University of California, Los Angeles, 2023 

Professor John Wright Wallace, Chair 

Reinforced concrete structural walls are a widely used structural system in modern construction in 

regions where strong ground shaking is likely to occur. For performance-based design of structural 

walls, including coupled wall systems, it is necessary to model cyclic responses with strength and 

stiffness deterioration of the prototype system over a wide range of shaking intensities. Current 

models typically incorporate strength loss using ad-hoc approaches that manipulate material 

relations to produce strength loss that are difficult to calibrate for the broad range of expected 

shaking intensities. To address this issue, a model is proposed that captures strength and stiffness 

degradation compatible with backbone curves that are currently available in the literature. The 

model is tested in case studies under static and dynamic loading to demonstrate its reliability and 

effectiveness. The model is refined further to be used for coupled wall systems where the 

fluctuation of shear and axial load in the coupled piers makes it difficult to pre-determine the 

deformation parameters of the backbone curves for the piers. 
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In a separate but related study, a database of reinforced concrete wall tests is assembled to develop 

a new model that estimates the plastic hinge length of flexure controlled structural walls and 

validate the model against test results. Plastic hinge lengths have been widely used and it is well 

known that deformation parameters of backbone curves (Structural walls or any other element) 

depend on element size (Plastic hinge length). The goal of this study is to calibrate backbone curve 

deformation parameters for a range of wall element sizes and then use the calibrated plastic hinge 

lengths in the subsequent case studies that incorporate strength loss. 
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Chapter 1 Introduction 

1.1 General 

There is an increasing tendency towards the use of reinforced concrete structural walls as the lateral 

force resisting system of mid- and high-rise buildings in modern construction. Reinforced concrete 

structural walls possess significant stiffness that decreases lateral drifts and limits damage to 

nonstructural components. Extensive research on design, detailing and modeling of reinforced 

concrete walls has been carried out over the last 50 years and results of these studies are reflected 

in Chapter 18 of ACI 318-19 [9] for design of special reinforced concrete structural walls. In 

addition to high stiffness, if designed and detailed per ACI 318, structural walls have proven to 

provide sufficient ductility to dissipate substantial earthquake energy in Design Earthquake (DE) 

and risk targeted maximum considered earthquake (MCER) events. Use of coupled wall systems 

is also popular in cases where cantilever walls do not provide sufficient lateral stiffness, either due 

to limits on cantilever walls from architectural constraints or for taller buildings. 

ASCE 7-22 [1] chapter 12 specifies a prescriptive procedure for analysis and design of RC 

structural walls and other conventional lateral force resisting systems. For prescriptive design, 

Table 12-2-1 of ASCE 7 [1] enforces height limits on, or prohibits the use of, some lateral force 

resisting systems for certain seismic design categories. To use these systems where they are 

restricted, or to use a lateral force resisting system not recognized by Table 12-2-1, section 12.2.1 

of ASCE 7 allows alternative design procedures if the intent of the code is satisfied. These 

procedures include Nonlinear Dynamic Analysis of ASCE 7 [1] chapter 16, or in case of tall 

building, a Performance Based Seismic Design according to consensus guidelines. Both 

procedures provide acceptance criteria to meet performance objectives to achieve a prescribed 

level of performance, e.g., a 10% or less probability of collapse in buildings with a risk category 
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of II, 5% or less probability of collapse in buildings with a risk category of III, and 2.5% or less 

probability of collapse in buildings with a risk category of IV corresponding to an MCER shaking. 

Both ASCE 7 chapter 16 and tall buildings guidelines (e.g., PEER Tall Buildings Initiative (2017) 

[3] and LATBSDC (2020) [54]) require mathematical models that capture the nonlinear response 

of structural elements. Such a model must be compatible with nonlinear response (backbone) 

relations specified in ASCE 41, or be validated using appropriate laboratory test data. ASCE 7 

section 16.3.1 specifically states: 

“Degradation in element strength or stiffness shall be included in the hysteretic models unless it 

can be demonstrated that response is not sufficient to produce these effects.”  

The PEER TBI guidelines, in Section 4.4.3, also prohibits the use of component models that do 

not account for post-peak strength degradation for nonlinear models used for MCER evaluation. 

1.2 Objectives and scope 

While Performance Based Seismic Design of tall buildings has become relatively common in 

recent years, mathematical models that reliably capture strength and stiffness degradation of 

flexure controlled structural walls without substantial calibration and validation are not available 

in literature. Even with extensive calibration and validation, the available models have drawbacks, 

e.g., when applied to coupled walls where significant variations in demands (axial, shear, moment) 

occur. The objective of this research is to provide a computer model that captures post-yield 

strength and stiffness degradation such that the envelope of hysteretic force deformation curve 

matches a specified backbone curve, e.g., as specified by ASCE 41-17. The model must also retain 

the important features of traditional models being used in practice, such as variation in flexural 

strength due to variation in axial load, and fluctuation of the neutral axis. 



3 

 

1.3 Organization 

This dissertation is organized into 7 chapters. Following the introductory Chapter 1, Chapter 2 

reviews previous studies that have focused on modeling strength and stiffness deterioration of 

structural members. Most of the work on this topic has focused on developing single springs, with 

force deformation rules that capture different modes of stiffness and strength degradation. These 

springs are used for structural components whose deterioration parameters depend on response in 

one degree of freedom only, and cannot be used to model structural walls without 

oversimplification of prototype’s response. 

Chapter 3 provides an overview of some macro-models that have been widely used in practice for 

modeling structural walls. Based on this review, the Multiple Vertical Line Element model is 

selected as a baseline model to develop a new model that appropriately captures strength and 

stiffness deterioration. A new approach for modeling the material (Reinforcing steel and concrete) 

used in the fiber section of this element is proposed. This approach serves as a platform that enables 

modeling of strength loss, compatible with a given backbone curve. The cyclic force deformation 

rules for the concrete and steel material relations are developed to address different load paths. 

The element and the material objects are coded in OpenSees [4], an open-source nonlinear dynamic 

analysis software for earthquake engineering purposes. The performance of this model is tested in 

two case studies. A cantilever structural wall, loaded with cyclic displacement-controlled loading 

and dynamic ground motion excitation. 

Chapter 4 presents an algorithm for dynamic computation of deformation parameter 𝑑 of the 

backbone curve proposed by Abdullah and Wallace (2019) [46][47], incorporated into ACI Code 

369.1-22. This backbone curve will be adopted by future editions of ASCE 41. The variables on 

which the deformation parameters depend on (shear stress, axial load, and depth of the 
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compression zone) are formulated as functions of nodal displacement. The exact value of 𝑑, at the 

load step through which strength loss initiates, is calculated using the Newton approach. This 

algorithm is coded into the OpenSees wall element object and utilized in a case study that models 

a coupled wall system subjected to dynamic loading. 

Obtaining the element backbone curve from the base shear versus roof drift response of a wall 

tested, requires that realistic estimate of the size of plastic hinge be determined. Chapter 5 

investigates the height of plastic hinge for flexure controlled structural walls. The adjustments 

needed to be applied to the ASCE 41 backbone curves so that they could be appropriately used in 

the element developed in this study, are discussed. A summary of the work and the conclusions 

are presented in Chapter 6. An appendix provides supplemental data, documentations, and sample 

calculations. 
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Chapter 2 Literature review 

Most research on the development and application of models that incorporate strength and stiffness 

degradation has been done in the last thirty years. Some important work regarding this subject is 

presented in this chapter. 

2.1 Clough (1966) [5] 

The importance of ductility for seismic design has been well documented. To evaluate the ductility 

capacity of code compliant concrete moment frames, the Portland Cement Association (PCA) was 

asked to conduct an experiment on an assembly of a concrete beam and column. The schematic of 

the test specimen, and the force deformation response are shown in Figure 2-1. An important 

observation in this test was stiffness degradation of the specimen in consecutive cycles. This gave 

rise to the question whether more strict ductility requirements should be imposed, because the 

energy absorption capacity of the system is reduced due to stiffness degradation. Clough conducted 

a parametric study on single degree of freedom models utilizing a proposed nonlinear spring that 

captured stiffness degradation. 
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Figure 2-1 Test on beam column assembly by PCA 

The force deformation response of the spring he proposed is shown in Figure 2-2. 

 

Figure 2-2 Force deformation of springs proposed bu Clough to model stiffness degradation 

The primary variables in this study were yield strength, damping ratio, period, and the post yield 

stiffness of the SDOFs. A total of 384 nonlinear dynamic analyses with 4 different ground motions 
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were conducted. Figure 2-3 and Figure 2-4 show how the response of a system with an ordinary 

bilinear spring compared to that of a system with degrading spring. 

 

Figure 2-3 Response of an ordinary bilinear system by Clough 

 

Figure 2-4 Response of a degrading system by Clough 
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The bilinear system essentially keeps vibrating with almost constant period after the initial pulses, 

while the degrading system shows a different response due to degrading stiffness. In Figure 2-3 

and Figure 2-4, 𝛾 is the ratio of post-yield stiffness to the initial stiffness. 

The results also show that: 

1. For short period structures (T = 0.3 sec.), the maximum displacement of degrading 

structures is significantly more than that of the elastoplastic structure, whereas for long-

period structures the maximum displacements are almost equal. 

2. A negative post-yield stiffness (A representation of strength loss) has a disastrous effect on 

the response of the building. 

2.2 FEMA P440 (2005) [6] and FEMA P440A (2009) [7] 

FEMA P440 studied the effectiveness of, and proposed potential improvements to, two nonlinear 

static procedures (NSPs) in evaluating the seismic demands of buildings. These two are described 

in FEMA 273 (and FEMA 356) and in the ATC40 report and are referred to as the Coefficient 

Method and the Capacity Spectrum method, respectively. FEMA P440 emphasized the importance 

of cyclic and in-cycle strength and stiffness degradation in predicting building demands, and the 

need for developing models that capture such deterioration in future research. FEMA P440A, a 

follow-on document on FEMA P440, investigated the response of buildings considering strength 

and stiffness degradation. Different types of stiffness and strength degradation in available models 

were characterized in FEMA P440A. Figure 2-5 shows three different types of stiffness 

degradation. In the first model, loading and unloading stiffnesses are equal, and both degrade with 

an increase in maximum deformation. In the second model, the unloading stiffness does not 

degrade, but the reloading stiffness degrades with increase in maximum experienced deformation. 
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In the third model, unloading and reloading stiffnesses are different, and both degrade with 

increase in maximum observed deformation. 

 

Figure 2-5 Different models of stiffness degradation 

Figure 2-6 describes the pinching effect. The reloading stiffness degrades with increase in 

maximum deformation, until the load deformation path hits a target deformation, at which 

reloading continues with a much higher stiffness. This behavior is observed in reinforced concrete 

structures, where concrete cracks open when element is loaded in a certain direction but upon 

reloading in the opposite direction when the cracks close, stiffness is recovered. 

 

Figure 2-6 Moderate pinching in figure (a) and severe pinching in figure (b) 

Figure 2-7 illustrates two sources of cyclic strength degradation. Figure 2-7 (a) shows strength 

degradation due to increasing nonlinear displacement in consecutive cycles. In Figure 2-7 (b), the 

level of nonlinear displacement remains constant, yet strength degrades due to increased number 

of cycles. Several analytical models have been developed that incorporate both types of cyclic 
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strength degradation. These models generally deteriorate the strength as a function of hysteretic 

energy dissipation. 

 

Figure 2-7 Cyclic strength degradation 

Figure 2-8 (b) shows in-cycle strength degradation where, a softening (negative stiffness) branch 

of force deformation response is observed within a single loading excursion. The hysteretic 

response of a component with cyclic strength degradation under the same loading protocol 

(Loading protocol 1) is shown in Figure 2-8(a) for comparison. 

 

 

Figure 2-8 Cyclic and in-cycle strength degradation due to loading protocol 1 
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Note that the curve enveloping the force displacement response is similar for both modes of 

strength degradation, but the materials behave significantly different if loading protocol 2 is 

applied. as shown in Figure 2-9. 

 

 

Figure 2-9 Cyclic and in-cycle strength degradation due to loading protocol 2 

Although analyses have shown that for medium and long period buildings, the maximum observed 

deformation is almost equal for the two modes of strength degradation, the model with in-cycle 

strength degradation experiences much larger residual drift. This may result in dynamic lateral 

instability (Collapse). In an additional study, eight springs with a combination of strength and 

stiffness degradation modes were used as components of Single Degree of Freedom oscillators. 

The SDOFs modeled the nonlinear and degrading response of the following frames. 

1. Typical gravity frame (e.g., steel) 

2. Non-ductile moment frame (e.g., steel or concrete) 
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3. Ductile moment frame (e.g., steel or concrete) 

4. Stiff non-ductile system (e.g., concentric braced frame) 

5. Stiff and highly-pinched non-ductile systems (e.g., Infill wall) 

6. Idealized elastic perfectly plastic system  

7. Limited ductility moment frame (e.g., concrete) 

8. Non-ductile gravity frames (e.g., concrete) 

The effect of deterioration on the response and collapse of these frames was investigated. 

2.3 Ibarra, Medina, and Krawinkler (2005) [8] 

Ibarra, Medina, and Krawinkler developed models that exhibit stiffness and strength degradation 

of structural components. The basis of their model was three nonlinear models available in the 

literature. The three models are 

1. Bilinear hysteretic model with post-yield strain-hardening and kinematic hardening 

2. Peak-oriented hysteretic model 

3. Pinching model 

Figure 2-10 (a), (b), and (c) show the response of each hysteretic model. These models were 

modified to include a post-cap softening branch, and hysteretic rules were adjusted to work 

accordingly. Four modes of strength and stiffness degradation, listed below, were included in the 

force deformation rules. The reloading stiffness degradation was already captured in the basic 

peak-oriented and pinching models. 

1. Basic strength degradation 

2. Post-capping strength degradation 

3. Unloading stiffness degradation 



13 

 

4. Accelerated reloading stiffness degradation 

 

Figure 2-10 Basic models used by Ibarra, Medina, and Krawinkler. (a) Bilinear hysteretic model, 

(b) Peak-Oriented model, (c) Pinching model, (d) Cyclic deterioration by post-peak softening 

branch 

The parameter that controls strength and stiffness deterioration, 𝛽𝑖, is calculated per Eq. 2-1 using 

the energy dissipated in excursion i. 

𝛽𝑖 = (
𝐸𝑖

𝐸𝑡 − ∑ 𝐸𝑗
𝑖
𝑗=1

)

𝑐

, 𝐹𝑟𝑒𝑓
1 = (1 − 𝛽)𝐹𝑟𝑒𝑓

0  Eq. 2-1 

In Eq. 2-1, 𝐸𝑖 is the energy dissipated in excursion i, and 𝐸𝑡 is the total energy dissipation capacity 

of the structural component, assumed to be independent of the loading protocol. It is expressed as 
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a function of area enclosed by the linear segment of the force deformation curve, as shown in Eq. 

2-2. 

𝐸𝑡 = 𝛾𝐹𝑦𝛿𝑦 Eq. 2-2 

Exponent 𝑐 controls the rate of deterioration, recommended to be set between 1, and 2. The value 

of 𝛾 can be different in calculating different modes of deterioration (Strength or stiffness). An 

example of the application of Eq. 2-1 and Eq. 2-2, is shown in Figure 2-10 (d) where the post-cap 

softening segment is deteriorated according to Eq. 2-3. This calculation is done once the force 

deformation path crosses the horizontal axis (Point 6). 

𝐹𝑟𝑒𝑓
1 = (1 − 𝛽)𝐹𝑟𝑒𝑓

0  Eq. 2-3 

The developed models were calibrated using experimental results. The bilinear model was 

calibrated using results of tests on steel beam column subassemblies. The pinching model was 

calibrated using results of tests on RC columns and plywood shear walls. A sensitivity study was 

conducted on the peak-oriented model to investigate the effect of model parameters on global 

response. 

2.4 Sivaselvan and Reinhorn (2000) [10] 

All the models discussed above have piece-wise linear force deformation response. Sivaselvan and 

Reinhorn developed a Smooth Hysteretic Model (SHM) based on the assembly of springs shown 

in Figure 2-11 to model different nonlinear and degrading behavior of structural components. The 

in-series assembly of Spring 2 and Spring 3 are connected in parallel with Spring 1 and Spring 4. 

The Post-Yielding spring models the post-yield hardening effect. The Slip-Lock spring captures 

crack-closure and bolt slipping. The Gap-Closing spring models the extra stiffening at large 

deformations which happens, for instance, when expansion joints of a bridge are closed. The 
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strength and stiffness deterioration are captured in formulation of response by the Hysteretic 

Spring (Spring 2). Figure 2-12 shows how stiffness and strength degrade in this model. The 

stiffness degradation is governed by the assumption that force deformation curve at unloading 

targets a pivot point. The unloading stiffness is calculated according to Eq. 2-4. 

𝐾𝑐𝑢𝑟 = 𝑅𝐾𝐾0 =
𝑀𝑐𝑢𝑟 + 𝛼𝑀𝑦

𝐾0𝜑𝑐𝑢𝑟 + 𝛼𝑀𝑦
𝐾0 Eq. 2-4 

 

Figure 2-11 SHM model developed by Sivaselvan and Reinhorn 
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Figure 2-12 Strength and stiffness degradation of hysteretic spring in the SHM model by 

Sivaselvan and Reinhorn 

In Eq. 2-4, 𝛼𝑀𝑦 is the ordinate of the Pivot, and 𝛼 is parameter of the model controlling stiffness 

degradation. 𝜑𝑐𝑢𝑟 and 𝑀𝑐𝑢𝑟 are deformation and force at the current state. Strength degradation is 

governed by Eq. 2-5. Both dissipated energy and nonlinear deformation deteriorate strength 

independently. 

𝑀𝑦
+ −⁄ = 𝑀𝑦0

+ −⁄ [1 − (
𝜑𝑚𝑎𝑥
+ −⁄

𝜑𝑢
+ −⁄
)

1
𝛽1

] [1 −
𝛽2

1 − 𝛽2

𝐻

𝐻𝑢𝑙𝑡
] Eq. 2-5 

In Eq. 2-5, 𝜑𝑚𝑎𝑥
+ −⁄  is the maximum hysteretic deformation, and 𝜑𝑢

+ −⁄  is the maximum deformation 

capacity of the element being modeled, in positive and negative directions. 𝐻𝑢𝑙𝑡 is the maximum 

energy dissipated by the element when pushed monotonically up to 𝜑𝑢, and 𝐻 is the hysteretic 

energy dissipated, computed by integrating the energy quotient of Eq. 2-6. 

∆𝐻 = [
𝑀 + (𝑀 + ∆𝑀)

2
] (∆𝜑 −

∆𝑀

𝑅𝐾𝐾0
) Eq. 2-6 

Parameters 𝛽1 and 𝛽2 control the rate of deterioration. Figure 2-13 shows the analytical and 

experimental response of a steel beam to column joint, using the model developed by Sivaselvan 

and Reinhorn. 
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Figure 2-13 Comparison of predicted and measured force deformation response of a joint by 

Sivaselvan and Reinhorn 

2.5 Conclusion 

The models discussed above are developed to be used for concentrated springs, that model force 

deformation response of structural components in one direction only. These models can be used in 

a simple shear wall model, e.g., the model in Figure 3-1 or Figure 5-2 (c) in which the nonlinear 

action is lumped in one spring. Modeling of structural walls has evolved such that common practice 

is to use a model based on fiber sections where a combination of uniaxial elements captures the 

flexural/axial response. A fiber section model that can capture the strength and stiffness 

degradation of shear walls and is compatible with backbone curves in the literature has yet to be 

developed. The objective of this project is to develop such a model. 
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Chapter 3 Modeling flexure-controlled shear walls to capture strength loss 

3.1 Nonlinear models of RC structural walls 

A simple model to capture nonlinear behavior of structural walls consists of an elastic beam-

column element and nonlinear springs, located at the centerline of element’s cross section as shown 

in Figure 3-1. The black flexural springs account for the nonlinear flexural response. An initial 

linear force-deformation response may be added for numerical purposes. In this case, the flexural 

stiffness of the elastic beam-column element is adjusted accordingly. The backbone of nonlinear 

flexural springs is obtained by computing the moment curvature diagram of the wall section. This 

analysis is straightforward if the axial load is assumed to be constant. If the axial load is fluctuating, 

as in a frame wall system, the process of computing the backbone curve and assigning it to the 

flexural springs becomes complicated. The gray flexural spring at the base, in series with other 

components, accounts for slippage and extension of bars at the support. 

 

Figure 3-1 A simple shear wall model 
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Due to small tensile strength of concrete, axial stiffness of RC walls is significantly different in a 

net compressive axial load than in a net tensile axial load. To consider this behavior, the blue 

spring of Figure 3-1 is added to the assembly. Appropriate values for axial stiffness are assigned 

to the elastic beam-column element, and the nonlinear axial spring so that the combination in series 

of these two components captures the overall axial response of the wall. 

The shear response of the wall, if assumed linear, can be captured by the shear stiffness of the 

elastic beam-column element. If the shear response is nonlinear, a horizontal spring replaces the 

elastic shear stiffness of the beam-column element. To have a finer model that accounts for shear 

sliding, a simple shear-slip model at the base can be incorporated. For each of these nonlinear 

springs, hysteretic force deformation curves are formulated using data from experimental study on 

similar specimens, or finite element analyses. 

Takayanagi and Schnobrich (1979) [12] made the mechanical model of Figure 3-2 to investigate 

the failure mechanism and nonlinear dynamic response of a ten-story coupled wall system. The 

wall piers are divided into sub-elements, and finer mesh is used for the bottom stories, where more 

inelastic deformation is expected to occur. 
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Figure 3-2 Coupled wall model by Takayanagi and Schnobrich 

The interaction of axial and flexural load is considered by formulating the force deformation 

relationship of wall sub – elements according to Eq. 3-1. 

[
𝑚 = 𝑀(𝜑, 𝑛)

𝑛 = 𝑁(𝜑, 𝜀)
 Eq. 3-1 

Moment is function of axial load, 𝑛, and curvature, 𝜑. The axial load is a function of curvature and 

axial deformation, 𝜀. The stiffness matrix of the wall sub-element, composed by taking partial 

derivatives of Eq. 3-1, is shown in Eq. 3-2. 

[
∆𝑀

∆𝑁
] =

[
 
 
 
 
𝜕𝑀

𝜕𝜑
+
𝜕𝑀

𝜕𝑛

𝜕𝑁

𝜕𝜑

𝜕𝑀

𝜕𝑛

𝜕𝑁

𝜕𝜀
𝜕𝑁

𝜕𝜑

𝜕𝑁

𝜕𝜀 ]
 
 
 
 

[
∆𝜑

∆𝜀
] Eq. 3-2 

If the ratio of incremental axial load to the incremental moment does not change significantly, the 

stiffness matrix of Eq. 3-2 can be turned into a symmetric matrix to increase the efficiency of the 

solution algorithm. Computation of 𝜕𝑀 𝜕𝜑⁄  in Eq. 3-2 needs the moment-curvature diagrams of 

the wall section to be obtained for different levels of axial loads. Transitions between moment 
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curvature curves of Figure 3-3 are introduced to formulate the effect of varying axial load on the 

flexural response. 

 

Figure 3-3 Idealized moment curvature relationships of wall segments by Takayanagi and 

Schnobrich 

To analyze a seven story RC frame-wall building tested as part of the US-Japan cooperative 

research program, Kabeyasawa et al. (1984) [13] developed the TVLEM to model the structural 

walls. Figure 3-4 shows the plan view of the barbell shaped wall used as the lateral force resisting 

system in the building. 

 

Figure 3-4 Plan view of the lateral force resisting system modelled by Kabeyasawa et al. (1984) 
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Figure 3-5 shows the layout of their proposed model, which consists of two rigid beams at the top 

and bottom that enforces a linear varying strain over the section, and three elements to model the 

boundary columns and the inside panel. The side columns are uniaxial springs. The middle column 

is a combination of rotational, axial and shear springs. Empirical nonlinear force-deformation 

relations constitute the response of each spring. 

 

Figure 3-5 TVLEM proposed by Kabeyasawa et al. (1984) 

Figure 3-6 describes the Axial Stiffness Hysteretic Model (ASHM) assigned to the axial springs, 

in the two boundary columns and the middle column. Figure 3-7 describes the Origin Oriented 

Hysteretic Model (OOHM) assigned to the flexural, and shear springs in the middle column. The 

empirical cyclic rules and many other assumptions are determined based on experimental tests on 

other smaller specimens. The parameters in the figure are calculated using the geometry of the 

wall, reinforcement ratio, and the strength of the material. 
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Figure 3-6 Cyclic force deformation relationship used for ASHM in TVLE model 

 

Figure 3-7 Cyclic force deformation relationship used for OOHM in TVLE model to capture the 

shear response 

Vulcano and Bertero (1987) [14] believed that the model developed by Kabeyasawa et al. did not 

consider deformation compatibility between the central panel and the boundary columns in 

assigning the properties of the central panel’s flexural spring. To further improve the TVLE model, 

they obtained the moment curvature of the central panel using the computer program UNCOLA, 

and considering deformation compatibility. A trilinear curve was fitted on the moment curvature 

diagram, and properties of the flexural spring were assigned. In addition, they used the assembly 
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of components, shown in Figure 3-8, that has the advantage of modeling bond deterioration and 

reappearance of contact stress between steel and concrete. The length 𝜆ℎ denotes the length over 

which the bond stress between steel bars and concrete has been deteriorated. 

 

Figure 3-8 Axial Stiffness Hysteresis Model proposed by Vulcano and Bertero (1987) 

Although the overall response predicted by the model is in reasonable agreement with test results, 

the flexural spring representing the flexural behavior of the central panel is troublesome. 

Computation of the properties of this flexural spring requires assuming a constant axial load on 

the central panel. It may be acceptable for isolated cantilever walls to assume that the axial load is 

constant, but the contribution of the central panel’s axial load to the total axial load changes. 

To modify the model by having a better compatibility of the components, Vulcano et al. (1988) 

[15] proposed the Multiple Vertical Line Element (MVLE) model, shown in Figure 3-9. The 

multiple (more than two) vertical lines in the middle overwrites the flexural spring at the base. The 
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shear spring is elevated to height 𝑐ℎ in this model. By assigning different valued for 𝑐 (0 ≤ 𝑐 ≤ 1), 

different variations of curvature over the element height (with no change in sign) can be achieved. 

 

Figure 3-9 Multiple Vertical Line (MVL) element proposed by Vulcano et al.(1988) 

Multiple researchers have worked on the efficiency and accuracy of the MVL element model, 

including Vidic et al. (1989) and Fischinger et al. (1990) [17], that did an analytical study on a 2.4-

meter, one-story prototype tested at Tsinghua university in Beijing. The wall cross section is shown 

in Figure 3-10. 

 

Figure 3-10 Cross section of the wall tested by Zhou (1988) [16] at Tsinghua university in 

Beijing 

Figure 3-11 shows the comparison of the test lateral force versus top displacement, with analytical 

results obtained by different modeling approaches. The curves shown in the figure are envelopes 

of cyclic force deformation curves. 
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Figure 3-11 Comparison of test results and analytical results by Fischinger et al. (1990) and 

Vidic et al. (1989) 

Orakcal and Wallace (2004) [18][19][20] used the Multi Vertical Line Element model with two 

steel and concrete fibers in parallel for each generic uniaxial element. The model proposed by 

Chang and Mander (1994) [30] was used for the concrete material, and a modified version of 

Menegotto-Pinto (1973) [47][30] for the steel reinforcement. These two are still state of the art 

models for reinforcing steel and concrete material. The MVLEM used in their study relates the 

flexural response directly to the material properties, without the need to employ any empirical 

rules. 

They showed that using these two models for the material, the MVLE model can accurately predict 

the hysteretic flexural force-deformation response of slender walls. As part of their study, they 

calibrated the model against tests on planar and flanged RC wall. A sensitivity analysis on the 

element and material parameters was performed to evaluate the effect of these parameters on 

response of the wall at different states. 

3.2 Selected shear wall model: Multiple Vertical Line Element Model 

Analytical research has proven the effectiveness and reliability of the MVLE model in analyzing 

reinforced concrete structural walls. The overall nonlinear response of the structure predicted by 
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the model is in reasonable agreement with test results. The model captures many aspects of the 

structural walls including the effect of fluctuating axial load on the flexural strength, and the shift 

of the neutral axis in cyclic loading. The latter is especially important when performance of 

connecting elements (e.g., slab elements and coupling beams) matters in the analysis. Furthermore, 

the constituent uniaxial elements capture the distribution of the vertical stresses on the wall section. 

This is significant for the purpose of this work because, as will be explained in Chapter 4, the 

strength loss parameters are determined based on the force-wise compression zone depth (i.e., the 

depth of section under compressive vertical stress). 

It is well known that the shear force-deformation behavior of structural walls at loading stages 

after yielding is nonlinear due to flexural cracks and loss of aggregate interlock. This is true even 

for flexure-controlled walls where the maximum shear demand is less than the ultimate shear 

capacity (Massone and Wallace (2004) [55]). The shear force versus shear distortion diagram for 

the bottom segment of specimen RW2 tested by Thomsen and Wallace (1995) [22][21], shown in 

Figure 3-12, serves as an example. The MVLE model originally developed by Vulcano et al. 

utilizes a nonlinear shear material for the horizontal springs, but the shear force-deformation 

nonlinearity is uncoupled from the flexural response. Although a horizontal shear spring whose 

properties depend on element’s curvature/axial deformation can provide a solution for this problem 

but working on shear response is beyond the scope of this dissertation, and the element developed 

in this study to capture stiffness and strength deterioration has an elastic linear shear spring. This 

approach will not have a significant impact on the predicted overall response as the behavior of 

the structures simulated by this model is dominated by the flexural action. 
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Figure 3-12 Shear force versus shear distortion response of the bottom segment of Specimen 

RW2 tested by Thomsen and Wallace (1995) 
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3.3 Description of the model 

Figure 3-13 shows the deformed and undeformed layout of an MVL element used in this study. 

The element is composed of 𝑚 uniaxial tress members that capture the axial-flexural response. 

Each uniaxial member, labeled 𝑖, is made of concrete and steel material with areas 𝐴𝑐
𝑖  and 𝐴𝑠

𝑖 , 

respectively, that constitute the portion of the cross section the fiber represents. 

 

Figure 3-13 Undeformed and deformed configuration of an MVL element 

In a 2D space, nodes at the top and bottom of the element have three degrees of freedom each. The 

internal force of the element is computed based on the nodal displacements. The full formulation 

of element’s vector of internal forces can be found in literature. The important components that 

need to be discussed here, and will be referred to later, are the shear force, top moment, bottom 

moment, and the moment at the location of the shear hinge. 

Eq. 3-3 gives the internal shear force across the element base on element’s nodal displacements 

and stiffness of the shear spring. Note that since the shear response is assumed to be linear elastic, 

the element’s shear force is stiffness of the shear spring, 𝐾ℎ, times the displacement across the 

shear spring, 𝑑𝑆𝑆. 
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𝐹11 = 𝑉 = 𝐾ℎ𝑑𝑆𝑆 = 𝐾ℎ[𝑢𝐵 − 𝑐𝐻𝑒𝜃𝐵 − (1 − 𝑐)𝐻𝑒𝜃𝑇 − 𝑢𝑇] Eq. 3-3 

The internal moment at the location of the horizontal spring (at height 𝑐𝐻𝑒 from the bottom of the 

element) is given in Eq. 3-4. Since the moment arm of the shear force in the horizontal spring is 

zero at this point, the moment at this point is purely due to the uniaxial struts. 

𝑀𝑆𝑆 =∑𝐴𝑐
𝑖 𝜎𝑐
𝑖(𝜀𝑖)𝑥𝑖 + 𝐴𝑠

𝑖𝜎𝑠
𝑖(𝜀𝑖)

𝑚

𝑖=0

𝑥𝑖  Eq. 3-4 

In Eq. 3-4, 𝑚 is the number of fibers in the section, and 𝑥𝑖 is the local coordinate of each uniaxial 

element, and 𝜀𝑖 is the total strain of each fiber.  

The shear force remains constant in the element (i.e., no lateral force across the element height is 

assumed). So, the moment diagram is linear with the maximum and minimum moments at the top 

and bottom. Eq. 3-5 turns the moment at the top of the element. 

𝑀𝑇 = 𝑀𝑆𝑆 − 𝑉(1 − 𝑐)𝐻𝑒 =∑𝐴𝑐
𝑖 𝜎𝑐
𝑖 + 𝐴𝑠

𝑖𝜎𝑠
𝑖

𝑚

𝑖=0

− 𝐾ℎ[𝑐𝐻𝑒𝜃𝐵 + (1 − 𝑐)𝐻𝑒𝜃𝐵 + 𝑢𝑇 − 𝑢𝐵] 
Eq. 3-5 

The bottom moment of the element is derived in Eq. 3-6 using equilibrium of forces. 

𝑀𝐵 = 𝑀𝑆𝑆 + 𝑉𝑐𝐻𝑒 =∑𝐴𝑐
𝑖 𝜎𝑐
𝑖 + 𝐴𝑠

𝑖𝜎𝑠
𝑖

𝑚

𝑖=0

− 𝐾ℎ[𝑐𝐻𝑒𝜃𝐵 + (1 − 𝑐)𝐻𝑒𝜃𝐵 + 𝑢𝑇 − 𝑢𝐵] 
Eq. 3-6 

As discussed in 3.1, different values of 𝑐 produce different distribution of curvature across the 

element. The average curvature is calculated according to Eq. 3-7. 

𝜑𝑒 =
𝜃𝑇 − 𝜃𝐵
𝐻𝑒

 
Eq. 3-7 
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3.4 Element’s backbone curve and deformation parameters of strength loss 

ASCE 41 (2017) [2] classifies structural actions of elements into force-controlled and deformation-

controlled categories. Deformation controlled actions, such as flexural response in flexure-

controlled structural walls, are assigned a backbone curve that specifies the envelope of hysteretic 

force deformation of the element for that action. 

 

Figure 3-14 Backbone curve of the flexural action of structural walls 

Figure 3-14 shows the backbone curve of reinforced concrete structural walls controlled by 

flexure. The horizontal axis of the backbone curve is the rotation of the plastic hinge. The plastic 

hinge, shown in Figure 3-15, is the segment of the wall with height 𝑙𝑝 over the critical section, 

where most of nonlinearity occurs. 

 

Figure 3-15 Plastic hinge of RC structural walls 
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ASCE 41 sets 𝑙𝑝 equal to half of the flexural depth of the element. A more in-depth discussion 

regarding appropriate values to be used for the height of the plastic hinge is presented in Chapter 

5. In an analytical model of the wall that has only one MVL element used over the plastic hinge, 

the total rotation of the plastic hinge, 𝜃𝑃𝐻, is calculated from Eq. 3-8. 

𝜃𝑃𝐻 = 𝜃𝑇 − 𝜃𝐵 = 𝜑𝑒𝐻𝑒 , 𝐻𝑒 = 𝑙𝑝 
Eq. 3-8 

In Eq. 3-8, 𝜑𝑒 is element’s average curvature, and 𝐻𝑒 is the height of the element used for the 

plastic hinge. 

The vertical axis of the backbone curve, in Figure 3-14, is the moment normalized by the yield 

moment. Note that moment varies over element height with a gradient equal to the shear force 

across the element. Because the height of the plastic hinge is small compared to the effective height 

of the structure, it would be acceptable to use the moment at the top of the plastic hinge (Eq. 3-5), 

bottom of the plastic hinge (Eq. 3-6), or anywhere in between for computation purposes. In 

formulation of the element, the moment at the location of the shear spring, 𝑀𝑆𝑆 in Eq. 3-4, is 

assumed for the backbone curve’s vertical axis. 

The previous work on the reliability and effectiveness of the MVL element has shown that by 

using the actual strength of the steel, and the test day strength of the concrete material in the model, 

the backbone curve is automatically captured at deformations smaller than initiation of strength 

loss (segments AB and BC). Beyond point C, when plastic hinge rotation exceeds 𝑑, segment CD 

of the backbone curve determines the strength loss scheme. Over this segment, a force increment 

is linearly correlated with an increment of the plastic hinge rotation. 

𝑑𝑀𝑆𝑆 ∝ 𝑑𝜃𝑃𝐻 
Eq. 3-9 
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Inserting Eq. 3-8 into Eq. 3-9 , moment increments are linearly correlated with curvature 

increments. 

𝑑𝑀𝑆𝑆 ∝ 𝑑𝜑𝑒 Eq. 3-10 

As discussed before, Eq. 3-4 gives moment at the shear spring, 𝑀𝑆𝑆, which is entirely due to the 

stresses in the various fibers, which are a function of fiber strain. Strain of a fiber in an MVL 

element (generally any element with a fiber-discretized section whose deformation geometry 

ignores the second and higher order terms of deflection) is a combination of the axial deformation, 

and element curvature per Eq. 3-11, and shown in Figure 3-16. 

𝜀𝑖 = 𝜑𝑒𝑥𝑖 +
𝑑𝑣

𝐻𝑒
= 𝜀1

𝑖 + 𝜀2
𝑖 , 𝑑𝑣 = 𝑣𝑡𝑜𝑝 − 𝑣𝑏𝑜𝑡 , 𝜑𝑒 =

𝜃𝑡𝑜𝑝 − 𝜃𝑏𝑜𝑡

𝐻𝑒
 

Eq. 3-11 

 

Figure 3-16 Total strain of fiber is the summation of axial strain and flexural strain 

In Eq. 3-11, 𝑥𝑖 is the local coordinate of the fiber. The strain caused by element curvature is labeled 

𝜀1, and the strain caused by element axial deformation is labeled 𝜀2. From now, 𝜀1 is referred to as 

the flexural strain, and 𝜀2 is referred to as the axial strain. Eq. 3-12 combines Eq. 3-4 and Eq. 3-11. 
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𝑀𝑆𝑆 =∑𝐴𝑐
𝑖 𝜎𝑐
𝑖(𝜀1 + 𝜀2) + 𝐴𝑠

𝑖𝜎𝑠
𝑖(𝜀1 + 𝜀2)

𝑚

𝑖=0

 
Eq. 3-12 

Segment CD of the backbone curve, relates the rate of strength degradation to the curvature 

increment only, as shown in Eq. 3-10. With area fibers being constant, this means that segment 

CD related the materials rate of stress degradation to the curvature increment only. 

𝑑𝑀𝑆𝑆 =∑𝐴𝑐
𝑖 𝑑𝜎𝑐

𝑖 (𝑑𝜑𝑒 =
𝑑𝜀1
𝑥𝑖
) + 𝐴𝑠

𝑖𝑑𝜎𝑠
𝑖 (𝑑𝜑𝑒 =

𝑑𝜀1
𝑥𝑖
)

𝑚

𝑖=0

 
Eq. 3-13 

To build a model that maintains the properties of the element prior to strength loss, and captures 

the backbone curve after initiation of strength loss, the total strain is decomposed into flexural 

strain and axial strain as independent variables of stress, as shown in Eq. 3-14. 

𝑀𝑆𝑆 =∑𝐴𝑐
𝑖 𝜎𝑐
𝑖(𝜀1, 𝜀2) + 𝐴𝑠

𝑖𝜎𝑠
𝑖(𝜀1, 𝜀2)

𝑚

𝑖=0

 Eq. 3-14 

Formulation of stress as a function of independent variables 𝜀1, and 𝜀2 is explained in 3.5. 

3.5 Formulation of the material strain stress equations 

Figure 3-17 shows the simplified strain stress curve of a steel material under monotonic 

compressive and tensile loading. 

 

Figure 3-17 Simplified strain stress curve for a steel material loaded from [0, 0] 
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Starting to load from zero strain and stress (𝜀 = 0 and 𝜎 = 0), material remains elastic until the 

yield point (𝜀 = ±𝜀𝑦 and 𝜎 = ±𝜎𝑦). Beyond the yield point, strain hardening occurs with a constant 

post-yield tangent equal to 𝐸𝑠ℎ = 𝑏𝐸𝑠. Eq. 3-15 show the strain stress equations, over the elastic 

segment and stain hardening branches respectively. 

𝜎 = 𝐸𝑠𝜀 

Eq. 3-15 

𝜎 = 𝐸𝑠ℎ(𝜀 − 𝜀𝑦) + 𝐹𝑦, 𝜎 = 𝐸𝑠ℎ(𝜀 + 𝜀𝑦) − 𝐹𝑦 

By decomposing the total strain, 𝜀, into flexural strain, 𝜀1, and axial strains, 𝜀2, the 2D strain-stress 

curve of Figure 3-17 is converted to the 3D strain-strain-stress curve of Figure 3-18. 

 

Figure 3-18 Simplified strain - strain - stress curve for steel material loaded from [0, 0] 

Note that stress in Figure 3-18 now varies over the strain-strain plane of Figure 3-19. 
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Figure 3-19 Flexural strain - axial strain plane (ε1 – ε2 plane) 

On this plane, points with the same total strain lie on lines oriented at a 45° angle. 

𝜀1 + 𝜀2 = 𝑎, 𝜀2 = 𝑎 − 𝜀1 

With equal total strain, all points above these lines have the same stress. Vector ∇𝜀𝑡⃗⃗ ⃗⃗ ⃗⃗  in Figure 3-19 

shows the direction of change in total strain, and the gradient of stress. 

∇𝜀𝑡⃗⃗ ⃗⃗ ⃗⃗ =
𝜕𝑒

𝜕𝜀1
𝑒1⃗⃗  ⃗ +

𝜕𝑒

𝜕𝜀2
𝑒2⃗⃗  ⃗ = [

1

1
] Eq. 3-16 
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3.6 Implementing strength degradation of the material 

As shown in Figure 3-14, the deformation parameters (Plastic hinge rotations) at the start and end 

of the strength loss segment are 𝑑 and 𝑑′ respectively. With only one element being used for the 

plastic hinge, the average element curvatures, corresponding to plastic hinge rotation of 𝑑 and 𝑑’ 

are given in Eq. 3-17. 

𝜑𝑑 =
𝑑

𝐻𝑒
, 𝜑𝑑

′
=
𝑑′

𝐻𝑒
 Eq. 3-17 

In Eq. 3-17 and the following equations, 𝐻𝑒 is the height of the plastic hinge. Now consider a steel 

fiber is located at local coordinate 𝑥𝑖 of the cross section shown in Figure 3-20. 

 

Figure 3-20 Steel fiber at local coordinate xi of the cross section 

The flexural strains, 𝜀1, due to curvatures of Eq. 3-17 are obtained using the local coordinate of 

the fiber. 

𝜀1
𝑑 = 𝜑𝑑𝑥𝑖 =

𝑑

𝐻𝑒
𝑥𝑖 , 𝜀1

𝑑′ = 𝜑𝑑
′
𝑥𝑖 =

𝑑′

𝐻𝑒
𝑥𝑖  Eq. 3-18 

Another set of flexural strains are calculated in Eq. 3-19 for the backbone curve of the element in 

the opposite direction. 

𝜀1
−𝑑 = 𝜑−𝑑𝑥𝑖 =

−𝑑

𝐻𝑒
𝑥𝑖 , 𝜀1

−𝑑′ = 𝜑−𝑑
′
𝑥𝑖 =

−𝑑′

𝐻𝑒
𝑥𝑖  Eq. 3-19 

The flexural strains in Eq. 3-18 and Eq. 3-19 specify regions on the ε1 – ε2 of Figure 3-19, over 

which the material’s strength degrades. These regions are shown in Figure 3-21. 
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Figure 3-21 Strength loss regions on ε1 - ε 2 plane 

With a uniform stress degradation over the span of flexural strains highlighted in Figure 3-21 

followed by a constant residual stress, the strain-strain-stress curve of Figure 3-18 is converted 

into the strain-strain-stress curve in Figure 3-22. This figure corresponds to a typical steel material 

with yield stress of 60 ksi, yield strain of 0.002, and flexural strains of 0.01 and 0.02 corresponding 

to the strength degradation segment of the element backbone curve, for both negative and positive 

moment. In a different view angle, Figure 3-23 shows how the strength degradation is captured 

only over the strength loss regions of the 𝜀1 – 𝜀2 plane shown in Figure 3-21. By adopting this 

formulation, the material’s stress degradation is compatible with element’s strength degradation. 

Note that this would not be the case if the total strain was used as the parameter controlling the 

strength degradation of the material. 

Only the tensile action is plotted in Figure 3-22 and Figure 3-23 for clarity. The stress degradation 

in tension is associated with bar rupture in tension, and the stress degradation in compression, not 

shown in the figures, is associated with buckling of bars in compression. Both stress degradation 

schemes are assumed to occur uniformly over backbone curve strength loss segment (i.e., Segment 

CD in Figure 3-14). 
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Beyond deformation 𝑑′, and prior to deformation 𝑒, backbone curve shows a constant residual 

strength. To achieve this response, concrete and steel materials are assumed to have a constant 

residual stress for strain magnitudes larger than 𝜀1
𝑑′. This is implemented for the steel material 

shown in Figure 3-22 and Figure 3-23. 

 

Figure 3-22 Strain-strain-stress curve for a typical steel material with stress degradation 
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Figure 3-23 Strain-strain-stress curve for a typical steel material with stress degradation 

A similar approach is used to formulate the stress equations of the concrete material. The strain-

stress equation of the concrete material prior to strength loss is different than steel material’s strain-

stress equations, yet the governing equations for strength loss are similar for steel and concrete. 

Furthermore, the concrete materials’ strength degradation is assumed to happen only in 

compression. The tensile stress degradation of concrete is associated with tensile cracking, which 

happens at load steps prior to yielding. 

The kinking at the yield points, evident in Figure 3-17, may cause numerical stability in a nonlinear 

solution. To avoid this problem, the well-known Menegotto-Pinto equations are used that provide 

a smooth transition from the elastic branch to the post yield strain hardening segment. Two other 

transition curves, from strain hardening to the strength degradation segment, and from the strength 

degradation segment to the constant residual strength region are required if the material captures 
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strength loss. Implementation of transition curves requires an assumption of the initial strain, 

where the transition starts. The landing strain, where transition joins the original curve is calculated 

by assuming a uniform change of tangent. Figure 3-24 shows application of Menegotto-Pinto 

equations and transition curves in 2D strain stress space. The start and end of transition curves are 

also specified in this figure with cross signs. Details of calculating the transitions are presented in 

the appendix (Chapter 7.2). Same approach is used to formulate the transitions in the 3D curves of 

Figure 3-22 and Figure 3-23. 

 

Figure 3-24 Steel strain stress relationship with transition curves 

With the material of fibers at other locations showing a consistent stress degradation between 

flexural strains 𝜀1
𝑑 and 𝜀1

𝑑′, the shear wall’s hysteretic flexural force deformation response will by 

fitted by the correct backbone curve. 

3.7 Setting materials’ residual stress 

Concrete and steel material at the boundary of a cross section is subjected to the highest strains; 

Therefore, the material at the wall boundaries is assigned smaller residual stresses to produce 

strength loss. The fibers near the centroid of the cross-section, on the other hand, are likely to be 
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less damaged. Figure 3-25 shows the deformation of the wall element with compression zone 

denoted as C, and the tensile zone denoted as T. With the length of the cross section being 𝐿𝑤, the 

sum of the compression and tension zone is equal to the total length of the wall, 𝐶 + 𝑇 = 𝐿𝑤. 

 

Figure 3-25 deformation of the wall element with denoted compressive and tensile zones 

For the proposed model, damage is assumed to occur from the compressive wall edge to 2 3⁄  of 

the compression zone depth and from the tensile wall edge to 2 3⁄  of the tensile zone depth. 

Damage (or strength loss) is not considered for the material between these zones. With the material 

of the boundary elements taking more damage, it is assumed that the residual stress is smaller over 

the boundary regions. Eq. 3-20 is proposed to specify the residual stress of the material over the 

tensile and compression zones. 

𝑟(𝑥) = 𝑟𝐴 + (𝑟𝐵 − 𝑟𝐴) (
𝑥

𝐿
)
𝑛

 Eq. 3-20 

In Eq. 3-20, 𝑟𝐴 is the material residual stress at the face of the wall, 𝑟𝐵 is the residual stress at the 

neutral axis, assumed to be 1.0, 𝐿 is the depth of the section in Tension / Compression, and 𝑥 is the 

location of the material over the Compression / Tension depth. 𝑛 is a parameter that controls the 

shape of the curve that determines the residual stress ratio, 𝑟(𝑥), over the depth. Figure 3-26 shows 
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residual stress over section per Eq. 3-20 for different values of 𝑛, and an assumed residual stress 

ratio of 0.2 for the material at the face of the wall. 

 

Figure 3-26 Material residual stress over Compression / Tensile zone 

The figure also shows the assumed 2 3⁄  limit over which residual stresses are assigned to the 

material in fibers. Beyond the 2 3⁄  limit, both steel and concrete material are assumed to remain 

intact and behave as regular uniaxial material in 2D strain-stress space. 

3.8 Cyclic update of deformation parameter, d 

Figure 3-27 shows a sample cyclic load deformation and the backbone curve of a shear wall 

element over the plastic hinge. Vertical axis shows moment at the shear spring of the element, as 

discussed in 3.4, and the horizontal axis is the plastic hinge rotation, 𝜃𝑃𝐻. 
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Figure 3-27 Cyclic update of deformation parameter d 

Deformation parameter 𝑑 is initially set equal to 𝑑1. Once 𝑑1 is exceeded in a load step, the element 

starts following the strength loss curves. Upon an unloading step over the strength loss curve, 

deformation parameter 𝑑 is updated to the maximum rotation the element has experienced over the 

strength loss curves. This updating process ensures that the cyclic force deformation curve is fitted 

by the element backbone curve. Figure 3-27 shows update of deformation parameter 𝑑, to 𝑑2 and 

𝑑3 in consecutive unloading steps during the strength loss in positive direction. 

3.9 Cyclic Strength and stiffness degradation of the steel material in tension 

Assume the steel material of Figure 3-22 starts being loaded from zero strain and stress ([𝜀, 𝜎] =

[0, 0]), and experiences strength degradation in tensile stress. The initial load path, Path A, is 

indicated by the black arrow on the 𝜀1 – 𝜀2 plane shown in Figure 3-28. The material has a yield 

stress in tension equal to 𝐹𝑦,𝑇, and an initial tangent of 𝐸𝑆. The element’s backbone curve has the 

strength loss segment confined by rotations 𝑑 and 𝑑′ in the direction of loading, as shown in Figure 

3-14. The total strains of the material at plastic hinge rotation of 𝑑 and 𝑑’ depend on the load path 

and the location of the fiber on the cross section. For the load path shown in Figure 3-28, the total 

strains corresponding to 𝑑 and 𝑑’ are denoted by D1, and R1, respectively.  
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Figure 3-28 Sample load paths of steel material on e1 - e2 plane 

By plotting stress versus total strain (𝜀𝑡 = 𝜀1 + 𝜀2), the strain – stress curve of Figure 3-29 is 

obtained. 

 

Figure 3-29 Strain - stress curve of steel material with stress degradation in tension 

Note that in cyclic loading of steel bars, the yield stress changes due to isotropic hardening. If the 

material is at a yielding state, such as point [𝜀𝐴, 𝑓𝐴] in Figure 3-29, the yield stress can be derived 

using the ordinate of point Γ on the strain stress curve shown in Figure 3-29. This method of 
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obtaining the yield stress will be used later, in Eq. 3-22 to find the Post-Strength-Loss yield stress 

of the material. 

(1 − 𝑏)𝐹𝑦,𝑇 = 𝑓𝐴 − 𝜀𝐴𝐸𝑆𝐻 , 𝐹𝑦,𝑇 =
𝑓𝐴 − 𝜀𝐴𝑏𝐸𝑆
1 − 𝑏

 Eq. 3-21 

In Eq. 3-21, 𝐸𝑆𝐻 is post-yield strain hardening stiffness of the steel bars, and 𝑏 is the ratio of post-

yield tangent, 𝐸𝑆𝐻, to the initial tangent, 𝐸𝑆. 

If the material follows load Path B of Figure 3-28, it will eventually land on residual stress region. 

The corresponding strain stress curve is shown in Figure 3-29. 

Assuming the material is unloaded from a typical point [𝜀𝑟, 𝜎𝑟] on the descending branch, and 

follows load Path C of Figure 3-28, the yield stress is updated. The new yield stress, 𝐹𝑦,𝑇
𝑃𝑆𝐿, is 

calculated using Eq. 3-22. 

(1 − 𝑏)𝐹𝑦,𝑇
𝑃𝑆𝐿 = 𝑓𝑟1 − 𝜀𝑟1𝐸𝑆𝐻

𝑃𝑆𝐿 , 𝐹𝑦,𝑇
𝑃𝑆𝐿 =

𝑓𝑟1 − 𝜀𝑟1𝑏𝐸𝑆
𝑃𝑆𝐿

1 − 𝑏
 Eq. 3-22 

Since stress degradation in tension is associated with rupture of bars, the instant unloading 

stiffness, 𝐸𝑠, must be updated accordingly. It is assumed that stiffness is degraded with the same 

ratio as the strength. This is stated in Eq. 3-23. 

𝐹𝑦,𝑇
𝑃𝑆𝐿

𝐹𝑦,𝑇
=
𝐸𝑆
𝑃𝑆𝐿

𝐸𝑆
 Eq. 3-23 

By inserting Eq. 3-23 into Eq. 3-22, the updated yield strength of the steel material is derived. 

𝐹𝑦,𝑇
𝑃𝑆𝐿 =

𝑓𝑟1 − 𝜀𝑟1𝑏 (
𝐹𝑦,𝑇
𝑃𝑆𝐿

𝐹𝑦,𝑇
)𝐸𝑆

1 − 𝑏
, 𝐹𝑦,𝑇

𝑃𝑆𝐿 =
𝑓𝑟1

1 − 𝑏 +
𝜀𝑟1𝑏𝐸𝑆
𝐹𝑦,𝑇

 Eq. 3-24 

Once the updated yield strength is derived in Eq. 3-24, the reversal initial stiffness is then 

calculated by Eq. 3-23. 
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The yield strength of the material in compression is equal to the updated yield strength in tension, 

multiplied by a stretching factor to account for isotropic hardening. The rules used in OpenSees 

material “Steel02”, shown in Eq. 3-25, are implemented for finding the stretching factor. 

𝑆𝑇𝐶 = 1 + 𝑎1 (
𝜀𝑚𝑎𝑥 − 𝜀𝑚𝑖𝑛
2𝑎2𝜀𝑦

)

0.8

= 1 + 𝑎1 (
𝜀𝑟1
2𝑎2𝜀𝑦

)

0.8

 Eq. 3-25 

In Eq. 3-25, 𝑎1 and 𝑎2 are empirical numbers that are input by the user. 𝜀𝑚𝑎𝑥 and 𝜀𝑚𝑖𝑛 are the 

maximum and minimum strains the material has experienced during load history. The new yield 

strength in compression is updated per Eq. 3-26. 

𝐹𝑦,𝐶
𝑃𝑆𝐿 = 𝑆𝑇𝐶𝐹𝑦,𝐶

𝑃𝑆𝐿  Eq. 3-26 

The reversal and the yielding point in compression, specify the asymptotes of load Path C. 

Assuming another reversal from compression to tension at the end of load Path C, the new yield 

strength in tension is found by calculating the stretching factor in tension. 

𝑆𝑇𝑇 = 1 + 𝑎3 (
𝜀𝑚𝑎𝑥 − 𝜀𝑚𝑎𝑥
2𝑎4𝜀𝑦

)

0.8

= 1 + 𝑎3 (
𝜀𝑟2 − 𝜀𝑟1
2𝑎4𝜀𝑦

)

0.8

 Eq. 3-27 

Again, 𝑎3 and 𝑎4 are inputs determined by the user. If material is loaded on Path D of Figure 3-30, 

the plastic hinge rotation does not exceed 𝑑 in positive or negative direction. The strain stress curve 

of the material on this path is shown in Figure 3-31. 
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Figure 3-30 Sample load paths of steel material on e1 - e2 plane 

Note that on Path D, the difference in material stress, 𝑑𝜎, at 𝜀𝑟1 is due to the isotropic hardening 

of the material in tension and compression. If the material is loaded on Path E, the plastic hinge 

rotation exceeds 𝑑, and the material degrades its strength again. Note that the total strains of the 

material corresponding to strength degradation of the element, (D and R) might be different than 

those of the previous cycle (D and R). The material flows on the residual strength region at the end 

of this load path. 

 

Figure 3-31 Strain - stress curve of steel material with stress degradation in tension 
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3.10 Cyclic Strength and stiffness degradation of the steel material in compression 

Same rules that were used for modeling the strength loss in tension, are applied to model the 

strength loss in compression. As stated before, the strength loss in compression is associated with 

buckling of bars. In OpenSees implementation of this project, the steel material object has been 

designed so that the user can specify whether the steel bars lose strength following buckling or 

not. If the steel bars strength degrades post buckling, the material follows load Path A of Figure 

3-32 and the yield strength is updated to 𝐹𝑦,𝑇
1 . The same formulation for updating the yield strength 

of a bar after rupture is used here. The Post Buckling unloading stiffness, 𝐸𝑆
𝑃𝐵, is also updated 

accordingly, per Eq. 3-28. 

𝐹𝑦,𝑇
𝑃𝐵 = 𝐹𝑦,𝑇

1

𝐹𝑦,𝑇
=
𝐸𝑆
𝑃𝐵

𝐸𝑆
 Eq. 3-28 

If the steel bars yield strength does not degrade post buckling, the material follows load Path B of 

Figure 3-32, and the unloading stiffness remains unchanged. 

 

Figure 3-32 Strain - stress curve of steel material with stress degradation in compression 
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3.11 Cyclic Strength and stiffness degradation of the concrete material in compression 

Let us assume that a concrete material starts being loaded from zero strain and stress ([𝜀, 𝜎] = [0,

0]), and goes through the strength degradation region in compression, shown in Figure 3-33. 

 

Figure 3-33 Sample load paths of concrete material on e1 - e2 plane 

The total strains of the material, corresponding to plastic hinge rotation of 𝑑, and 𝑑’ are D and R, 

respectively. Once the plastic hinge rotation exceeds 𝑑 on load Path A shown in Figure 3-33, the 

element goes through the descending branch of the backbone curve, and the material’s total strain, 

𝜀𝑡, exceeds D. If loading continues in the same direction, the material follows Path B of Figure 

3-33. The plastic hinge rotation exceeds 𝑑’, and material’s total strain exceeds R, and flows over 

the residual stress region. The plot of total strain versus stress is shown in Figure 3-34. If the 

material is unloaded midway toward zero strain, the strain stress curve follows Path C. Upon a 

trial deformation that shows unloading of the material, strain 𝜀𝑒𝑛𝑑 is calculated according to Eq. 

3-32. 
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𝜀𝑒𝑛𝑑 =
𝜀0
2
(
𝜀𝑚𝑖𝑛
𝜀0
)
2

 0 ≤
0.254

0.71
<
𝜀𝑚𝑖𝑛
𝜀0

 

Eq. 3-29 𝜀𝑒𝑛𝑑 = 𝜀0 (0.145 (
𝜀𝑚𝑖𝑛
𝜀0
)
2

+ 0.127 (
𝜀𝑚𝑖𝑛
𝜀0
)) 

0.254

0.71
≤
𝜀𝑚𝑖𝑛
𝜀0

< 2 

𝜀𝑒𝑛𝑑 = 𝜀0 (0.707 (
𝜀𝑚𝑖𝑛
𝜀0

− 2) + 0.834) 2 ≤
𝜀𝑚𝑖𝑛
𝜀0

 

Once 𝜀𝑒𝑛𝑑 is computed, unloading stiffness, 𝐸𝑢𝑛𝑙, is determined knowing stress at load reversal. 

𝐸𝑢𝑛𝑙 =
𝜀𝑒𝑛𝑑 − 𝜀𝑟
0 − 𝑓𝑟

 Eq. 3-30 

The approach implemented here for calculation of the material’s unloading properties is used in 

OpenSees material “Concrete01”. 

 

Figure 3-34 Strain - stress curve of steel material with strength degradation 

Assume there is another load reversal at zero strain and the material is compressively loaded 

again. If the element is loaded without exceeding the rotation capacity, the strain stress curve 

follows Path A of Figure 3-35, and there is no stress degradation. 
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Figure 3-35 A sample load paths of concrete material on e1 - e2 plane 

If the rotation capacity of the element is exceeded, as is the case for load Path B of Figure 3-35, 

the material loses strength as can be seen in Figure 3-36. 

 

Figure 3-36 Strain - stress curve of steel material with strength degradation 
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3.12 Element stiffness matrix 

The components of the stiffness matrix of the element used in this study are calculated by 

computing the derivatives of Eq. 3-31. 

𝐾𝑖𝑗 =
𝜕𝐹𝑖
𝜕𝑢𝑗

 Eq. 3-31 

Most of the stiffness matrix components are the same as those of the MVL variant adopted by 

Fischinger et al. The horizontal force at the top and bottom nodes, 𝐹1 and 𝐹4 are equal to the 

constant shear force across the element. With the shear spring of the element being elastic linear, 

Eq. 3-32 turns the internal shear force in terms of the top and bottom nodal displacements. 𝐾ℎ is 

the stiffness of the elastic linear spring that captures element’s shear response. 

𝐹1 = −𝐹4 = 𝑉 = 𝐾ℎ𝑑𝑆𝑆 = 𝐾ℎ[𝑢𝐵 − 𝑐𝐻𝑒𝜃𝐵 − (1 − 𝑐)𝐻𝑒𝜃𝑇 − 𝑢𝑇] Eq. 3-32 

The first column of the stiffness matrix is calculated in Eq. 3-33. 

𝐾11 =
𝜕𝐹1
𝜕𝑢1

=
𝜕𝐹1
𝜕𝑢𝐵

= 𝐾ℎ 

𝐾21 =
𝜕𝐹1
𝜕𝑢2

=
𝜕𝐹1
𝜕𝑣𝐵

= 0 

𝐾31 =
𝜕𝐹1
𝜕𝑢3

=
𝜕𝐹1
𝜕𝜃𝐵

= −𝐾ℎ𝑐𝐻𝑒 

𝐾41 =
𝜕𝐹1
𝜕𝑢4

=
𝜕𝐹1
𝜕𝑢𝑇

= −𝐾ℎ 

𝐾51 =
𝜕𝐹1
𝜕𝑢5

=
𝜕𝐹1
𝜕𝑣𝑇

= 0 

𝐾61 =
𝜕𝐹1
𝜕𝑢6

=
𝜕𝐹1
𝜕𝜃𝑇

= −𝐾ℎ(1 − 𝑐)𝐻𝑒  

Eq. 3-33 

The internal axial load is the sum of fibers’ uniaxial load. Eq. 3-34 turns this axial load in terms of 

the top and bottom nodal displacements. 
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𝐹2 = −𝐹5 =∑𝐴𝐶
𝑓

𝑁𝐹

𝑓=1

𝜎𝐶
𝑓(𝜀) +∑𝐴𝑆

𝑓

𝑁𝐹

𝑓=1

𝜎𝑆
𝑓(𝜀) 

𝐹2 = −𝐹5 =∑𝐴𝐶
𝑓

𝑁𝐹

𝑓=1

𝜎𝐶
𝑓
(
𝑣𝑇 − 𝑣𝐵
𝐻𝑒

,
𝜃𝑇 − 𝜃𝐵
𝐻𝑒

𝑥𝑓) +∑𝐴𝑆
𝑓

𝑁𝐹

𝑓=1

𝜎𝑆
𝑓
(
𝑣𝑇 − 𝑣𝐵
𝐻𝑒

,
𝜃𝑇 − 𝜃𝐵
𝐻𝑒

𝑥𝑓) 

Eq. 3-34 

𝑥𝑓 is the local coordinate of the fiber. Note that a material with strain-strain-stress response of 

Figure 3-22 and Figure 3-23, in general, has two tangents with respect to the flexural strain and 

the axial strain. This is in Eq. 3-35. 

𝐸1 =
𝜕𝜎

𝜕𝜀1
, 𝐸2 =

𝜕𝜎

𝜕𝜀2
, 𝜀1 =

𝜃𝑇 − 𝜃𝐵
𝐻𝑒

𝑥𝑓 , 𝜀2 =
𝑣𝑇 − 𝑣𝐵
𝐻𝑒

 Eq. 3-35 

If the material is not in the stress degradation region of Figure 3-21, the two tangents are essentially 

equal, 𝐸1 = 𝐸2. Using the chain rule of differentiation, Eq. 3-36 turns the differentiation of the 

material’s stress with respect to the nodal displacements. 

𝜕𝜎

𝜕𝑣𝐵
= −

𝐸2
𝐻𝑒
,

𝜕𝜎

𝜕𝑣𝑇
=
𝐸2
𝐻𝑒
,

𝜕𝜎

𝜕𝜃𝐵
= −

𝐸2𝑥
𝑓

𝐻𝑒
,

𝜕𝜎

𝜕𝜃𝑇
= −

𝐸2𝑥
𝑓

𝐻𝑒
 Eq. 3-36 

The terms calculated in Eq. 3-36 are used to obtain the second column of the stiffness matrix in 

Eq. 3-37. 
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𝐾12 =
𝜕𝐹2
𝜕𝑢1

=
𝜕𝐹2
𝜕𝑢𝐵

= 0 

𝐾22 =
𝜕𝐹2
𝜕𝑢2

=
𝜕𝐹2
𝜕𝑣𝐵

=∑
𝐴𝐶
𝑓

𝐻𝑒
𝐸2
𝐶

𝑁𝐹

𝑓=1

+∑
𝐴𝑆
𝑓

𝐻𝑒
𝐸2
𝑆

𝑁𝐹

𝑓=1

 

𝐾32 =
𝜕𝐹2
𝜕𝑢3

=
𝜕𝐹2
𝜕𝜃𝐵

=∑
𝐴𝐶
𝑓

𝐻𝑒
𝐸1
𝐶𝑥𝑓

𝑁𝐹

𝑓=1

+∑
𝐴𝑆
𝑓

𝐻𝑒
𝐸1
𝑆𝑥𝑓

𝑁𝐹

𝑓=1

 

𝐾42 =
𝜕𝐹2
𝜕𝑢4

=
𝜕𝐹2
𝜕𝑢𝑇

= 0 

𝐾52 =
𝜕𝐹2
𝜕𝑢5

=
𝜕𝐹2
𝜕𝑣𝑇

= −∑
𝐴𝐶
𝑓

𝐻𝑒
𝐸2
𝐶

𝑁𝐹

𝑓=1

−∑
𝐴𝑆
𝑓

𝐻𝑒
𝐸2
𝑆

𝑁𝐹

𝑓=1

 

𝐾62 =
𝜕𝐹2
𝜕𝑢6

=
𝜕𝐹2
𝜕𝜃𝑇

= −∑
𝐴𝐶
𝑓

𝐻𝑒
𝐸1
𝐶𝑥𝑓

𝑁𝐹

𝑓=1

−∑
𝐴𝑆
𝑓

𝐻𝑒
𝐸2
𝑆𝑥𝑓

𝑁𝐹

𝑓=1

 

Eq. 3-37 

The third component of the internal force vector is the moment at the bottom node, calculated in 

Eq. 3-38 in terms of the element’s displacement components. 

𝐹3 = 𝑀𝐵 =∑𝐴𝐶
𝑓

𝑁𝐹

𝑓=1

𝜎𝐶
𝑓(𝜀)𝑥𝑓 +∑𝐴𝑆

𝑓

𝑁𝐹

𝑓=1

𝜎𝑆
𝑓(𝜀)𝑥𝑓 + 𝑉𝑐𝐻𝑒 =∑𝐴𝐶

𝑓

𝑁𝐹

𝑓=1

𝜎𝐶
𝑓
(
𝑣𝑇 − 𝑣𝐵
𝐻𝑒

,
𝜃𝑇 − 𝜃𝐵
𝐻𝑒

𝑥𝑓) 

+∑𝐴𝑆
𝑓

𝑁𝐹

𝑓=1

𝜎𝑆
𝑓
(
𝑣𝑇 − 𝑣𝐵
𝐻𝑒

,
𝜃𝑇 − 𝜃𝐵
𝐻𝑒

𝑥𝑓) + 𝐾ℎ[𝑢𝐵 − 𝑐𝐻𝑒𝜃𝐵 − (1 − 𝑐)𝐻𝑒𝜃𝑇 − 𝑢𝑇]𝑐𝐻𝑒  

Eq. 3-38 

Taking the derivative of Eq. 3-38 with respect to the nodal displacements, the third column of the 

stiffness matrix is shown in Eq. 3-39. 
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𝐾13 =
𝜕𝐹3
𝜕𝑢1

=
𝜕𝐹3
𝜕𝑢𝐵

= −𝐾ℎ𝑐𝐻𝑒 

𝐾23 =
𝜕𝐹3
𝜕𝑢2

=
𝜕𝐹3
𝜕𝑣𝐵

=∑
𝐴𝐶
𝑓

𝐻𝑒
𝐸1
𝐶𝑥𝑓

𝑁𝐹

𝑓=1

+∑
𝐴𝑆
𝑓

𝐻𝑒
𝐸2
𝑆𝑥𝑓

𝑁𝐹

𝑓=1

 

𝐾33 =
𝜕𝐹3
𝜕𝑢3

=
𝜕𝐹3
𝜕𝜃𝐵

= 𝐾ℎ𝑐
2𝐻𝑒

2 +∑
𝐴𝐶
𝑓

𝐻𝑒
𝐸1
𝐶𝑥𝑓

2

𝑁𝐹

𝑓=1

+∑
𝐴𝑆
𝑓

𝐻𝑒
𝐸2
𝑆𝑥𝑓

2

𝑁𝐹

𝑓=1

 

𝐾43 =
𝜕𝐹3
𝜕𝑢4

=
𝜕𝐹3
𝜕𝑢𝑇

= 𝑐𝐻𝑒𝐾ℎ 

𝐾53 =
𝜕𝐹3
𝜕𝑢5

=
𝜕𝐹3
𝜕𝑣𝑇

= −∑
𝐴𝐶
𝑓

𝐻𝑒
𝐸1
𝐶𝑥𝑓

𝑁𝐹

𝑓=1

−∑
𝐴𝑆
𝑓

𝐻𝑒
𝐸2
𝑆𝑥𝑓

𝑁𝐹

𝑓=1

 

𝐾63 =
𝜕𝐹3
𝜕𝑢6

=
𝜕𝐹3
𝜕𝜃𝑇

= 𝐾ℎ(1 − 𝑐)𝑐𝐻𝑒
2 −∑

𝐴𝐶
𝑓

𝐻𝑒
𝐸1
𝐶𝑥𝑓

2

𝑁𝐹

𝑓=1

−∑
𝐴𝑆
𝑓

𝐻𝑒
𝐸2
𝑆𝑥𝑓

2

𝑁𝐹

𝑓=1

 

Eq. 3-39 

Other components of the stiffness matrix can be obtained in the same way. 
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3.13 Case study 1: Static push-over analysis of a cantilever structural wall 

A ten-story building, with the floor plan shown in Figure 3-37 is analyzed and designed according 

to California Building Code (2019) [23]. The details of analysis and design are presented in 7.3. 

 

Figure 3-37 Floor plan of the building 

The slabs are 10 in. thick, and the superimposed dead load of 25 psf is assumed on the floors. The 

live load is 40 psf. The lateral force resisting system is comprised of RC structural walls in the EW 

direction and RC moment frames in the NS direction. ASCE 7’s Equivalent Lateral Force 

Procedure is used to estimate the lateral seismic loads. After some trial and error, the length of the 

wall is designed to be 324 in. and the thickness is 26 in. The layout of the symmetric cross section 

of the designed wall is shown in Figure 3-38. 

 

Figure 3-38 Cross section of the designed wall 
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Detailed analysis and design of the walls is shown in 7.3. The boundary element has 17 layers of 

No.10 longitudinal bars, spaced at 5 in. This results in a reinforcement ratio of 0.0386 inside the 

boundary element. The longitudinal reinforcement, outside the boundary element, consists of two 

curtains of No.10 bars spaced at 10 in., which is equivalent to a reinforcement ratio of 0.008141. 

The cross section of the walls is discretized into fibers, with properties in Table 3-1, to make a 

nonlinear model of structural walls. 

Table 3-1 Properties of the cross-section fibers used in nonlinear modeling of the structural walls 

of case study 1 

Fibers 𝑡𝐹 𝑤𝐹  𝜌𝐹 𝐴𝑆 𝐴𝑡 

 in in  in2 in2 

1 26 21.5 0.0386 21.59 537.4 

2 26 21.5 0.0386 21.59 537.4 

3 26 21.5 0.0386 21.59 537.4 

4 26 21.5 0.0386 21.59 537.4 

5 26 38 0.00814 8.043 980.0 

6 26 38 0.00814 8.043 980.0 

7 26 38 0.00814 8.043 980.0 

8 26 38 0.00814 8.043 980.0 

9 26 21.5 0.0386 21.59 537.4 

10 26 21.5 0.0386 21.59 537.4 

11 26 21.5 0.0386 21.59 537.4 

12 26 21.5 0.0386 21.59 537.4 

In Table 3-1, 𝜌𝐹 is the reinforcement ratio of each fiber, 𝐴𝑠 is the area of steel in each fiber, and 𝐴𝑡 

is the total area of each fiber. To conduct a pushover analysis of the wall, a nonlinear model of the 

system is created for analysis in OpenSees, an open-source software for earthquake engineering. 

The wall system is loaded with a triangular distribution of lateral loads that simulate seismic 

excitation. One element is used over each story, including the bottom story where the concentration 
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of demands is higher and damage accumulate. Wallace and Moehle (1992) [51] recommend Eq. 

3-40 for the size of the plastic hinge (the most bottom element). 

𝐿𝑝 = 0.5𝐿𝑤 = 0.5 × 324 = 168 𝑖𝑛. Eq. 3-40 

The deformation parameters of the backbone curve developed by Abdullah and Wallace are also 

obtained assuming expression of Eq. 3-40 for the plastic hinge. In 7.3, these parameters are 

adjusted to be used for the backbone curve of the element used in this study. 

 

Figure 3-39 Elevation view of the wall and the distribution of lateral loads 

For the static pushover analysis, the lateral displacement at the roof is the controlled degree of 

freedom. The loading protocol of Figure 3-40 is applied for the analysis. Amplitude of cycles is 

arbitrarily selected so that strength deterioration is observed at the end of analysis. 
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Figure 3-40 Loading protocol in study case 1, with the control deformation being the roof drift 

The magnitude and the number of the cycles is shown in Table 3-2. 

Table 3-2 Pushover loading cycles 

Amplitude [in] Number of 

Cycles 

Cycle type Displacement 

increment [in] 

0.005 2 Full 0.144 

0.01 2 Full 0.144 

0.02 2 Full 0.144 

0.025 2 Full 0.144 

The residual stress of the material is set over the compressive/Tensile zone according to Eq. 3-20, 

and Figure 3-26. The parameters of the equation are 𝑟𝐴 = 0.1, and 𝑟𝐵 = 0.4, and 𝑛 = 2. The 

distribution of the material residual stress is shown Figure 3-41. 
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Figure 3-41 The residual stress over depth of compressive/Tensile zone 

Once the analysis is complete, the element output is obtained and plotted. Figure 3-42 shows the 

moment rotation response of the wall plastic hinge. The deformation parameters 𝑑 and 𝑑’ of the 

backbone curve are specified with green and red lines respectively. 

 

Figure 3-42 Moment curvature response of the plastic hinge to cyclic pushover loading with roof 

drift as the controlled degree of freedom 

The strain stress response of selected steel and concrete fibers, highlighted in Figure 3-43, is 

presented in Figure 3-44 and Figure 3-45, respectively. 

 

Figure 3-43 Selected fibers to plot the responses 
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Figure 3-44 Response of selected steel fibers to static pushover loading with roof drift as the 

controlled degree of freedom 

 



63 

 

  

  

 

Figure 3-45 Response of selected concrete fibers to static pushover loading with roof drift as the 

controlled degree of freedom 

The moment-rotation response of the plastic hinge in Figure 3-42 shows the entire strength-

deterioration within one load step. The rotation of the plastic hinge at the end of that load step is 

larger than 𝑑′ of Figure 3-14. This is because the control degree of freedom for the pushover 
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analysis is the lateral displacement at the roof. In a wall with steep strength degradation, like the 

designed wall in this study, a small increment in the roof displacement corresponds to a large 

increment of the plastic hinge rotation. To better observe the strength deterioration response of the 

wall element, the rotation of the plastic hinge is set as the controlled degree of freedom, and a 

pushover analysis is done. As a matter of experiment, the gravity axial load on the wall is also 

increased at each level, so that total gravity load at the base is 𝑃𝑢 = 25,000 𝑘𝑖𝑝𝑠 = 0.38𝐴𝑓𝑓′𝑐. The 

loading protocol is shown in Figure 3-46. 

 

Figure 3-46 Loading protocol of wall in study case 1, the control degree of freedom is the 

rotation of the plastic hinge 
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The magnitude and the number of the cycles is shown in Table 3-3. 

Table 3-3 Pushover loading cycles 

Amplitude Number of 

Cycles 

Cycle type Deformation 

increment 

0.004 2 Full 0.0001 

0.01 2 Full 0.0001 

0.018 2 Full 0.0001 

0.019 2 Full 0.0001 

0.025 2 Full 0.0001 

0.03 2 Full 0.0001 

The amplitude of cycles is selected so that unloading within strength deterioration is observed in 

the analysis. Figure 3-47 shows the moment rotation response of the wall plastic hinge. The 

deformation parameters 𝑑 and 𝑑’ of the backbone curve are specified with green and red lines 

respectively. 

 

Figure 3-47 Moment curvature response of the plastic hinge to cyclic pushover loading with PH 

rotation as the controlled degree of freedom 
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The strain stress response of some selected fibers is shown in Figure 3-48. 

  

  

Figure 3-48 Response of selected steel fibers to static pushover loading with PH rotation as the 

controlled degree of freedom 
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The strain stress response of some selected fibers is shown in Figure 3-49. 

  

  

 

Figure 3-49 Response of selected concrete fibers to static pushover loading with PH rotation as 

the controlled degree of freedom 

 



68 

 

3.14 Case study 2: Nonlinear dynamic analysis of a cantilever structural wall 

The response of the structural wall of 3.13 to dynamic loading is analyzed in this section. Fifteen 

ground motions are selected from the NGA West 2 database [44][45], and scaled to match the 

target MCER level response spectrum. Since a 2D analysis is performed, only the H1 component 

of each RSN (Record Sequence Number) is scaled. Scaling is done to minimize MSE (Mean 

Squared Error of Record) within the period range recommended by ASCE 7 Chapter 16 ([0.2T1, 

2T1]). 

 

Figure 3-50 Target response spectrum and the response spectra of the selected GMs 

 

Figure 3-51 RSN 20 scaled acceleration history in H1 direction 
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Figure 3-50 shows the spectra of the selected ground motions, the arithmetic mean of the spectra, 

and the target spectrum. Figure 3-51 shows the scaled acceleration history of ground motion RSN 

20, that caused strength degradation for the wall. The moment curvature response of the wall 

plastic hinge is demonstrated in Figure 3-52. 

 

Figure 3-52 Moment curvature response of the wall plastic hinge due to dynamic loading 

The response of the plastic hinge does not show any strength loss for other ground motions. This 

makes sense because the wall has already been designed for demands of ASCE 7 chapter 12. The 

plastic hinge rotation for RSN 20 exceeds the maximum capacity of the wall for bearing gravity 

loads (Deformation 𝑒 of the backbone curve of Figure 4-2) and the wall collapses. In performance 

design of a building, consistent with TBI guidelines, this is considered an unacceptable run. In a 

risk category II building, one unacceptable run in a suit of 11 ground motions is permitted. But the 

design must be checked against amplified demands of other ground motions in the suite. One other 

option would be to design the wall to have more ductility capacity. 

The response of selected fibers (Figure 3-43) for the RSN 20 ground motion is shown in Figure 

3-53 and Figure 3-54. 
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Figure 3-53 Response of selected steel fibers of wall’s bottom element due to ground motion 

RSN 20 
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Figure 3-54 Response of selected concrete fibers of walls bottom element due to ground motion 

RSN 20 
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Chapter 4 Computing deformation parameters of the backbone curve in real 

time 

ASCE 41-17 [2] Table 10-19, shown in Figure 4-1, specifies the deformation parameters that setup 

the backbone curve of flexure-controlled shear walls. 

 

Figure 4-1 ASCE 41-19 Table 10-19 Modeling parameters and numerical acceptance criteria for 

reinforced concrete structural walls controlled by Flexure 

Researchers have based this table on limited number of experiments. Therefore, the deformation 

parameters calculated according to the table are deemed conservative. Abdullah and Wallace 

(2018) [50] established a comprehensive database that consists of more than 1,000 tested RC wall 

specimens. Analyzing the tests’ data, the authors have generated Table 4-1 and Table 4-2, and 
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provided a more realistic tool for assessment of shear walls. The tables determine the deformation 

parameters controlling the shape of a backbone curve which is slightly different that the backbone 

curve in ASCE 41-14, as shown in Figure 4-2. 

Table 4-1 Modeling parameter d for conforming reinforced concrete structural walls controlled 

by flexure 

𝜆 =
𝐿𝑤𝐶𝐸
𝑏2

 
𝜔𝑣𝑉𝑀𝑢𝑙𝑡

𝐴𝑐𝑣√𝑓
′
𝑐

 
Use of 

overlapping 

hoops 

𝑑 

≤ 10 ≤ 4 YES 0.032 

≤ 10 ≥ 6 YES 0.026 

≥ 70 ≤ 4 YES 0.018 

≥ 70 ≥ 6 YES 0.014 

≤ 10 ≤ 4 NO 0.032 

≤ 10 ≥ 6 NO 0.026 

≥ 70 ≤ 4 NO 0.012 

≥ 70 ≥ 6 NO 0.011 

Table 4-2 Modeling parameters c, d', and e for conforming reinforced concrete structural walls 

controlled by flexure 

𝜆 =
𝐿𝑤𝐶𝐸
𝑏2

 
𝑃

𝐴𝑔𝑓
′
𝑐𝐸

 
𝑐 𝑑′ 𝑒 

≤ 10 ≤ 0.1 0.5 0.036 0.040 

≤ 10 ≥ 0.2 0.1 0.030 0.032 

≥ 70 ≤ 0.1 0.0 0.018 0.020 

≥ 70 ≥ 0.2 0.0 0.014 0.014 
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Figure 4-2 Backbone curve proposed by Abdullah and Wallace (2019) 

4.1 A discussion on table parameters 

The tables correlate deformation parameters of the backbone curve to the probable maximum axial 

load on the shear wall, 𝑃, the probable maximum shear demand, 𝜔𝑣𝑉𝑀𝑢𝑙𝑡, and the compression 

zone parameter, 𝜆. An increase in any of these parameters results in a decrease in the energy 

absorption capacity of the element. 

The axial load on the shear wall, 𝑝, is due to the gravity load, and the shear demand of connecting 

horizontal elements. For an isolated cantilever wall, it is acceptable to assume that the axial load 

is purely due to gravity load and remains constant if vertical component of ground motion is 

ignored. In the case of coupled walls or wall frame structures, the axial load fluctuates with lateral 

deformation of the building. 

The second parameter, 𝜔𝑣𝑉𝑀𝑢𝑙𝑡 𝐴𝑐𝑣√𝑓
′
𝑐

⁄ , turns the maximum probable shear stress of the wall. To 

estimate this shear, one may use ASCE’s Equivalent Lateral Force Procedure, or Linear Modal 

Dynamic Analysis. The shear stress calculated using either approach must be adjusted to account 

for design over strength, and the overstrength of the material. Furthermore, the dynamic shear 

amplification factor, 𝜔𝑣, must be considered to account for the effect of higher modes. ACI 318-

19 [9] section 18.10.3.1.3 estimates this factor based on the number of stories. Note that in a 
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nonlinear dynamic analysis, the element internal shear force calculated using the elements nodal 

displacements inherently considers the dynamic shear amplification factor and the over strength 

factor and no adjustment is required. 

Using a database of 20 almost code compliant, flexure-controlled RC walls Segura and Wallace 

(2018) [35] showed that increase in depth of compression zone over the wall thickness, 𝑐/𝑏, 

decreases the plastic deformation capacity of walls. Figure 4-3 shows this trend for walls with 

overlapping hoops and walls with hoop and cross-ties. 

 

Figure 4-3 Deformation capacity of flexure-controlled walls versus c / b by Segura and Wallace 

(2018) 

Abdullah and Wallace (2019) came up with the same conclusion by using a different approach. 

They used a different parameter, 𝜆 in Table 4-1, to formulate the deformation capacity. A more in-

depth discussion on the compression zone depth is presented in 4.5.  

In section 4.2 the solution algorithm that includes the dynamic computation of the backbone’s 

deformation parameters is presented. A dynamic computation of deformation capacity of a wall 

element requires the dynamic computation of each controlling parameters in Table 4-1 and Table 

4-2. Deriving each parameter in terms of curvature is explained in section 4.4, 4.5, and 4.6. 
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4.2 Solution procedure for a nonlinear analysis 

Figure 4-4 shows the solution procedure for nonlinear force-controlled analysis of a structure. 

Although this algorithm is slightly different for a deformation-controlled analysis, the basics are 

the same. The nonlinear equation to be solved at any load step is shown in Eq. 4-1. 

 

Figure 4-4 Solution algorithm for nonlinear analysis of a structure 

𝑈(𝑢) = 𝐹𝑒𝑥𝑡 − 𝐹𝑖𝑛𝑡(𝑢) = 0 Eq. 4-1 
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In Eq. 4-1, 𝐹𝑒𝑥𝑡 is the external load vector applied at nodes, and 𝐹𝑖𝑛𝑡(𝑢) is the internal load vector. 

𝑈(𝑢) specifies the unbalance load at any load step. Eq. 4-2 uses Newton’s algorithm to numerically 

solve for 𝑢. 

𝑢𝑁 = 𝑢𝑁−1 −
𝑈(𝑢𝑁−1)

𝑈′(𝑢𝑁−1)
 Eq. 4-2 

In Eq. 4-2, 𝑢𝑁 is the trial deformation at iteration N. 𝑈′(𝑢𝑁−1) is the tangent stiffness of the system 

calculated at iteration 𝑁 − 1. In a multi degree of freedom system, 𝑈′(𝑢𝑁−1) is the tangent stiffness 

matrix, calculated per Eq. 4-3. 

𝐾 =
𝜕𝐹𝑖
𝜕𝑢𝑗

[𝑒𝑖⊗ 𝑒𝑗] Eq. 4-3 

The root is found once the norm of the change in trial deformation vector 𝑢𝑁 − 𝑢𝑁−1 or the norm 

of the unbalanced load 𝑈(𝑢) is less than a specified tolerance. 

Figure 4-5 shows the deformed shape of a shear wall element in 3D space. Let the top and bottom 

nodes displacements be 𝑢𝑡, 𝑣𝑡, 𝜃𝑡, and 𝑢𝑏, 𝑣𝑏, 𝜃𝑏 respectively. To ease the computations, 

deformation of the element is specified in a new coordinate system with axes 𝑝, 𝑞, and 𝑟 defined 

as below. 

𝑝 = 0.5𝜑𝐿𝑤 = 0.5 [
𝜃𝑡 − 𝜃𝑏
𝐻𝑒

] 𝐿𝑤 Eq. 4-4 

𝑞 =
𝑣𝑒
𝐻𝑒
=
𝑣𝑡 − 𝑣𝑏
𝐻𝑒

 Eq. 4-5 

𝑟 =
𝑑𝑆𝑆
𝐻𝑒
=
𝑢𝑡 − 𝑢𝑏 + 𝜃𝑏𝑐 + 𝜃𝑡[1 − 𝑐]

𝐻𝑒
 Eq. 4-6 
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Figure 4-5 Deformed shape of the element 

p is an indicator of the flexural deformation, and is equal to the maximum flexural strain over the 

length of the section. q is axial deformation of the element, and r is the displacement of element’s 

shear hinge, 𝑑𝑆𝑆 divided by element height. Any trial nodal displacement calculated in step 3 of 

the solution flowchart specifies an arrow from the committed state of the element, C, to the trial 

state of the element, T, in the new deformation coordinate system, as shown in Figure 4-6. Vector 

�⃗⃗�  is the deformation vector in p – q – r coordinate system. 

𝐷𝑝𝑞⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the projection of �⃗⃗�  in the p – q plane, and 𝐷𝑝𝑟⃗⃗ ⃗⃗ ⃗⃗   is the projection of �⃗⃗�  in the p – r plane. 

 



79 

 

 

Figure 4-6 Element deformation vector 

4.3 Updating the solution procedure 

Figure 4-7 shows the backbone curve of a shear wall element. The horizontal axis is the element 

rotation, defined as element’s top node rotation minus the element’s bottom node rotation. The 

black mark shows the assumed state of the element at the end of the load step, just prior to initiation 

of strength loss. Given a trial change in the deformation of the element calculated in step 3 of the 

solution flowchart, parameter 𝑑 is calculated in the direction of the deformation vector shown in 

Figure 4-6. Chapter 4.7 describes how to solve for 𝑑 once 𝑝𝑢, 𝑣𝑢, and 𝜆 are all expressed in terms 

of element curvature, 𝜑. If 𝑑 is exceeded in the current iteration, 𝑈 =  𝐹𝑒𝑥𝑡 − 𝐹𝑖𝑛𝑡 is calculated at 

the trial deformation, using “Strength Loss” equations of strain stress (Referred to as “SL” equation 

in the flowchart), and with parameter 𝑑’ being calculated using table 10-19 with 𝑣𝑢, 𝑝𝑢, and 𝜆 at 

rotation 𝑑. If 𝑑 is not exceeded, regular strain stress equations of the material (Referred to as “NSL” 

equation in the flowchart) are used. 
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Figure 4-7 Backbone curve of a shear wall element with strength loss 

Once strength loss parameters are exceeded in both directions, the procedure settles down to the 

flowchart of Figure 4-4. 

To accommodate the dynamic computation of the strength loss parameters (i.e., 𝑑, 𝑑’, and 𝑐), the 

solution procedure is slightly modified as shown in Figure 4-8. 
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Figure 4-8 Solution algorithm for nonlinear analysis of structure with dynamic calculation of 

strength loss parameters 
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4.4 Computing the axial load 

Figure 4-9 shows the fiber-discretized cross section of a deformed shear wall element. 

 

Figure 4-9 Fiber-discretized cross section of a deformed shear wall 

Given the concrete area, steel area, concrete stress, and steel stress of the cross section, Eq. 4-7 

turns the internal axial load. 

𝑃 =∑𝐴𝐶
𝑓

𝑁𝐹

𝑓=1

𝜎𝐶
𝑓
+∑𝐴𝑆

𝑓

𝑁𝐹

𝑓=1

𝜎𝑆
𝑓

 Eq. 4-7 

In Eq. 4-7, area of fibers remains constant, but the stresses are functions of strains. In a computer 

implementation of nonlinear structural analysis, material objects turn the stress using implemented 

functions of strain, 𝜎 = 𝑓(𝜀). To solve for backbone curve parameters, the stress-strain functions 

will be converted to stress-curvature functions to determine the axial load given element’s 

curvature. Figure 4-10 shows a typical strain-stress curve for a concrete material. 
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Figure 4-10 Typical strain stress relationship of a concrete material 

The curve may consist of multiple segments with different function. To obtain a stress-curvature 

relation from a stress-strain relation, each segment of the strain stress relationship is expressed in 

polynomial forms as shown in Eq. 4-8. 

𝜎𝐶(𝜀) =

{
 
 
 
 
 

 
 
 
 
 

…
…
…

∑𝐶[𝑖][𝑗]𝜀
𝑗

𝑁

𝑗=0

             𝜀𝑖−1 ≤ 𝜀 < 𝜀𝑖

∑𝐶[𝑖+1][𝑗]𝜀
𝑗

𝑁

𝑗=0

        𝜀𝑖 ≤ 𝜀 < 𝜀𝑖+1

…
…
…

 Eq. 4-8 

Any other material used in section’s fibers have stain – stress relationships defined by polynomials. 

By expressing the strain in terms of element curvature, the material’s stress-curvature functions 

will be derived. To get strain-curvature relationship, consider Figure 4-11 that shows the 

deformation vector in p – q plane. 



84 

 

 

Figure 4-11 Deformation vector in p – q plane 

The deformation vector �⃗⃗� 𝑝𝑞 lies on a line governed by Eq. 4-9. 

𝑑𝑣

𝐻𝑒
= 𝐴 [𝜑

𝐿𝑤
2
] + 𝐵 Eq. 4-9 

Parameters 𝐴 and 𝐵 can be calculated in terms of the committed and trial state of the deformed 

element as shown in Eq. 4-10. 

𝑑𝑝 = 𝑝𝐶 − 𝑝𝑇 , 𝑑𝑞 = 𝑞𝐶 − 𝑞𝑇 , 𝐴 = tan𝛼 =
𝑑𝑞

𝑑𝑝
, 𝐵 = 𝑞𝐶 −

𝑑𝑞

𝑑𝑝
𝑝𝐶  Eq. 4-10 

Knowing 𝐴 and 𝐵, Eq. 4-11 determines the strain of each fiber in terms of element’s curvature. All 

other variables are known. 

𝜀𝑓 = 𝜑𝑋𝑓 +
𝑑𝑣

𝐻𝑒
= 𝜑 (𝑋𝑓 + 𝐴

𝐿𝑤
2
) + 𝐵 = 𝐶1𝜑 + 𝐶2, 𝐶1 = 𝑋

𝑓 +
𝑑𝑞

𝑑𝑝

𝐿𝑤
2
, 𝐶2 = 𝑞

𝐶 −
𝑑𝑞

𝑑𝑝
𝑝𝐶 Eq. 4-11 

Given a certain strain for a fiber, the corresponding element curvature is calculated by Eq. 4-12. 

Eq. 4-12 is also used to convert the strain stress segment’ start and end strain to corresponding 

start and end curvature. 
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𝜑𝑗 =
𝜀𝑗
𝑓
− 𝐶2

𝐶1
 Eq. 4-12 

Knowing the stress-strain equations of the fibers’ material in polynomial form of Eq. 4-8, the 

stress-curvature equations for fibers’ material are obtained in Eq. 4-13. 

𝜎𝐶(𝜑) =

{
 
 
 
 
 

 
 
 
 
 

…
…
…

∑𝐶[𝑖][𝑗]𝜑
𝑗

𝑁

𝑗=0

             𝜑𝑖−1 ≤ 𝜑 < 𝜑𝑖

∑𝐶[𝑖+1][𝑗]𝜑
𝑗

𝑁

𝑗=0

        𝜑𝑖 ≤ 𝜑 < 𝜑𝑖+1

…
…
…

 Eq. 4-13 

Note that for a different loading direction (i.e., for a different �⃗⃗� ), the strain would be expressed by 

a 𝐶1𝜑 + 𝐶2 function with different coefficients of 𝐶1 and 𝐶2. 

4.5 Computing the compression zone depth 

For a given state of a wall element, shown in Figure 4-12, the strain at a point 𝑥 over the length of 

the wall section comes from Eq. 4-14. 

𝜀𝑥 = 𝜑𝑥 + 𝜀0 Eq. 4-14 

In this equation, 𝜑 is the curvature of the element, 𝑥 is the local coordinate of point 𝑥, and 𝜀0 is the 

strain at the centroid of the section. 
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Figure 4-12 Deformed state of a shear wall element 

As stated before, the curvature and the midpoint are strains are obtained from the nodal 

displacement using Eq. 4-15. 

𝜑 =
𝜃𝑡 − 𝜃𝑏
𝐻𝑒

, 𝜀0 =
𝑣𝑡 − 𝑣𝑏
𝐻𝑒

 Eq. 4-15 

The deformation-wise compression zone, i.e., the depth of the section with negative strain is 

calculated by finding the points with zero-strain, as shown in  

𝜀𝑥 = 𝜑𝑥 + 𝜀0 = 0, 𝑥𝜀=0 =
−𝜀0
𝜑

 Eq. 4-16 

If a wall element is in positive curvature, as shown in Figure 4-12, the depth of deformation-wise 

compression zone is obtained by Eq. 4-17. 

𝐶 = 𝑥𝜀=0 − (
−𝐿𝑤
2
) Eq. 4-17 

For negative curvature, Eq. 4-18 is used to calculated the depth of deformation-wise compression 

zone. 
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𝐶 = (
𝐿𝑤
2
) − 𝑥𝜀=0 Eq. 4-18 

If the coordinate of the zero-strain point, 𝑥𝜀=0, is beyond the scope of the section, (i.e., 𝑥𝜀=0 >

0.5𝐿𝑤 or 𝑥𝜀=0 < −0.5𝐿𝑤) the entire section is in tensile or compressive strains and 𝐶 = 0 or 𝐶 =

𝐿𝑤. 

The compression zone depth used in Table 4-1 and Table 4-2, to calculate the deformation 

parameters is the force-wise compression zone, (i.e., the depth of section with compressive 

stresses). In a monotonic loading of a shear wall element, the deformation-wise and force-wise 

compression zone are essentially equal. In the case of seismic loading, the cyclic characteristic of 

load may cause portions of the section to be under tensile strain while under compressive stress, 

or under compressive strain while under tensile stress. Figure 4-13 shows the cyclic loading of 

concrete material developed by Chang and Mander. The regions of “Tensile strain / Compressive 

stress” and “Compressive strain / Tensile stress” are indicated in the figure. Note that the 

compression depth calculated using concrete fibers stress is different than that using steel fibers 

stress. Since steel material has a larger unloading stiffness after a load reversal, the depth of steel 

fibers under compressive stress is always larger than the depth of concrete fibers under 

compressive stress. Figure 4-23 that plots the history of compression zone depth, calculated based 

on concrete compressive stresses and steel compressive stresses, for the right pier of the coupled-

wall system in the case study of this chapter serves as an example. 
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Figure 4-13 Cyclic strain stress of concrete material proposed by Chang and Mander 

4.5.1 Computing the force wise compression zone 

To obtain the depth of force-wise compression zone, the strain corresponding to zero stress, 𝜀𝜎 = 0, 

for the material (steel or concrete) at the committed state of the element (the end of the previous 

load step) is obtained. This is the strain at which the stress of the material would go back to zero 

if the material were loaded or unloaded to that strain. Figure 4-14 shows the strain stress history 

of the concrete material, located at local coordinate 𝑥𝑓 of the element cross section, up until the 

last converged state, C. The zero-stress strain, 𝜀𝜎 = 0, for the concrete material at that point and at 

state C is shown in the figure. 

 

Figure 4-14 Strain stress history of concrete material at local coordinate XF of cross section 
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Knowing the zero-stress strains of the material for the entire section, Figure 4-15 shows the zero-

stress strain profile (𝜀𝜎 = 0 profile) of the element. With the section discretized into fibers, the 𝜀𝜎 = 0 

profile takes a piecewise form with equations shown in the figure. 

 

Figure 4-15 The zeros stress strain profile of the shear wall section 

Given the profile shown in the figure corresponding to the converged (committed) state of the 

element, if the strain at any point of the section, for a trial state of the element, is below the profile 

at that point, the point is in compressive stress. If the trial strain is above the profile, the point is 

not in compressive stress (zero, or tensile stress). 

4.5.2 Determining the compression zone as a function of curvature 

Figure 4-16 shows the strain over the depth of the element section at the converged state C, and 

for a trial state T of the element. The strain profiles are governed by Eq. 4-19. 

𝜀𝐶 = 𝜑𝐶𝑥 + 𝜀0
𝐶 , 𝜀𝑇 = 𝜑𝑇𝑥 + 𝜀0

𝑇 Eq. 4-19 

By moving along the deformation vector of the element shown in Figure 4-6 and Figure 4-11, the 

strain profile of the section rotates about the “Hinge Point” shown in Figure 4-16. This point is the 

intersection of the trial strain profile and the strain profile of the committed state. 
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𝑥𝐻 =
𝑑𝜀0
𝑑𝜑
, 𝜀𝐻 = 𝜑

𝐶𝑥𝐻 + 𝜀0
𝐶  Eq. 4-20 

Note that for a different deformation vector of Figure 4-6, the trial strain profile, T, and the location 

of the hinge would be different. So, the hinge must be located every time a trial deformation is 

computed in Step 3 of the solution algorithm. 

 

Figure 4-16 Committed and trial strain profile over element cross section 

Figure 4-17 shows two trial strain profiles, T1 and T2, passing through the hinge (at a different 

location than that in Figure 4-16 for clarity), and the committed state of the zeros – stress strain 

profile. T1 crosses segment 𝑘 of the committed zero – stress strain profile with start and end 

coordinates 𝑥𝑖
𝑘 and 𝑥𝑗

𝑘. The local coordinate where the two profiles cross, 𝑥𝐶𝑍, is calculated in Eq. 

4-21. 

𝑚𝑘𝑥𝐶𝑍
𝑘 + 𝑛𝑘 = 𝜑(𝑥𝐶𝑍

𝑘 − 𝑥𝐻) + 𝜀𝐻 , 𝑥𝐶𝑍
𝑘 =

𝑥𝐻𝜑 + 𝑛𝑘 − 𝜀𝐻
𝜑 −𝑚𝑘

 Eq. 4-21 

The depth of the compression zone is where the strain profile is below the zero – stress strain 

profile and is calculated in Eq. 4-22. 

𝐶𝑍(𝜑) = 𝑥𝐶𝑍
𝑘 − (−

𝐿𝑤
2
) =

𝑥𝐻𝜑 + 𝑛𝑘 − 𝜀𝐻
𝜑 −𝑚𝑘

+
𝐿𝑤
2

 Eq. 4-22 
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Note that the strain profile may cross the zero – stress profile at multiple segments as is the case 

for the trial deformation T2. The depth of the compression zone for T2 is obtained in Eq. 4-23. 

 

Figure 4-17 Setting compression zone as a function of curvature 

𝐶𝑍(𝜑) = 𝑥𝐶𝑍
𝑘 − 𝑥𝐶𝑍

𝑘−1 =
𝑥𝐻𝜑 + 𝑛𝑘 − 𝜀𝐻
𝜑 −𝑚𝑘

−
𝑥𝐻𝜑 + 𝑛𝑘−1 − 𝜀𝐻
𝜑 −𝑚𝑘−1

 Eq. 4-23 

In the computer implementation, a subroutine traverses all segments of the zero-stress strain profile 

to find the coefficients 𝑎0, 𝑎1, 𝑎2, and 𝑎3. This obtains the general form of the compression zone 

versus curvature relationship, shown in Eq. 4-24. 

𝐶𝑍(𝜑) = ∑ 𝑎0
𝑘 +

𝑎1
𝑘𝜑 + 𝑎2

𝑘

𝜑 + 𝑎3
𝑘

𝑁𝐹−1

𝑘=1

 Eq. 4-24 

The derivative of the compression zone with respect to curvature is in Eq. 4-25. 

𝜕𝐶𝑍(𝜑)

𝜕𝜑
= ∑

𝑎1
𝑘𝑎3
𝑘 − 𝑎2

𝑘

(𝜑 + 𝑎3
𝑘)2

𝑁𝐹−1

𝑘=1

 Eq. 4-25 

4.6 Computing the shear force 

Figure 4-18 shows the deformation vector in r – p plane. The deformation vector �⃗⃗� 𝑝𝑟 lies on a line 

governed by Eq. 4-26. 
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𝑑𝑆𝑆
𝐻𝑒
= 𝐶 [𝜑

𝐿𝑤
2
] + 𝐷 Eq. 4-26 

Parameters 𝐶 and 𝐷 are calculated in terms of the committed and trial state of the deformed 

element as shown in Eq. 4-27. 

𝑑𝑝 = 𝑝𝐶 − 𝑝𝑇 , 𝑑𝑟 = 𝑟𝐶 − 𝑟𝑇 , 𝐶 = tan𝛽 =
𝑑𝑟

𝑑𝑝
, 𝐷 = 𝑟𝐶 −

𝑑𝑟

𝑑𝑝
𝑝𝐶 Eq. 4-27 

Knowing 𝐶 and 𝐷, the stress demand of Table 4-2 is given by Eq. 4-28. 

𝑣𝑢(𝜑) =
𝜔𝑣𝑉@𝑀𝑢𝑙𝑡

𝐴𝑐𝑣√𝑓′𝑐
=
𝐾𝑆𝑆𝐻𝑒 (𝐶 [𝜑

𝐿𝑤
2
] + 𝐷)

𝐴𝑐𝑣√𝑓′𝑐
 Eq. 4-28 

The derivative of the shear stress with respect to curvature is in Eq. 4-29. 

 

Figure 4-18 Deformation vector in r - p plane 

𝜕𝑣𝑢
𝜕𝜑

=
𝐻𝑒𝐶𝐿𝑤

2𝐴𝑐𝑣√𝑓′𝑐
 Eq. 4-29 

This derivative is then used to solve for a 𝐷 𝐶⁄ = 1 for the desired deformation parameter. This 

will be shown later in 4.7. 
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4.7 Solving for deformation parameters 

The final form of the equation to solve for deformation parameter 𝑑 within any load step is shown 

in Eq. 4-30. 

𝐹 = 𝜑 − 𝑑(𝜑) = 0 Eq. 4-30 

Newton’s approach in Eq. 4-31 is used to solve for curvature at which 𝑑 is exceeded. 

𝜑𝑁+1 = 𝜑𝑁 −
𝐹𝑁
𝐹′𝑁

 Eq. 4-31 

The sample problem in Error! Reference source not found. shows the procedure. 

4.8 Case study: analysis of a coupled wall system 

This chapter concludes with a case study to show how the element works. The 12-story coupled 

wall system, shown in Figure 4-19, is analyzed for dynamic analysis. The cross section of the wall 

piers is shown in Figure 4-20. The piers are symmetric with respect to the centroid of the coupling 

beams. The exterior boundary of the walls is reinforced with 27 No. 11 bars spaced at 6 in. and the 

interior boundary is reinforced with 15 No. 11 bars, spaced at 6 in. This results in a reinforcement 

ratio of 4.875 %. 
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Figure 4-19 The coupled wall system analyzed in 4.8 

The vertical reinforcement in the web is No. 6 bars spaced at 15 in. The wall has been designed 

with 60 ksi steel bars and 6 ksi concrete. In nonlinear modeling, the expected strength of the 

material is used by assuming an over strength factor of 1.3, according ASCE 41 recommendation. 

 

Figure 4-20 The cross section of wall piers of the coupled wall system in 4.8 

The ground motion history used for dynamic analysis is RSN 20, with acceleration history shown 

in Figure 3-51. Each pier has a tributary area that takes 160 kips of gravity loads. This gravity load 

is applied as vertical point loads at the geometric centroid of each pier. The expected shear strength 

of each coupling beam is 350 kips per design. For the case of simplicity, all the coupling beams 

are assumed to have the same shear strength. 
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It will be discussed later, in 5.5, that the deformation parameters of the backbone curve need to be 

adjusted to account for distribution of nonlinearity above the bottom element. To do so, Eq. 5-28  

requires the yield rotation of the element used in the study, and the element assumed in generating 

tables Table 4-1 and Table 4-2. Because both elements have the same height (ℎ𝑒 = 𝐿𝑤 2⁄ = 120 𝑖𝑛), 

the yield rotations are equal. Note that the moment curvature curve, and the yield rotation of the 

piers are different in positive and negative directions because of the non-symmetric sections, and 

different axial loads. The elastic analysis for design of the system shows that the piers undergo a 

maximum compressive axial load of ~5,000 kips (With positive curvature in left pier, and negative 

curvature in right pier) and a maximum tensile axial load of ~1,500 kips in the opposite direction. 

The moment curvature diagram of the piers for the expected compressive axial load, and the 

expected tensile axial load are shown in Figure 4-21. 

  

Figure 4-21 Moment curvature diagram of piers when they undergo compressive and tensile 

axial load 

 The yield curvature, 𝜑𝑌, yield moments, 𝑀𝑌, and yield rotation, 𝜃𝑌, of the piers under expected 

compression and tension loads are listed here. 

𝜑𝑌
𝐶𝑜𝑚 = 0.000020014 

1

𝑖𝑛
, 𝑀𝑌

𝐶𝑜𝑚 = 76,288 𝑘𝑖𝑝𝑠 − 𝑓𝑡, 𝜃𝑌
𝐶𝑜𝑚 = 0.24017% 



96 

 

𝜑𝑌
𝑇𝑒𝑛 = 0.000016464 

1

𝑖𝑛
, 𝑀𝑌

𝑇𝑒𝑛 = 43,317 𝑘𝑖𝑝𝑠 − 𝑓𝑡, 𝜃𝑌
𝑇𝑒𝑛 = 0.19756% 

The values of deformation parameter 𝑑 in Table 4-1 are adjusted due to “Distributed Nonlinearity” 

modeling, and for expected axial compression load, using Eq. 5-28. 

𝑟 =
𝐻𝐵𝐸
𝐻𝑤

=
1

2
 

0.032 → (0.032 − 0.0024017)
3

4
+ 0.0024017 = 0.024600 

0.026 → (0.026 − 0.0024017)
3

4
+ 0.0024017 = 0.020100 

0.018 → (0.018 − 0.0024017)
3

4
+ 0.0024017 = 0.014100 

0.014 → (0.014 − 0.0024017)
3

4
+ 0.0024017 = 0.011100 

Same calculations are done for the pier under expected tensile load. 

0.032 → (0.032 − 0.0019756)
3

4
+ 0.0019756 = 0.024494 

0.026 → (0.026 − 0.0019756)
3

4
+ 0.0019756 = 0.019994 

0.018 → (0.018 − 0.0019756)
3

4
+ 0.0019756 = 0.013996 

0.014 → (0.014 − 0.0019756)
3

4
+ 0.0019756 = 0.010994 

Deformation parameters 𝑑 and 𝑑’ will be adjusted in the same way. These calculations are done 

inside the element, once the user specifies the yield curvature in positive and negative directions. 
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4.8.1 Analysis of results 

The history of demands, over the first 10 sec of the excitation when seismic loads are more severe 

are presented in this section. The history of axial load, shear, and depth of compression zone are 

plotted. These are demands that control the deformation parameter of the backbone curve in Table 

4-1 and Table 4-2. The roof drift history and the history of plastic hinge is also plotted in Figure 

4-22 as reference. The load step at which deformation parameter 𝑑 is exceeded and strength loss 

(SL) initiates, is marked with a blue line in the figures. 

 

Figure 4-22 Right pier drift and plastic hinge rotation history 

Figure 4-23 shows the history of compression zone depth normalized by wall length for the right 

pier. The roof drift, normalized by its maximum value over the ground motion is also shown for 

reference. The compression zone depth calculated based on concrete fibers’ stress, steel fibers’ 

stress, and the deformation-wise compression zone (Discussed in 4.5) are plotted separately. 
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Figure 4-23 History of compression zone depth for the right pier 

Note that for the initial phases of the ground motion, including the load step at which the element 

strength degradation initiates, the two values are close. But once residual deformations become 

large, the difference between the two become significant. Figure 4-24 shows the history of 

parameter 𝜆, calculated based on both the concrete and steel compressive stresses. 

 

Figure 4-24 History of parameter, λ, for the right pier 

Figure 4-25 shows the history of compression zone depth (normalized by dividing by the length 

of the wall) and shear stress (normalized by √𝑓′𝑐) for the right pier. This shear stress is calculated 

within the element, using Eq. 3-3, and accounts for the dynamic effect of higher modes and the 

effect of flexural over strength. 
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Figure 4-25 History of shear stress and axial load pf right pier 

Due to a seismic pulse in a certain direction, one of the piers undergoes seismic compressive axial 

load, and the other pier undergoes seismic tensile axial load. The total axial load, and depth of 

compression zone is larger in the wall with more compressive force. The higher axial load, and 

larger depth of the compression zone initiates the strength degradation of the compressive pier 

earlier than the other one. In Figure 4-27, these two parameters are shown for the left and right 

pier in the same figure, alongside the time step at which the strength degradation (SL) initiates for 

the two piers. 

  

Figure 4-26 History of axial load and compression zone depth parameter for the two piers of the 

coupled wall system 
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The strength degradation of both piers takes place at almost the same time. This is partially due to 

the big pulse in the record in the 8th second. Also note that once the compressive pier loses its 

strength, the tensile pier takes more demand. This initiates the strength degradation of the tensile 

pier faster, when compared to the case where the compressive pier has remained intact. The 

response of the plastic hinge, with and without modeling strength degradation, for both piers is 

shown in Figure 4-27. 

  

Figure 4-27 Plastic hinge response of the wall piers 

The load step at which the strength loss initiates is indicated in the moment curvature curves. For 

the right pier, the plastic hinge rotation at this step is 

𝜃𝑆𝐿 = 1.3685 % 

The normalized axial load, shear stress, and compression zone parameter at this load step, for the 

right pier, are as follows. 

𝑝𝑢 = 0.19703, 𝑣𝑢 = 5.6318, 𝜆 = 56.854 

Note that 4 < 𝑣𝑢 < 6 and 10 < 𝜆 < 70. This requires a double interpolation within the table to 

obtain deformation parameter 𝑑. 
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𝑑𝑅𝑃 = (2.4600 +
2.0100 − 2.4600

6 − 4
(5.6318 − 4)) + 

(1.1100 +
1.1100 − 1.4100

6 − 4
(5.6318 − 4)) − (2.4600 +

2.0100 − 2.4600
6 − 4

(5.6318 − 4))

70 − 10
(56.854 − 10) 

= 1.3685 % 

This is the exact rotation of the plastic hinge at which deformation parameter 𝑑 is exceeded for the 

right pier. Deformation parameter 𝑑’ of the right pier is obtained using the axial load, 𝑝𝑢, and the 

compression zone depth, 𝜆, obtained at rotation 𝑑 of the plastic hinge. A double interpolation 

through Table 4-2 turns 𝑑’. 

𝑑′𝑅𝑃 = (2.7600 +
2.3100 − 2.7600

0.2 − 0.1
(0.19703 − 0.1)) + 

(1.1100 +
1.1100 − 1.4100

0.2 − 0.1
(0.19703 − 0.1)) − (2.7600 +

2.3100 − 2.7600
0.2 − 0.1

(0.19703 − 0.1))

70 − 10
(56.854 − 10) 

= 1.3828 % 

The rapid post-peak drop in element strength may cause numerical instability (). To avoid this, 

deformation parameter 𝑑’ is assumed to be at least equal to 1.1 × 𝑑. 

𝑑′𝑅𝑃 = 1.1 × 1.3685 = 1.5054 % 

Deformation parameters of the Left Pier are calculated the same way, and are equal to 

𝑑𝐿𝑃 = 1.9023 % 

𝑑′𝐿𝑃 = 2.4730 % 

Note in Figure 4-27 that the Strength degradation branch is wider in the tensile pier because of the 

more ductility due to the lower compression load. 
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Chapter 5 Plastic hinge length of flexure-controlled structural walls 

To evaluate the performance of structural walls, ASCE 41 [2] assigns a backbone curve to the 

force deformation response of the bottom portion of the wall called the plastic hinge. To convert 

the top drift of a wall specimen to the corresponding deformation parameters (rotation) of the 

backbone curve, the height of the plastic hinge must be known. In addition to ASCE 41 criteria, 

some of the previous work on required ductility of structural members (Walls and Columns) 

associate the performance level to the maximum strain (Tensile and compressive) over the plastic 

hinge (Moehle and Wallace (1992) [51], Berry and Eberhard (2003) [27], Segura and Wallace 

(2018) [36]). Therefore, it is necessary to have a realistic estimate of the plastic hinge length for 

performance assessment of structural walls. 

Abdullah and Wallace (2019) [47] assumed that the height of the plasticized zone is equal to the 

length of the wall (𝐻𝑃𝑍 = 𝐿𝑤), and the size of the plastic hinge is half the length of the wall (𝑙𝑝 =

𝐿𝑤 2⁄ ). Other researchers, whose work will be reviewed in 5.2, have proposed different 

expressions. Some of these studies have been done using Finite analyses (Bohl (2006) [48], Zhao 

et al. (2011) [52], Kazaz (2013) [28]). Experimental studies, are either based on limited data, or 

there is little documentation regarding the number of tests and the reliability of the models. Recent 

wall tests, with instrumentation that enables us to measure the extent of nonlinearity, has motivated 

this study on the plastic hinge length of flexure-controlled structural walls. A database of 17 tested 

structural walls is assembled. The height of the plastic zones at peak deformation capacity (Point 

C in Figure 5-8) is calculated for each wall in the database and different expressions for plastic 

hinge zone are evaluated. 



103 

 

5.1 Description of the plastic hinge 

Figure 5-1 shows a flexure-controlled wall deformed by a lateral load. As far as the moment caused 

by lateral load at the base of the wall is less than the flexural yielding capacity, the wall remains 

elastic and the flexural deformation (curvature) at any point over the wall height is proportional to 

the bending moment. 

 
Figure 5-1 Wall loaded with lateral load less than the yield load 

Once the bending moment at the base exceeds the yielding capacity, flexural deformation 

accumulates over a height 𝐻𝑃𝑍 above the critical section, called the plasticized zone as shown in 

Figure 5-2(a). The curvature distribution is also shown in this figure. 

 
Figure 5-2 (a) Wall loaded with lateral load more than the yield load, (b) Curvature distribution 

over the wall height, (c) A simple model of the wall 
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In a simple nonlinear model, like the one shown in Figure 5-2(c), it is assumed that the entire 

nonlinear action occurs in the bottom portion of the wall, called the plastic hinge, and a nonlinear 

element is used over this portion in the model. The height of this bottom portion, denoted by 𝑙𝑝, is 

generally a fraction of the actual plasticized zone. Above the plastic hinge, the wall is modeled by 

an elastic beam-column element, and therefore, is enforced to remain elastic. In 5.3, it will be 

shown that for the average curvature of the model’s nonlinear element (Figure 5-2 (c)) to be equal 

to the maximum curvature at the base of the prototype, the height of the nonlinear element must 

be half of the height of the plasticized zone. 

𝑙𝑝 = 𝐻𝑃𝑍 2⁄  

Analyses in literature generally assume the model in Figure 5-2 (c) to calculate average demand 

over the plastic hinge (curvature or strain) from wall drift. Section 5.5 of this chapter shows the 

calculations for a Distributed Nonlinearity model, which is used in case studies of Chapter 3 and 

Chapter 4. 

5.2 Literature review 

This section describes some of the previous research on the plastic hinge length of RC walls and 

other structural elements. 

5.2.1 Park and Paulay (1975) [24] 

In their textbook, the authors refer to the work by other researches for plastic hinge of RC 

members. Baker has proposed Eq. 5-1 for plastic hinge length of RC members with unconfined 

concrete. 

𝑙𝑝 = 𝑘1𝑘2𝑘3 (
𝑧

𝑑
)

1
4
𝑑 Eq. 5-1 
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In Eq. 5-1, 𝑘1 is 0.7 for mild steel and 0.9 for cold worked steel. 𝑘2 depends on axial load and is 

obtained from Eq. 5-2, where 𝑃𝑢 is axial load on the member and 𝑃0 is the pure axial capacity. 𝑘3 

is 0.6 for 𝑓′𝑐 = 5100 𝑝𝑠𝑖, and 0.9 when 𝑓′𝑐 = 1700 𝑝𝑠𝑖. 𝑓′𝑐 is 0.85 times the cube strength of 

concrete. 𝑧 is the effective length (Distance between the critical section to the point of counter 

flexure), and 𝑑 is the effective depth of the member. 

𝑘2 = 1 + 0.5
𝑃𝑢
𝑃0

 Eq. 5-2 

For members with confined concrete, Baker has proposed Eq. 5-3, where 𝑐 is the depth of 

compression zone at ultimate capacity, and other coefficients are as defined for Eq. 5-2. 

𝑙𝑝 = 0.8𝑘1𝑘3 (
𝑧

𝑑
) 𝑐 Eq. 5-3 

Based on tests on simply supported beams, Corley has proposed Eq. 5-4 for length of plastic hinge. 

𝑙𝑝 = 0.5𝑑 + 0.2√𝑑 (
𝑧

𝑑
) Eq. 5-4 

In discussion of Corley’s work, Mattock proposed Eq. 5-5 that has a simpler form and fits the 

experimental data well. 

𝑙𝑝 = 0.5𝑑 + 0.05𝑧 Eq. 5-5 

Sawyer has also proposed equation Eq. 5-6 for the effective length of plastic hinge. 

𝑙𝑝 = 0.25𝑑 + 0.075𝑧 Eq. 5-6 

5.2.2 Paulay and Priestley (1992) [25] 

Paulay and Priestley obtained Eq. 5-7 to correlate the roof displacement ductility, 𝜇𝛥, of a 

cantilever, to the curvature ductility, 𝜇𝜑, of the wall section. 
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𝜇𝛥 = 1 + 3(𝜇𝜑 − 1)
𝑙𝑝

𝑙
(1 − 0.5

𝑙𝑝

𝑙
) Eq. 5-7 

In this equation, 𝑙𝑝 is the height of the plastic hinge, and 𝑙 is the shear span of the wall (Distance 

from the point of effective lateral load to the base). For a triangular distribution of lateral load, 𝑙 is 

⅔ of the total height. Eq. 5-7 was originally developed for columns and is based on a curvature 

diagram shown in Figure 5-3 (e), where it is assumed that the plastic curvature is concentrated 

over the plastic hinge, with height 𝑙𝑝 above the base. To account for the base rotation due to 

penetration of strain through the foundation, the plastic hinge is extended below the wall base, and 

the new height of the plastic hinge is denoted by 𝑙′𝑝. 

 

Figure 5-3 Distribution of curvature over the wall by Paulay and Priestley (1992) 

The authors recommend the expression in Eq. 5-8 to obtain the height of the plastic hinge. 

𝑙𝑝 = 0.08𝑙, 𝑙′𝑝 = 𝑙𝑝 + 0.15𝑑𝑏𝑓𝑦 Eq. 5-8 

In Eq. 5-8, 𝑙, is the shear span, and the second term of 𝑙′𝑝 (0.15𝑑𝑏𝑓𝑦) accounts for the base rotation 

due to strain penetration. Paulay and Priestley also proposed Eq. 5-9 for plastic hinge height of RC 

walls. 

𝑙𝑝 = 0.2𝑙𝑤 + 0.044ℎ𝑒 Eq. 5-9 
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In Eq. 5-9, ℎ𝑒 = 𝑙 is the effective height. Note that this equation does not have the strain penetration 

term. Priestley and Kowalsky compared the values obtained for the plastic hinge size, by the two 

equations in Figure 5-4. A triangular distribution of lateral loads was assumed in this figure. 

 

Figure 5-4 Comparison of Eq. 5-8 and Eq. 5-9 by Priestley and Kowalsky 

5.2.3 Berry and Eberhard (2005) [27] 

Berry and Eberhard worked on an expression that estimates the lateral displacement at which 

buckling of longitudinal bars of a column initiates. To achieve that, the authors first proposed an 

expression to estimate the curvature of a column section at initiation of bar buckling. To convert 

this curvature to a corresponding plastic hinge rotation, and then a corresponding top lateral 

displacement, expression in Eq. 5-10 for the height of plastic hinge columns was proposed. 

𝐿𝑝 = 𝛼𝐿 + 𝛽𝐷 + 𝜉𝑓𝑦𝑑𝑏 Eq. 5-10 

In Eq. 5-10, 𝐿 is the effective height of the column. The term 𝛼𝐿 considers the effect of moment 

gradient, and 𝛽𝐷 considers the effect of section depth. The term 𝜉𝑓𝑦𝑑𝑏 accounts for the base 

rotation. 

The results of this research, only turns the plastic hinge rotation at buckling and the coefficients of 

plastic hinge length, 𝛼, 𝛽, and 𝜉 were not derived. But Eq. 5-10 provides a general form which is 

adopted by many researchers to work on equations for the size of the plastic hinge. 
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5.2.4 Kazaz (2013) [28] 

Kazaz did a parametric study using a finite element model to estimate the height of the plasticized 

zone for cantilever walls. Figure 5-5 shows the overview of the finite element model used in the 

study. 

 

Figure 5-5 Finite element model of cantilever walls in study by Kazaz 

The accuracy of the model was calibrated and verified by predicting the response of specimen 

RW2 tested by Thomsen and Wallace, as shown in Figure 5-6. 

 

Figure 5-6 Verification of the finite element model by Kazaz 

The varying parameters in his study, with the range of their values are listed in Table 5-1. 

Table 5-1 Summary of variables in the parametric study by Kazaz 
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Parameter Unit Range of values 

Wall length, 𝐿𝑤 m 3, 5, 8 

Effective height, 𝐻𝑒 m 5, 6, 9, 15, 24 

Wall aspect ratio, 𝐻𝑒 𝐿𝑤⁄  - 0.75, 0.125, 1.2, 1.8, 1.875, 2, 3, 4.8, 5, 8 

Wall axial load ratio, 𝑃𝑢 𝐴𝑔𝑓′𝑐⁄  - 0.02, 0.05, 0.1, 0.15, 0.25 

Boundary element reinforcement ratio, 𝜌𝑏 - 0.005, 0.01, 0.02, 0.04 

The Proposed equation to estimate the size of the nonlinear zone is shown in Eq. 5-11. 

𝐿𝑝𝑧 = 0.60𝐿𝑤 (1 −
𝑃

𝐴𝑤𝑓′𝑐
) (1 −

𝑓𝑦𝜌𝑠ℎ

𝑓′𝑐
)(
𝑀
𝑉⁄

𝐿𝑤
)

0.5

 Eq. 5-11 

Three remarks from this study are listed here. 

• Unlike previous equations, the shear reinforcement ratio, 𝜌𝑠ℎ, is a controlling parameter. 

• Although Figure 5-5 mentions the foundation slab accounts for strain penetration, the 

finite element analysis does not show any yielding of the reinforcement in the foundation. 

This seems to be the case for any finite element model in which a perfect cohesion 

between the steel continuum and the adjacent concrete continuum is assumed. Therefore, 

slippage and extension of bars is not modeled. 

• The model is verified by comparing the strain profile over the bottom 9-in. segment of 

the model, with the strain profile obtained by the LVDTs installed over the bottom 9-in. 

of specimen RW2 tested by Thomson and Wallace (1995) [22]. Note that the bottom pin 

of the LVDTs is on the footing (Figure 5-7). So, these LVDTs measure the base rotation 

in addition to the deformation of the bottom 9 inch of the wall. The finite element model 

does not measure any base rotation. So, comparing the two seems questionable. 
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Figure 5-7 LVDTs installed on specimen RW2 tested by Thomsen and Wallace (1995) 
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5.3 Obtaining properties of model’s nonlinear element from test data 

Assume a flexurally-controlled wall model is tested in the lab. The wall specimen has a cross-

section with 𝑡𝑤 thickness, 𝐿𝑤 length. The total height of the wall is 𝐻𝑤. The specimen is loaded 

with cyclic lateral point load, denoted by 𝑃𝐿, at the top. Figure 5-8 shows the envelope of the 

hysteretic force deformation curve. 

 

Figure 5-8 Experimental force deformation envelope of a wall specimen 

The specimen prototype, and the mechanical model are shown in Figure 5-9. 

 

Figure 5-9 A wall specimen and the mechanical model 
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The nonlinear flexural response of the wall is captured by a nonlinear element, with a height of 𝑙𝑝. 

This element is comprised of flexurally/axially rigid components, connected by a nonlinear 

flexural spring located at 𝑐𝑙𝑝 from the critical section. The nonlinearity of the wall is entirely 

captured by this spring. The purpose of this chapter is to find parameters of the backbone curve, 

shown in Figure 5-10, and the shear stiffness of the nonlinear element, so that the envelope of the 

force deformation curve predicted by the model matches the envelope of the force deformation 

curve obtained in the test. These parameters are the stiffness of the elastic part, 𝐾𝑁𝐿𝐸, and the 

deformation parameters, 𝑑𝐹𝑆, 𝑑′𝐹𝑆, and 𝑒𝐹𝑆. The shear stiffness of model will also be computed. 

5.3.1 The shear stiffness of the model 

 

Figure 5-10 Backbone curve of model's flexural spring 

It is assumed that the wall’s shear response is elastic. If so, the deformation of the wall due to 

shear response is shown in Figure 5-11. 
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Figure 5-11 Shear deformation of a wall specimen under constant shear 

Since the shear force is constant over the wall height, the shear distortion, 𝛾, is also constant over 

the wall height. Knowing the shear distortion, 𝛾, from top lateral displacement, the shear 

stiffness, 𝐾𝑆, is calculated in Eq. 5-12. 

𝛾 =
𝛿𝑆
𝐻𝑤
, 𝛾 =

𝑣𝑢
𝐺𝑒
=

𝑃𝐿
𝑡𝑤𝐿𝑤𝐺𝑒

, 𝐾𝑆 =
𝑡𝑤𝐿𝑤𝐺𝑒
𝐻𝑤

 Eq. 5-12 

In Eq. 5-12, 𝛿𝑆 is the top lateral shear displacement of the wall. 𝐺𝑒 is the effective shear modulus. 

The effective shear modulus is the gross shear modulus, 𝐺𝑔, multiplied by a factor, 𝛼𝑆, to account 

for concrete cracking. 

𝐺𝑒 = 𝛼𝑆𝐺𝑔 Eq. 5-13 

In a computer program used for modeling the wall, the stiffness 𝐾𝑆 is assigned to a uniaxial material 

that will later be aggregated with the wall’s elastic component and the nonlinear element in the 

bottom. Another approach is to use an elastic horizontal spring for the nonlinear element, and 𝐾𝑆 

would be the stiffness of this spring. 

Once the effective stiffness factor is known, the shear stiffness is calculated using the geometry of 

the wall. Calculating this factor from test data will be done in 5.3.2. 
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5.3.2 Calculation of the effective elastic stiffness factor of the wall from test data 

An approximate flexural deformation of the wall due to a lateral point load at the top is shown in 

Figure 5-12. For now, assume that the lateral load is smaller than the load required for yielding the 

section, 𝑃𝑦. 

 

Figure 5-12 Flexural deformation of a wall specimen due to a lateral point load at the top 

The roof lateral displacement due to flexural deformation, 𝛿𝑓, and the flexural stiffness of the wall 

is given in Eq. 5-14. 

𝛿𝐹 =
𝑃𝐿𝐻𝑤

3

3𝐸𝐼𝑒
, 𝐾𝐹 =

3𝐸𝐼𝑒

𝐻𝑤
3  Eq. 5-14 

In Eq. 5-14, 𝐸𝐼𝑒 is the effective flexural stiffness of the wall. The effective flexural stiffness is the 

gross flexural stiffness, 𝐸𝐼𝑔, multiplied by a factor, 𝛼𝐹, to account for concrete cracking. 

𝐸𝐼𝑒 = 𝛼𝐹𝐸𝐼𝑔 Eq. 5-15 

It is assumed that the flexural stiffness reduction factor, 𝛼𝐹, and the shear stiffness reduction factor, 

𝛼𝑆, are equal. Eq. 5-16 then, turns the effective stiffness of the wall in terms of 𝛼 = 𝛼𝑆 = 𝛼𝐹, 

considering both the flexural and shear deformations. Knowing 𝐾𝑒 from the envelope of Figure 

5-8, the effective stiffness factor, 𝛼, is calculated. 
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𝐾𝑒 =
𝑃𝐿

𝛿𝑇 = 𝛿𝐹 + 𝛿𝑆
𝐻𝑤

=
𝑃𝐿

𝑃𝐿𝐻𝑤
2

3𝛼𝐸𝐼𝑔
+

𝑃𝐿
𝑡𝑤𝐿𝑤𝛼𝐺𝑔

=
1

𝐻𝑤
2

3𝛼𝐸𝐼𝑔
+

1
𝑡𝑤𝐿𝑤𝛼𝐺𝑔

, 𝛼 = 𝐾𝑒 (
𝐻𝑤

2

3𝐸𝐼𝑔
+

1

𝑡𝑤𝐿𝑤𝐺𝑔
) 

Eq. 5-16 

The flexural and shear stiffness properties assigned to the elastic portion of the model must 

incorporate this effective stiffness factor. 

5.3.3 Calculation of the elastic stiffness of the flexural spring’s backbone curve, KNLE 

The initial elastic segment of the backbone curve in Figure 5-10 accounts for the elastic 

deformation of the portion of the wall that the nonlinear element represents. To calculate this, the 

curvature of the prototype at the top and at the bottom of the nonlinear element, 𝜑𝐴 and 𝜑𝑚𝑎𝑥, are 

obtained in Eq. 5-17 for a lateral load smaller than the yield load, 𝑃𝑦. 

𝜑𝑚𝑎𝑥 =
𝑃𝐿𝐻𝑤
𝐸𝐼𝑒

, 𝜑𝐴 =
𝑃𝐿[𝐻𝑤 − 𝑙𝑝]

𝐸𝐼𝑒
 Eq. 5-17 

In Eq. 5-17, 𝑙𝑝 is the height of the nonlinear element, shown in Figure 5-9. Knowing these two 

curvatures, the rotation of the prototype at the top of the nonlinear element is obtained in Eq. 5-18. 

𝜃𝑙𝑝 = [
𝜑𝑚𝑎𝑥 + 𝜑𝐴

2
] 𝑙𝑝 =

𝑃𝐿 [𝐻𝑤 −
𝑙𝑝
2
]

𝐸𝐼𝑒
𝑙𝑝 

Eq. 5-18 

The elastic stiffness of the flexural spring, 𝐾𝑁𝐿𝐸, is calculated so that the nonlinear element 

produces the same rotation as in Eq. 5-18 at the top of the nonlinear element. Eq. 5-19 shows the 

moment at the location of the flexural spring. 

𝑀𝑆 = 𝑃𝐿 [𝐻𝑤 −
𝑙𝑝

2
] Eq. 5-19 

The elastic stiffness of the nonlinear element is calculated in Eq. 5-20, so that the moment in Eq. 

5-19 produces the same rotation that the prototype observes (Eq. 5-18). 



116 

 

𝐾𝑁𝐿𝐸 =
𝑀𝑆
𝜃𝑙𝑝
=

(

 
 
 𝑃𝐿[𝐻𝑤 − 𝑐𝑙𝑝]

𝑃𝐿 [𝐻𝑤 −
𝑙𝑝
2
]

𝐸𝐼𝑒
𝑙𝑝)

 
 
 
=
𝐸𝐼𝑒
𝑙𝑝
(
1 − 𝑐𝑞

1 −
𝑞
2

) , 𝑞 =
𝑙𝑝

𝐻𝑤
 Eq. 5-20 

5.3.4 Calculation of the deformation parameters of the backbone curve, dFS, d’FS, eFS 

The force deformation envelope of Figure 5-8 shows that once the wall yields, it starts deforming 

freely with no increase in lateral load. The flexural plastic deformation is due to accumulation of 

plastic curvature over the bottom portion of the wall, called the plasticized zone. Figure 5-13 shows 

the distribution of curvatures over the plasticized zone, and the segment of the wall above that. 

 

Figure 5-13 Distribution of curvature over the wall after yielding 

In the model, a constant plastic curvature is assumed over the bottom nonlinear element, with a 

magnitude equal to the maximum plastic curvature at the base, 𝜑𝑝 = 𝜑𝑚𝑎𝑥 − 𝜑𝑦. On the other hand, 

the distribution of plastic curvature is linear over the plasticized zone of the prototype. The two 

curvature distributions are shown in Figure 5-14. 
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Figure 5-14 post-Yield curvature distribution over the prototype and the model due to a lateral 

point load 

If the constant plastic curvature of the nonlinear element is aimed to be equal to the that at the base 

of the prototype, height of the nonlinear element must essentially be equal to half of the plasticized 

zone (Eq. 5-21). 

𝑙𝑝 =
𝐻𝑃𝑍
2

 Eq. 5-21 

The roof drift due to the plastic curvature over the nonlinear element is given in Eq. 5-21. 

𝛿𝑝

𝐻𝑤
= 𝜑𝑝𝑙𝑝 (1 −

𝑙𝑝

2𝐻𝑤
) = (𝜑𝑚𝑎𝑥 − 𝜑𝑦)𝑙𝑝 (1 −

𝑞

2
) , 𝑞 =

𝑙𝑝

𝐻𝑤
 Eq. 5-22 

Using the plastic hinge length of Eq. 5-21, the rotation parameters of the backbone curve is 

calculated in Eq. 5-23. 

𝑑𝐹𝑆 −
𝑀𝑦

𝐾𝑁𝐿𝐸
=

𝑑 −
𝑃𝑌
𝐾𝑒

(1 −
𝑙𝑝
2𝐻𝑤

)

, 𝑑′𝐹𝑆 −
𝑀𝑦

𝐾𝑁𝐿𝐸
=

𝑑′ −
𝑃𝑌
𝐾𝑒

(1 −
𝑙𝑝
2𝐻𝑤

)

, 𝑒𝐹𝑆 −
𝑀𝑦

𝐾𝑁𝐿𝐸
=

𝑒 −
𝑃𝑌
𝐾𝑒

(1 −
𝑙𝑝
2𝐻𝑤

)

 

𝑑𝐹𝑆 =
𝑑 −

𝑃𝑌
𝐾𝑒

(1 −
𝑙𝑝
2𝐻𝑤

)

+
𝑀𝑦

𝐾𝑁𝐿𝐸
, 𝑑′𝐹𝑆 =

𝑑′ −
𝑃𝑌
𝐾𝑒

(1 −
𝑙𝑝
2𝐻𝑤

)

+
𝑀𝑦

𝐾𝑁𝐿𝐸
, 𝑒𝐹𝑆 =

𝑒 −
𝑃𝑌
𝐾𝑒

(1 −
𝑙𝑝
2𝐻𝑤

)

+
𝑀𝑦

𝐾𝑁𝐿𝐸
 

Eq. 5-23 

The moment capacity of the flexural spring, 𝑀𝑌, is in Eq. 5-24. 
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𝑀𝑌 = 𝑃𝑌 (𝐻𝑤 −
𝑙𝑝

2
) Eq. 5-24 

To obtain the properties of the model, it is necessary to know the plasticized zone. 

5.4 Calibrating the shear wall’s backbone curve for a different element size 

By statistical analysis on a database of more than 1,000 tested structural wall specimens, Abdullah 

and Wallace derived equations that determine the deformation parameters of a backbone curve 

that can be used for the flexural spring of the shear wall model in Figure 4-7. The authors also 

generated Table 4-1 and Table 4-2 that can alternatively be used to determine deformation 

parameters. In their work, a similar approach to the one discussed in 5.3 was used to convert the 

top lateral displacement of each specimen to the corresponding deformation parameter of the 

plastic hinge. Note that not all specimens are models of an entire wall. Some (Including specimens 

tested by Wallace and Segura) are wall panels, that represent only the bottom portion of the 

prototype. In this case, new formulations need to be derived to convert a wall panel’s top rotation 

to deformation parameters of the flexural spring in the model. 

Analyses done by Abdullah and Wallace assumes the height of the plasticized zone is equal to the 

length of the wall (Eq. 5-25). The size of the nonlinear element is hence equal to half the length of 

the wall. 

𝐻𝑃𝑍 = 𝐿𝑤 , 𝑙𝑝 =
𝐻𝑃𝑍
2
=
𝐿𝑤
2

 Eq. 5-25 

Note that researchers have proposed different equations for the nonlinear height of structural walls. 

As shown in 5.3.4, deformation parameters of the flexural spring depend on the size of the 

nonlinear element. To convert the deformation parameters calculated using a pre-assumed size of 



119 

 

the nonlinear element, 𝑙𝑝
1, to the deformation parameters for a nonlinear element with a different 

size, 𝑙𝑝
2, Eq. 5-26 is used. 

𝑑𝐹𝑆
2 = (

 
 
𝑑𝐹𝑆
1 −

𝑃𝑌 (𝐻𝑤 −
𝑙𝑝
1

2
) 𝑙𝑝
1

𝐸𝐼𝑒

)

 
 
(1 −

𝑙𝑝
1

2𝐻𝑤
)

(1 −
𝑙𝑝
2

2𝐻𝑤
)

+

𝑃𝑌 (𝐻𝑤 −
𝑙𝑝
2

2
) 𝑙𝑝

2

𝐸𝐼𝑒
 

Eq. 5-26 

Eq. 5-26 is derived with the assumption that both models produce the same roof drift at a certain 

rotation of the plastic hinge. Other parameters of the backbone curve 𝑑′𝐹𝑆
2  and 𝑒𝐹𝑆

2  can be calculated 

using the same expression. 

5.5 Calibrating parameters of the backbone curve for a model with distributed nonlinearity 

The wall element used in Figure 5-9 uses elastic beam column elements above the nonlinear 

bottom element. This approach enforces all the nonlinear action to accumulate within the plastic 

hinge. Although the portion of the wall within the plasticized zone and above the plastic hinge 

becomes nonlinear in the prototype, the model enforces an elastic response in this zone. In a 

practice, the entire wall is modeled using nonlinear elements with fiber sections, such as the MVL 

element. Figure 5-15 shows the distribution of curvature for a nonlinear model with fiber section. 

The curvature distribution for the model shown in Figure 5-9 is also shown for comparison. 
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Figure 5-15 Post – yield curvature distribution over the wall prototype and the model due to a 

lateral point load 

The wall is modeled with two elements over the nonlinear zone. Unlike the model shown in Figure 

5-9, the element above the plastic hinge (The most bottom element) captures the nonlinear 

response. Therefore, the backbone curve assigned to the plastic hinge element has to be calibrated 

accordingly. It is assumed that the elastic flexural stiffness of the nonlinear element with fiber 

section, is equal to the elastic flexural stiffness elements used in the model of Figure 5-9. So, a 

similar distribution of curvature is observed in both models when the lateral load is smaller than 

the yield load. For lateral loads beyond yielding (Assume a deformation-controlled loading 

scheme), the plastic curvature in the bottom element, 𝜑𝑝, for the MVL element is ¾ of the plastic 

curvature observed in the model of Figure 5-9. The areas enclosed by the curvature distributions 

in Figure 5-15 justifies the ¾ factor. To convert the deformation parameter 𝑑 of the backbone curve 

used in model of Figure 5-9, to deformation parameter of the backbone curve that is assigned to 

an MVL element, Eq. 5-27 is used. 

𝑑𝑀𝑉𝐿𝐸 −
𝑀𝑦

𝐾𝑀𝑉𝐿𝐸
=
3

4
(𝑑𝐹𝑆 −

𝑀𝑦

𝐾𝑁𝐿𝐸
) Eq. 5-27 
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Note that in equation above, the term 𝑀𝑦 𝐾𝑀𝑉𝐿𝐸⁄  is the elastic rotation of the plastic hinge. In 

practice, it might be necessary to use an element size other than half the plasticized zone. For 

instance, the size of the plastic hinge might be calculated to be more than the height of the first 

story. In this case, Eq. 5-28 finds the deformation parameters of the backbone curve for any size 

of the MVL element that is a fraction of the height of the plasticized zone. 

𝑑𝑀𝑉𝐿𝐸 −
𝑀𝑦

𝐾𝑀𝑉𝐿𝐸
= (𝑑𝐹𝑆 −

𝑀𝑦

𝐾𝑁𝐿𝐸
) 2𝑟 (1 −

𝑟

2
) , 𝑟 =

𝐻𝐵𝐸
𝐻𝑃𝑍

 Eq. 5-28 

In Eq. 5-28, 𝐻𝐵𝐸 is the size of the bottom element. 

Other deformation parameters would be found in the same way. 
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5.6 An experimental study on the plasticized height of RC structural walls 

To study the plasticized height of structural walls, a database of 17 wall specimens, tested in 3 

programs was assembled. The data of the tests are obtained from the DESIGNSAFE database [41]. 

Table 5-2 summarizes the general properties of the tested specimens. 

Table 5-2 General properties of the wall specimens in the database 

Specimen 

Name 

𝐿𝑤 𝐻𝑒 𝑝𝑢 = 𝑃𝑢 𝐴𝑔𝑓′𝑐⁄  𝐹𝑦
𝑙 𝑑𝑏

𝑙  Researchers 

𝑖𝑛 𝑖𝑛 % 𝑘𝑠𝑖 𝑖𝑛 

RW-A20-P10-S38 48 96 7.3 68.4 0.5 

Tran and 

Wallace 

(2012) 

[40][39] 

RW-A20-P10-S63 48 96 7.3 69.2 0.75 

RW-A15-P10-S51 48 72 7.7 68.4 0.5 

RW-A15-P10-S78 48 72 6.4 68.7, 69.2 0.625, 0.75 

RW-A15-P25-S64 48 72 1.6 68.7, 69.2 0.625, 0.75 

WP1 90 331 9.641 73.4, 77 0.5, 0.625 

Segura and 

Wallace 

(2017) 

[34][36] 

WP2 90 330 8.363 73.4, 77 0.5, 0.625 

WP3 90 330 8.139 73.4, 77 0.5, 0.625 

WP4 90 541 6.369 76.9, 77 0.75, 0.625 

WP5 90 321 8.035, 6.423 70.9, 74.1 0.625, 0.5 

WP6 90 321 7.452 70.9 0.625 

WP7 90 321 5.294 70.9 0.625 

WSH2 78.74 178 5.199 89.92 0.395 

Dazio et al. 

(1999) 

[43][42] 

WSH3 78.74 178 5.334 87.17 0.479 

WSH4 78.74 178 5.184 83.54 0.477 

WSH5 78.74 178 12.27 84.7 0.32 

WSH6 78.74 179.5 10.34 83.54 0.477 

The selected specimens are flexure-controlled. Specimens RW-A15-P10-S51, RW-A15-P10-S78, 

and RW-A15-P25-S64 tested by Tran and Wallace have an aspect ratio of 1.5, smaller than 2, 

which is the threshold considered in ACI 318 for flexure-controlled walls. But these specimens 

failed in a ductile mode because of the confinement over the boundary element. So, these tests 

were also included in the database. 
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In Table 5-2, 𝐿𝑤 is the length of the wall, 𝐻𝑒 is the effective height, 𝑝𝑢 is the axial load ratio on the 

section, 𝐹𝑦
𝑙 is the yield strength, and 𝑑𝑏

𝑙  is the diameter of the longitudinal bars in the boundary 

element. Some cells in Table 5-2 contain two numbers. Specimen WP5 was loaded with different 

axial loads in positive and negative directions. Specimens RW-A15-P10-S78, RW-A15-P25-S64, 

and specimens WP1 through WP5 had longitudinal reinforcement with different bar diameter and 

yield strengths in their boundary elements. More details about the specimens will be shown in 

appendix. 

5.6.1 Measuring the curvature distribution over specimens 

The walls in the database used in this study were selected because they were well instrumented 

and the data of instrumentation was available in the literature. This instrumentation includes Linear 

Variable Differential Transformers (LVDTs), that measure the displacement between two points 

on the wall due to the deformation of wall.  

 

Figure 5-16 Typical layout of LVDTs over a wall specimen in the database 
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By calculating the displacement between the two pins of LVDT, 𝛿, the average strain over this 

length is calculated according to Eq. 5-29. 

𝜀 =
𝛿

𝐿
 Eq. 5-29 

In Eq. 5-29, L is the initial length between the two pins of an LVDT. 

Figure 5-16 shows the layout of LVDTS on a typical wall specimen. The series of four blue LVDTs 

mounted over each segment of the wall calculates the strains at four points, along the length of the 

wall. A linear regression between strain of these points is used to calculate the average curvature 

over each segment. By using another linear regression, over segments with curvature ductility 

more than 1, the bottom line of the bilinear curve is established (The red line in Figure 5-17). This 

line determines the height of the plasticized zone, 𝐻𝑃𝑍. The top of the plasticized zone is where the 

curvature ductility is equal to the value shown in Eq. 5-30. 

𝜇𝜑 =
𝜑

𝜑𝑌
= 1 −

𝐻𝑃𝑍
𝐻𝑤

 Eq. 5-30 

 

Figure 5-17 Curvature distribution measured by LVDTs and the bilinear fit over a tested wall 

specimen 
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The bottom line of the bilinear curve also determines the curvature distribution over the most 

bottom segment (i.e., Segment OA). 

To complete the bilinear curve the point at the top of the plasticized zone is connected to the point 

with zero curvature at the effective height. This process is demonstrated in Figure 5-17. 

5.6.2 Measuring the base rotation 

The two green LVDTs on either side of the wall in Figure 5-16 measure the deformation of 

segments OA, AB, and the base rotation due to slippage and extension of longitudinal bars. All 

the specimens in the database had sufficient anchorage of longitudinal bars into the footing. So, 

no slippage occurs and the base rotation is just due to extension of longitudinal bars. This 

phenomenon is also called strain penetration in the literature. Note that the bottom pin of these 

LVDTs lies on the foundation. Eq. 5-31 determines the base rotation of the wall specimen in Figure 

5-16. 

𝜃𝑆𝑝 = 𝑅 − (
𝐴𝑂𝐴 + 𝐴𝐴𝐵
𝐻𝑂𝐵

) Eq. 5-31 

In Eq. 5-31, 𝜃𝑆𝑃 is the base rotation due to strain penetration. 𝜃𝑆𝑃 can be measured by the side 

LVDTs. 𝐴𝑂𝐴 and 𝐴𝐴𝐵 are the areas under curvature diagrams over segments 𝑂𝐴 and 𝐴𝐵, and 𝐻𝑂𝐵 

is the elevation of the top pins of the side LVDTs. Once the base rotation is determined, the 

equivalent depth of the nonlinear zone into the foundation is determined according to Eq. 5-32. 

𝐷𝑁𝑍 =
𝜃𝑆𝐸
𝜑𝑚𝑎𝑥

 Eq. 5-32 

5.6.3 Calculating the yield curvature of wall section 

As discussed in 5.6.1, the yield curvature of the wall section must be known to find the plasticized 

height of the walls. Paulay and Priestley (1992) [25] assumed that the first bar yields at a strain of 
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0.002, while the fiber with the most compressive strain at the opposite edge of the section has a 

strain of 0.0005. Eq. 5-33 turns the initial yield curvature of the section. 

𝜑′𝑦 =
(𝜖𝑦 = 0.002) + (𝜖𝑐𝑒 = 0.0005)

𝐿𝑤
 Eq. 5-33 

Due to distribution of bar over the depth of the section, the effective yield happens at somewhat 

larger deformation as shown in Eq. 5-16. 

 

Figure 5-18 Moment curvature diagram of a wall section by Pauley and Priestley 

Authors assumed the effective yield to occur at 1.33 of the initial yield and is given by Eq. 5-34. 

𝜑𝑦 = 1.33𝜑′𝑦  Eq. 5-34 

In a more systematic approach by Kazaz (2013) [28], a moment curvature analysis is done for each 

specimen. The average axial load during the test was used in the moment curvature analysis. Strain 

stress equations that fit the actual force deformation of steel bars, and the test day properties of the 

concrete material were used for this analysis. To find the strain stress relationship of concrete 

inside the boundary element core, relationships developed by Saatcioglu and Razvi (1992) [29] 

were used. Figure 5-19 shows the moment curvature diagram for specimen WSH3 tested by Dazio 

et al. (1990) [42]. 
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Figure 5-19 Moment curvature diagram of specimen WSH3 tested by Dazio et al. 

Three steps on the diagram are to be found. 

1. Initial yielding, when the strain of the farthest bar just exceeds the yielding strain. 

2. Tensile capacity, when the strain of the bar with maximum tensile strain exceeds 0.015 

3. Compressive capacity, when the strain of the fiber with maximum compressive strain 

exceeds 0.004 

The section reaches its capacity at load step 2, and 3, whichever occurs first. Once the initial yield 

point and the capacity point are found, the bilinear curve fitting the moment curvature diagram can 

be established and the yield curvature of the section is found according to Figure 5-19. 

5.6.4 The load step to calculate the plastic hinge height at 

As discussed before, the accumulation of the plastic deformations over the plasticized height takes 

place at loads beyond the yielding deformation, ∆𝑌. Analyses by Dazio et al. (2009) [42] show that 

the height of plastic hinge decreases as the lateral displacement of wall increases. Figure 5-20 

shows this trend on specimens tested by Dazio et al. 
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Figure 5-20 Plastic hinge length versus top drift of specimens tested by Dazio et al. (2009) 

For the purpose of this work, the height of plastic hinge will be calculated at load steps where the 

specimen retains its maximum strength, but strength loss is about to initiate. Such a load step 

corresponds to point C on the backbone curve shown in Figure 5-21. 

 

Figure 5-21 Backbone of a tested wall specimen 

Here are two remarks regarding the selected load steps to calculate the height of plastic hinge at: 

• The loading protocol for the tests include multiple cycles of same amplitude. In many 

cases, the specimen starts losing strength at the second or third cycle of a load amplitude, 

while the first cycle has been completed without strength loss. Such amplitudes are 

considered within the strength loss branch (Segment CD of Figure 5-21), and the nonlinear 
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height was calculated at the peak of cycles with one level smaller amplitude. The load steps 

at which the plasticized zone is calculated are shown in 7.4 for each specimen. 

• The curvature distribution is calculated at the peak of each cycle. For load amplitudes with 

multiple cycles, the average of curvature distributions is used. For specimens with 

symmetric cross sections, the average is taken for both the positive, and the negative peak. 

For specimens with unsymmetric cross section, positive and negative directions were 

regarded as different data points. 

 

 

 

 

 

 

 

 

 

 

 



130 

 

5.6.5 Analyses results, height of the nonlinear zone 

Table 5-3 presents the measured height of the nonlinear zone above the footing and the measured 

base rotation as an equivalent depth of nonlinear zone into the footing. 

Table 5-3 Measured height and depth of the nonlinear zone for tests in the database 

Specimen 𝐿𝑤 𝐻𝑒  𝑃𝑢 𝐴𝑔𝑓′𝑐⁄  𝐻𝑁𝑍 𝐷𝑁𝑍 

𝑖𝑛 𝑖𝑛 % 𝑖𝑛 𝑖𝑛 

T1 RW-A20-P10-S38 48 96 7.30 42.14 3.448 

T2 RW-A20-P10-S63 48 96 7.30 40.12 3.455 

T3 RW-A15-P10-S51 48 72 7.70 42.65 2.483 

T4 RW-A15-P10-S78 48 72 6.40 34.44 4.406 

T5 RW-A15-P25-S64 48 72 1.60 33.77 3.285 

WP 1 Positive dir. 90 331 9.64 66.25 2.304 

WP 1 Negative dir. 90 331 9.64 82.84 7.315 

WP 2 Positive dir. 90 330 8.36 81.38 6.033 

WP 2 Negative dir. 90 330 8.36 71.56 5.304 

WP 3 Positive dir. 90 330 8.14 77.81 10.77 

WP 3 Negative dir. 90 330 8.14 72.75 4.827 

WP 4 Positive dir. 90 541 6.37 71.17 3.988 

WP 4 Negative dir. 90 541 6.37 75.56 7.885 

WP 5 Positive dir. 90 321 8.03 92.72 3.098 

WP 5 Negative dir. 90 321 6.42 92.28 7.700 

WP 6 Positive dir. 90 321 7.45 79.71 7.127 

WP 6 Negative dir. 90 321 7.45 66.46 2.246 

WP 7 Positive dir. 90 321 5.29 85.61 5.822 

WP 7 Negative dir. 90 321 5.29 80.69 5.234 

WSH2 78.7 178.0 5.20 40.11 1.045 

WSH3 78.7 178.0 5.33 52.31 1.507 

WSH4 78.7 178.0 5.18 41.34 0.989 

WSH5 78.7 178.0 12.3 32.15 0.829 

WSH6 78.7 179.5 10.3 45.48 1.983 
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The equations that are mostly used in practice follow the general form of Eq. 5-10 proposed by 

Berry and Eberhard. This general form indicates that the height of the nonlinear zone increases 

with increase in effective height and the length of the wall. Figure 5-22 and Figure 5-23 show the 

same rend for the experiments in the database. In these figures the red marks indicate the nonlinear 

height measured for each specimen in the database and the blue line is the linear regression over 

the datapoints. 

 

Figure 5-22 Height of the nonlinear zone vs effective height for the experiments in the database 

 

Figure 5-23 Height of the nonlinear zone vs wall length for the experiments in the database 
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A linear regression is conducted to develop an equation for the nonlinear height in terms of the 

effective height and the length of the structural wall. Eq. 5-35 shows the proposed equation and 

the coefficient of determination, 𝑅2. 

𝐻𝑁𝑍[𝑖𝑛] = 0.51𝐿𝑤 + 0.067𝐻𝑒 + 4.8, 𝑅2 = 0.666 Eq. 5-35 

Note that the there is a nonzero residual. Eq. 5-36 shows the equation obtained by linear regression, 

with the assumption that the residual is zero. 

𝐻𝑁𝑍 = 0.59𝐿𝑤 + 0.061𝐻𝑒 , 𝑅2 = 0.665 Eq. 5-36 

Table 5-4 summarizes some equations used by other researchers to estimate height of plasticized 

zone, and the calculated 𝑅2 based on the measured plasticized zone of specimens in the data base. 

Table 5-4 Proposed equation by authors for calculation of nonlinear height of RC walls 

Author Equation 𝑅2 

Eurocode 8 (2005) 𝐻𝑁𝑍 = 0.4𝐿𝑤 + 1 15⁄ 𝐻𝑒 0.201 

Paulay and Priestley (1996) 𝐻𝑁𝑍 = 0.16𝐻𝑒 -0.514 

Paulay and Priestley (1992) 𝐻𝑁𝑍 = 0.4𝐿𝑤 + 0.14𝐻𝑒 0.425 

Bohl and Adebar (2011) 𝐻𝑁𝑍 = 0.4𝐿𝑤 + 0.1𝐻𝑒 (1 − 1.5
𝑃

𝑓′𝑐𝐴𝑔
) 0.350 

Kazaz (2013) 𝐻𝑁𝑍 = 0.333𝐿𝑤 + 0.167𝐻𝑒 0.237 

Segura and Wallace (2017) 𝐻𝑁𝑍 = 0.5𝐿𝑤 -0.0604 
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5.6.6 Analysis results, depth of the nonlinear zone 

Table 5-3 shows the measured depth of the nonlinear zone for the tests in the database. This depth 

specifies the base rotation due to strain penetration as an equivalent depth of the nonlinear zone 

with the maximum curvature, 𝜑𝑢. Paulay and Priestley (1992) estimate this depth with Eq. 5-37. 

𝐷𝑁𝑍 = 𝜉𝑑𝑏𝑓𝑦 = 0.15𝑑𝑏𝑓𝑦 Eq. 5-37 

The expression in Eq. 5-37 is obtained based on two assumptions. 

1. The depth of the nonlinear zone, and the depth of strain penetration into the foundation are 

in direct proportion. 

2. The cohesion stress between concrete and reinforcing bars is constant. 

If assumptions 1 and 2 are true, the depth of strain penetration into the foundation, 𝐿𝑆𝑃, for a single 

longitudinal bar can be calculated by Eq. 5-38. 

𝐿𝑆𝑃 =
𝐴𝑏𝐹𝑦

𝑐𝑃𝑏
=

𝜋
4
𝑑𝑏
2𝐹𝑦

𝑐𝜋𝑑𝑏
=
𝑑𝑏𝐹𝑦

4𝑐
 Eq. 5-38 

In Eq. 5-38, 𝑐 is the cohesion stress between concrete and steel bara. The measured depth of 

nonlinear zone into the footing (According to 5.6.2) versus 𝑑𝑏𝐹𝑦 is plotted in Figure 5-24 for the 

tests in the database. For some walls, bars with different size and yield stress are used in the 

boundary element. In this case, parameter 𝑃 = 4∑𝐴𝑏
𝑖 𝐹𝑦

𝑖 ∑𝜋𝑑𝑏
𝑖⁄  would be equivalent to 𝑑𝑏𝐹𝑦. 
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Figure 5-24 Depth of nonlinear zone versus parameter P 

Although the measured depth of nonlinear zone shows the same trend that Eq. 5-37 suggests, but 

the coefficient of determination is very low. This scatter is associated with the low number of tests, 

and the inaccuracy in measuring the associated deformations. Parameter 𝜉 in Eq. 5-37 is calculated 

based on the measurements of tests in the database and compared with the proposed value by 

Paulay and Priestley in Figure 5-25. 

 

Figure 5-25 Parameter ξ 

Eurocode 8 (2005) [53]’s equation to estimate the plastic zone depth, shown in Eq. 5-39, 

correlates the cohesion stress to the square root of concrete specified strength, √𝑓′𝑐. 
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𝐷𝑁𝑍 = 𝜂
𝑑𝑏𝑓𝑦

√𝑓′𝑐
= 9.135

𝑑𝑏𝑓𝑦

√𝑓′𝑐
 Eq. 5-39 

In Eq. 5-39, 𝑓𝑦 is in ksi, 𝑓′𝑐 is in psi, and the depth of nonlinear zone, 𝐷𝑁𝑍, is turned in inch. Like 

what I did for Eq. 5-37, the measured depth of the nonlinear zone into the foundation is plotted, 

this time, against parameter 𝑄 = 4∑𝐴𝑏
𝑖 𝐹𝑦

𝑖 ∑𝑓′𝑐𝜋𝑑𝑏
𝑖⁄  and the plot is shown in Figure 5-26. 

 

Figure 5-26 Depth of nonlinear zone versus parameter Q 

Again, the trend confirms what the equation proposes, but the data scatters a lot. Furthermore, 

considering the effect of concrete strength in cohesion stress does not improve the coefficient of 

determination. The measured value of parameter 𝜂 for each test, the average value, and the 

recommended value by Eurocode 8 are all compared in Figure 5-27. 

 

Figure 5-27 Parameter ξ 
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5.7 Summary of the results 

Eq. 5-40 shows two proposed equations for plasticized zone of flexurally-controlled walls, based 

on analysis of the data of the tests in the data base. 

𝐻𝑃𝑍 = 0.6𝐿𝑤 + 0.06𝐻𝑒 + 0.09𝑑𝑏𝑙𝐹𝑦 

𝐻𝑃𝑍 = 0.6𝐿𝑤 + 0.06𝐻𝑒 + 8
𝑑𝑏𝑙𝐹𝑦

√𝑓′𝑐
 

Eq. 5-40 

The first two terms turn the height of the nonlinear zone, and the third term turns the base rotation 

an equivalent depth of the nonlinear zone into the footing. The coefficient of determination, R2, 

for the first two terms is ~0.665, which seems acceptable. The R2 factor for the depth of the 

nonlinear zone is ~0.18. More data may improve the efficiency of the models, but note that these 

models have been obtained using instruments that measure local deformations of RC specimens, 

and model with better performance may not be achieved. 
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Chapter 6 Summary and future work 

This dissertation consists of two main studies. The key conclusions of each study are presented in 

this section. 

6.1 Wall model 

The wall model developed in this study provides several advantages for applications of 

Performance-Based design of buildings with structural walls as the lateral force resisting system. 

The primary goal of the model is to enable control over the load versus deformation response of 

fiber models of structural walls that can be matched to specified component backbone relations, 

such as prescribed in ASCE 41 [2]. To accomplish this goal, the strain-stress response of the 

material used for the fibers of the element cross-section is mapped into a strain-strain-stress space, 

where the additional dimension provides greater flexibility to accommodate strength deterioration. 

The element is implemented in OpenSees [4], an open-source computer program for structural and 

earthquake engineering, and then used in two case studies. One case-study is a static pushover 

analysis and the other case-study is nonlinear dynamic analysis of a structural wall designed 

according to the latest building code. Computer implementation and the case studies show the 

reliability and effectiveness of the element for both static and dynamic analyses. 

More refinements are presented in Chapter 4 that enable the computation of demand to capacity 

ratios of deformation parameters in real time within each load step. The variables that determine 

the backbone curve of the element (e.g., deformation at strength loss), have been shown to vary 

with shear stress, axial load, and depth of the compression zone, which vary in time over the 

analysis. Pre-assigning these variables based on an estimate of maximum probable values 

occurring simultaneously results in underestimating the wall deformation capacity and a 
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conservative performance assessment for the wall and the building. This is particularly true for 

coupled-wall systems, or dual systems, where the variables impacting deformation capacity may 

vary significantly over time (e.g., for the tension versus compression piers of a coupled wall. In 

these cases, the proposed model provides substantial benefits versus current approaches.). 

6.1.1 Future work 

Some aspects discussed in the formulation, such as use of smooth hysteretic performance, were 

not implemented in the current model. Thus, the strain-stress response of the fibers in case studies 

of sections 3.13 and 3.14 show piece-wise linear response and more work is required to implement 

the transitions relations into the model. 

Table 4-2 specifies the residual strength of the wall once deformation parameter 𝑑′ is exceeded. 

The elements residual strength depends on the residual stress of the material, and the depth of 

section over which the material is damaged. Section 3.7 describes how the material relation 

parameters are assigned once strength degradation initiates. An approach to enable a prescribed 

residual stress (e.g., as given in ASCE 41 tables) to be targeted was not developed. Although this 

feature would be helpful, it is not essential to produce useful and improved results with the model. 

The wall element developed in this study captures the strength degradation response when one 

element over the plastic hinge is used. In analysis of a 3D structure, as is required for a code 

compliant Performance-Based design, more than one element over the plan might be required 

within the plastic hinge region. An example of this case is shown in Figure 6-1. This wall is 

modeled with three elements within four nodes over the plastic hinge. The study by Abdullah and 

Wallace (2019) [47], determines the backbone curve for the combination of the three elements 

with the plan view shown in Figure 6-1. To address this situation, additional work is needed. 
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Figure 6-1 Plan view of a C-shaped wall with bi-directional loading 

6.2 Height of nonlinear zone 

Chapter 5 includes a study to evaluate current models used to estimate the plasticized zone of 

flexure-controlled structural walls. This parameter is used in many studies for different purposes, 

including calculation of plastic hinge rotation from drift. A database of 17 tested specimens is 

assembled. The specimens selected were well-instrumented, such that the extent of nonlinearity 

can be measured over the wall height. Analyses of 24 datapoints from 17 testes recommended Eq. 

6-1 to estimate the plastic hinge height of flexure-controlled walls. 

𝐻𝑃𝑍 = 0.6𝐿𝑤 + 0.06𝐻𝑒 + 0.09𝑑𝑏𝑙𝐹𝑦 

𝐻𝑃𝑍 = 0.6𝐿𝑤 + 0.06𝐻𝑒 + 8
𝑑𝑏𝑙𝐹𝑦

√𝑓′𝑐
 

Eq. 6-1 

6.2.1 Future work 

Although hundreds of structural walls have been tested and studied (e.g., see Abduallah and 

Wallace (2018) [50]), only a relatively few have sufficient instrumentation to be used in this study. 

More data are required to improve the reliability of the models and study the impact of other 

parameters, including the axial load as some researchers (e.g., Bohl (2006) [48] and Kazaz (2013) 
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[28]) have reported that axial load has considerable impact on plastic hinge length of structural 

walls. This becomes especially important for coupled walls, where there the axial load varies over 

a wide range, from net tensile load to large net compressive load. The database in this study has a 

relatively small number of tests and the range of axial loads is limited. Another important subject 

that can be part of a future work is calibrating deformation parameters of a backbone curve in real 

time with a varying plastic hinge length. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 



141 

 

Chapter 7 Appendix 

7.1 Calculation of deformation parameters in a typical load step 

Calculation of backbone curve parameters for the bottom element of the twelve-story coupled wall 

system shown below, within a typical load step (Load step 2,361) is presented in this chapter. The 

wall is loaded with a displacement – controlled scheme and a distribution of lateral loads shown 

in the figure below. 

 

The wall cross section for the left side pier is shown below. The wall piers are symmetric with 

respect to the coupling beams centerline. The section is discretized into fibers to model the walls 

using MVL elements. Two elements are used in each story. 
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The thickness, with, reinforcement ratio, concrete area, steel area and local coordinate of the fibers 

of the wall cross section, from left to right, is shown in the table below. 

Fiber No. 𝑡𝑓 𝑤𝑓 𝜌 𝐴𝐶 𝐴𝑆 𝑥𝐹  

in in  in2 in2 in 

1 16 3 0.0423 2.0304 45.9696 -58.5 

2 16 12 0.0423 8.1216 183.878 -51 

3 16 12 0.0423 8.1216 183.878 -39 

4 16 39 0.0122 7.6128 616.387 -13.5 

5 16 39 0.0122 7.6128 616.387 25.5 

6 16 12.5 0.0423 8.46 191.54 51.25 

7 16 2.5 0.0423 1.692 38.308 58.75 

The history of controlled roof drift is shown in the diagram below. 

 

The element nodal forces for a typical wall element are shown in the figure below. 
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The forces of the bottom element of the left pier at the last converged load step, and at a trial 

state to solve for the current load step, are shown in the table below. 

Load Step 𝑉𝑏𝑜𝑡 𝑃𝑏𝑜𝑡  𝑀𝑏𝑜𝑡 𝑉𝑡𝑜𝑝 𝑃𝑡𝑜𝑝 𝑀𝑡𝑜𝑝 

kips Kips k - ft kips kips k – ft 

2,360, C 493.318 4800.1 -20564.9 -493.318 -4800.1 18098.3 

2,361, T 542.732 5177.35 -23059.9 -542.732 -5177.35 20346.3 

The normalized shear stress of the element, at the end of the last converged load step, 𝑣𝑢
𝐶 and at a 

trial deformation to solve for the current load step, 𝑣𝑢
𝑇 is: 

𝑣𝑢
𝐶 =

𝜔𝑣𝑉𝑢

𝑡𝑤𝐿𝑤√𝑓
′
𝑐

=
493.318 × 1,000

12 × 120 × √6,000
= 4.423, 𝑣𝑢

𝑇 =
542.732 × 1,000

12 × 120 × √6,000
= 4.866 

The element nodal displacements for a typical wall element are shown in the figure below. 
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The nodal displacements of the bottom element of the left pier, at the last converged load step 

(Load step 2,360), and at a trial deformation to solve for the current load step are shown in the 

table below. 

Load Step 𝑢𝑏𝑜𝑡 𝑣𝑏𝑜𝑡  𝜃𝑏𝑜𝑡 𝑢𝑡𝑜𝑝 𝑣𝑡𝑜𝑝 𝜃𝑡𝑜𝑝 

in in  in In  

2,360, C 0 0 0 -0.58159 0.15375 0.01535 

2,361, T 0 0 0 -0.75731 0.22421 0.020136 

The deformation vector of Figure 4-18, from the last converged state to the trial deformation at the 

current load step, for the element is shown below. 

 

Parameters C, and D of Eq. 4-26 are 

𝐶 = 0.0054071, 𝐷 = 0.00037094 

Assuming the shear force deformation has an elastic linear response, the stiffness assigned to the 

shear spring of the element is 

𝐾𝑆𝑆 =
𝐺𝑒𝑓𝑓𝐴𝑒𝑓𝑓

𝐻𝑒
=
0.5 ×

57 × √6,000
2 × (1 + 0.2)

×
5
6
× 12 × 120

60
= 18,397 

The shear stress of Table 4-2, in terms of curvature comes from Eq. 4-28 and is determined as 

follows. 
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𝑣𝑢(𝜑) =
𝜔𝑣𝑉𝑀𝑢𝑙𝑡

𝐴𝑐𝑣√𝑓′𝑐
=
𝐾𝑆𝑆𝐻𝑒 (𝐶 [𝜑

𝐿𝑤
2
] + 𝐷)

𝐴𝑐𝑣√𝑓′𝑐
=
18,397 × 60 × (0.0054071[𝜑 × 60] + 0.00037094)

12 × 120 ×
5
6
× √6,000

 

Simplified here. 

𝑣𝑢(𝜑) = 3,853𝜑 + 4.405 

The computation of the compression zone depth requires knowing zero – stress – strain based on 

the material properties at the converged load step. Figure below shows the strain stress history of 

the steel material in fiber 1. 

 

The zero – stress – strain is calculated based on the properties of the material at the last converged 

step. Note that the stress is compressive and the material needs to be loaded in tensile loading to 

turn back to zero stress. The strain stress equation for this tensile load path is governed by MP 

equations. 

𝜎∗ = 𝑏𝜀∗ +
(1 − 𝑏)𝜀∗

(1 + 𝜀∗𝑅)
1
𝑅

, 𝜀∗ =
𝜀 − 𝜀𝑟
𝜀𝑟 − 𝜀0

, 𝜎∗ =
𝜎 − 𝜎𝑟
𝜎𝑟 − 𝜎0

 

𝜎 is the material stress and 𝜀, is the material strain. Other parameters are shown in the table below, 

based on the material properties at the last converged load step. 
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𝜀0 𝜀𝑅 𝜎0 𝜎𝑅 𝑅 

  ksi ksi in 

-0.0059827 -0.012399 91.6483 -94.4342 1.6146 

To solve for 𝜎 = 0, Newton’s approach is used within a newly added member function to the 

material object. An initial guess for the zero-stress strain is: 

𝜀𝜎=0 = 𝜀
𝐶 −

𝜎𝐶

𝐸0
= −0.012399 −

−94.43

29,000
= −0.009143 

Iterations that lead to finding the exact strain corresponding to zero stress is shown in the table 

below. 

Iterations 𝜀 𝜀∗ 𝜎∗ 𝜎 𝑇 =
𝜕𝜎∗

𝜕𝜀∗
 

1 -0.009143 0.5074859 0.4252614 -15.30054 -0.082224 

2 -0.008306 0.6379095 0.5009503 -1.216157 -0.006536 

Iterations 𝜀 𝜀∗ 𝜎∗ 𝜎 𝑇 =
𝜕𝜎∗

𝜕𝜀∗
 

3 -0.008227 0.6501836 0.5074335 -0.00974 -5.23E-05 

4 -0.008227 0.6502835 0.5074859 -6.39E-07 -3.43E-09 

The zero-stress strain, 𝜀𝜎=0, and the load path from converged state to the zero-stress point is 

shown in the figure below. 

 

Same calculations are done for steel material of other fibers. 
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The profile of zeros-stress strain (Figure 4-15) over the section at the last converged load step is 

shown in figure below. 
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Each segment of the profile is governed by an 𝜀 = 𝑚𝑥 + 𝑛 with coefficients, from left to right, in 

the table below. 

Segment 𝑚 𝑛 

1 0.00021820 0.00498794 

2 0.00021754 0.00495429 

3 0.00021196 0.00473659 

4 0.00010053 0.00323222 

5 0.00019915 0.00071722 

6 0.00020612 0.00036004 

The strain profile of the element, corresponding to the last converged load step, and to a trial 

deformation to solve for the current load step, is shown in figure below. The location of the hinge 

in Figure 4-16 is 𝑥𝐻 = −13.12 𝑖𝑛, 𝜀𝐻 = −0.001228 
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The strain profiles cross the fourth segment. The equation of the compression zone depth using 

Eq. 4-22 is shown below. 

𝐶𝐸(𝜑) = 𝑥𝐶𝑍
𝑘 − (−

𝐿𝑤
2
) =

−13.12𝜑 + 0.003232 + 0.001228

𝜑 − 0.0001005
+ 60 

The compression zone parameter 𝜆 in terms of curvature is shown below 

𝜆(𝜑) =
𝐶𝐸𝐿𝑤
𝑏2

=
−10.93𝜑 + 0.003717

𝜑 − 0.0001005
+ 50 

Knowing the compression zone parameter, 𝜆, and the shear stress parameter, 𝑣𝑢, The capacity for 

deformation parameter 𝑑 is obtained by double-interpolating through Table 4-2. 

𝐶𝑑(𝜑) = (0.032 +
0.026 − 0.032

6 − 4
(𝑣𝑢(𝜑) − 4)) + 

(0.018 +
0.014 − 0.018

6 − 4
(𝑣𝑢(𝜑) − 4)) − (0.032 +

0.026 − 0.032
6 − 4

(𝑣𝑢(𝜑) − 4))

70 − 10
(𝜆(𝜑) − 10) 

𝐶𝑑(𝜑) = (0.032 − 0.003(𝑣𝑢(𝜑) − 4)) +
0.001(𝑣𝑢(𝜑) − 4) − 0.014

60
(𝜆(𝜑) − 10) 

𝐶𝑑(𝜑) = (0.044 − 0.003𝑣𝑢(𝜑)) + (0.001𝑣𝑢(𝜑) − 0.018)
𝜆(𝜑) − 10

60
 

The demand of plastic hinge rotation in terms of curvature is 

𝐷𝑑(𝜑) = 𝜑𝐻𝑒 

𝐶𝑑(𝜑) = 𝐷𝑑(𝜑) 

𝐹(𝜑) = (0.044 − 0.003𝑣𝑢(𝜑)) + (0.001𝑣𝑢(𝜑) − 0.018)
𝜆(𝜑) − 10

60
− 𝜑𝐻𝑒 = 0 

Newton’s approach is used to solve the nonlinear equation. 
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𝐹′(𝜑) = −0.003𝑣′𝑢(𝜑) + 0.001𝑣
′
𝑢(𝜑)

𝜆(𝜑) − 10

60
+ (0.001𝑣𝑢(𝜑) − 0.018)

𝜆′(𝜑)

60
− 𝐻𝑒 

𝜑𝑁+1 = 𝜑𝑁 −
𝐹(𝜑𝑁)

𝐹′(𝜑𝑁)
 

All functions 𝑣𝑢(𝜑), 𝑣′𝑢(𝜑), 𝜆(𝜑), and 𝜆′(𝜑) have been computed before. The table of iterations to 

solve for element curvature 𝜑, at deformation parameter 𝑑, is shown in table below. The initial 

guess is obtained by interpolation. The curvature, 𝜑, and demand to capacity ratio for parameter 

d, [𝐷 𝐶⁄ ]𝑑, at the last converged load step, and at a trial deformation to solve for the current load 

step is shown in the table below. 

Load step 𝜑 [𝐷 𝐶⁄ ]𝑑 

2,360 C 0.000234220 0.7869 

2,361 T 0.000347763 1.118 

An initial guess, 𝜑1, to solve for [𝐷 𝐶⁄ ]𝑑 = 1 is calculated here using the table. 

𝜑1 = 0.00023422 +
0.000347763 − 0.000234220

1.118 − 0.7869
(1.118 − 1.0) = 0.0003073 

Table below shows the iterations to solve for [𝐷 𝐶⁄ ]𝑑 = 1. 

𝜑 𝑣𝑢 𝑣𝑢′ 𝜆 𝜆′ 𝐹 𝐹′ 

1 / in       

0.00030730 5.589 3853 51.73 -61,223 1.646E-02 -56.2143 

𝜑 𝑣𝑢 𝑣𝑢′ 𝜆 𝜆′ 𝐹 𝐹′ 

0.00060014 6.717 3853 44.31 -10,487 -1.861E-02 -67.3829 

0.00032395 5.653 3853 50.78 -52,438 -7.881E-04 -58.1482 

0.00031039 5.601 3853 51.54 -59,430 -1.010E-05 -56.6091 

0.00031022 5.600 3853 51.55 -59,531 -1.988E-09 -56.5868 

0.00031022 5.600 3853 51.55 -59,531 -7.633E-17 -56.5868 

0.00031022 5.600 3853 51.55 -59,531 0.000E+00 -56.5868 
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Once deformation parameter 𝑑 is determined, other parameters (𝑑’, 𝑐, and 𝑒) would be computed 

based on compression zone parameter 𝜆, and axial load ratio 𝑝𝑢 at element rotation of 𝑑. 

7.2 Transition equations used in strain stress curves 

Figure below shows the strain stress curve of a typical steel material. To provide a transition from 

segment 1, governed by the Menegotto Pinto equation, to segment 2, the stress degradation curve, 

the coordinates of the start of the transition assumed to be at point 1, P1, must be determined. In 

the sample problem below, the start of the transition is assumed to be at 0.8 × 𝐷.  

𝑥𝑃1 = 0.8 × 𝐷, 𝑦𝑃1 = 𝑏 [
𝑥𝑃1
𝜀𝑦
] +

(1 − 𝑏) [
𝑥𝑃1
𝜀𝑦
]

(1 + [
𝑥𝑃1
𝜀𝑦
]
𝑅

)

1
𝑅

 

The tangent at point 1, 𝑇𝑃1, is also determined. 

𝑇𝑃1 =
𝑦𝑃1
𝑥𝑃1

−

[
𝑦𝑃1
𝑥𝑃1

− 𝑏𝐸𝑠]

1 +
1

[
𝑥𝑃1
𝜀𝑦
]
𝑅

 

In equations above, 𝑏 is the strain-hardening ratio and 𝐸𝑠 is the initial stiffness of the material. 

 

Segment 2 of the curve is governed by the coordinates of point 2, P2, and a constant tangent, 𝑇. 
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𝑦𝐷 = 𝑇(𝑥 − 𝑥𝑃2) + 𝑦𝑃2 , 𝑥𝑃2 = 𝐷 

The intersection of the first segment, and the second segment happens at point 2, P2. Assuming 

the transition starts at point 1, P1, and the tangent varies uniformly till the landing point, equation 

of the transition, (𝑥𝑇 , 𝑦𝑇), is governed by a polynomial shown below. 

𝑦𝑇 = 𝑎(𝑥 − 𝑥𝑃1)
2
+ 𝑇𝑃1(𝑥 − 𝑥𝑃1) + 𝑦𝑃1  

The coordinates of the landing point, P3, is obtained by setting equal, the tangent of the transition 

and descending segment. 

𝑇𝐷 = 𝑇𝑇 , 2𝑎(𝑥 − 𝑥𝑃1) + 𝑇𝑃1 = 𝑇, 𝑎 =
𝑇 − 𝑇𝑃1
2(𝑥 − 𝑥𝑃1)

 

The 𝑥, and 𝑦 coordinate of the landing point, P3, is obtained by setting equal, the ordinate of the 

transition and descending segment. 

𝑦𝐷 = 𝑦𝑇 , 𝑎(𝑥𝑃3 − 𝑥𝑃1)
2
+ 𝑇𝑃1(𝑥𝑃3 − 𝑥𝑃1) + 𝑦𝑃1 = 𝑇(𝑥𝑃3 − 𝑥𝑃2) + 𝑦𝑃2 

7.3 Analysis and design of the structural walls in case study 3.13 

The seismic properties of the building site are assumed as follows. 

𝑆𝑠 = 2.136, 𝑆1 = 0.718 

The Site class is assumed to be C. From table 11.4-1 and 11.4-2, and knowing that the site class is 

C, and 𝑆𝑠 ≥ 1.25, 𝑆1 ≥ 0.5, we will find 𝐹𝑎 and 𝐹𝑣. 

𝐹𝑎 = 1.0, 𝐹𝑎 = 1.3 

ASCE 7 Equation 11.4-1 and Equation 11.4-2 turn 𝑆𝑀𝑆 and 𝑆𝑀1. 

𝑆𝑀𝑆 = 𝐹𝑎𝑆𝑆 = 1.0 × 2.136 = 2.136 
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𝑆𝑀1 = 𝐹𝑎𝑆1 = 1.3 × 0.718 = 0.9334 

ASCE 7 Equation 11.4-3 and Equation 11.4-4 turn 𝑆𝐷𝑆 and 𝑆𝐷1. 

𝑆𝐷𝑆 =
2

3
𝑆𝑀𝑆 =

2

3
× 2.136 = 1.424 

𝑆𝐷1 =
2

3
𝑆𝑀1 =

2

3
× 0.9334 = 0.6223 

𝑇0 = 0.2
𝑆𝐷1
𝑆𝐷𝑆

= 0.2 ×
0.6223

1.424
= 0.0874, 𝑇𝑠 =

𝑆𝐷1
𝑆𝐷𝑆

=
0.6223

1.424
= 0.437 

The seismic response spectra are calculated and shown in Figure 7-1 and Figure 7-2. 

 

Figure 7-1 Response spectrum (Acceleration) of the building site 

 

Figure 7-2 Response spectrum (Displacement) of the building site 
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The preliminary design starts with satisfying the drift limit. The fundamental period for the wall 

is estimated assuming uniform distributed mass over the height of the wall. The mass of each floor 

is calculated first. Referring to the floor plan of Figure 3-37, and assuming an 8 in. slab and a 25 

psf super-imposed dead load, the total dead load of the floor is: 

𝜔𝐷 = 150 ×
8

12
+ 25 = 125 𝑝𝑠𝑓 

Floors are all square and 131 ft. by 131 ft. 

𝑊𝑓 = 131 × 131 × 0.125 = 2,145 𝑘𝑖𝑝𝑠, 𝑚𝑓 =
𝑊𝑓

𝑔
=

2,145

32.2 × 12
= 5.551 

𝑘𝑖𝑝𝑠 − 𝑠2

𝑖𝑛
 

Two walls resist the seismic load of the building. The tributary mass of each floor for one wall is 

𝑚𝑤 =
5.551

2
= 2.776 

𝑘𝑖𝑝𝑠 − 𝑠2

𝑖𝑛
 

Assuming the mass is uniform over the wall height, the mass per unit height of the wall is 

�̅� =
𝑚𝑤
𝐻𝑠
=
2.776

144
= 0.019278 

𝑘𝑖𝑝𝑠 − 𝑠2

𝑖𝑛2
 

Assuming the length of the wall is 12 times the thickness as an initial guess. The effective flexural 

stiffness factor for the wall is 0.5. 

𝐿𝑤 = 12𝑡𝑤, 𝐸𝐼𝑧 = 0.5 ×
1

12
𝑡𝑤𝐿𝑤

3 = 72𝑡𝑤
4 

The modal periods for the wall can be estimated by 

𝜔𝑛 = (𝑎𝐻)
2√

𝐸𝐼

�̅�𝐻4
 

Where 𝐻 is the total height of the building, and �̅� is the uniform mass over the wall height. ACI 

318-14 section 19.2.2.1(b) estimates concrete’s modulus of elasticity as follows. 
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𝐸𝑐 = 57√𝑓′𝑐 = 57 × √6,000 = 4,415 𝑘𝑠𝑖 

For the first mode period 𝑎𝐻1 = 1.875. The total height of the building is: 

𝐻 = 10 × 12 × 12 = 1440 𝑖𝑛 

After substituting for all the parameters, the first mode frequency for the wall is: 

𝜔1 = (𝑎𝐻)
2√

𝐸𝐼

�̅�𝐻4
= 7.216 × 10−3𝑡𝑤

2 

𝑇1 =
2𝜋

𝜔1
=

2𝜋

7.216 × 10−3𝑡𝑤
2 =

870.8

𝑡𝑤
2  

Assuming the maximum story drift ratio for the wall is 2%, the average drift ratio over the entire 

height is approximately: 

𝛿𝑟𝑜𝑜𝑓

𝐻𝑤
=
3

4
× 2 = 1.5 %, 𝛿𝑟𝑜𝑜𝑓 = 0.015 × 10 × 144 = 21.6 𝑖𝑛 

Knowing the displacement at roof, the lateral displacement at the effective height of first mode for 

the wall is approximately: 

𝛿𝐻𝑒𝑓𝑓 =
𝛿𝑟𝑜𝑜𝑓

1.5
=
21.6

1.5
= 14.4 𝑖𝑛 = 𝑆𝑑 

Knowing the response spectrum of the site, the period that turns this spectral displacement is 

estimated. 

𝑆𝑑 = 14.4 𝑖𝑛
𝑦𝑖𝑒𝑙𝑑𝑠
→   𝑇 = 2.36 𝑠𝑒𝑐 

So, if the building’s period is almost equal to 2.36, it will meet the drift limit. 

2.36 =
870.8

𝑡𝑤
2

𝑦𝑖𝑒𝑙𝑑𝑠
→   𝑡𝑤 = √

870.8

2.36
≈ 20.0 𝑖𝑛, 𝐿𝑤 = 20 𝑓𝑡 



156 

 

It was discovered later that a larger section is required to provide enough strength. The final design 

is a section with the length 𝐿𝑤 = 27 𝑓𝑡, and thickness of 𝑡𝑤 = 26 𝑖𝑛. 

Lateral forces for strength design of the wall are calculated using ASCE 7 chapter 12.8, The 

Equivalent Lateral Force Procedure. The response spectrum of the building and the modal periods 

of the building have been calculated before. 

𝑇𝑎 = 𝐶𝑡ℎ𝑛
𝑥
 

Referring to Table 12.8-2, for a RC bearing walls, the coefficients for calculating the approximate 

fundamental period are: 

𝐶𝑡 = 0.02, 𝑥 = 0.75 

𝑇𝑎 = 0.02 × 120
0.75 = 0.725 𝑠𝑒𝑐 

Table 12.8-1 gives the coefficient for upper limit on approximate period. 

𝑆𝐷1 ≥ 0.4
𝑦𝑖𝑒𝑙𝑑𝑠
→   𝐶𝑢 = 1.4 

𝑇𝑢 = 𝐶𝑢𝑇𝑎 = 1.4 × 0.725 = 1.02 𝑠𝑒𝑐 

The first mode period of the building in the direction of the walls is calculated using a modal 

analysis in MATLAB with walls modeled using elastic beam column elements. An effective 

stiffness factor of 0.5 is assumed and shear deformation is ignored. 

𝑇1 = 1.403 

Note that the calculated first mode period is more than the upper limit set by 12.8.2. So, 𝑇𝑢 shall 

be used for calculation of seismic forces. From the response spectrum, the Pseudo Spectral 

Acceleration, 𝑝𝑆𝑎, for the building in the direction of walls is 
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𝑝𝑆𝑎 = 0.610 𝑔, 𝐶𝑠 =
𝑝𝑆𝑎

(
𝑅
𝐼𝑒
)
=
0.610

5
1.0

= 0.1226 

Equations 12.8-5 and 12.8-6 set a minimum for Seismic Response Coefficient. 

𝐶𝑆
𝑚𝑖𝑛 = 0.044𝑆𝐷𝑆𝐼𝑒 = 0.044 × 1.424 × 1.0 = 0.06266 

𝐶𝑆
𝑚𝑖𝑛 =

0.5𝑆1
𝑅
𝐼𝑒

=
0.5 × 0.718

5
1.0

= 0.07180 

The calculated seismic response is more than the minimum. The seismic weight of each floor is 

determined per Section 12.7.2. The effective seismic weight, 𝑊, of a structure shall include the 

dead load as defined in section 3.1. The assumed total dead load of the building distributed over 

the floor plan is. 

𝜔𝐷 = 100 + 25 = 125 𝑝𝑠𝑓 

𝑊𝑓 = 131 × 131 × 0.125 = 2,145 𝑘𝑖𝑝𝑠, 𝑊 = 10𝑊𝑓 = 10 × 2,145 = 21,450 𝑘𝑖𝑝𝑠 

𝑉 = 𝐶𝑆𝑊, 𝑉 = 0.1226 × 21,450 = 2,630 𝑘𝑖𝑝𝑠 

Assuming two walls for resisting the lateral loads, base shear in one wall would be one half of the 

total base shear of the building. 

𝑉𝑤 =
1

2
× 2,630 = 1,315 𝑘𝑖𝑝𝑠 

Accidental torsion is calculated assuming displacement of the center of mass each way from its 

actual location by a distance equal to 5 percent of the dimension of the structure perpendicular to 

the direction of applied forces. 

𝑒 = 0.05𝐵𝑓 , 𝐵𝑓 = 131 𝑓𝑡, 𝑒 = 0.05 × 131 = 6.55 𝑓𝑡 
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The torque caused by the accidental torsion is calculated multiplying the eccentricity by the base 

shear. 

𝑀𝑎𝑡 = 𝑒𝑉 = 6.55 × 2,630 = 17,227 𝑘𝑖𝑝𝑠 − 𝑓𝑡 

This torque would induce additional shear force in the shear wall of one side of the building, and 

decreases the shear force of the wall on the other side. Assuming 𝑑 is distance between walls, the 

additional shear is: 

𝑉𝑎𝑡𝑑 = 𝑀𝑎𝑡
𝑦𝑖𝑒𝑙𝑑𝑠
→   𝑉𝑎𝑡 =

𝑀𝑎𝑡
𝑑
=
𝑒𝑉

𝑑
=
0.05𝐵𝑓𝑉

𝑑
= 0.05𝑉 

So, considering the accidental torsion, the shear wall on one side takes 55 percent of the total base 

shear and the shear wall on the other side takes 45 percent. So, base shear of each wall should be 

amplified to 10 percent more shear. 

𝑉𝑓 = 1,315 × 1.10 = 1,447 𝑘𝑖𝑝𝑠 

This is the total shear that should be resisted by the entire building. The lateral seismic force, 𝐹𝑥, 

induced at any level shall be determined from equations 12.8-11 and 12.8-12. 

𝐹𝑥 = 𝐶𝑣𝑥𝑉, 𝐶𝑣𝑥 =
𝑤𝑥ℎ𝑥

𝑘

∑ 𝑤𝑖ℎ𝑖
𝑘𝑛

𝑖=1

, 𝑘 = 1.0 +
1.02 − 0.5

2.5 − 0.5
× (2.0 − 1.0) = 1.26 

The definition for each parameter is in Section 12.8.3 of ASCE 7. The numerical value for each 

parameter with the lateral force on one wall are shown in the following table. 

Level Floor height 

[ft] 

Floor 

weight [k] 
𝒘𝒊𝒉𝒊

𝒌
 𝑪𝒗𝒊 𝑭𝒊 [𝒌] 

R 120 2,145 883,512 0.203 293 

F 10 108 2,145 773,870 0.177 257 

F 9 96 2,145 667,328 0.153 221 

F 8 84 2,145 564,169 0.129 187 

F 7 72 2,145 464,748 0.107 154 
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Level Floor height 

[ft] 
Floor 

weight [k] 
𝒘𝒊𝒉𝒊

𝒌 𝑪𝒗𝒊 𝑭𝒊 [𝒌] 

F 6 60 2,145 369,522 0.0847 123 

F 5 48 2,145 279,104 0.0640 92.5 

F 4 36 2,145 194,377 0.0446 64.4 

F 3 24 2,145 116,733 0.0268 38.7 

F 2 12 2,145 48,823 0.01119 16.2 

For a Risk Category II Building with 𝑆𝐷𝑆 of 1.424, and 𝑆𝐷1 of 0.6223, the seismic design category 

referring to tables 11.6-1 and 11.6-2 is D. For a seismic design category D building, the redundancy 

factor is determined from Section 12.3.4.2. The structure is regular in plan at all levels and there 

are two walls on each side of the building in the perimeter. The equivalent number of frames, per 

section 12.3.4.2, part b, is calculated as the length of the shear wall divided by the story height. 

𝑛𝑓 =
𝐿𝑤
𝐻𝑠
=
27

12
= 2.25 

So, the building consists of at least 4 frames of lateral force resisting elements in the direction 

under consideration, and the redundancy factor is equal to 1.0. The shear and moment demands 

are shown in the table below. 

Story Shear [kips] Bottom Moment 

[1,000 kips - ft] 

10 293 3.515 

9 550 10.11 

8 771 19.36 

7 958 30.85 

6 1,112 44.2 

5 1,234 59.01 

4 1,327 74.94 

3 1,391 91.63 

2 1,430 108.8 

1 1,446 126.2 
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The lateral loads for calculating the lateral displacements for drift check are calculated next. Per 

section 12.8.6.2, to determine compliance with the story drifts of section 12.12.1, it is permitted to 

calculate the elastic drifts, 𝛿𝑥𝑒, using seismic design forces based on the computed fundamental 

period of the structure without the upper limit specified in Section 12.8.2. So, 𝑇 = 1.403 𝑠𝑒𝑐 is 

used for calculating the lateral forces for drift check. 

Story Floor lateral 

forces for drift 

check [kips] 

Floor lateral 

displacements for 

drift check [in] 

Drift ratio for 

drift check [%] 

10 207.2 19.06 1.849 

9 177.8 16.40 1.833 

8 149.9 13.76 1.794 

7 123.5 11.18 1.720 

6 98.72 8.700 1.604 

5 75.77 6.390 1.439 

4 54.80 4.318 1.221 

3 36.09 2.559 0.9466 

2 20.04 1.196 0.6125 

1 7.325 0.3135 0.2177 

The upper bound and lower bound of distributed gravity loads are calculated as follows. 

𝜔𝑢
5 = (1.2 + 0.2𝑆𝐷𝑆)𝜔𝐷 + 0.5𝜔𝐿 = (1.2 + 0.2 × 1.424) × 125 + 0.5 × 40 = 205.6 𝑝𝑠𝑓 

𝜔𝑢
7 = (0.9 − 0.2𝑆𝐷𝑆)𝜔𝐷 = (0.9 − 0.2 × 1.424) × 125 = 76.9 𝑝𝑠𝑓 

Assuming 55 𝑓𝑡 × 35 𝑓𝑡 tributary area of gravity loads for each wall (estimated using a finite 

element analysis in ETABS), the axial gravity load over the height is computed in table below. 

Story LC5 axial load LC7 axial load 

10 395.8 148.0 

9 791.6 296.1 

8 1187 444.1 



161 

 

Story LC5 axial load LC7 axial load 

7 1583 592.1 

6 1979 740.2 

5 2375 888.2 

4 2770 1036 

3 3166 1184 

2 3562 1332 

1 3958 1480 

Note that for a nonlinear dynamic analysis, an estimate of the expected gravity loads determined 

by 𝑃𝑢
𝑁𝐿 = 𝐷𝐿 + 0.25𝐿𝐿 is used to reduce the number of required runs. The total gravity load at the 

base of the wall using tis load combination is: 

𝑃𝑢
𝑁𝐿 = 𝐷𝐿 +

1

4
𝐿𝐿 = 2,600 𝑘𝑖𝑝𝑠 

The flexural demand of 126,200 𝑘 –  𝑓𝑡, paired with axial gravity loads of 3,958 𝑘𝑖𝑝𝑠 and 

1,480 𝑘𝑖𝑝𝑠 control the flexural design of the wall. The P-M interaction diagram of the final design 

(Cross section shown in Figure 3-38) is shown below. 
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The reduced, and nominal flexural capacity of the wall for the upper bound and lower bound of 

the gravity loads, and the gravity load of the nonlinear dynamic analyses are shown in table below. 

 LC7 axial load Nonlinear dynamic 

analysis axial load 

LC5 axial load 

𝜑𝑀𝑛 [1,000 k – ft] 136.3 144.9 155.0 

𝑀𝑛  [1,000 k – ft] 151.3 161.0 172.2 

The deformation parameters of the backbone curve for nonlinear modeling of the wall are 

calculated here. Table 4-1 and Table 4-2 determine the deformation parameters based on the 

axial load on the wall section, maximum probable shear demand, and the maximum depth 

of compression zone. Ignoring the effect of slab shear on the axial load of the wall, the 

maximum axial load on the wall is equal to the expected gravity load. 

𝑝𝑢 =
𝑃𝑢
𝐴𝑔𝑓′𝑐

=
2,600

26 × 324 × 7.8
= 0.0396 

ACI 318-19 section 18.10.3.1 estimates the maximum shear demand of the wall, 𝑉𝑒. 

𝑉𝑒 = 𝛺𝑣𝜔𝑣𝑉𝑢 

In this equation, 𝑉𝑢 is the shear force determined per Equivalent Lateral Force Procedure. 

𝑉𝑢 = 1,446 𝑘𝑖𝑝𝑠 

𝜔𝑣 is the dynamic amplification factor due to effect of higher modes. ACI and the New Zealand 

Standard estimate this per number of stories. 

𝜔𝑣 = 1.3 +
𝑛𝑠
30
≤ 1.8, 𝜔𝑣 = 1.633 
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𝛺𝑣 is the flexural overstrength factor. The flexural capacity of the wall considering the over 

strength of the material is approximately 1.25 of the nominal capacity, calculated with the 

nonlinear analysis axial load on the wall. The overstrength is then computed as follows. 

𝛺𝑣 =
𝑀𝑝𝑟

𝑀𝑢
=
1.25 × 161.0

126.2
= 1.59 > 1.5 

The maximum shear demand is then: 

𝑉𝑒 = 𝛺𝑣𝜔𝑣𝑉𝑢 = [1.595 × 1.633 = 2.605 < 3] × 1,446 = 3,768 𝑘𝑖𝑝𝑠 

The shear stress to use for finding deformation parameters in Table 4-1 is: 

𝑣𝑒 =
3,768 × 1000

26 × 324 × √7,800
= 5.06 

The last parameter to be calculated is the compression zone parameter. The approximate depth of 

compression zone, using the nonlinear analysis gravity load, and the compression zone parameters 

are: 

𝑐𝐸 = 71.82 𝑖𝑛, 𝜆 =
𝐿𝑤𝑐𝐸
𝑏2

=
324 × 71.82

26 × 26
= 34.42 

Deformation parameters 𝑑, 𝑑’, and 𝑒 are calculated by interpolating the values in the table. 

𝑑 = 0.02354, 𝑑′ = 0.02867, 𝑒 = 0.03186 

The values obtained from the table are based on the height of the plastic hinge being equal half the 

length of the wall, as recommended by Moehle and Wallace, and modeling with a nonlinear 

element of Figure 5-2 (c).  

𝑙𝑝 =
𝐻𝑃𝑍
2
=
𝐿𝑤
2
=
324

2
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To convert these values to deformation parameters of a nonlinear element with fiber section over 

the entire height, Eq. 5-28 is used. One element over the bottom story is used. 

ℎ𝐵𝐸 = 144 𝑖𝑛  

To find the elastic rotation of the wall, a moment curvature analysis is done on the wall section. 

The moment curvature diagram with critical points is shown in the figure below. A bilinear is fit 

on the curve to estimate the yield point. 

 

The yield moment, and the effective flexural stiffness of the wall are obtained using the bilinear 

fit on the moment curvature. The elastic rotation of the element in calculated per Eq. 5-20. 

𝑀𝑌 = 194,400 𝑘𝑖𝑝𝑠 − 𝑓𝑡, 𝐸𝐼𝑒 = 1.657 × 10
11 𝑘𝑖𝑝𝑠 − 𝑖𝑛2, 𝜃𝑒

1 =
𝑀𝑌
𝐾𝑁𝐿𝐸

=
𝑀𝑌
𝐸𝐼𝑒

𝑙𝑝 = 162 𝑖𝑛.

= 0.002280 

The elastic rotation of the nonlinear element used in the study is calculated in the same way. Only 

the element size is different. 

𝜃𝑒
2 =

𝑀𝑌
𝐾𝑁𝐿𝐸

=
𝑀𝑌
𝐸𝐼𝑒

𝑙𝑝 = 144 𝑖𝑛.

= 0.002027 
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Parameter 𝑟 in Eq. 5-20 is calculated as follows, with the assumption that the extent of nonlinearity 

is equal to the length of the wall, 𝐻𝑃𝑍 = 𝐿𝑤. 

𝑟 =
144

324
= 0.444 

The new deformation parameters are calculated as follows. 

𝑑 = 0.01673, 𝑑′ = 0.02027, 𝑒 = 0.02248 

These rotations are then divided by the element height to obtain the equivalent curvature. The 

equivalent curvatures are inserted in commands that builds the wall element. 
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7.4 Details of tested wall specimens in the database 

Some additional data and Metadata regarding the structural wall tests in the database of 5.6 are 

presented in this chapter. 

7.4.1 Tests conducted by Segura and Wallace (2017) 

Figure 7-3 shows the layout of LVDTs in Segura’s tests used to measure curvature profile over 

height. The rotations calculated by LVDTs 4, and 5 measure the curvature over the bottom three 

segments and the base rotation due to slippage and extension of longitudinal bars. Once the total 

rotation due to deformation of bottom three segments is subtracted from the rotation of LVDTs 4 

and 5, the base rotation is obtained. 

 

Figure 7-3 Layout of LVDTs used for measuring curvature in tests conducted by Segura and 

Wallace. Right: Specimen WP4, Left: All other specimens 

The force deformation response of specimens, and the load steps at which the curvature profiles 

are calculated are shown in Figure 7-4. In these figures, the plastic hinge rotation (The reference 

deformation) refers to the rotation calculated by LVDTs 4 and 5 shown in Figure 7-3. 
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Figure 7-4 Force deformation response of specimens tested by Segura and Wallace. The load 

steps at which the curvature profile is calculated at are marked by red crosses. 

Specimens do not have symmetric cross sections. So, the positive and negative direction of loading 

are treated as different data points for analyses. 

The profiles of curvature over height, for specimens tested by Segura and Wallace are shown in 

Figure 7-5. The curvatures are normalized by the yield curvature calculated according to 5.6.3. 

The figures also show the bilinear fits on the curvature profiles. The bilinear fit is used to estimate 

the nonlinear height of the specimens, as discussed in 5.6.1. 
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Figure 7-5 Curvature profile of specimen WP7 tested by Segura and Wallace in positive and 

negative directions 

7.4.2 Tests conducted by Dazio, Beyer, and Bachmann (1999) 

Figure 7-6 shows layout of LVDTs used to measure curvature over height. LVDT “1 N” and LVDT 

“1 S” measure curvature over the bottom 60-mm segment in addition to the rotation at the base of 
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the wall due to slippage and extension of longitudinal bars. Note that the bottom pin of these 

LVDTs lie on the footing. 

 

Figure 7-6 Layout of LVDTs used for measuring curvature in tests conducted by Dazio et al. 

The force deformation response of specimens, and the load steps at which the curvature profiles 

are calculated are shown in Figure 7-7. In these figures, the reference deformation is the drift of 

the wall measured by the string potentiometer installed at the elevation of horizontal actuator 

(4,520 mm for WSH2 through WSH5, and 4,560 for WSH6). 
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Figure 7-7 Force deformation response of specimens tested by Dazio et al. The load steps at 

which the curvature profile is calculated at are marked by red crosses. 

The profiles of curvature over height, for specimens tested by Dazio et al. are shown in Figure 7-6. 

The curvatures are normalized by the yield curvature calculated according to 5.6.3. The figures 
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also show the bilinear fits on the curvature profiles. Bilinear fit is used to estimate the nonlinear 

height of the specimens. 
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Figure 7-8 Curvature profile of specimens tested by Dazio et al. 
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7.4.3 Tests conducted by Tran and Wallace (2012) 

Figure 7-9 shows layout of LVDTs used to measure curvature over height. The left figure 

corresponds to specimens “RW A20 P10 S38” and “RW A20P10S63”, and the right figure 

corresponds to specimens “RW A15 P10 S51”, “RW A15 P10 S78”, and “RW A15 P25 S64”. 

LVDT 29 and LVDT 30 measure curvature over the bottom 24-inch segment in addition to the 

rotation at the base of the wall due to slippage and extension of longitudinal bars. Note that the 

bottom pin of these LVDTs lie on the footing. 

 

Figure 7-9 Layout of LVDTs used for measuring curvature in tests conducted by Tran and 

Wallace 

The force deformation response of specimens, and the load steps at which the curvature profiles 

are calculated are shown in Figure 7-10. In these figures, the reference deformation is the drift of 
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the wall measured by the string potentiometer installed at the elevation of horizontal actuator (96 

in for A20 specimens, and 72 in for A15 specimens). 

  

  

 

Figure 7-10 Force deformation response of specimens tested by Tran and Wallace. The load 

steps at which the curvature profile is calculated at are marked by red crosses. 
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The profiles of curvature over height, for specimens tested by Tran and Wallace are shown in 

Figure 7-11. The curvatures are normalized by the yield curvature calculated according to 5.6.3. 

The figures also show the bilinear fits on the curvature profiles. Bilinear fit is used to estimate the 

nonlinear height of the specimens. 
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Figure 7-11 Curvature profile of specimens tested by Tran and Wallace 
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