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ABSTRACT OF THE DISSERTATION

Modeling Strength Degradation of Reinforced Concrete Structural Walls

by

Amin Safdari
Doctor of Philosophy in Civil Engineering
University of California, Los Angeles, 2023

Professor John Wright Wallace, Chair

Reinforced concrete structural walls are a widely used structural system in modern construction in
regions where strong ground shaking is likely to occur. For performance-based design of structural
walls, including coupled wall systems, it is necessary to model cyclic responses with strength and
stiffness deterioration of the prototype system over a wide range of shaking intensities. Current
models typically incorporate strength loss using ad-hoc approaches that manipulate material
relations to produce strength loss that are difficult to calibrate for the broad range of expected
shaking intensities. To address this issue, a model is proposed that captures strength and stiffness
degradation compatible with backbone curves that are currently available in the literature. The
model is tested in case studies under static and dynamic loading to demonstrate its reliability and
effectiveness. The model is refined further to be used for coupled wall systems where the
fluctuation of shear and axial load in the coupled piers makes it difficult to pre-determine the

deformation parameters of the backbone curves for the piers.



In a separate but related study, a database of reinforced concrete wall tests is assembled to develop
a new model that estimates the plastic hinge length of flexure controlled structural walls and
validate the model against test results. Plastic hinge lengths have been widely used and it is well
known that deformation parameters of backbone curves (Structural walls or any other element)
depend on element size (Plastic hinge length). The goal of this study is to calibrate backbone curve
deformation parameters for a range of wall element sizes and then use the calibrated plastic hinge

lengths in the subsequent case studies that incorporate strength loss.
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Chapter 1 Introduction

1.1 General

There is an increasing tendency towards the use of reinforced concrete structural walls as the lateral
force resisting system of mid- and high-rise buildings in modern construction. Reinforced concrete
structural walls possess significant stiffness that decreases lateral drifts and limits damage to
nonstructural components. Extensive research on design, detailing and modeling of reinforced
concrete walls has been carried out over the last 50 years and results of these studies are reflected
in Chapter 18 of ACI 318-19 [9] for design of special reinforced concrete structural walls. In
addition to high stiffness, if designed and detailed per ACI 318, structural walls have proven to
provide sufficient ductility to dissipate substantial earthquake energy in Design Earthquake (DE)
and risk targeted maximum considered earthquake (MCER) events. Use of coupled wall systems
is also popular in cases where cantilever walls do not provide sufficient lateral stiffness, either due

to limits on cantilever walls from architectural constraints or for taller buildings.

ASCE 7-22 [1] chapter 12 specifies a prescriptive procedure for analysis and design of RC
structural walls and other conventional lateral force resisting systems. For prescriptive design,
Table 12-2-1 of ASCE 7 [1] enforces height limits on, or prohibits the use of, some lateral force
resisting systems for certain seismic design categories. To use these systems where they are
restricted, or to use a lateral force resisting system not recognized by Table 12-2-1, section 12.2.1
of ASCE 7 allows alternative design procedures if the intent of the code is satisfied. These
procedures include Nonlinear Dynamic Analysis of ASCE 7 [1] chapter 16, or in case of tall
building, a Performance Based Seismic Design according to consensus guidelines. Both
procedures provide acceptance criteria to meet performance objectives to achieve a prescribed

level of performance, e.g., a 10% or less probability of collapse in buildings with a risk category



of I, 5% or less probability of collapse in buildings with a risk category of I11, and 2.5% or less
probability of collapse in buildings with a risk category of IV corresponding to an MCEr shaking.
Both ASCE 7 chapter 16 and tall buildings guidelines (e.g., PEER Tall Buildings Initiative (2017)
[3] and LATBSDC (2020) [54]) require mathematical models that capture the nonlinear response
of structural elements. Such a model must be compatible with nonlinear response (backbone)
relations specified in ASCE 41, or be validated using appropriate laboratory test data. ASCE 7

section 16.3.1 specifically states:

“Degradation in element strength or stiffness shall be included in the hysteretic models unless it

can be demonstrated that response is not sufficient to produce these effects.”

The PEER TBI guidelines, in Section 4.4.3, also prohibits the use of component models that do

not account for post-peak strength degradation for nonlinear models used for MCERr evaluation.

1.2 Objectives and scope

While Performance Based Seismic Design of tall buildings has become relatively common in
recent years, mathematical models that reliably capture strength and stiffness degradation of
flexure controlled structural walls without substantial calibration and validation are not available
in literature. Even with extensive calibration and validation, the available models have drawbacks,
e.g., when applied to coupled walls where significant variations in demands (axial, shear, moment)
occur. The objective of this research is to provide a computer model that captures post-yield
strength and stiffness degradation such that the envelope of hysteretic force deformation curve
matches a specified backbone curve, e.g., as specified by ASCE 41-17. The model must also retain
the important features of traditional models being used in practice, such as variation in flexural

strength due to variation in axial load, and fluctuation of the neutral axis.



1.3 Organization

This dissertation is organized into 7 chapters. Following the introductory Chapter 1, Chapter 2
reviews previous studies that have focused on modeling strength and stiffness deterioration of
structural members. Most of the work on this topic has focused on developing single springs, with
force deformation rules that capture different modes of stiffness and strength degradation. These
springs are used for structural components whose deterioration parameters depend on response in
one degree of freedom only, and cannot be used to model structural walls without

oversimplification of prototype’s response.

Chapter 3 provides an overview of some macro-models that have been widely used in practice for
modeling structural walls. Based on this review, the Multiple Vertical Line Element model is
selected as a baseline model to develop a new model that appropriately captures strength and
stiffness deterioration. A new approach for modeling the material (Reinforcing steel and concrete)
used in the fiber section of this element is proposed. This approach serves as a platform that enables
modeling of strength loss, compatible with a given backbone curve. The cyclic force deformation
rules for the concrete and steel material relations are developed to address different load paths.
The element and the material objects are coded in OpenSees [4], an open-source nonlinear dynamic
analysis software for earthquake engineering purposes. The performance of this model is tested in
two case studies. A cantilever structural wall, loaded with cyclic displacement-controlled loading

and dynamic ground motion excitation.

Chapter 4 presents an algorithm for dynamic computation of deformation parameter d of the
backbone curve proposed by Abdullah and Wallace (2019) [46][47], incorporated into ACI Code
369.1-22. This backbone curve will be adopted by future editions of ASCE 41. The variables on

which the deformation parameters depend on (shear stress, axial load, and depth of the



compression zone) are formulated as functions of nodal displacement. The exact value of d, at the
load step through which strength loss initiates, is calculated using the Newton approach. This
algorithm is coded into the OpenSees wall element object and utilized in a case study that models

a coupled wall system subjected to dynamic loading.

Obtaining the element backbone curve from the base shear versus roof drift response of a wall
tested, requires that realistic estimate of the size of plastic hinge be determined. Chapter 5
investigates the height of plastic hinge for flexure controlled structural walls. The adjustments
needed to be applied to the ASCE 41 backbone curves so that they could be appropriately used in
the element developed in this study, are discussed. A summary of the work and the conclusions
are presented in Chapter 6. An appendix provides supplemental data, documentations, and sample

calculations.



Chapter 2 Literature review
Most research on the development and application of models that incorporate strength and stiffness
degradation has been done in the last thirty years. Some important work regarding this subject is

presented in this chapter.

2.1 Clough (1966) [5]

The importance of ductility for seismic design has been well documented. To evaluate the ductility
capacity of code compliant concrete moment frames, the Portland Cement Association (PCA) was
asked to conduct an experiment on an assembly of a concrete beam and column. The schematic of
the test specimen, and the force deformation response are shown in Figure 2-1. An important
observation in this test was stiffness degradation of the specimen in consecutive cycles. This gave
rise to the question whether more strict ductility requirements should be imposed, because the
energy absorption capacity of the system is reduced due to stiffness degradation. Clough conducted
a parametric study on single degree of freedom models utilizing a proposed nonlinear spring that

captured stiffness degradation.
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Figure 2-1 Test on beam column assembly by PCA

The force deformation response of the spring he proposed is shown in Figure 2-2.
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Figure 2-2 Force deformation of springs proposed bu Clough to model stiffness degradation
The primary variables in this study were yield strength, damping ratio, period, and the post yield

stiffness of the SDOFs. A total of 384 nonlinear dynamic analyses with 4 different ground motions



were conducted. Figure 2-3 and Figure 2-4 show how the response of a system with an ordinary

bilinear spring compared to that of a system with degrading spring.
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The bilinear system essentially keeps vibrating with almost constant period after the initial pulses,
while the degrading system shows a different response due to degrading stiffness. In Figure 2-3

and Figure 2-4, y is the ratio of post-yield stiffness to the initial stiffness.

The results also show that:

1. For short period structures (T = 0.3 sec.), the maximum displacement of degrading
structures is significantly more than that of the elastoplastic structure, whereas for long-
period structures the maximum displacements are almost equal.

2. A negative post-yield stiffness (A representation of strength loss) has a disastrous effect on

the response of the building.

2.2 FEMA P440 (2005) [6] and FEMA P440A (2009) [7]

FEMA P440 studied the effectiveness of, and proposed potential improvements to, two nonlinear
static procedures (NSPs) in evaluating the seismic demands of buildings. These two are described
in FEMA 273 (and FEMA 356) and in the ATC40 report and are referred to as the Coefficient
Method and the Capacity Spectrum method, respectively. FEMA P440 emphasized the importance
of cyclic and in-cycle strength and stiffness degradation in predicting building demands, and the
need for developing models that capture such deterioration in future research. FEMA P440A, a
follow-on document on FEMA P440, investigated the response of buildings considering strength
and stiffness degradation. Different types of stiffness and strength degradation in available models
were characterized in FEMA P440A. Figure 2-5 shows three different types of stiffness
degradation. In the first model, loading and unloading stiffnesses are equal, and both degrade with
an increase in maximum deformation. In the second model, the unloading stiffness does not

degrade, but the reloading stiffness degrades with increase in maximum experienced deformation.



In the third model, unloading and reloading stiffnesses are different, and both degrade with

increase in maximum observed deformation.
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Figure 2-5 Different models of stiffness degradation

Figure 2-6 describes the pinching effect. The reloading stiffness degrades with increase in
maximum deformation, until the load deformation path hits a target deformation, at which
reloading continues with a much higher stiffness. This behavior is observed in reinforced concrete
structures, where concrete cracks open when element is loaded in a certain direction but upon

reloading in the opposite direction when the cracks close, stiffness is recovered.
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Figure 2-6 Moderate pinching in figure (a) and severe pinching in figure (b)
Figure 2-7 illustrates two sources of cyclic strength degradation. Figure 2-7 (a) shows strength
degradation due to increasing nonlinear displacement in consecutive cycles. In Figure 2-7 (b), the
level of nonlinear displacement remains constant, yet strength degrades due to increased number

of cycles. Several analytical models have been developed that incorporate both types of cyclic



strength degradation. These models generally deteriorate the strength as a function of hysteretic

energy dissipation.
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Figure 2-7 Cyclic strength degradation
Figure 2-8 (b) shows in-cycle strength degradation where, a softening (negative stiffness) branch
of force deformation response is observed within a single loading excursion. The hysteretic
response of a component with cyclic strength degradation under the same loading protocol

(Loading protocol 1) is shown in Figure 2-8(a) for comparison.
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Figure 2-8 Cyclic and in-cycle strength degradation due to loading protocol 1
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Note that the curve enveloping the force displacement response is similar for both modes of
strength degradation, but the materials behave significantly different if loading protocol 2 is

applied. as shown in Figure 2-9.
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Figure 2-9 Cyclic and in-cycle strength degradation due to loading protocol 2

Although analyses have shown that for medium and long period buildings, the maximum observed
deformation is almost equal for the two modes of strength degradation, the model with in-cycle
strength degradation experiences much larger residual drift. This may result in dynamic lateral
instability (Collapse). In an additional study, eight springs with a combination of strength and
stiffness degradation modes were used as components of Single Degree of Freedom oscillators.

The SDOFs modeled the nonlinear and degrading response of the following frames.

1. Typical gravity frame (e.g., steel)

2. Non-ductile moment frame (e.g., steel or concrete)

11



3. Ductile moment frame (e.g., steel or concrete)

4. Stiff non-ductile system (e.g., concentric braced frame)

5. Stiff and highly-pinched non-ductile systems (e.g., Infill wall)
6. Idealized elastic perfectly plastic system

7. Limited ductility moment frame (e.g., concrete)

8. Non-ductile gravity frames (e.g., concrete)

The effect of deterioration on the response and collapse of these frames was investigated.

2.3 Ibarra, Medina, and Krawinkler (2005) [8]

Ibarra, Medina, and Krawinkler developed models that exhibit stiffness and strength degradation
of structural components. The basis of their model was three nonlinear models available in the

literature. The three models are

1. Bilinear hysteretic model with post-yield strain-hardening and kinematic hardening
2. Peak-oriented hysteretic model

3. Pinching model

Figure 2-10 (a), (b), and (c) show the response of each hysteretic model. These models were
modified to include a post-cap softening branch, and hysteretic rules were adjusted to work
accordingly. Four modes of strength and stiffness degradation, listed below, were included in the
force deformation rules. The reloading stiffness degradation was already captured in the basic

peak-oriented and pinching models.

1. Basic strength degradation
2. Post-capping strength degradation

3. Unloading stiffness degradation

12



4. Accelerated reloading stiffness degradation

(c) (d)

Figure 2-10 Basic models used by Ibarra, Medina, and Krawinkler. (a) Bilinear hysteretic model,
(b) Peak-Oriented model, (c) Pinching model, (d) Cyclic deterioration by post-peak softening
branch

The parameter that controls strength and stiffness deterioration, g;, is calculated per Eq. 2-1 using

the energy dissipated in excursion i.
p=(—E ), R, =a-p Eq. 2-1
i Et _ 5:1 E] ) ref ref .

In Eq. 2-1, E; is the energy dissipated in excursion i, and E; is the total energy dissipation capacity

of the structural component, assumed to be independent of the loading protocol. It is expressed as

13



a function of area enclosed by the linear segment of the force deformation curve, as shown in Eq.

2-2.

E. = yE,6, Eq. 2-2
Exponent ¢ controls the rate of deterioration, recommended to be set between 1, and 2. The value
of y can be different in calculating different modes of deterioration (Strength or stiffness). An
example of the application of Eq. 2-1 and Eq. 2-2, is shown in Figure 2-10 (d) where the post-cap
softening segment is deteriorated according to Eq. 2-3. This calculation is done once the force

deformation path crosses the horizontal axis (Point 6).

Flo = (L= B)FY Eq. 2-3

The developed models were calibrated using experimental results. The bilinear model was
calibrated using results of tests on steel beam column subassemblies. The pinching model was
calibrated using results of tests on RC columns and plywood shear walls. A sensitivity study was
conducted on the peak-oriented model to investigate the effect of model parameters on global

response.

2.4 Sivaselvan and Reinhorn (2000) [10]

All the models discussed above have piece-wise linear force deformation response. Sivaselvan and
Reinhorn developed a Smooth Hysteretic Model (SHM) based on the assembly of springs shown
in Figure 2-11 to model different nonlinear and degrading behavior of structural components. The
in-series assembly of Spring 2 and Spring 3 are connected in parallel with Spring 1 and Spring 4.
The Post-Yielding spring models the post-yield hardening effect. The Slip-Lock spring captures
crack-closure and bolt slipping. The Gap-Closing spring models the extra stiffening at large

deformations which happens, for instance, when expansion joints of a bridge are closed. The

14



strength and stiffness deterioration are captured in formulation of response by the Hysteretic
Spring (Spring 2). Figure 2-12 shows how stiffness and strength degrade in this model. The
stiffness degradation is governed by the assumption that force deformation curve at unloading

targets a pivot point. The unloading stiffness is calculated according to Eq. 2-4.

Mgy, + aM,

K.y = RgKy = ——— K,
cur K50 Ko Oeur +a My 0

Eq. 2-4
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Figure 2-11 SHM model developed by Sivaselvan and Reinhorn
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Figure 2-12 Strength and stiffness degradation of hysteretic spring in the SHM model by
Sivaselvan and Reinhorn

In Eq. 2-4, aM,, is the ordinate of the Pivot, and « is parameter of the model controlling stiffness
degradation. ¢, and M., are deformation and force at the current state. Strength degradation is

governed by Eq. 2-5. Both dissipated energy and nonlinear deformation deteriorate strength

independently.
/ 1
+/=\ b1 H
M+/_ _ M+/_ 1— (‘pmax) 1— P Eqg. 2-5
y 0 ol/" [ 1— B2 Hy !

In Eq. 2-5, "/~ is the maximum hysteretic deformation, and ¢;//~ is the maximum deformation
capacity of the element being modeled, in positive and negative directions. H,,;, is the maximum
energy dissipated by the element when pushed monotonically up to ¢,, and H is the hysteretic

energy dissipated, computed by integrating the energy quotient of Eq. 2-6.

Eq. 2-6

M + (M + AM) AM
AH = [ 2 ] (A‘” N RKKO)

Parameters B; and B, control the rate of deterioration. Figure 2-13 shows the analytical and
experimental response of a steel beam to column joint, using the model developed by Sivaselvan

and Reinhorn.
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Figure 2-13 Comparison of predicted and measured force deformation response of a joint by
Sivaselvan and Reinhorn

2.5 Conclusion

The models discussed above are developed to be used for concentrated springs, that model force
deformation response of structural components in one direction only. These models can be used in
a simple shear wall model, e.g., the model in Figure 3-1 or Figure 5-2 (c) in which the nonlinear
action is lumped in one spring. Modeling of structural walls has evolved such that common practice
is to use a model based on fiber sections where a combination of uniaxial elements captures the
flexural/axial response. A fiber section model that can capture the strength and stiffness
degradation of shear walls and is compatible with backbone curves in the literature has yet to be

developed. The objective of this project is to develop such a model.
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Chapter 3 Modeling flexure-controlled shear walls to capture strength loss

3.1 Nonlinear models of RC structural walls

A simple model to capture nonlinear behavior of structural walls consists of an elastic beam-
column element and nonlinear springs, located at the centerline of element’s cross section as shown
in Figure 3-1. The black flexural springs account for the nonlinear flexural response. An initial
linear force-deformation response may be added for numerical purposes. In this case, the flexural
stiffness of the elastic beam-column element is adjusted accordingly. The backbone of nonlinear
flexural springs is obtained by computing the moment curvature diagram of the wall section. This
analysis is straightforward if the axial load is assumed to be constant. If the axial load is fluctuating,
as in a frame wall system, the process of computing the backbone curve and assigning it to the
flexural springs becomes complicated. The gray flexural spring at the base, in series with other

components, accounts for slippage and extension of bars at the support.

~Nonlinear flexural spring

= Elastic beam column element

—Nonlinear axial spring

o/
—=Nonlinear flexural spring

)

—=>Slippage and extension spring

Figure 3-1 A simple shear wall model
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Due to small tensile strength of concrete, axial stiffness of RC walls is significantly different in a
net compressive axial load than in a net tensile axial load. To consider this behavior, the blue
spring of Figure 3-1 is added to the assembly. Appropriate values for axial stiffness are assigned
to the elastic beam-column element, and the nonlinear axial spring so that the combination in series

of these two components captures the overall axial response of the wall.

The shear response of the wall, if assumed linear, can be captured by the shear stiffness of the
elastic beam-column element. If the shear response is nonlinear, a horizontal spring replaces the
elastic shear stiffness of the beam-column element. To have a finer model that accounts for shear
sliding, a simple shear-slip model at the base can be incorporated. For each of these nonlinear
springs, hysteretic force deformation curves are formulated using data from experimental study on

similar specimens, or finite element analyses.

Takayanagi and Schnobrich (1979) [12] made the mechanical model of Figure 3-2 to investigate
the failure mechanism and nonlinear dynamic response of a ten-story coupled wall system. The
wall piers are divided into sub-elements, and finer mesh is used for the bottom stories, where more

inelastic deformation is expected to occur.
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Figure 3-2 Coupled wall model by Takayanagi and Schnobrich

The interaction of axial and flexural load is considered by formulating the force deformation

relationship of wall sub — elements according to Eq. 3-1.

m = M(gp, n)

n =N, &) Eqg. 3-1

Moment is function of axial load, n, and curvature, ¢. The axial load is a function of curvature and
axial deformation, e. The stiffness matrix of the wall sub-element, composed by taking partial

derivatives of Eq. 3-1, is shown in Eq. 3-2.

oM OMON OMON
AM] |op Tandg anae [mp
ON N As
Er 3

Eq. 3-2

AN

If the ratio of incremental axial load to the incremental moment does not change significantly, the
stiffness matrix of Eq. 3-2 can be turned into a symmetric matrix to increase the efficiency of the
solution algorithm. Computation of M /d¢ in Eq. 3-2 needs the moment-curvature diagrams of

the wall section to be obtained for different levels of axial loads. Transitions between moment
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curvature curves of Figure 3-3 are introduced to formulate the effect of varying axial load on the

flexural response.
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Figure 3-3 Idealized moment curvature relationships of wall segments by Takayanagi and
Schnobrich

To analyze a seven story RC frame-wall building tested as part of the US-Japan cooperative
research program, Kabeyasawa et al. (1984) [13] developed the TVLEM to model the structural
walls. Figure 3-4 shows the plan view of the barbell shaped wall used as the lateral force resisting

system in the building.

Figure 3-4 Plan view of the lateral force resisting system modelled by Kabeyasawa et al. (1984)
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Figure 3-5 shows the layout of their proposed model, which consists of two rigid beams at the top
and bottom that enforces a linear varying strain over the section, and three elements to model the
boundary columns and the inside panel. The side columns are uniaxial springs. The middle column
is a combination of rotational, axial and shear springs. Empirical nonlinear force-deformation

relations constitute the response of each spring.
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Figure 3-5 TVLEM proposed by Kabeyasawa et al. (1984)

Figure 3-6 describes the Axial Stiffness Hysteretic Model (ASHM) assigned to the axial springs,
in the two boundary columns and the middle column. Figure 3-7 describes the Origin Oriented
Hysteretic Model (OOHM) assigned to the flexural, and shear springs in the middle column. The
empirical cyclic rules and many other assumptions are determined based on experimental tests on
other smaller specimens. The parameters in the figure are calculated using the geometry of the

wall, reinforcement ratio, and the strength of the material.
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Figure 3-7 Cyclic force deformation relationship used for OOHM in TVLE model to capture the

shear response

Vulcano and Bertero (1987) [14] believed that the model developed by Kabeyasawa et al. did not
consider deformation compatibility between the central panel and the boundary columns in
assigning the properties of the central panel’s flexural spring. To further improve the TVLE model,
they obtained the moment curvature of the central panel using the computer program UNCOLA,
and considering deformation compatibility. A trilinear curve was fitted on the moment curvature

diagram, and properties of the flexural spring were assigned. In addition, they used the assembly
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of components, shown in Figure 3-8, that has the advantage of modeling bond deterioration and
reappearance of contact stress between steel and concrete. The length Ah denotes the length over

which the bond stress between steel bars and concrete has been deteriorated.
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Figure 3-8 Axial Stiffness Hysteresis Model proposed by Vulcano and Bertero (1987)
Although the overall response predicted by the model is in reasonable agreement with test results,
the flexural spring representing the flexural behavior of the central panel is troublesome.
Computation of the properties of this flexural spring requires assuming a constant axial load on
the central panel. It may be acceptable for isolated cantilever walls to assume that the axial load is

constant, but the contribution of the central panel’s axial load to the total axial load changes.

To modify the model by having a better compatibility of the components, Vulcano et al. (1988)
[15] proposed the Multiple Vertical Line Element (MVLE) model, shown in Figure 3-9. The

multiple (more than two) vertical lines in the middle overwrites the flexural spring at the base. The
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shear spring is elevated to height ch in this model. By assigning different valued for ¢ (0 < ¢ < 1),

different variations of curvature over the element height (with no change in sign) can be achieved.
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Figure 3-9 Multiple Vertical Line (MVL) element proposed by Vulcano et al.(1988)
Multiple researchers have worked on the efficiency and accuracy of the MVL element model,
including Vidic et al. (1989) and Fischinger et al. (1990) [17], that did an analytical study on a 2.4-
meter, one-story prototype tested at Tsinghua university in Beijing. The wall cross section is shown

in Figure 3-10.
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Figure 3-10 Cross section of the wall tested by Zhou (1988) [16] at Tsinghua university in
Beijing

Figure 3-11 shows the comparison of the test lateral force versus top displacement, with analytical
results obtained by different modeling approaches. The curves shown in the figure are envelopes

of cyclic force deformation curves.
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Figure 3-11 Comparison of test results and analytical results by Fischinger et al. (1990) and
Vidic et al. (1989)

Orakcal and Wallace (2004) [18][19][20] used the Multi Vertical Line Element model with two
steel and concrete fibers in parallel for each generic uniaxial element. The model proposed by
Chang and Mander (1994) [30] was used for the concrete material, and a modified version of
Menegotto-Pinto (1973) [47][30] for the steel reinforcement. These two are still state of the art
models for reinforcing steel and concrete material. The MVLEM used in their study relates the
flexural response directly to the material properties, without the need to employ any empirical

rules.

They showed that using these two models for the material, the MV LE model can accurately predict
the hysteretic flexural force-deformation response of slender walls. As part of their study, they
calibrated the model against tests on planar and flanged RC wall. A sensitivity analysis on the
element and material parameters was performed to evaluate the effect of these parameters on

response of the wall at different states.

3.2 Selected shear wall model: Multiple Vertical Line Element Model

Analytical research has proven the effectiveness and reliability of the MVLE model in analyzing

reinforced concrete structural walls. The overall nonlinear response of the structure predicted by
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the model is in reasonable agreement with test results. The model captures many aspects of the
structural walls including the effect of fluctuating axial load on the flexural strength, and the shift
of the neutral axis in cyclic loading. The latter is especially important when performance of
connecting elements (e.g., slab elements and coupling beams) matters in the analysis. Furthermore,
the constituent uniaxial elements capture the distribution of the vertical stresses on the wall section.
This is significant for the purpose of this work because, as will be explained in Chapter 4, the
strength loss parameters are determined based on the force-wise compression zone depth (i.e., the

depth of section under compressive vertical stress).

It is well known that the shear force-deformation behavior of structural walls at loading stages
after yielding is nonlinear due to flexural cracks and loss of aggregate interlock. This is true even
for flexure-controlled walls where the maximum shear demand is less than the ultimate shear
capacity (Massone and Wallace (2004) [55]). The shear force versus shear distortion diagram for
the bottom segment of specimen RW2 tested by Thomsen and Wallace (1995) [22][21], shown in
Figure 3-12, serves as an example. The MVLE model originally developed by Vulcano et al.
utilizes a nonlinear shear material for the horizontal springs, but the shear force-deformation
nonlinearity is uncoupled from the flexural response. Although a horizontal shear spring whose
properties depend on element’s curvature/axial deformation can provide a solution for this problem
but working on shear response is beyond the scope of this dissertation, and the element developed
in this study to capture stiffness and strength deterioration has an elastic linear shear spring. This
approach will not have a significant impact on the predicted overall response as the behavior of

the structures simulated by this model is dominated by the flexural action.
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Figure 3-12 Shear force versus shear distortion response of the bottom segment of Specimen
RW?2 tested by Thomsen and Wallace (1995)
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3.3 Description of the model

Figure 3-13 shows the deformed and undeformed layout of an MVL element used in this study.
The element is composed of m uniaxial tress members that capture the axial-flexural response.
Each uniaxial member, labeled i, is made of concrete and steel material with areas A% and AL,

respectively, that constitute the portion of the cross section the fiber represents.

HTL Ur

H.

m : 1y
L, to,

Figure 3-13 Undeformed and deformed configuration of an MVL element

In a 2D space, nodes at the top and bottom of the element have three degrees of freedom each. The
internal force of the element is computed based on the nodal displacements. The full formulation
of element’s vector of internal forces can be found in literature. The important components that
need to be discussed here, and will be referred to later, are the shear force, top moment, bottom

moment, and the moment at the location of the shear hinge.

Eq. 3-3 gives the internal shear force across the element base on element’s nodal displacements
and stiffness of the shear spring. Note that since the shear response is assumed to be linear elastic,
the element’s shear force is stiffness of the shear spring, K, times the displacement across the

shear spring, dgs.
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F11 =V = KhdSS = Kh[uB - CHQQB - (1 - C)HQQT - uT] Eq 3'3
The internal moment at the location of the horizontal spring (at height cH, from the bottom of the
element) is given in Eg. 3-4. Since the moment arm of the shear force in the horizontal spring is

zero at this point, the moment at this point is purely due to the uniaxial struts.

m
Mss = ) Alol(e + Abol(e) Eq. 3-4
i=0

In Eq. 3-4, m is the number of fibers in the section, and x is the local coordinate of each uniaxial

element, and &t is the total strain of each fiber.

The shear force remains constant in the element (i.e., no lateral force across the element height is
assumed). So, the moment diagram is linear with the maximum and minimum moments at the top

and bottom. Eq. 3-5 turns the moment at the top of the element.

m
My = Mgg — V(1 —c)H, = Z Alol + Alol — Ky [cH,0p + (1 — ¢)H, 05 + ur — ug]
i=0

Eqg. 3-5

The bottom moment of the element is derived in Eq. 3-6 using equilibrium of forces.

m
Mg = Mgs + VcH, = Z Alal + ALol — K, [cH, 05 + (1 — ¢)H,05 + ur — ug]
i=0

Eqg. 3-6

As discussed in 3.1, different values of ¢ produce different distribution of curvature across the

element. The average curvature is calculated according to Eq. 3-7.

_ 97" - 93
$e =g, Eq. 3-7
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3.4 Element’s backbone curve and deformation parameters of strength loss

ASCE 41 (2017) [2] classifies structural actions of elements into force-controlled and deformation-
controlled categories. Deformation controlled actions, such as flexural response in flexure-
controlled structural walls, are assigned a backbone curve that specifies the envelope of hysteretic

force deformation of the element for that action.

Plastic hinge rotation, Op;

Figure 3-14 Backbone curve of the flexural action of structural walls

Figure 3-14 shows the backbone curve of reinforced concrete structural walls controlled by
flexure. The horizontal axis of the backbone curve is the rotation of the plastic hinge. The plastic

hinge, shown in Figure 3-15, is the segment of the wall with height 1, over the critical section,

where most of nonlinearity occurs.

Critical section —

2 77

Figure 3-15 Plastic hinge of RC structural walls
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ASCE 41 sets 1, equal to half of the flexural depth of the element. A more in-depth discussion
regarding appropriate values to be used for the height of the plastic hinge is presented in Chapter
5. In an analytical model of the wall that has only one MVL element used over the plastic hinge,

the total rotation of the plastic hinge, 6,4, is calculated from Eq. 3-8.

QPH = BT - QB = (peHe' He = lp Eq 3-8
In Eqg. 3-8, ¢, is element’s average curvature, and H, is the height of the element used for the

plastic hinge.

The vertical axis of the backbone curve, in Figure 3-14, is the moment normalized by the yield
moment. Note that moment varies over element height with a gradient equal to the shear force
across the element. Because the height of the plastic hinge is small compared to the effective height
of the structure, it would be acceptable to use the moment at the top of the plastic hinge (Eq. 3-5),
bottom of the plastic hinge (Eg. 3-6), or anywhere in between for computation purposes. In
formulation of the element, the moment at the location of the shear spring, Mgs in EQ. 3-4, is

assumed for the backbone curve’s vertical axis.

The previous work on the reliability and effectiveness of the MVL element has shown that by
using the actual strength of the steel, and the test day strength of the concrete material in the model,
the backbone curve is automatically captured at deformations smaller than initiation of strength
loss (segments AB and BC). Beyond point C, when plastic hinge rotation exceeds d, segment CD
of the backbone curve determines the strength loss scheme. Over this segment, a force increment

is linearly correlated with an increment of the plastic hinge rotation.

dMgs & dOpy Eq. 3-0
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Inserting Eqg. 3-8 into Eq. 3-9 , moment increments are linearly correlated with curvature
increments.

dMgs < de,

Eqg. 3-10
As discussed before, Eq. 3-4 gives moment at the shear spring, Mg, which is entirely due to the

stresses in the various fibers, which are a function of fiber strain. Strain of a fiber in an MVL
element (generally any element with a fiber-discretized section whose deformation geometry

ignores the second and higher order terms of deflection) is a combination of the axial deformation,

and element curvature per Eq. 3-11, and shown in Figure 3-16.

. v . . gto - gb
i_ _ ol i _ _ 14 ot
& = @ex; + o =& t &, dv = Vtop — Ubot» Pe = q
e e

Eq. 3-11

o Xi [81‘0;)7 6159!]
vmp " Vbor

|
— x; 1= |

Figure 3-16 Total strain of fiber is the summation of axial strain and flexural strain
In Eq. 3-11, x; is the local coordinate of the fiber. The strain caused by element curvature is labeled
&, and the strain caused by element axial deformation is labeled &,. From now, &, is referred to as

the flexural strain, and ¢, is referred to as the axial strain. Eq. 3-12 combines Eq. 3-4 and Eq. 3-11.
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Mgs = ZO Alol(e; + &) + ALoi(e; + &) Eq. 3-12
Segment CD of the backbone curve, relates the rate of strength degradation to the curvature

increment only, as shown in Eg. 3-10. With area fibers being constant, this means that segment

CD related the materials rate of stress degradation to the curvature increment only.

de

xll) + Asdoy (d(pe - dxil) Eqg. 3-13

m
dMgs = Z Aidgi (d(pe -

i=0
To build a model that maintains the properties of the element prior to strength loss, and captures
the backbone curve after initiation of strength loss, the total strain is decomposed into flexural

strain and axial strain as independent variables of stress, as shown in Eq. 3-14.

Mo = Alol(e, &)+ alole, &) Eq. 3-14
i=0
Formulation of stress as a function of independent variables ¢;, and &, is explained in 3.5.

3.5 Formulation of the material strain stress equations

Figure 3-17 shows the simplified strain stress curve of a steel material under monotonic

compressive and tensile loading.

Stress, ¢

= Strain, ¢

Figure 3-17 Simplified strain stress curve for a steel material loaded from [0, 0]
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Starting to load from zero strain and stress (¢ = 0 and o = 0), material remains elastic until the
yield point (¢ = +¢,, and ¢ = +0,). Beyond the yield point, strain hardening occurs with a constant
post-yield tangent equal to E, = bE,. EQ. 3-15 show the strain stress equations, over the elastic

segment and stain hardening branches respectively.

o=Ee
Eq. 3-15
0=Esh(s—£y)+F, J=Esh(£+£y)—Fy

By decomposing the total strain, ¢, into flexural strain, ¢,, and axial strains, ¢,, the 2D strain-stress

curve of Figure 3-17 is converted to the 3D strain-strain-stress curve of Figure 3-18.
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Figure 3-18 Simplified strain - strain - stress curve for steel material loaded from [0, 0]

Note that stress in Figure 3-18 now varies over the strain-strain plane of Figure 3-19.
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Figure 3-19 Flexural strain - axial strain plane (1 — 2 plane)

On this plane, points with the same total strain lie on lines oriented at a 45° angle.
€1+€2=a, & =a—&

With equal total strain, all points above these lines have the same stress. Vector Ve, in Figure 3-19

shows the direction of change in total strain, and the gradient of stress.

—_, Oe de 1
Ve, = a_glgi’+a_gze_2’ = [1] Eq. 3-16

36



3.6 Implementing strength degradation of the material

As shown in Figure 3-14, the deformation parameters (Plastic hinge rotations) at the start and end
of the strength loss segment are d and d' respectively. With only one element being used for the
plastic hinge, the average element curvatures, corresponding to plastic hinge rotation of d and d’

are given in Eq. 3-17.

pt=—, ¥ =— Eq. 3-17

In Eq. 3-17 and the following equations, H, is the height of the plastic hinge. Now consider a steel

fiber is located at local coordinate x; of the cross section shown in Figure 3-20.

w| © | O e o O | O

Figure 3-20 Steel fiber at local coordinate x; of the cross section

The flexural strains, ¢, due to curvatures of Eq. 3-17 are obtained using the local coordinate of

the fiber.

d d d a’ da’ d'
& T QX = X, & =Q X =

He H—exl. Eq 3'18

Another set of flexural strains are calculated in Eq. 3-19 for the backbone curve of the element in

the opposite direction.

Xi Eq 3'19

The flexural strains in Eq. 3-18 and Eq. 3-19 specify regions on the &1 — &2 of Figure 3-19, over

which the material’s strength degrades. These regions are shown in Figure 3-21.
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Figure 3-21 Strength loss regions on ¢; - €2 plane

With a uniform stress degradation over the span of flexural strains highlighted in Figure 3-21
followed by a constant residual stress, the strain-strain-stress curve of Figure 3-18 is converted
into the strain-strain-stress curve in Figure 3-22. This figure corresponds to a typical steel material
with yield stress of 60 ksi, yield strain of 0.002, and flexural strains of 0.01 and 0.02 corresponding
to the strength degradation segment of the element backbone curve, for both negative and positive
moment. In a different view angle, Figure 3-23 shows how the strength degradation is captured
only over the strength loss regions of the ¢, - &, plane shown in Figure 3-21. By adopting this
formulation, the material’s stress degradation is compatible with element’s strength degradation.
Note that this would not be the case if the total strain was used as the parameter controlling the

strength degradation of the material.

Only the tensile action is plotted in Figure 3-22 and Figure 3-23 for clarity. The stress degradation
in tension is associated with bar rupture in tension, and the stress degradation in compression, not
shown in the figures, is associated with buckling of bars in compression. Both stress degradation
schemes are assumed to occur uniformly over backbone curve strength loss segment (i.e., Segment
CD in Figure 3-14).
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Beyond deformation d’, and prior to deformation e, backbone curve shows a constant residual

strength. To achieve this response, concrete and steel materials are assumed to have a constant

residual stress for strain magnitudes larger than 2. This is implemented for the steel material

shown in Figure 3-22 and Figure 3-23.
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Figure 3-22 Strain-strain-stress curve for a typical steel material with stress degradation
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Figure 3-23 Strain-strain-stress curve for a typical steel material with stress degradation

A similar approach is used to formulate the stress equations of the concrete material. The strain-
stress equation of the concrete material prior to strength loss is different than steel material’s strain-
stress equations, yet the governing equations for strength loss are similar for steel and concrete.
Furthermore, the concrete materials’ strength degradation is assumed to happen only in
compression. The tensile stress degradation of concrete is associated with tensile cracking, which

happens at load steps prior to yielding.

The kinking at the yield points, evident in Figure 3-17, may cause numerical stability in a nonlinear
solution. To avoid this problem, the well-known Menegotto-Pinto equations are used that provide
a smooth transition from the elastic branch to the post yield strain hardening segment. Two other
transition curves, from strain hardening to the strength degradation segment, and from the strength

degradation segment to the constant residual strength region are required if the material captures
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strength loss. Implementation of transition curves requires an assumption of the initial strain,
where the transition starts. The landing strain, where transition joins the original curve is calculated
by assuming a uniform change of tangent. Figure 3-24 shows application of Menegotto-Pinto
equations and transition curves in 2D strain stress space. The start and end of transition curves are
also specified in this figure with cross signs. Details of calculating the transitions are presented in
the appendix (Chapter 7.2). Same approach is used to formulate the transitions in the 3D curves of

Figure 3-22 and Figure 3-23.
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Figure 3-24 Steel strain stress relationship with transition curves

With the material of fibers at other locations showing a consistent stress degradation between

flexural strains 2 and %', the shear wall’s hysteretic flexural force deformation response will by

fitted by the correct backbone curve.

3.7 Setting materials’ residual stress

Concrete and steel material at the boundary of a cross section is subjected to the highest strains;
Therefore, the material at the wall boundaries is assigned smaller residual stresses to produce

strength loss. The fibers near the centroid of the cross-section, on the other hand, are likely to be
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less damaged. Figure 3-25 shows the deformation of the wall element with compression zone
denoted as C, and the tensile zone denoted as T. With the length of the cross section being L,,, the

sum of the compression and tension zone is equal to the total length of the wall, ¢ + T = L,,,.

Figure 3-25 deformation of the wall element with denoted compressive and tensile zones

For the proposed model, damage is assumed to occur from the compressive wall edge to 2/3 of
the compression zone depth and from the tensile wall edge to 2/3 of the tensile zone depth.
Damage (or strength loss) is not considered for the material between these zones. With the material
of the boundary elements taking more damage, it is assumed that the residual stress is smaller over
the boundary regions. Eq. 3-20 is proposed to specify the residual stress of the material over the

tensile and compression zones.

n

rGo) =+ (5 =10 (7) Eq. 3-20
In Eq. 3-20, r, is the material residual stress at the face of the wall, r5 is the residual stress at the
neutral axis, assumed to be 1.0, L is the depth of the section in Tension / Compression, and x is the
location of the material over the Compression / Tension depth. n is a parameter that controls the

shape of the curve that determines the residual stress ratio, r(x), over the depth. Figure 3-26 shows
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residual stress over section per Eq. 3-20 for different values of n, and an assumed residual stress

ratio of 0.2 for the material at the face of the wall.

g n=10 0.9
& n=6 0.8
-

= n=4 0.7
§ n=2 0.6
¢l 03
N

= 0.4
2 03
§ .
= 0.2
= 0.1

0 1/3 2/3 !

Depth of Compressive / Tensile zone

Figure 3-26 Material residual stress over Compression / Tensile zone

The figure also shows the assumed 2/3 limit over which residual stresses are assigned to the
material in fibers. Beyond the 2/3 limit, both steel and concrete material are assumed to remain

intact and behave as regular uniaxial material in 2D strain-stress space.

3.8 Cyclic update of deformation parameter, d

Figure 3-27 shows a sample cyclic load deformation and the backbone curve of a shear wall
element over the plastic hinge. Vertical axis shows moment at the shear spring of the element, as

discussed in 3.4, and the horizontal axis is the plastic hinge rotation, 6.
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Figure 3-27 Cyclic update of deformation parameter d

Deformation parameter d is initially set equal to d,. Once d, is exceeded in a load step, the element
starts following the strength loss curves. Upon an unloading step over the strength loss curve,
deformation parameter d is updated to the maximum rotation the element has experienced over the
strength loss curves. This updating process ensures that the cyclic force deformation curve is fitted
by the element backbone curve. Figure 3-27 shows update of deformation parameter d, to d, and

d5 in consecutive unloading steps during the strength loss in positive direction.

3.9 Cyclic Strength and stiffness degradation of the steel material in tension

Assume the steel material of Figure 3-22 starts being loaded from zero strain and stress ([, o] =
[0, 0]), and experiences strength degradation in tensile stress. The initial load path, Path A, is
indicated by the black arrow on the &; - &, plane shown in Figure 3-28. The material has a yield
stress in tension equal to F, 7, and an initial tangent of E;. The element’s backbone curve has the
strength loss segment confined by rotations d and d’ in the direction of loading, as shown in Figure
3-14. The total strains of the material at plastic hinge rotation of d and d’ depend on the load path
and the location of the fiber on the cross section. For the load path shown in Figure 3-28, the total
strains corresponding to d and d’ are denoted by D1, and R1, respectively.

44



Axial strain, &,

‘ < Strength loss region in
N compression

Strength loss region in
fension

Flexural strain, &,

Residual strength

No strength loss

Figure 3-28 Sample load paths of steel material on e1 - e> plane

By plotting stress versus total strain (e, = &; + &), the strain — stress curve of Figure 3-29 is

obtained.

Stress, o

U-BF,; | X

U -BF, £ Path B

i w—  Strain, ¢

Figure 3-29 Strain - stress curve of steel material with stress degradation in tension

Note that in cyclic loading of steel bars, the yield stress changes due to isotropic hardening. If the
material is at a yielding state, such as point [gg4, f4] in Figure 3-29, the yield stress can be derived

using the ordinate of point /" on the strain stress curve shown in Figure 3-29. This method of
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obtaining the yield stress will be used later, in Eq. 3-22 to find the Post-Strength-Loss yield stress

of the material.

— &,bE
(1=b)Fyr = fo— eaBsy,  Fyp = % Eq. 3-21

In Eq. 3-21, Egy is post-yield strain hardening stiffness of the steel bars, and b is the ratio of post-

yield tangent, Esy, to the initial tangent, Es.

If the material follows load Path B of Figure 3-28, it will eventually land on residual stress region.

The corresponding strain stress curve is shown in Figure 3-29.

Assuming the material is unloaded from a typical point [e,, o] on the descending branch, and

follows load Path C of Figure 3-28, the yield stress is updated. The new yield stress, F;7", is

calculated using Eq. 3-22.

PSL
fr1— grleS

e Eq. 3-22

(U= DS = = el S =

Since stress degradation in tension is associated with rupture of bars, the instant unloading
stiffness, Eg, must be updated accordingly. It is assumed that stiffness is degraded with the same
ratio as the strength. This is stated in Eq. 3-23.

PSL PSL
Fyr  Es

Eq. 3-23
For Es a

By inserting Eq. 3-23 into Eq. 3-22, the updated yield strength of the steel material is derived.

FP;L
frl - grlb (ﬁ) ES f
FPSL — VT [ S Eq. 3-24
yr 1-b < 1—b+ &1 bEs |
F

y.T

Once the updated yield strength is derived in Eq. 3-24, the reversal initial stiffness is then

calculated by Eq. 3-23.
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The yield strength of the material in compression is equal to the updated yield strength in tension,
multiplied by a stretching factor to account for isotropic hardening. The rules used in OpenSees

material “Steel02”, shown in Eq. 3-25, are implemented for finding the stretching factor.

e e \'8 e 0.8

2a,¢, 2a,¢,
In Eqg. 3-25, a; and a, are empirical numbers that are input by the user. ¢,,,, and e,,;, are the
maximum and minimum strains the material has experienced during load history. The new yield

strength in compression is updated per Eq. 3-26.

FESL = ST FESL Eq. 3-26
The reversal and the yielding point in compression, specify the asymptotes of load Path C.
Assuming another reversal from compression to tension at the end of load Path C, the new yield

strength in tension is found by calculating the stretching factor in tension.

0.8 0.8
STy =1+as (M> =1+a, (5” E”) Eq. 3-27

2a48, 2a,¢,
Again, a; and a, are inputs determined by the user. If material is loaded on Path D of Figure 3-30,
the plastic hinge rotation does not exceed d in positive or negative direction. The strain stress curve

of the material on this path is shown in Figure 3-31.
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Figure 3-30 Sample load paths of steel material on e1 - e> plane

Note that on Path D, the difference in material stress, do, at &, is due to the isotropic hardening
of the material in tension and compression. If the material is loaded on Path E, the plastic hinge
rotation exceeds d, and the material degrades its strength again. Note that the total strains of the
material corresponding to strength degradation of the element, (D and R) might be different than

those of the previous cycle (D and R). The material flows on the residual strength region at the end

of this load path.

Stress, o
L D R,
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[ Gpl s f rl ] -‘
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= E=0
[ &2, f r2 ]
D, R;

Figure 3-31 Strain - stress curve of steel material with stress degradation in tension
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3.10 Cyclic Strength and stiffness degradation of the steel material in compression

Same rules that were used for modeling the strength loss in tension, are applied to model the
strength loss in compression. As stated before, the strength loss in compression is associated with
buckling of bars. In OpenSees implementation of this project, the steel material object has been
designed so that the user can specify whether the steel bars lose strength following buckling or
not. If the steel bars strength degrades post buckling, the material follows load Path A of Figure
3-32 and the yield strength is updated to ¥ .. The same formulation for updating the yield strength
of a bar after rupture is used here. The Post Buckling unloading stiffness, EF, is also updated

accordingly, per Eq. 3-28.

FPE _ pl pPB
yr ="tyr _Es” Eqg. 3-28
Fyr Eg a

If the steel bars yield strength does not degrade post buckling, the material follows load Path B of

Figure 3-32, and the unloading stiffness remains unchanged.

Stress, o

Path B

Strain, &

R D

Figure 3-32 Strain - stress curve of steel material with stress degradation in compression
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3.11 Cyclic Strength and stiffness degradation of the concrete material in compression

Let us assume that a concrete material starts being loaded from zero strain and stress ([e, o] = [0,

0]), and goes through the strength degradation region in compression, shown in Figure 3-33.

Axial strain, &,

la d I d Strength loss region in
€] & ‘ &y &) compression
Strength loss region in
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{b +*
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N
Q.\l..' A
| 4 | = Flexural strain, g,
AN
/T
A
= N
| & & » Y
P o,th A BN Residual strength
<)
L2
® » No strength loss

Figure 3-33 Sample load paths of concrete material on ex - e> plane

The total strains of the material, corresponding to plastic hinge rotation of d, and d’ are D and R,
respectively. Once the plastic hinge rotation exceeds d on load Path A shown in Figure 3-33, the
element goes through the descending branch of the backbone curve, and the material’s total strain,
&, exceeds D. If loading continues in the same direction, the material follows Path B of Figure
3-33. The plastic hinge rotation exceeds d’, and material’s total strain exceeds R, and flows over
the residual stress region. The plot of total strain versus stress is shown in Figure 3-34. If the
material is unloaded midway toward zero strain, the strain stress curve follows Path C. Upon a
trial deformation that shows unloading of the material, strain ., is calculated according to Eq.

3-32.
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_ & (Emin)z 0.254  €min

£ = _ 0254
end 2\ g 0< 071 < e
i\ 2 £ . .
Eend = €0 0.145( m‘") + 0.127( "”") 0.254 _ &min _ Eq. 3-29
fo %o 0.71 ~ &
s ‘ .
Eena = €o (0707 (% - 2) + 0834) 2 < Emin
0 £

once &,,4 is computed, unloading stiffness, E,,,;, is determined knowing stress at load reversal.

Eena — &r

0—f

By =

Eq. 3-30

The approach implemented here for calculation of the material’s unloading properties is used in

OpenSees material “Concrete01”.

Stress, o

&r & o
Strain, €

Path A

fc

R D

Figure 3-34 Strain - stress curve of steel material with strength degradation

Assume there is another load reversal at zero strain and the material is compressively loaded
again. If the element is loaded without exceeding the rotation capacity, the strain stress curve

follows Path A of Figure 3-35, and there is no stress degradation.
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Figure 3-35 A sample load paths of concrete material on e; - e; plane
If the rotation capacity of the element is exceeded, as is the case for load Path B of Figure 3-35,

the material loses strength as can be seen in Figure 3-36.
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Figure 3-36 Strain - stress curve of steel material with strength degradation
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3.12 Element stiffness matrix

The components of the stiffness matrix of the element used in this study are calculated by

computing the derivatives of Eq. 3-31.

oF,;
au]'

Kij = Eg. 3-31

Most of the stiffness matrix components are the same as those of the MVL variant adopted by
Fischinger et al. The horizontal force at the top and bottom nodes, F; and F, are equal to the
constant shear force across the element. With the shear spring of the element being elastic linear,
Eq. 3-32 turns the internal shear force in terms of the top and bottom nodal displacements. K, is

the stiffness of the elastic linear spring that captures element’s shear response.

F]_ = —F4 = V = KhdSS = Kh[uB - CHQGB - (1 - C)HeGT - uT] Eq 3'32

The first column of the stiffness matrix is calculated in Eq. 3-33.

_6F1_6F1_K
70w, dup h
K =—=—=90
27 9u, Oy
317 9w, 96, nClile

Eq. 3-33

7 0u,  dup h

JF, O0F
51:—:—:0

dus Ovgp

_0F,  0F, K,(1— OH
61_au6_697‘_ h 4 e

The internal axial load is the sum of fibers’ uniaxial load. Eq. 3-34 turns this axial load in terms of

the top and bottom nodal displacements.
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Nf Nf

F,=-F =ZA£JCf(£) +ZA£O’;(£)
=1

f=1

Eq. 3-34
< 0, -0 < 0, —0
Vr —V — Vr — VU —
F2=—F5=ZA£JCf<T =, L Bxf)+ZA£0'5f(T =, d Bxf>
H, H, H, H,
= =

x7 is the local coordinate of the fiber. Note that a material with strain-strain-stress response of
Figure 3-22 and Figure 3-23, in general, has two tangents with respect to the flexural strain and

the axial strain. This is in Eq. 3-35.

60' aO' 9’[‘ - 93

Ur — Vg
1 = B EZ = -, 81 = —_—
de; de, H,

i, Eq. 3-35

xf, & =

If the material is not in the stress degradation region of Figure 3-21, the two tangents are essentially
equal, E; = E,. Using the chain rule of differentiation, Eq. 3-36 turns the differentiation of the

material’s stress with respect to the nodal displacements.

do E, oo E, do E,xf do  Ex/

- - - Eq. 3-36

vy H' dvy H' 005  H, ' 06;  H,

The terms calculated in Eq. 3-36 are used to obtain the second column of the stiffness matrix in

Eq. 3-37.
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27 0u,  ug

NE o f
_0F, 0F, <A
du, Ovg = H,

= f=1
Nfr Nf
dF, OF, AL AL
Kyp=——=—"= —Efxf+Z—Elsxf
du; 00g = H, = H,
Eq. 3-37
27 Qu,  oup
Nfr Nf
K :@:%: — A_ZEC _ £E5
52 dus Ovyp = H, * = H, *
Nfr Nf
oF, OF, AL AL
Ko,=—==_—2=_Y _CpcC f_z_SESf
62 ou, 06 & H, 1 X £ H, 2X

The third component of the internal force vector is the moment at the bottom node, calculated in

Eq. 3-38 in terms of the element’s displacement components.

Nf Np Nf P P
vy — v -
F3=MB=ZA’;acf(£)xf+ZA£05f(s)xf+VCHe=ZA£0£(T 5 ! Bxf)
f=1 f=1 f=1 He

6r—86
ZAf f( B, TH Bxf)+Kh[uB—cHet93 — (1 - c)H,0; — ur]cH,
e

Taking the derivative of Eq. 3-38 with respect to the nodal displacements, the third column of the

stiffness matrix is shown in Eq. 3-39.
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Nfr Nfr
oF; OF, ZAE AL
= = —Efo+Z_SESxf

23 1 2

du, Ovg = H, = H,

N Nfr
dF; OF AL AL
Ksg =52 ==2% = Knc*H,* + ZH—CEffo + ZH—SEffo
Uz B = e = e
43 — au4 - auT =c e’ h
Nfr Nfr
oF; OF, AL AL
=—=—=- —Efo—Z—SESxf

53 1 2

dus 0dvr = H, = He

N N
9F, OF; s NAL 2 AL e
K63:W:ﬁ=Kh(1—C)CHe —ZH—E]X —ZH—EZX
6 T = e = e

Other components of the stiffness matrix can be obtained in the same way.
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3.13 Case study 1: Static push-over analysis of a cantilever structural wall

A ten-story building, with the floor plan shown in Figure 3-37 is analyzed and designed according

to California Building Code (2019) [23]. The details of analysis and design are presented in 7.3.

131 ft

Structural walls

131 ft

Moment frames

- 25ft =~

Figure 3-37 Floor plan of the building

The slabs are 10 in. thick, and the superimposed dead load of 25 psf is assumed on the floors. The
live load is 40 psf. The lateral force resisting system is comprised of RC structural walls in the EW
direction and RC moment frames in the NS direction. ASCE 7’s Equivalent Lateral Force
Procedure is used to estimate the lateral seismic loads. After some trial and error, the length of the
wall is designed to be 324 in. and the thickness is 26 in. The layout of the symmetric cross section

of the designed wall is shown in Figure 3-38.

. a8 o (@ 0 8 @

Qooooooc

26

Figure 3-38 Cross section of the designed wall
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Detailed analysis and design of the walls is shown in 7.3. The boundary element has 17 layers of
No.10 longitudinal bars, spaced at 5 in. This results in a reinforcement ratio of 0.0386 inside the
boundary element. The longitudinal reinforcement, outside the boundary element, consists of two
curtains of No0.10 bars spaced at 10 in., which is equivalent to a reinforcement ratio of 0.008141.
The cross section of the walls is discretized into fibers, with properties in Table 3-1, to make a

nonlinear model of structural walls.

Table 3-1 Properties of the cross-section fibers used in nonlinear modeling of the structural walls
of case study 1

Fibers tp Wg Pr Ag A

in in in? in?
1 26 21.5 0.0386 21.59 537.4
2 26 21.5 0.0386 21.59 537.4
3 26 21.5 0.0386 21.59 537.4
4 26 21.5 0.0386 21.59 537.4
5 26 38 0.00814 8.043 980.0
6 26 38 0.00814 8.043 980.0
7 26 38 0.00814 8.043 980.0
8 26 38 0.00814 8.043 980.0
9 26 21.5 0.0386 21.59 537.4
10 26 21.5 0.0386 21.59 537.4
11 26 21.5 0.0386 21.59 537.4
12 26 21.5 0.0386 21.59 537.4

In Table 3-1, pr is the reinforcement ratio of each fiber, A; is the area of steel in each fiber, and A,
is the total area of each fiber. To conduct a pushover analysis of the wall, a nonlinear model of the
system is created for analysis in OpenSees, an open-source software for earthquake engineering.
The wall system is loaded with a triangular distribution of lateral loads that simulate seismic

excitation. One element is used over each story, including the bottom story where the concentration
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of demands is higher and damage accumulate. Wallace and Moehle (1992) [51] recommend Eg.

3-40 for the size of the plastic hinge (the most bottom element).

L, = 0.5L, = 0.5 X 324 = 168 in. Eqg. 3-40

The deformation parameters of the backbone curve developed by Abdullah and Wallace are also
obtained assuming expression of Eq. 3-40 for the plastic hinge. In 7.3, these parameters are

adjusted to be used for the backbone curve of the element used in this study.

o 1
120 fi
12f
25 i L
Bottom element

Figure 3-39 Elevation view of the wall and the distribution of lateral loads

For the static pushover analysis, the lateral displacement at the roof is the controlled degree of
freedom. The loading protocol of Figure 3-40 is applied for the analysis. Amplitude of cycles is

arbitrarily selected so that strength deterioration is observed at the end of analysis.
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Pushover load protocol
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Load Step

Figure 3-40 Loading protocol in study case 1, with the control deformation being the roof drift

The magnitude and the number of the cycles is shown in Table 3-2.

Table 3-2 Pushover loading cycles

Amplitude [in] Number of Cycle type Displacement
Cycles increment [in]
0.005 2 Full 0.144
0.01 2 Full 0.144
0.02 2 Full 0.144
0.025 2 Full 0.144

The residual stress of the material is set over the compressive/Tensile zone according to Eq. 3-20,
and Figure 3-26. The parameters of the equation are r, = 0.1, and rz = 0.4, and n = 2. The

distribution of the material residual stress is shown Figure 3-41.
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Residual stress over Comp / Tens zone
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Figure 3-41 The residual stress over depth of compressive/Tensile zone
Once the analysis is complete, the element output is obtained and plotted. Figure 3-42 shows the
moment rotation response of the wall plastic hinge. The deformation parameters d and d’ of the

backbone curve are specified with green and red lines respectively.

Plastic Hinge Moment vs Rotation
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Figure 3-42 Moment curvature response of the plastic hinge to cyclic pushover loading with roof
drift as the controlled degree of freedom

The strain stress response of selected steel and concrete fibers, highlighted in Figure 3-43, is

presented in Figure 3-44 and Figure 3-45, respectively.

Fiber 1 Fiber 3 Fiber 6 Fiber 10 Fiber 12

Figure 3-43 Selected fibers to plot the responses
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Figure 3-44 Response of selected steel fibers to static pushover loading with roof drift as the
controlled degree of freedom
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Figure 3-45 Response of selected concrete fibers to static pushover loading with roof drift as the
controlled degree of freedom

The moment-rotation response of the plastic hinge in Figure 3-42 shows the entire strength-
deterioration within one load step. The rotation of the plastic hinge at the end of that load step is

larger than d' of Figure 3-14. This is because the control degree of freedom for the pushover
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analysis is the lateral displacement at the roof. In a wall with steep strength degradation, like the
designed wall in this study, a small increment in the roof displacement corresponds to a large
increment of the plastic hinge rotation. To better observe the strength deterioration response of the
wall element, the rotation of the plastic hinge is set as the controlled degree of freedom, and a
pushover analysis is done. As a matter of experiment, the gravity axial load on the wall is also
increased at each level, so that total gravity load at the base is P, = 25,000 kips = 0.384¢f’.. The

loading protocol is shown in Figure 3-46.

Pushover loading protocol

4
iyl
e, 3
3 2
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A
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Load Step

Figure 3-46 Loading protocol of wall in study case 1, the control degree of freedom is the
rotation of the plastic hinge
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The magnitude and the number of the cycles is shown in Table 3-3.

Table 3-3 Pushover loading cycles

Amplitude Number of Cycle type Deformation
Cycles increment
0.004 2 Full 0.0001
0.01 2 Full 0.0001
0.018 2 Full 0.0001
0.019 2 Full 0.0001
0.025 2 Full 0.0001
0.03 2 Full 0.0001

The amplitude of cycles is selected so that unloading within strength deterioration is observed in
the analysis. Figure 3-47 shows the moment rotation response of the wall plastic hinge. The
deformation parameters d and d’ of the backbone curve are specified with green and red lines
respectively.

Plastic Hinge Moment vs Rotation
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Figure 3-47 Moment curvature response of the plastic hinge to cyclic pushover loading with PH
rotation as the controlled degree of freedom
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The strain stress response of some selected fibers is shown in Figure 3-48.

Fiber 1 strain stress Fiber 2 strain stress
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Figure 3-48 Response of selected steel fibers to static pushover loading with PH rotation as the
controlled degree of freedom
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The strain stress response of some selected fibers is shown in Figure 3-49.
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Figure 3-49 Response of selected concrete fibers to static pushover loading with PH rotation as
the controlled degree of freedom
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3.14 Case study 2: Nonlinear dynamic analysis of a cantilever structural wall

The response of the structural wall of 3.13 to dynamic loading is analyzed in this section. Fifteen
ground motions are selected from the NGA West 2 database [44][45], and scaled to match the
target MCER level response spectrum. Since a 2D analysis is performed, only the Hy component
of each RSN (Record Sequence Number) is scaled. Scaling is done to minimize MSE (Mean

Squared Error of Record) within the period range recommended by ASCE 7 Chapter 16 ([0.2Ty,

2T1)).
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Figure 3-50 Target response spectrum and the response spectra of the selected GMs
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Figure 3-51 RSN 20 scaled acceleration history in Hy direction
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Figure 3-50 shows the spectra of the selected ground motions, the arithmetic mean of the spectra,
and the target spectrum. Figure 3-51 shows the scaled acceleration history of ground motion RSN
20, that caused strength degradation for the wall. The moment curvature response of the wall

plastic hinge is demonstrated in Figure 3-52.

Plastic Hinge Moment vs Rotation
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Figure 3-52 Moment curvature response of the wall plastic hinge due to dynamic loading
The response of the plastic hinge does not show any strength loss for other ground motions. This
makes sense because the wall has already been designed for demands of ASCE 7 chapter 12. The
plastic hinge rotation for RSN 20 exceeds the maximum capacity of the wall for bearing gravity
loads (Deformation e of the backbone curve of Figure 4-2) and the wall collapses. In performance
design of a building, consistent with TBI guidelines, this is considered an unacceptable run. In a
risk category Il building, one unacceptable run in a suit of 11 ground motions is permitted. But the
design must be checked against amplified demands of other ground motions in the suite. One other

option would be to design the wall to have more ductility capacity.

The response of selected fibers (Figure 3-43) for the RSN 20 ground motion is shown in Figure

3-53 and Figure 3-54.
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Figure 3-53 Response of selected steel fibers of wall’s bottom element due to ground motion
RSN 20
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Figure 3-54 Response of selected concrete fibers of walls bottom element due to ground motion
RSN 20
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Chapter 4 Computing deformation parameters of the backbone curve in real
time

ASCE 41-17 [2] Table 10-19, shown in Figure 4-1, specifies the deformation parameters that setup

the backbone curve of flexure-controlled shear walls.

Acceptable Plastic

Plastic Hinge Hinge Rotation® (radians)
Rotation Residual
(radians) Strength Ratio Performance Level
Conditions a b c 10 LS cpP
i. Structural walls and wall segments
(A - A)te+P o  Confined
Tt lF. wiw\ T cE Boundary
<01 "M <4 Yes 0.015  0.020 0.75 0.005 0015 0.020
<0.1 >B Yes 0.010 0.015 0.40 0.004 0.010 0.015
20.25 <4 Yes 0.009 0.012 0.60 0.003 0.009 0.012
=0.25 >6 Yes 0.005 0.010 0.30 0.0015 0.005 0.010
<01 <4 No 0.008 0.015 0.60 0.002 0.008 0.015
<0.1 >6 No 0.006 0.010 0.30 0.002 0.006 0.010
20.25 <4 No 0.003 0.005 0.25 0.001 0.003 0.005
>0.25 =B No 0.002 0.004 0.20 0.001 0.002 0.004
ii. Structural wall coupling beams® v
Longitudinal reinforcement and _— d = .
transverse reinforcement” twlwy/fe
Nonprestressed longitudinal =3 0.025 0.050 0.75 0.010 0.025 0.050
reinforcement with conforming =6 0.020 0.040 0.50 0.005 0.020 0.040
transverse reinforcement
Monprestressed longitudinal <3 0.020 0.035 0.50 0.006 0.020 0.035
reinforcement with nonconforming =6 0.010 0.025 0.25 0.005 0.010 0.025
transverse reinforcement
Diagonal reinforcement NA 0.030 0.050 0.80 0.006 0.030 0.050

2 Linear interpolation between values listed in the table shall be pemnitted.

® A boundary element shall be considered confined where transverse reinforcement exceeds 75% of the requirements given in ACI
318 and spacing of transverse reinforcement does not exceed 8d,. It shall be pemitted to take modeling parameters and
acceptance critena as 80% of confined values where boundary elements have at least 50% of the requirements given in ACI 318
and spacing of transverse reinforcement does not exceed 8d,. Otherwise, boundary elements shall be considered not confined.

¢ For coupling beams spanning & ft 0 in., with bottom reinforcement continuous into the supporting walls, acceptance criteria values
shall be permitted to be doubled for LS and CP performance.
Monprestressed longitudinal reinforcement consists of top and bottom steel parallel to the longitudinal axis of the coupling beam.
Conforming transverse reinforcement consists of (a) closed stimups over the entire length of the coupling beam at a spacing < a3,
and (b) strength of closed stirrups V= 3/4 of required shear strength of the coupling beam.

Figure 4-1 ASCE 41-19 Table 10-19 Modeling parameters and numerical acceptance criteria for
reinforced concrete structural walls controlled by Flexure

Researchers have based this table on limited number of experiments. Therefore, the deformation
parameters calculated according to the table are deemed conservative. Abdullah and Wallace
(2018) [50] established a comprehensive database that consists of more than 1,000 tested RC wall

specimens. Analyzing the tests’ data, the authors have generated Table 4-1 and Table 4-2, and
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provided a more realistic tool for assessment of shear walls. The tables determine the deformation
parameters controlling the shape of a backbone curve which is slightly different that the backbone

curve in ASCE 41-14, as shown in Figure 4-2.

Table 4-1 Modeling parameter d for conforming reinforced concrete structural walls controlled

by flexure
1= Ly Cg Wy V1,0, Use of d
b? AT, :
overlapping

hoops
<10 <4 YES 0.032
<10 >6 YES 0.026
>70 <4 YES 0.018
> 70 >6 YES 0.014
<10 <4 NO 0.032
<10 >6 NO 0.026
=70 <4 NO 0.012
>70 =6 NO 0.011

Table 4-2 Modeling parameters c, d', and e for conforming reinforced concrete structural walls
controlled by flexure

1= L, Cg P c d’ e
b? Agf' e
<10 <0.1 0.5 0.036 0.040
<10 >0.2 0.1 0.030 0.032
=70 <0.1 0.0 0.018 0.020
=70 >0.2 0.0 0.014 0.014
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M/ M,

Plastic hinge rotation, Opy

Figure 4-2 Backbone curve proposed by Abdullah and Wallace (2019)

4.1 A discussion on table parameters

The tables correlate deformation parameters of the backbone curve to the probable maximum axial
load on the shear wall, P, the probable maximum shear demand, w,Vy,,,, and the compression
zone parameter, A. An increase in any of these parameters results in a decrease in the energy

absorption capacity of the element.

The axial load on the shear wall, p, is due to the gravity load, and the shear demand of connecting
horizontal elements. For an isolated cantilever wall, it is acceptable to assume that the axial load
is purely due to gravity load and remains constant if vertical component of ground motion is
ignored. In the case of coupled walls or wall frame structures, the axial load fluctuates with lateral

deformation of the building.

The second parameter, w,Vy,,./Acv/f ., turns the maximum probable shear stress of the wall. To
estimate this shear, one may use ASCE’s Equivalent Lateral Force Procedure, or Linear Modal
Dynamic Analysis. The shear stress calculated using either approach must be adjusted to account
for design over strength, and the overstrength of the material. Furthermore, the dynamic shear
amplification factor, w,,, must be considered to account for the effect of higher modes. ACI 318-

19 [9] section 18.10.3.1.3 estimates this factor based on the number of stories. Note that in a
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nonlinear dynamic analysis, the element internal shear force calculated using the elements nodal
displacements inherently considers the dynamic shear amplification factor and the over strength

factor and no adjustment is required.

Using a database of 20 almost code compliant, flexure-controlled RC walls Segura and Wallace
(2018) [35] showed that increase in depth of compression zone over the wall thickness, c¢/b,
decreases the plastic deformation capacity of walls. Figure 4-3 shows this trend for walls with

overlapping hoops and walls with hoop and cross-ties.
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Figure 4-3 Deformation capacity of flexure-controlled walls versus c / b by Segura and Wallace
(2018)

Abdullah and Wallace (2019) came up with the same conclusion by using a different approach.
They used a different parameter, A in Table 4-1, to formulate the deformation capacity. A more in-

depth discussion on the compression zone depth is presented in 4.5.

In section 4.2 the solution algorithm that includes the dynamic computation of the backbone’s
deformation parameters is presented. A dynamic computation of deformation capacity of a wall
element requires the dynamic computation of each controlling parameters in Table 4-1 and Table

4-2. Deriving each parameter in terms of curvature is explained in section 4.4, 4.5, and 4.6.

75



4.2 Solution procedure for a nonlinear analysis

Figure 4-4 shows the solution procedure for nonlinear force-controlled analysis of a structure.
Although this algorithm is slightly different for a deformation-controlled analysis, the basics are

the same. The nonlinear equation to be solved at any load step is shown in Eq. 4-1.

1. Applying the external
nodal load vector,
Calculating the unbalanced
force

>

2. Computing the tangent
stiffness matrix

> 4

‘ 3. Computing the trial ‘

displacement vector

>

NO 4. Convergence test, if the

‘ . norm of trial displacement
incrementUnbalanced load
15 less than the specified

tolerance

.
|YES|
.

5. Convergence has
achieved, Going to the next
load step.

Figure 4-4 Solution algorithm for nonlinear analysis of a structure

U() = Foyt — Fint(u) =0 Eq 4-1
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In Eq. 4-1, F,,. is the external load vector applied at nodes, and F;,,;(u) is the internal load vector.
U (u) specifies the unbalance load at any load step. Eq. 4-2 uses Newton’s algorithm to numerically

solve for wu.

U(uN—l)

N —  ,N-1 _
U (w1

Eq. 4-2

u

In Eq. 4-2, " is the trial deformation at iteration N. U’ (u"~1) is the tangent stiffness of the system
calculated at iteration N — 1. In a multi degree of freedom system, U’ (u"~1) is the tangent stiffness

matrix, calculated per Eq. 4-3.
k=20 Eq. 4-3
—aﬂ%®ﬂ q. 4-

The root is found once the norm of the change in trial deformation vector «V — uM=1 or the norm

of the unbalanced load U () is less than a specified tolerance.

Figure 4-5 shows the deformed shape of a shear wall element in 3D space. Let the top and bottom
nodes displacements be u., v, 6;, and w,, v,, 8, respectively. To ease the computations,
deformation of the element is specified in a new coordinate system with axes p, ¢, and r defined

as below.

0,0
p =0.5¢L, =0.5[ G b]LW Eq. 4-4
H,

_Ye VeV -
=L ST Eq. 4-5
r=@=ut—ub+0bc+9t[1—c] Eq. 4-6

H, H,
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5

Figure 4-5 Deformed shape of the element

p is an indicator of the flexural deformation, and is equal to the maximum flexural strain over the
length of the section. q is axial deformation of the element, and r is the displacement of element’s
shear hinge, dgs divided by element height. Any trial nodal displacement calculated in step 3 of
the solution flowchart specifies an arrow from the committed state of the element, C, to the trial
state of the element, T, in the new deformation coordinate system, as shown in Figure 4-6. Vector

D is the deformation vector in p — g — r coordinate system.

D, is the projection of D in the p — g plane, and D,,, is the projection of D in the p —r plane.
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Figure 4-6 Element deformation vector

4.3 Updating the solution procedure

Figure 4-7 shows the backbone curve of a shear wall element. The horizontal axis is the element
rotation, defined as element’s top node rotation minus the element’s bottom node rotation. The
black mark shows the assumed state of the element at the end of the load step, just prior to initiation
of strength loss. Given a trial change in the deformation of the element calculated in step 3 of the
solution flowchart, parameter d is calculated in the direction of the deformation vector shown in
Figure 4-6. Chapter 4.7 describes how to solve for d once p,, v, and 2 are all expressed in terms
of element curvature, ¢. If d is exceeded in the current iteration, U = F,,; — Fi,,; IS calculated at
the trial deformation, using “Strength Loss ” equations of strain stress (Referred to as “SL” equation
in the flowchart), and with parameter d’ being calculated using table 10-19 with v,, p,,, and A at
rotation d. If d is not exceeded, regular strain stress equations of the material (Referred to as “NSL”

equation in the flowchart) are used.
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Figure 4-7 Backbone curve of a shear wall element with strength loss

Once strength loss parameters are exceeded in both directions, the procedure settles down to the

flowchart of Figure 4-4.

To accommodate the dynamic computation of the strength loss parameters (i.e., d, d’, and c), the

solution procedure is slightly modified as shown in Figure 4-8.
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Figure 4-8 Solution algorithm for nonlinear analysis of structure with dynamic calculation of

strength loss parameters
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4.4 Computing the axial load

Figure 4-9 shows the fiber-discretized cross section of a deformed shear wall element.

-

Figure 4-9 Fiber-discretized cross section of a deformed shear wall

Given the concrete area, steel area, concrete stress, and steel stress of the cross section, Eq. 4-7

turns the internal axial load.

Nf Nf
p=> alol+) alof Eq. 4-7
f=1 f=1

In Eq. 4-7, area of fibers remains constant, but the stresses are functions of strains. In a computer
implementation of nonlinear structural analysis, material objects turn the stress using implemented
functions of strain, o = f(¢). To solve for backbone curve parameters, the stress-strain functions
will be converted to stress-curvature functions to determine the axial load given element’s

curvature. Figure 4-10 shows a typical strain-stress curve for a concrete material.
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Stress, o

= Segment [i + 1]

Strain, ¢

I Segment [if

Figure 4-10 Typical strain stress relationship of a concrete material
The curve may consist of multiple segments with different function. To obtain a stress-curvature
relation from a stress-strain relation, each segment of the strain stress relationship is expressed in

polynomial forms as shown in Eqg. 4-8.

oc(e) =

Eq. 4-8

Any other material used in section’s fibers have stain — stress relationships defined by polynomials.
By expressing the strain in terms of element curvature, the material’s stress-curvature functions
will be derived. To get strain-curvature relationship, consider Figure 4-11 that shows the

deformation vector in p — q plane.
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Figure 4-11 Deformation vector in p — g plane

The deformation vector D, lies on a line governed by Eq. 4-9.

jl_’e’:A[(,;%w]w Eq. 4-9

Parameters A and B can be calculated in terms of the committed and trial state of the deformed

element as shown in Eq. 4-10.

d
dp=p°-p", dg=q°—-q", A=tana=— B=qC——qu Eqg. 4-10

Knowing A and B, Eq. 4-11 determines the strain of each fiber in terms of element’s curvature. All

other variables are known.

dv L dqlL dq
f=pxf +—= (Xf A—W) B=Cop+C G =X +—= C,=q¢——p° . 4-
e =oxl v =e (W + A7) P+C G ‘oz G=d-gpt Eq4dl

Given a certain strain for a fiber, the corresponding element curvature is calculated by Eqg. 4-12.
Eq. 4-12 is also used to convert the strain stress segment’ start and end strain to corresponding

start and end curvature.
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5~ Eq. 4-12

Knowing the stress-strain equations of the fibers’ material in polynomial form of Eq. 4-8, the

stress-curvature equations for fibers” material are obtained in Eq. 4-13.

N
Z Ciiun e’ Pi-1 S 9 <9
j=

o

ac(p) =1 Eq. 4-13

N
Z C[i+1][j](pj Pi =P < Piyq
j:

(=]

Note that for a different loading direction (i.e., for a different D), the strain would be expressed by

a C;¢ + C, function with different coefficients of ¢; and C,.

4.5 Computing the compression zone depth

For a given state of a wall element, shown in Figure 4-12, the strain at a point x over the length of

the wall section comes from Eq. 4-14.
Ex = $X + & Eq. 4-14

In this equation, ¢ is the curvature of the element, x is the local coordinate of point x, and ¢, is the

strain at the centroid of the section.
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Figure 4-12 Deformed state of a shear wall element

As stated before, the curvature and the midpoint are strains are obtained from the nodal

displacement using Eq. 4-15.

0: — 0, Ut —Vp
)

T Eq. 4-15

(p:

The deformation-wise compression zone, i.e., the depth of the section with negative strain is

calculated by finding the points with zero-strain, as shown in

—&
& =px+e =0, X = 70 Eq. 4-16

If a wall element is in positive curvature, as shown in Figure 4-12, the depth of deformation-wise

compression zone is obtained by Eq. 4-17.

Cmxoy- (_—LW) Eq. 4-17

For negative curvature, Eq. 4-18 is used to calculated the depth of deformation-wise compression

Zone.
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c= (L—W) o Eq. 4-18

If the coordinate of the zero-strain point, x._,, is beyond the scope of the section, (i.e., x,—o >
0.5L,, or x,_, < —0.5L,,) the entire section is in tensile or compressive strains and ¢ =0 or C =

L.

The compression zone depth used in Table 4-1 and Table 4-2, to calculate the deformation
parameters is the force-wise compression zone, (i.e., the depth of section with compressive
stresses). In a monotonic loading of a shear wall element, the deformation-wise and force-wise
compression zone are essentially equal. In the case of seismic loading, the cyclic characteristic of
load may cause portions of the section to be under tensile strain while under compressive stress,
or under compressive strain while under tensile stress. Figure 4-13 shows the cyclic loading of
concrete material developed by Chang and Mander. The regions of “Tensile strain / Compressive
stress” and “Compressive strain / Tensile stress” are indicated in the figure. Note that the
compression depth calculated using concrete fibers stress is different than that using steel fibers
stress. Since steel material has a larger unloading stiffness after a load reversal, the depth of steel
fibers under compressive stress is always larger than the depth of concrete fibers under
compressive stress. Figure 4-23 that plots the history of compression zone depth, calculated based
on concrete compressive stresses and steel compressive stresses, for the right pier of the coupled-

wall system in the case study of this chapter serves as an example.
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Figure 4-13 Cyclic strain stress of concrete material proposed by Chang and Mander

4.5.1 Computing the force wise compression zone

To obtain the depth of force-wise compression zone, the strain corresponding to zero stress, €7 =9,
for the material (steel or concrete) at the committed state of the element (the end of the previous
load step) is obtained. This is the strain at which the stress of the material would go back to zero
if the material were loaded or unloaded to that strain. Figure 4-14 shows the strain stress history
of the concrete material, located at local coordinate x/ of the element cross section, up until the
last converged state, C. The zero-stress strain, £ =9, for the concrete material at that point and at

state C is shown in the figure.

Stress, o

£ 0x=x_)

Strain, €

C J

Figure 4-14 Strain stress history of concrete material at local coordinate Xr of cross section
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Knowing the zero-stress strains of the material for the entire section, Figure 4-15 shows the zero-
stress strain profile (7 = © profile) of the element. With the section discretized into fibers, the £¢7=°

profile takes a piecewise form with equations shown in the figure.

V=

H
T
£=mx +ny

Figure 4-15 The zeros stress strain profile of the shear wall section

Given the profile shown in the figure corresponding to the converged (committed) state of the
element, if the strain at any point of the section, for a trial state of the element, is below the profile
at that point, the point is in compressive stress. If the trial strain is above the profile, the point is

not in compressive stress (zero, or tensile stress).

4.5.2 Determining the compression zone as a function of curvature
Figure 4-16 shows the strain over the depth of the element section at the converged state C, and

for a trial state T of the element. The strain profiles are governed by Eq. 4-19.

ef = px +g", el =pTx + ¢ Eqg. 4-19

By moving along the deformation vector of the element shown in Figure 4-6 and Figure 4-11, the
strain profile of the section rotates about the “Hinge Point” shown in Figure 4-16. This point is the

intersection of the trial strain profile and the strain profile of the committed state.
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Xy =—, ey = @Cxy + &° Eqg. 4-20

Note that for a different deformation vector of Figure 4-6, the trial strain profile, T, and the location
of the hinge would be different. So, the hinge must be located every time a trial deformation is

computed in Step 3 of the solution algorithm.

Ve il
’/// ,_[gl"
- —
/ -
Hinge /_//’,_ —
=0 J:Z §
!_)),_—»' — // ———
L= T L’_ X —

Figure 4-16 Committed and trial strain profile over element cross section

Figure 4-17 shows two trial strain profiles, T: and T», passing through the hinge (at a different
location than that in Figure 4-16 for clarity), and the committed state of the zeros — stress strain
profile. T1 crosses segment k of the committed zero — stress strain profile with start and end

coordinates x* and x}‘. The local coordinate where the two profiles cross, x.;, is calculated in Eq.

4-21.

mxlz + e = ol —xy) tey, X = T o—m, Eq. 4-21

The depth of the compression zone is where the strain profile is below the zero — stress strain

profile and is calculated in Eq. 4-22.

L, xyp +n,—¢ey Ly,
G

o—m T3 Eq. 4-22

c2(p) =ty - (-
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Note that the strain profile may cross the zero — stress profile at multiple segments as is the case

for the trial deformation T». The depth of the compression zone for T is obtained in Eq. 4-23.

Figure 4-17 Setting compression zone as a function of curvature

Xp® + Ny, — €y _Xu9 + N1 — &y

@ —my Y —My_y

CZ(p) = xf; —xf7" =

Eq. 4-23

In the computer implementation, a subroutine traverses all segments of the zero-stress strain profile
to find the coefficients a,, a,, a,, and a;. This obtains the general form of the compression zone

versus curvature relationship, shown in Eq. 4-24.

& ake + ak
CZ(p) = Z ak + -2 2 B}
(p) Z P Eq. 4-24

The derivative of the compression zone with respect to curvature is in Eq. 4-25.

aCZ (@) _ Nil akak — ak
dg (p + ak)? Eq. 4-25

k=1
4.6 Computing the shear force
Figure 4-18 shows the deformation vector in r — p plane. The deformation vector Bpr lieson aline
governed by Eq. 4-26.

91



dH—Sj=C[<pL7W]+D Eq. 4-26

Parameters ¢ and D are calculated in terms of the committed and trial state of the deformed

element as shown in Eq. 4-27.

_ dr dr

dp =p°—-p", dr=r"-17, C=tanl?—%, D=TC—EPC Eq. 4-27

Knowing C and D, the stress demand of Table 4-2 is given by Eq. 4-28.

(o) = (UUV@MI;“ _ KssHe (C [<P LITW] + D) Eq. 4-28
ACV fC ACV fC

The derivative of the shear stress with respect to curvature is in Eq. 4-29.

e (\# |
dr vy \
s
-
Gl
—p =2

Figure 4-18 Deformation vector in r - p plane

dv,  H.CL,

0 24,

Eqg. 4-29

This derivative is then used to solve for a D/C = 1 for the desired deformation parameter. This

will be shown later in 4.7.
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4.7 Solving for deformation parameters

The final form of the equation to solve for deformation parameter d within any load step is shown

in Eq. 4-30.

F=¢p—d(p)=0 Eqg. 4-30

Newton’s approach in Eq. 4-31 is used to solve for curvature at which d is exceeded.

Fy

- Eq. 4-31

Pn+1 = PN —
The sample problem in Error! Reference source not found. shows the procedure.

4.8 Case study: analysis of a coupled wall system

This chapter concludes with a case study to show how the element works. The 12-story coupled
wall system, shown in Figure 4-19, is analyzed for dynamic analysis. The cross section of the wall
piers is shown in Figure 4-20. The piers are symmetric with respect to the centroid of the coupling
beams. The exterior boundary of the walls is reinforced with 27 No. 11 bars spaced at 6 in. and the
interior boundary is reinforced with 15 No. 11 bars, spaced at 6 in. This results in a reinforcement

ratio of 4.875 %.
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Figure 4-19 The coupled wall system analyzed in 4.8

The vertical reinforcement in the web is No. 6 bars spaced at 15 in. The wall has been designed
with 60 ksi steel bars and 6 ksi concrete. In nonlinear modeling, the expected strength of the

material is used by assuming an over strength factor of 1.3, according ASCE 41 recommendation.

‘—- 240 in -
I O [o /e e (e e 8
16 in QL' o o o |o [
1 e o @ o (@
L— 54 in -=|

Figure 4-20 The cross section of wall piers of the coupled wall system in 4.8

The ground motion history used for dynamic analysis is RSN 20, with acceleration history shown
in Figure 3-51. Each pier has a tributary area that takes 160 kips of gravity loads. This gravity load
is applied as vertical point loads at the geometric centroid of each pier. The expected shear strength
of each coupling beam is 350 kips per design. For the case of simplicity, all the coupling beams

are assumed to have the same shear strength.
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It will be discussed later, in 5.5, that the deformation parameters of the backbone curve need to be
adjusted to account for distribution of nonlinearity above the bottom element. To do so, Eg. 5-28
requires the yield rotation of the element used in the study, and the element assumed in generating
tables Table 4-1 and Table 4-2. Because both elements have the same height (h, = L,,/2 = 120 in),
the yield rotations are equal. Note that the moment curvature curve, and the yield rotation of the
piers are different in positive and negative directions because of the non-symmetric sections, and
different axial loads. The elastic analysis for design of the system shows that the piers undergo a
maximum compressive axial load of ~5,000 kips (With positive curvature in left pier, and negative
curvature in right pier) and a maximum tensile axial load of ~1,500 kips in the opposite direction.

The moment curvature diagram of the piers for the expected compressive axial load, and the

expected tensile axial load are shown in Figure 4-21.

Moment curvature of wall piers under Moment curvature of wall piers under
expected compressive axial load expected tensile axial load
20
X7 80 = MC cuive
_ — o -10
q?-\ RN 70 q?\ —BI{TI?.’em ﬁt
- 60 - X Initial yield -20
S 50 S X et=0015 30
S ; - S X ec=-0.004
~ — MC curve ~
=< - 40 =< v 40
= —— Bilinear fit 30 = >€
% X Initial yield % 50
S X el = 0015 20 S
= = -
X ec=-0004 | 10 60
0 -70
0 0.00005 0.0001 0.00015 -0.0002  -0.00015 -0.0001 -0.00005 0
Curvature [1/in] Curvature [1/in]

Figure 4-21 Moment curvature diagram of piers when they undergo compressive and tensile
axial load

The yield curvature, ¢y, yield moments, M, and yield rotation, 6y, of the piers under expected

compression and tension loads are listed here.

1
@y°™ = 0.000020014 —,  My°™ = 76288 kips — ft, 67" = 0.24017%
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1
¢y = 0000016464 —, My = 43317 kips — ft, 6" = 0.19756%

The values of deformation parameter d in Table 4-1 are adjusted due to “Distributed Nonlinearity”

modeling, and for expected axial compression load, using Eq. 5-28.

3

0.032 - (0.032 — 0'0024017)Z + 0.0024017 = 0.024600
3

0.026 — (0.026 — 0.0024017) 2 + 0.0024017 = 0.020100
3

0.018 — (0.018 — 0.0024017) 2 + 0.0024017 = 0.014100

3
0.014 - (0.014 — 0.0024017) 2 + 0.0024017 = 0.011100

Same calculations are done for the pier under expected tensile load.

3

0.032 - (0.032 — 0.0019756)Z + 0.0019756 = 0.024494
3

0.026 - (0.026 — 0.0019756)Z +0.0019756 = 0.019994
3

0.018 —» (0.018 — 0.0019756)Z +0.0019756 = 0.013996

3
0.014 - (0.014 — 0.0019756)Z +0.0019756 = 0.010994

Deformation parameters d and d’ will be adjusted in the same way. These calculations are done

inside the element, once the user specifies the yield curvature in positive and negative directions.
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4.8.1 Analysis of results

The history of demands, over the first 10 sec of the excitation when seismic loads are more severe
are presented in this section. The history of axial load, shear, and depth of compression zone are
plotted. These are demands that control the deformation parameter of the backbone curve in Table
4-1 and Table 4-2. The roof drift history and the history of plastic hinge is also plotted in Figure

4-22 as reference. The load step at which deformation parameter d is exceeded and strength loss

(SL) initiates, is marked with a blue line in the figures.

Reference deformation
4
——— SL initiates 3
= Roof drift 2
2 —— PH rotation
= 1
2
'E: 0
N
< -1
_ -2
-3
-4
5 6 7 8 9 10
Time [s]

Figure 4-22 Right pier drift and plastic hinge rotation history
Figure 4-23 shows the history of compression zone depth normalized by wall length for the right
pier. The roof drift, normalized by its maximum value over the ground motion is also shown for
reference. The compression zone depth calculated based on concrete fibers’ stress, steel fibers’

stress, and the deformation-wise compression zone (Discussed in 4.5) are plotted separately.
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Figure 4-23 History of compression zone depth for the right pier
Note that for the initial phases of the ground motion, including the load step at which the element
strength degradation initiates, the two values are close. But once residual deformations become
large, the difference between the two become significant. Figure 4-24 shows the history of

parameter A, calculated based on both the concrete and steel compressive stresses.

Compression zone parameter; A

300
——SL initiates
Steel 250
Concrete

200

150
\ 100
50

5 6 7 8 9 10
Time [s]

Figure 4-24 History of parameter, A, for the right pier

Figure 4-25 shows the history of compression zone depth (normalized by dividing by the length
of the wall) and shear stress (normalized by /f’.) for the right pier. This shear stress is calculated

within the element, using Eq. 3-3, and accounts for the dynamic effect of higher modes and the

effect of flexural over strength.
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Normalized shear stress history Normalized axial compression history

0.25
—— SL initiates — SL initiates 0.2
0.15
0.1

—\J| \
N\

-0.05
-0.1
-0.15

5 6 7 8 9 10
Time [s] Time [s]

Figure 4-25 History of shear stress and axial load pf right pier
Due to a seismic pulse in a certain direction, one of the piers undergoes seismic compressive axial
load, and the other pier undergoes seismic tensile axial load. The total axial load, and depth of
compression zone is larger in the wall with more compressive force. The higher axial load, and
larger depth of the compression zone initiates the strength degradation of the compressive pier
earlier than the other one. In Figure 4-27, these two parameters are shown for the left and right
pier in the same figure, alongside the time step at which the strength degradation (SL) initiates for

the two piers.

Normalized axial compression history History of compression zone parameter, A
0.25 240
2 v
0.2 ' 200
0.15
o 160
0.05 120

Com pier SL initiates Com pier SL initiates
-0.05 Ten pier SL initiates

Ten pier SL initiates
Com pier 40

——Comp pier -0.1
Ten pier Ten pier
-0.15 0
3 6 7 8 9 10 3 6 7 8 9 10
Time [s] Time [s]

Figure 4-26 History of axial load and compression zone depth parameter for the two piers of the
coupled wall system
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The strength degradation of both piers takes place at almost the same time. This is partially due to
the big pulse in the record in the 8" second. Also note that once the compressive pier loses its
strength, the tensile pier takes more demand. This initiates the strength degradation of the tensile
pier faster, when compared to the case where the compressive pier has remained intact. The
response of the plastic hinge, with and without modeling strength degradation, for both piers is

shown in Figure 4-27.

Plastic Hinge Momentvs Rotation for left pier Plastic Hinge Momentvs Rotation for right pier
80 60
— 60 ~ 2 40
= T —a
& 40 ‘& —— Right pier no SL 20
Py 20 = Rjg?itgiw W SL 0
I~ i 1 > X SLinitiares
= 0 = 20
=y, =,
= -20 kS -40
g ||—d g
g — Left pier no SL -40 g -60
= —— Left pier WSL 60 ] 50
X SL initiates
-80 -100
-5 -4 3 2 1 0 1 -5 -4 3 2 1 0 1

Rotation [%] Rotation [%]

Figure 4-27 Plastic hinge response of the wall piers

The load step at which the strength loss initiates is indicated in the moment curvature curves. For

the right pier, the plastic hinge rotation at this step is

The normalized axial load, shear stress, and compression zone parameter at this load step, for the

right pier, are as follows.
p, = 0.19703, v, =56318, 1=756.854

Note that 4 < v, < 6 and 10 < A < 70. This requires a double interpolation within the table to

obtain deformation parameter d.

100



2.0100 — 2.4600

drp = | 2.4600
RP ( + 6_4

(5.6318 — 4)) +

1.1100 — 1.4100
6—4

2.0100 — 2.4600

(1.1100 + 7

(5.6318 — 4)) - <2.4600 + (5.6318 — 4))

T (56.854 — 10)

= 1.3685 %

This is the exact rotation of the plastic hinge at which deformation parameter d is exceeded for the
right pier. Deformation parameter d’ of the right pier is obtained using the axial load, p,, and the
compression zone depth, A, obtained at rotation d of the plastic hinge. A double interpolation

through Table 4-2 turns d'.

2.3100 — 2.7600

d'pp = (2.7600 0701

(0.19703 — 0.1)) +

1.1100 — 1.4100
02-01

2.3100 — 2.7600

(1.1100+ T

(0.19703 — 0.1)) - <2.7600 + (0.19703 — 0.1))

=10 (56.854 — 10)

=1.3828 %

The rapid post-peak drop in element strength may cause numerical instability (). To avoid this,

deformation parameter d’ is assumed to be at least equal to 1.1 x d.
d'gp = 1.1 x 1.3685 = 1.5054 %
Deformation parameters of the Left Pier are calculated the same way, and are equal to

d’LP = 2.4730 %

Note in Figure 4-27 that the Strength degradation branch is wider in the tensile pier because of the

more ductility due to the lower compression load.
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Chapter 5 Plastic hinge length of flexure-controlled structural walls

To evaluate the performance of structural walls, ASCE 41 [2] assigns a backbone curve to the
force deformation response of the bottom portion of the wall called the plastic hinge. To convert
the top drift of a wall specimen to the corresponding deformation parameters (rotation) of the
backbone curve, the height of the plastic hinge must be known. In addition to ASCE 41 criteria,
some of the previous work on required ductility of structural members (Walls and Columns)
associate the performance level to the maximum strain (Tensile and compressive) over the plastic
hinge (Moehle and Wallace (1992) [51], Berry and Eberhard (2003) [27], Segura and Wallace
(2018) [36]). Therefore, it is necessary to have a realistic estimate of the plastic hinge length for

performance assessment of structural walls.

Abdullah and Wallace (2019) [47] assumed that the height of the plasticized zone is equal to the
length of the wall (Hp, = L,,), and the size of the plastic hinge is half the length of the wall (I, =
L, /2). Other researchers, whose work will be reviewed in 5.2, have proposed different
expressions. Some of these studies have been done using Finite analyses (Bohl (2006) [48], Zhao
et al. (2011) [52], Kazaz (2013) [28]). Experimental studies, are either based on limited data, or
there is little documentation regarding the number of tests and the reliability of the models. Recent
wall tests, with instrumentation that enables us to measure the extent of nonlinearity, has motivated
this study on the plastic hinge length of flexure-controlled structural walls. A database of 17 tested
structural walls is assembled. The height of the plastic zones at peak deformation capacity (Point
C in Figure 5-8) is calculated for each wall in the database and different expressions for plastic

hinge zone are evaluated.
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5.1 Description of the plastic hinge

Figure 5-1 shows a flexure-controlled wall deformed by a lateral load. As far as the moment caused
by lateral load at the base of the wall is less than the flexural yielding capacity, the wall remains
elastic and the flexural deformation (curvature) at any point over the wall height is proportional to

the bending moment.

P; <Py
—>.

1 F ! /

| N

\ ||
Curvature I [
distribution ! ! f

- I

| I

| |

| |

| |

‘ | | 1

4‘>‘ Pmax < [ \q— L

Figure 5-1 Wall loaded with lateral load less than the yield load
Once the bending moment at the base exceeds the yielding capacity, flexural deformation
accumulates over a height Hp, above the critical section, called the plasticized zone as shown in

Figure 5-2(a). The curvature distribution is also shown in this figure.

P,<Py

Curvature
distribution

e——
() ®) ©
Figure 5-2 (a) Wall loaded with lateral load more than the yield load, (b) Curvature distribution
over the wall height, (c) A simple model of the wall
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In a simple nonlinear model, like the one shown in Figure 5-2(c), it is assumed that the entire
nonlinear action occurs in the bottom portion of the wall, called the plastic hinge, and a nonlinear
element is used over this portion in the model. The height of this bottom portion, denoted by 1,, is
generally a fraction of the actual plasticized zone. Above the plastic hinge, the wall is modeled by
an elastic beam-column element, and therefore, is enforced to remain elastic. In 5.3, it will be
shown that for the average curvature of the model’s nonlinear element (Figure 5-2 (c)) to be equal
to the maximum curvature at the base of the prototype, the height of the nonlinear element must

be half of the height of the plasticized zone.
ly = Hpz/2

Analyses in literature generally assume the model in Figure 5-2 (c) to calculate average demand
over the plastic hinge (curvature or strain) from wall drift. Section 5.5 of this chapter shows the
calculations for a Distributed Nonlinearity model, which is used in case studies of Chapter 3 and

Chapter 4.

5.2 Literature review

This section describes some of the previous research on the plastic hinge length of RC walls and

other structural elements.

5.2.1 Park and Paulay (1975) [24]
In their textbook, the authors refer to the work by other researches for plastic hinge of RC
members. Baker has proposed Eg. 5-1 for plastic hinge length of RC members with unconfined

concrete.

1

L, = kykoks (g)zd Eq. 5-1
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In EQ. 5-1, k, is 0.7 for mild steel and 0.9 for cold worked steel. k, depends on axial load and is
obtained from Eq. 5-2, where P, is axial load on the member and P, is the pure axial capacity. ks
is 0.6 for f'. = 5100 psi, and 0.9 when ', = 1700 psi. f'. is 0.85 times the cube strength of
concrete. z is the effective length (Distance between the critical section to the point of counter

flexure), and d is the effective depth of the member.

P
ky=1+05-—" Eq. 5-2
Py

For members with confined concrete, Baker has proposed Eq. 5-3, where ¢ is the depth of

compression zone at ultimate capacity, and other coefficients are as defined for Eq. 5-2.

L, = 0.8k; ks (g) c Eq. 5-3

Based on tests on simply supported beams, Corley has proposed Eq. 5-4 for length of plastic hinge.

L, = 0.5d +02Vd () Eq. 5-4

In discussion of Corley’s work, Mattock proposed Eq. 5-5 that has a simpler form and fits the

experimental data well.

L, = 0.5d + 0.05z Eq. 5-5

Sawyer has also proposed equation Eq. 5-6 for the effective length of plastic hinge.

L, = 0.25d + 0.075z Eq. 5-6

5.2.2 Paulay and Priestley (1992) [25]
Paulay and Priestley obtained Eq. 5-7 to correlate the roof displacement ductility, p,, of a

cantilever, to the curvature ductility, u,,, of the wall section.
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MA=1+3(#¢—1)ZT’”<1—0.517”) Eq. 5-7
In this equation, [, is the height of the plastic hinge, and [ is the shear span of the wall (Distance
from the point of effective lateral load to the base). For a triangular distribution of lateral load,  is
% of the total height. Eq. 5-7 was originally developed for columns and is based on a curvature
diagram shown in Figure 5-3 (e), where it is assumed that the plastic curvature is concentrated
over the plastic hinge, with height 1, above the base. To account for the base rotation due to

penetration of strain through the foundation, the plastic hinge is extended below the wall base, and

the new height of the plastic hinge is denoted by I',,.
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s

I

" M - - —
) '}—-"Y—-{ I:"P —&i—w -_-‘
fa) (b} (c]Yieid fd) Curvature  (e] Equivalent (f]Defleclions
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Figure 5-3 Distribution of curvature over the wall by Paulay and Priestley (1992)

The authors recommend the expression in Eq. 5-8 to obtain the height of the plastic hinge.

l, =008, I, =1,+0.15d,f, Eq. 5-8
In Eq. 5-8, [, is the shear span, and the second term of ', (0.15d,,f,)) accounts for the base rotation
due to strain penetration. Paulay and Priestley also proposed Eq. 5-9 for plastic hinge height of RC

walls.

I, = 0.21,, + 0.044h, Eg. 5-9
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In EqQ. 5-9, h, = Lis the effective height. Note that this equation does not have the strain penetration
term. Priestley and Kowalsky compared the values obtained for the plastic hinge size, by the two

equations in Figure 5-4. A triangular distribution of lateral loads was assumed in this figure.

0.25 —
—0.1
0.20+

0.15 —0.10
Eq. 5-8, Lw = 3m
Eq 5-8 Lw=6m

U
~ e

0.10
-0.05
0.05 Eq. 5-9
Py
3 6 I, 9 12 15
0.00 |‘ I l i |
0 2 4 p, 6 8 10
Ly,

Figure 5-4 Comparison of Eq. 5-8 and Eq. 5-9 by Priestley and Kowalsky

5.2.3 Berry and Eberhard (2005) [27]

Berry and Eberhard worked on an expression that estimates the lateral displacement at which
buckling of longitudinal bars of a column initiates. To achieve that, the authors first proposed an
expression to estimate the curvature of a column section at initiation of bar buckling. To convert
this curvature to a corresponding plastic hinge rotation, and then a corresponding top lateral

displacement, expression in Eq. 5-10 for the height of plastic hinge columns was proposed.

L, = aL + BD + &f,d, Eg. 5-10
In Eqg. 5-10, L is the effective height of the column. The term aL considers the effect of moment
gradient, and gD considers the effect of section depth. The term ¢f,d, accounts for the base

rotation.

The results of this research, only turns the plastic hinge rotation at buckling and the coefficients of
plastic hinge length, a, 8, and & were not derived. But Eqg. 5-10 provides a general form which is

adopted by many researchers to work on equations for the size of the plastic hinge.
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5.2.4 Kazaz (2013) [28]
Kazaz did a parametric study using a finite element model to estimate the height of the plasticized

zone for cantilever walls. Figure 5-5 shows the overview of the finite element model used in the

study.

(b)

Y ;
1— <——V Flanges accounting for
the effect of slabs on
shear flow

BEAM 188

Confined boundary
elements

MPC 184

Compression zone
where buckling of
rebars is expected

SOLID 45

oundation slab
accounting for
strain penetration

N

7

Figure 5-5 Finite element model of cantilever walls in study by Kazaz

The accuracy of the model was calibrated and verified by predicting the response of specimen

RW?2 tested by Thomsen and Wallace, as shown in Figure 5-6.
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Figure 5-6 Verification of the finite element model by Kazaz

The varying parameters in his study, with the range of their values are listed in Table 5-1.

Table 5-1 Summary of variables in the parametric study by Kazaz
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Parameter Unit | Range of values
Wall length, L, m |3,58
Effective height, A, m |5,6,9, 15,24

Wall aspect ratio, H,/L,,

0.75,0.125,1.2,1.8,1.875, 2,3,4.8,5, 8

Wall axial load ratio, p,/4,f'.

0.02, 0.05, 0.1, 0.15, 0.25

Boundary element reinforcement ratio, p,

0.005, 0.01, 0.02, 0.04

The Proposed equation to estimate the size of the nonlinear zone is shown in Eq. 5-11.

Eq. 5-11

0.5

_ P fypsh M/V

b =oson, (1-37) (1172 (5
Three remarks from this study are listed here.

e Unlike previous equations, the shear reinforcement ratio, p,, is a controlling parameter.

e Although Figure 5-5 mentions the foundation slab accounts for strain penetration, the
finite element analysis does not show any yielding of the reinforcement in the foundation.
This seems to be the case for any finite element model in which a perfect cohesion
between the steel continuum and the adjacent concrete continuum is assumed. Therefore,
slippage and extension of bars is not modeled.

e The model is verified by comparing the strain profile over the bottom 9-in. segment of
the model, with the strain profile obtained by the LVDTs installed over the bottom 9-in.
of specimen RW2 tested by Thomson and Wallace (1995) [22]. Note that the bottom pin
of the LVDTs is on the footing (Figure 5-7). So, these LVDTs measure the base rotation
in addition to the deformation of the bottom 9 inch of the wall. The finite element model

does not measure any base rotation. So, comparing the two seems questionable.
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Figure 5-7 LVDTs installed on specimen RW?2 tested by Thomsen and Wallace (1995)
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5.3 Obtaining properties of model’s nonlinear element from test data

Assume a flexurally-controlled wall model is tested in the lab. The wall specimen has a cross-
section with t,, thickness, L,, length. The total height of the wall is H,,. The specimen is loaded
with cyclic lateral point load, denoted by P,, at the top. Figure 5-8 shows the envelope of the

hysteretic force deformation curve.

Lateral load, P,

pxpy B C
K.
D _E |
1
4 i a |V
Roof drifi, 8,/ Hy ,

Top

Figure 5-8 Experimental force deformation envelope of a wall specimen

The specimen prototype, and the mechanical model are shown in Figure 5-9.
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Figure 5-9 A wall specimen and the mechanical model
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The nonlinear flexural response of the wall is captured by a nonlinear element, with a height of L,.
This element is comprised of flexurally/axially rigid components, connected by a nonlinear
flexural spring located at cl, from the critical section. The nonlinearity of the wall is entirely
captured by this spring. The purpose of this chapter is to find parameters of the backbone curve,
shown in Figure 5-10, and the shear stiffness of the nonlinear element, so that the envelope of the
force deformation curve predicted by the model matches the envelope of the force deformation
curve obtained in the test. These parameters are the stiffness of the elastic part, Ky, and the

deformation parameters, ds, d'rs, and eps. The shear stiffness of model will also be computed.

5.3.1 The shear stiffness of the model

Moment at flexural spring, Mg

K;
NLE D E

M,
A dps d'ps  eps|

Flexural spring rotation, @

Figure 5-10 Backbone curve of model's flexural spring

It is assumed that the wall’s shear response is elastic. If so, the deformation of the wall due to

shear response is shown in Figure 5-11.
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Figure 5-11 Shear deformation of a wall specimen under constant shear
Since the shear force is constant over the wall height, the shear distortion, y, is also constant over
the wall height. Knowing the shear distortion, y, from top lateral displacement, the shear

stiffness, K, is calculated in Eq. 5-12.

Eq. 5-12

In Eq. 5-12, &5 is the top lateral shear displacement of the wall. G, is the effective shear modulus.
The effective shear modulus is the gross shear modulus, G,, multiplied by a factor, a5, to account

for concrete cracking.

G, = asG, Eq. 5-13
In a computer program used for modeling the wall, the stiffness Kj is assigned to a uniaxial material
that will later be aggregated with the wall’s elastic component and the nonlinear element in the
bottom. Another approach is to use an elastic horizontal spring for the nonlinear element, and K

would be the stiffness of this spring.

Once the effective stiffness factor is known, the shear stiffness is calculated using the geometry of
the wall. Calculating this factor from test data will be done in 5.3.2.
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5.3.2 Calculation of the effective elastic stiffness factor of the wall from test data
An approximate flexural deformation of the wall due to a lateral point load at the top is shown in
Figure 5-12. For now, assume that the lateral load is smaller than the load required for yielding the

section, P,.

Figure 5-12 Flexural deformation of a wall specimen due to a lateral point load at the top

The roof lateral displacement due to flexural deformation, &, and the flexural stiffness of the wall

is given in Eq. 5-14.

pP.H,> X 3EI,
F=3E1, " A

Eq. 5-14

In Eq. 5-14, EI, is the effective flexural stiffness of the wall. The effective flexural stiffness is the

gross flexural stiffness, E1,, multiplied by a factor, a, to account for concrete cracking.

El, = apEl, Eq. 5-15
It is assumed that the flexural stiffness reduction factor, a, and the shear stiffness reduction factor,
ag, are equal. Eqg. 5-16 then, turns the effective stiffness of the wall in terms of a = a5 = a;,
considering both the flexural and shear deformations. Knowing K, from the envelope of Figure

5-8, the effective stiffness factor, «, is calculated.
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Ke = — = 5 ) = Ke _—
8, =0, +0s P,H,> P, H, 1 3El, t,L,G,) EQ.5-16

w
H, 3aEl, * +

twlwaG, 3aEl; " t,L,aG,
The flexural and shear stiffness properties assigned to the elastic portion of the model must

incorporate this effective stiffness factor.

5.3.3 Calculation of the elastic stiffness of the flexural spring’s backbone curve, KnLe

The initial elastic segment of the backbone curve in Figure 5-10 accounts for the elastic
deformation of the portion of the wall that the nonlinear element represents. To calculate this, the
curvature of the prototype at the top and at the bottom of the nonlinear element, ¢, and @, are

obtained in Eq. 5-17 for a lateral load smaller than the yield load, P,.

P.H, P[H, — 1]

Pmax = EL P4 = ~ B Eq. 5-17

In Eq. 5-17, 1,, is the height of the nonlinear element, shown in Figure 5-9. Knowing these two

curvatures, the rotation of the prototype at the top of the nonlinear element is obtained in Eq. 5-18.

g, = [Pret o, h [*;W[_ i . Eq. 5-18

The elastic stiffness of the flexural spring, Ky.z, is calculated so that the nonlinear element
produces the same rotation as in Eq. 5-18 at the top of the nonlinear element. Eq. 5-19 shows the

moment at the location of the flexural spring.

Mg =P, [H 2] Eq. 5-19

The elastic stiffness of the nonlinear element is calculated in Eq. 5-20, so that the moment in Eq.

5-19 produces the same rotation that the prototype observes (Eq. 5-18).
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5.3.4 Calculation of the deformation parameters of the backbone curve, drs, d’rs, ers
The force deformation envelope of Figure 5-8 shows that once the wall yields, it starts deforming
freely with no increase in lateral load. The flexural plastic deformation is due to accumulation of

plastic curvature over the bottom portion of the wall, called the plasticized zone. Figure 5-13 shows

the distribution of curvatures over the plasticized zone, and the segment of the wall above that.

PL
—= —

Hy
| T
' H Pz
Hyrp L

Figure 5-13 Distribution of curvature over the wall after yielding

In the model, a constant plastic curvature is assumed over the bottom nonlinear element, with a
magnitude equal to the maximum plastic curvature at the base, ¢, = @0 — @,,. On the other hand,
the distribution of plastic curvature is linear over the plasticized zone of the prototype. The two

curvature distributions are shown in Figure 5-14.
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Figure 5-14 post-Yield curvature distribution over the prototype and the model due to a lateral
point load

If the constant plastic curvature of the nonlinear element is aimed to be equal to the that at the base

of the prototype, height of the nonlinear element must essentially be equal to half of the plasticized
zone (Eqg. 5-21).

Hez Eq. 5-21
The roof drift due to the plastic curvature over the nonlinear element is given in Eq. 5-21.

g_:/ = (Pplp (1 - ZZTPM) = ((pmax - ‘Py)lp (1 - %)’ q= l_p Eq 5-22

Using the plastic hinge length of Eq. 5-21, the rotation parameters of the backbone curve is

calculated in Eq. 5-23.

By o P P
My Ke ’ My Ke My Ke
dFS - K = i f d FS K = ] ) epg — X = ]
NLE 1 p NLE 1—-P NLE 1— -2
2H,, 2H, 2H,,
Eqg. 5-23
B % M d’' - % M €= % M
dre = e 4+ Yy , d e = e Yy , Cre = e 4 Yy
FS L l_p Kuir FS B I, Kuip FS L I, Kuin
2H,, 2H,, 2H,,

The moment capacity of the flexural spring, My, is in Eq. 5-24.
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M, = P, (HW - %”) Eq. 5-24

To obtain the properties of the model, it is necessary to know the plasticized zone.

5.4 Calibrating the shear wall’s backbone curve for a different element size

By statistical analysis on a database of more than 1,000 tested structural wall specimens, Abdullah
and Wallace derived equations that determine the deformation parameters of a backbone curve
that can be used for the flexural spring of the shear wall model in Figure 4-7. The authors also
generated Table 4-1 and Table 4-2 that can alternatively be used to determine deformation
parameters. In their work, a similar approach to the one discussed in 5.3 was used to convert the
top lateral displacement of each specimen to the corresponding deformation parameter of the
plastic hinge. Note that not all specimens are models of an entire wall. Some (Including specimens
tested by Wallace and Segura) are wall panels, that represent only the bottom portion of the
prototype. In this case, new formulations need to be derived to convert a wall panel’s top rotation

to deformation parameters of the flexural spring in the model.

Analyses done by Abdullah and Wallace assumes the height of the plasticized zone is equal to the
length of the wall (Eg. 5-25). The size of the nonlinear element is hence equal to half the length of

the wall.

=
N
~

HPZ = va lp = T = 7 Eq 5'25
Note that researchers have proposed different equations for the nonlinear height of structural walls.

As shown in 5.3.4, deformation parameters of the flexural spring depend on the size of the

nonlinear element. To convert the deformation parameters calculated using a pre-assumed size of
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the nonlinear element, 1}, to the deformation parameters for a nonlinear element with a different

size, 12, Eq. 5-26 is used.

B\
Py (Hy —2 )13 i
dps = E] (1 —2h ) 2
e w P, <HW _ %) lzza Eq 5-26
2
drs = z T
(1 - m)

Eq. 5-26 is derived with the assumption that both models produce the same roof drift at a certain
rotation of the plastic hinge. Other parameters of the backbone curve d'%; and e can be calculated

using the same expression.

5.5 Calibrating parameters of the backbone curve for a model with distributed nonlinearity

The wall element used in Figure 5-9 uses elastic beam column elements above the nonlinear
bottom element. This approach enforces all the nonlinear action to accumulate within the plastic
hinge. Although the portion of the wall within the plasticized zone and above the plastic hinge
becomes nonlinear in the prototype, the model enforces an elastic response in this zone. In a
practice, the entire wall is modeled using nonlinear elements with fiber sections, such as the MVL
element. Figure 5-15 shows the distribution of curvature for a nonlinear model with fiber section.

The curvature distribution for the model shown in Figure 5-9 is also shown for comparison.
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Figure 5-15 Post — yield curvature distribution over the wall prototype and the model due to a
lateral point load

The wall is modeled with two elements over the nonlinear zone. Unlike the model shown in Figure
5-9, the element above the plastic hinge (The most bottom element) captures the nonlinear
response. Therefore, the backbone curve assigned to the plastic hinge element has to be calibrated
accordingly. It is assumed that the elastic flexural stiffness of the nonlinear element with fiber
section, is equal to the elastic flexural stiffness elements used in the model of Figure 5-9. So, a
similar distribution of curvature is observed in both models when the lateral load is smaller than
the yield load. For lateral loads beyond vyielding (Assume a deformation-controlled loading
scheme), the plastic curvature in the bottom element, ¢, for the MVL element is % of the plastic
curvature observed in the model of Figure 5-9. The areas enclosed by the curvature distributions
in Figure 5-15 justifies the ¥ factor. To convert the deformation parameter d of the backbone curve
used in model of Figure 5-9, to deformation parameter of the backbone curve that is assigned to

an MVL element, Eq. 5-27 is used.

M, 3 M,
dyvie = Kovis Z(dps - m) Eqg. 5-27
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Note that in equation above, the term M, /Ky, is the elastic rotation of the plastic hinge. In
practice, it might be necessary to use an element size other than half the plasticized zone. For
instance, the size of the plastic hinge might be calculated to be more than the height of the first
story. In this case, Eq. 5-28 finds the deformation parameters of the backbone curve for any size

of the MVL element that is a fraction of the height of the plasticized zone.

My _(4._ M T _ Hp
dyyie — m = (dFS KNLE> 2r (1 2) ) r= Hpy Eq. 5-28
In Eq. 5-28, Hy is the size of the bottom element.

Other deformation parameters would be found in the same way.
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5.6 An experimental study on the plasticized height of RC structural walls

To study the plasticized height of structural walls, a database of 17 wall specimens, tested in 3
programs was assembled. The data of the tests are obtained from the DESIGNSAFE database [41].

Table 5-2 summarizes the general properties of the tested specimens.

Table 5-2 General properties of the wall specimens in the database

Specimen L, H, pu = Bu/Agf'. FE} d}, Researchers
Name in in % ksi in

RW-A20-P10-538 48 96 7.3 68.4 0.5
RW-A20-P10-563 48 96 7.3 69.2 0.75 Tran and
RW-A15-P10-S51 | 48 72 7.7 68.4 0.5 VE’;(')'laZC)e
RW-A15-P10-S78 48 72 6.4 68.7,69.2 | 0.625,0.75 | [40][39]
RW-A15-P25-564 48 72 1.6 68.7,69.2 | 0.625,0.75
WP1 90 331 9.641 734,77 | 05,0.625
WP2 90 330 8.363 734,77 | 05,0.625
WP3 90 330 8.139 734,77 | 05,0625 | Seguraand
WP4 90 541 6.369 76.9,77 | 0.75,0.625 VE’;(;'EC;
WP5 90 321 8.035, 6.423 70.9,74.1 | 0.625,05 [34][36]
WP6 90 321 7.452 70.9 0.625
WP7 90 321 5.294 70.9 0.625
WSH2 78.74 178 5.199 89.92 0.395
WSH3 78.74 178 5.334 87.17 0.479 Dasio et al.
WSH4 78.74 178 5.184 83.54 0.477 (1999)
WSH5 78.74 178 12.27 84.7 0.32 431421
WSH6 78.74 | 1795 10.34 83.54 0.477

The selected specimens are flexure-controlled. Specimens RW-A15-P10-S51, RW-A15-P10-S78,
and RW-A15-P25-S64 tested by Tran and Wallace have an aspect ratio of 1.5, smaller than 2,
which is the threshold considered in ACI 318 for flexure-controlled walls. But these specimens
failed in a ductile mode because of the confinement over the boundary element. So, these tests

were also included in the database.
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In Table 5-2, L,, is the length of the wall, H, is the effective height, p, is the axial load ratio on the
section, F} is the yield strength, and dj, is the diameter of the longitudinal bars in the boundary
element. Some cells in Table 5-2 contain two numbers. Specimen WP5 was loaded with different
axial loads in positive and negative directions. Specimens RW-A15-P10-S78, RW-A15-P25-564,
and specimens WP1 through WP5 had longitudinal reinforcement with different bar diameter and
yield strengths in their boundary elements. More details about the specimens will be shown in

appendix.

5.6.1 Measuring the curvature distribution over specimens

The walls in the database used in this study were selected because they were well instrumented
and the data of instrumentation was available in the literature. This instrumentation includes Linear
Variable Differential Transformers (LVDTSs), that measure the displacement between two points

on the wall due to the deformation of wall.

¢

Segment CD

Segment BC

oo
o o—e

Segment AB

Segment OA4

Figure 5-16 Typical layout of LVDTs over a wall specimen in the database
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By calculating the displacement between the two pins of LVDT, &, the average strain over this

length is calculated according to Eq. 5-29.

e=? Eq. 5-29

In Eq. 5-29, L is the initial length between the two pins of an LVDT.

Figure 5-16 shows the layout of LVDTS on a typical wall specimen. The series of four blue LVDTs
mounted over each segment of the wall calculates the strains at four points, along the length of the
wall. A linear regression between strain of these points is used to calculate the average curvature
over each segment. By using another linear regression, over segments with curvature ductility
more than 1, the bottom line of the bilinear curve is established (The red line in Figure 5-17). This
line determines the height of the plasticized zone, Hp,. The top of the plasticized zone is where the

curvature ductility is equal to the value shown in Eq. 5-30.

Y Hpy
lu(p = —= —_—— Eq 5'30
(pY Hw
Py
Curvature distribution measured
using LVDTs mounted on segments
DE
A Bilinear fit on
curvature distribution
i
CD
— Curvature over
1}
segment OA
BC |
Hpy
AB
y OA4

Figure 5-17 Curvature distribution measured by LVVDTs and the bilinear fit over a tested wall
specimen
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The bottom line of the bilinear curve also determines the curvature distribution over the most

bottom segment (i.e., Segment OA).

To complete the bilinear curve the point at the top of the plasticized zone is connected to the point

with zero curvature at the effective height. This process is demonstrated in Figure 5-17.

5.6.2 Measuring the base rotation

The two green LVDTs on either side of the wall in Figure 5-16 measure the deformation of
segments OA, AB, and the base rotation due to slippage and extension of longitudinal bars. All
the specimens in the database had sufficient anchorage of longitudinal bars into the footing. So,
no slippage occurs and the base rotation is just due to extension of longitudinal bars. This
phenomenon is also called strain penetration in the literature. Note that the bottom pin of these
LVDTs lies on the foundation. Eq. 5-31 determines the base rotation of the wall specimen in Figure

5-16.

A A
M) Eq. 5-31

0 :R—<
P Hog

In Eq. 5-31, 6, is the base rotation due to strain penetration. 6, can be measured by the side
LVDTs. A4 and A,p are the areas under curvature diagrams over segments 0A and AB, and Hyg
is the elevation of the top pins of the side LVDTs. Once the base rotation is determined, the

equivalent depth of the nonlinear zone into the foundation is determined according to Eg. 5-32.

0
DNZ b SE Eq. 5_32

max

5.6.3 Calculating the yield curvature of wall section

As discussed in 5.6.1, the yield curvature of the wall section must be known to find the plasticized

height of the walls. Paulay and Priestley (1992) [25] assumed that the first bar yields at a strain of
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0.002, while the fiber with the most compressive strain at the opposite edge of the section has a

strain of 0.0005. Eq. 5-33 turns the initial yield curvature of the section.

v, - (e, = 0.002) JZ (€ce = 0.0005) Eq. 5-33

Due to distribution of bar over the depth of the section, the effective yield happens at somewhat

larger deformation as shown in Eq. 5-16.

M{ F— | 1|
= [ 1 g
:Fm
VAT |
£ i
I

L L g

oy @ [}

y Curvature m

Figure 5-18 Moment curvature diagram of a wall section by Pauley and Priestley

Authors assumed the effective yield to occur at 1.33 of the initial yield and is given by Eq. 5-34.
Py = 1-33(p’y Eq 5-34

In a more systematic approach by Kazaz (2013) [28], a moment curvature analysis is done for each
specimen. The average axial load during the test was used in the moment curvature analysis. Strain
stress equations that fit the actual force deformation of steel bars, and the test day properties of the
concrete material were used for this analysis. To find the strain stress relationship of concrete
inside the boundary element core, relationships developed by Saatcioglu and Razvi (1992) [29]

were used. Figure 5-19 shows the moment curvature diagram for specimen WSH3 tested by Dazio

etal. (1990) [42].

126



Moment

i
My~ My e

Moment curvature analysis of section ——

Bilinear fit on the moment curvature diagram ——
Initial yield & =gy X
&' =0.015
"™ =0.004 X

Curvature
_—

Figure 5-19 Moment curvature diagram of specimen WSH3 tested by Dazio et al.

Three steps on the diagram are to be found.

1. Initial yielding, when the strain of the farthest bar just exceeds the yielding strain.
2. Tensile capacity, when the strain of the bar with maximum tensile strain exceeds 0.015
3. Compressive capacity, when the strain of the fiber with maximum compressive strain

exceeds 0.004

The section reaches its capacity at load step 2, and 3, whichever occurs first. Once the initial yield
point and the capacity point are found, the bilinear curve fitting the moment curvature diagram can

be established and the yield curvature of the section is found according to Figure 5-19.

5.6.4 The load step to calculate the plastic hinge height at

As discussed before, the accumulation of the plastic deformations over the plasticized height takes
place at loads beyond the yielding deformation, A,. Analyses by Dazio et al. (2009) [42] show that
the height of plastic hinge decreases as the lateral displacement of wall increases. Figure 5-20

shows this trend on specimens tested by Dazio et al.
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Figure 5-20 Plastic hinge length versus top drift of specimens tested by Dazio et al. (2009)

For the purpose of this work, the height of plastic hinge will be calculated at load steps where the
specimen retains its maximum strength, but strength loss is about to initiate. Such a load step

corresponds to point C on the backbone curve shown in Figure 5-21.

Lateral load, Py,

D EV

/4 d da el

Specimen Reference deformation A
Figure 5-21 Backbone of a tested wall specimen

Here are two remarks regarding the selected load steps to calculate the height of plastic hinge at:

e The loading protocol for the tests include multiple cycles of same amplitude. In many
cases, the specimen starts losing strength at the second or third cycle of a load amplitude,
while the first cycle has been completed without strength loss. Such amplitudes are

considered within the strength loss branch (Segment CD of Figure 5-21), and the nonlinear
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height was calculated at the peak of cycles with one level smaller amplitude. The load steps
at which the plasticized zone is calculated are shown in 7.4 for each specimen.

The curvature distribution is calculated at the peak of each cycle. For load amplitudes with
multiple cycles, the average of curvature distributions is used. For specimens with
symmetric cross sections, the average is taken for both the positive, and the negative peak.
For specimens with unsymmetric cross section, positive and negative directions were

regarded as different data points.
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5.6.5 Analyses results, height of the nonlinear zone
Table 5-3 presents the measured height of the nonlinear zone above the footing and the measured

base rotation as an equivalent depth of nonlinear zone into the footing.

Table 5-3 Measured height and depth of the nonlinear zone for tests in the database

Specimen Ly H, P./Agf" Hyz Dy
in in % in in
T1 RW-A20-P10-S38 48 96 7.30 42.14 3.448
T2 RW-A20-P10-S63 48 96 7.30 40.12 3.455
T3 RW-A15-P10-S51 48 72 7.70 42.65 2.483
T4 RW-A15-P10-S78 48 72 6.40 34.44 4.406
T5 RW-A15-P25-564 48 72 1.60 33.77 3.285
WP 1 Positive dir. 90 331 9.64 66.25 2.304
WP 1 Negative dir. 90 331 9.64 82.84 7.315
WP 2 Positive dir. 90 330 8.36 81.38 6.033
WP 2 Negative dir. 90 330 8.36 71.56 5.304
WP 3 Positive dir. 90 330 8.14 77.81 10.77
WP 3 Negative dir. 90 330 8.14 72.75 4.827
WP 4 Positive dir. 90 541 6.37 71.17 3.988
WP 4 Negative dir. 90 541 6.37 75.56 7.885
WP 5 Positive dir. 90 321 8.03 92.72 3.098
WP 5 Negative dir. 90 321 6.42 92.28 7.700
WP 6 Positive dir. 90 321 7.45 79.71 7.127
WP 6 Negative dir. 90 321 7.45 66.46 2.246
WP 7 Positive dir. 90 321 5.29 85.61 5.822
WP 7 Negative dir. 90 321 5.29 80.69 5.234
WSH2 78.7 178.0 5.20 40.11 1.045
WSH3 78.7 178.0 5.33 52.31 1.507
WSH4 78.7 178.0 5.18 41.34 0.989
WSH5 78.7 178.0 12.3 32.15 0.829
WSHG6 78.7 179.5 10.3 45.48 1.983
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The equations that are mostly used in practice follow the general form of Eqg. 5-10 proposed by
Berry and Eberhard. This general form indicates that the height of the nonlinear zone increases
with increase in effective height and the length of the wall. Figure 5-22 and Figure 5-23 show the
same rend for the experiments in the database. In these figures the red marks indicate the nonlinear
height measured for each specimen in the database and the blue line is the linear regression over

the datapoints.

0 100 200 300 400 300 600

Nonlinear zone height, Hy; [in]
P-4
g

Effective height, H, [in]

Figure 5-22 Height of the nonlinear zone vs effective height for the experiments in the database
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Figure 5-23 Height of the nonlinear zone vs wall length for the experiments in the database
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A linear regression is conducted to develop an equation for the nonlinear height in terms of the
effective height and the length of the structural wall. Eg. 5-35 shows the proposed equation and

the coefficient of determination, R2.

Hyz[in] = 0.51L,, + 0.067H, + 4.8,  R? = 0.666 Eq. 5-35

Note that the there is a nonzero residual. Eqg. 5-36 shows the equation obtained by linear regression,

with the assumption that the residual is zero.

Hyz = 0.59L,, + 0.061H,,  R? = 0.665 Eq. 5-36

Table 5-4 summarizes some equations used by other researchers to estimate height of plasticized

zone, and the calculated R? based on the measured plasticized zone of specimens in the data base.

Table 5-4 Proposed equation by authors for calculation of nonlinear height of RC walls

Author Equation R?
Eurocode 8 (2005) Hyz = 0.4L, + 1/15H, 0.201
Paulay and Priestley (1996) Hyz = 0.16H, -0.514
Paulay and Priestley (1992) Hyz = 0.4L,, + 0.14H, 0.425
Bohl and Adebar (2011) Hy; = 0.4L,, + 0.1H, (1 -15 f,:;Ag) 0.350
Kazaz (2013) Hy, = 0.333L,, + 0.167H, 0.237
Segura and Wallace (2017) Hyz = 0.5L,, -0.0604
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5.6.6 Analysis results, depth of the nonlinear zone
Table 5-3 shows the measured depth of the nonlinear zone for the tests in the database. This depth
specifies the base rotation due to strain penetration as an equivalent depth of the nonlinear zone

with the maximum curvature, ¢,,. Paulay and Priestley (1992) estimate this depth with Eq. 5-37.
DNZ = fdbfy = 015dbfy Eq 5-37
The expression in Eq. 5-37 is obtained based on two assumptions.

1. The depth of the nonlinear zone, and the depth of strain penetration into the foundation are
in direct proportion.

2. The cohesion stress between concrete and reinforcing bars is constant.

If assumptions 1 and 2 are true, the depth of strain penetration into the foundation, Lgp, for a single

longitudinal bar can be calculated by Eq. 5-38.

T, 2
—d,°F,
Loy = ofy 2% T Aol Eq. 5-38
ch, crd,, 4c

In Eq. 5-38, c is the cohesion stress between concrete and steel bara. The measured depth of
nonlinear zone into the footing (According to 5.6.2) versus d,F, is plotted in Figure 5-24 for the
tests in the database. For some walls, bars with different size and yield stress are used in the

boundary element. In this case, parameter P = 4}, A} F,} /3. nd}, would be equivalent to d,F,.
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Figure 5-24 Depth of nonlinear zone versus parameter P

Although the measured depth of nonlinear zone shows the same trend that Eq. 5-37 suggests, but
the coefficient of determination is very low. This scatter is associated with the low number of tests,
and the inaccuracy in measuring the associated deformations. Parameter ¢ in Eq. 5-37 is calculated
based on the measurements of tests in the database and compared with the proposed value by

Paulay and Priestley in Figure 5-25.
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Figure 5-25 Parameter &

Eurocode 8 (2005) [53]’s equation to estimate the plastic zone depth, shown in Eq. 5-39,

correlates the cohesion stress to the square root of concrete specified strength, /f’..
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d d
Duz =nj}£=9.135 l}fy Eq. 5-39

In Eq. 5-39, f, isin ksi, f’. is in psi, and the depth of nonlinear zone, Dy, is turned in inch. Like
what | did for Eqg. 5-37, the measured depth of the nonlinear zone into the foundation is plotted,

this time, against parameter Q = 4 Y, A E! /Y. f'.nd}, and the plot is shown in Figure 5-26.
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Figure 5-26 Depth of nonlinear zone versus parameter Q

Again, the trend confirms what the equation proposes, but the data scatters a lot. Furthermore,
considering the effect of concrete strength in cohesion stress does not improve the coefficient of
determination. The measured value of parameter n for each test, the average value, and the

recommended value by Eurocode 8 are all compared in Figure 5-27.

0 5 10 15 20 25
20
X Measured for each test is
= Eurocode §

Average of measured >< 16
= 14
5 Xx X X 12
a X 19
g XX AN 8

=
XX X X 6
X X X 4
XS | 2
0

Test number
Figure 5-27 Parameter &
135



5.7 Summary of the results

Eq. 5-40 shows two proposed equations for plasticized zone of flexurally-controlled walls, based

on analysis of the data of the tests in the data base.

Hp, = 0.6L,, + 0.06H, + 0.09dble
dble Eq 5-40

VI

The first two terms turn the height of the nonlinear zone, and the third term turns the base rotation

Hp; = 0.6L,, + 0.06H, + 8

an equivalent depth of the nonlinear zone into the footing. The coefficient of determination, R?,
for the first two terms is ~0.665, which seems acceptable. The R? factor for the depth of the
nonlinear zone is ~0.18. More data may improve the efficiency of the models, but note that these
models have been obtained using instruments that measure local deformations of RC specimens,

and model with better performance may not be achieved.
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Chapter 6 Summary and future work

This dissertation consists of two main studies. The key conclusions of each study are presented in

this section.

6.1 Wall model

The wall model developed in this study provides several advantages for applications of
Performance-Based design of buildings with structural walls as the lateral force resisting system.
The primary goal of the model is to enable control over the load versus deformation response of
fiber models of structural walls that can be matched to specified component backbone relations,
such as prescribed in ASCE 41 [2]. To accomplish this goal, the strain-stress response of the
material used for the fibers of the element cross-section is mapped into a strain-strain-stress space,
where the additional dimension provides greater flexibility to accommodate strength deterioration.
The element is implemented in OpenSees [4], an open-source computer program for structural and
earthquake engineering, and then used in two case studies. One case-study is a static pushover
analysis and the other case-study is nonlinear dynamic analysis of a structural wall designed
according to the latest building code. Computer implementation and the case studies show the

reliability and effectiveness of the element for both static and dynamic analyses.

More refinements are presented in Chapter 4 that enable the computation of demand to capacity
ratios of deformation parameters in real time within each load step. The variables that determine
the backbone curve of the element (e.g., deformation at strength loss), have been shown to vary
with shear stress, axial load, and depth of the compression zone, which vary in time over the
analysis. Pre-assigning these variables based on an estimate of maximum probable values

occurring simultaneously results in underestimating the wall deformation capacity and a
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conservative performance assessment for the wall and the building. This is particularly true for
coupled-wall systems, or dual systems, where the variables impacting deformation capacity may
vary significantly over time (e.g., for the tension versus compression piers of a coupled wall. In

these cases, the proposed model provides substantial benefits versus current approaches.).

6.1.1 Future work

Some aspects discussed in the formulation, such as use of smooth hysteretic performance, were
not implemented in the current model. Thus, the strain-stress response of the fibers in case studies
of sections 3.13 and 3.14 show piece-wise linear response and more work is required to implement

the transitions relations into the model.

Table 4-2 specifies the residual strength of the wall once deformation parameter d’ is exceeded.
The elements residual strength depends on the residual stress of the material, and the depth of
section over which the material is damaged. Section 3.7 describes how the material relation
parameters are assigned once strength degradation initiates. An approach to enable a prescribed
residual stress (e.g., as given in ASCE 41 tables) to be targeted was not developed. Although this

feature would be helpful, it is not essential to produce useful and improved results with the model.

The wall element developed in this study captures the strength degradation response when one
element over the plastic hinge is used. In analysis of a 3D structure, as is required for a code
compliant Performance-Based design, more than one element over the plan might be required
within the plastic hinge region. An example of this case is shown in Figure 6-1. This wall is
modeled with three elements within four nodes over the plastic hinge. The study by Abdullah and
Wallace (2019) [47], determines the backbone curve for the combination of the three elements

with the plan view shown in Figure 6-1. To address this situation, additional work is needed.
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Figure 6-1 Plan view of a C-shaped wall with bi-directional loading

6.2 Height of nonlinear zone

Chapter 5 includes a study to evaluate current models used to estimate the plasticized zone of
flexure-controlled structural walls. This parameter is used in many studies for different purposes,
including calculation of plastic hinge rotation from drift. A database of 17 tested specimens is
assembled. The specimens selected were well-instrumented, such that the extent of nonlinearity
can be measured over the wall height. Analyses of 24 datapoints from 17 testes recommended Eg.

6-1 to estimate the plastic hinge height of flexure-controlled walls.

Hpz = 0.6L,, + 0.06H, + 0.09d,F,
Eg. 6-1

dble

Jre

6.2.1 Future work

Although hundreds of structural walls have been tested and studied (e.g., see Abduallah and
Wallace (2018) [50]), only a relatively few have sufficient instrumentation to be used in this study.
More data are required to improve the reliability of the models and study the impact of other

parameters, including the axial load as some researchers (e.g., Bohl (2006) [48] and Kazaz (2013)
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[28]) have reported that axial load has considerable impact on plastic hinge length of structural
walls. This becomes especially important for coupled walls, where there the axial load varies over
a wide range, from net tensile load to large net compressive load. The database in this study has a
relatively small number of tests and the range of axial loads is limited. Another important subject
that can be part of a future work is calibrating deformation parameters of a backbone curve in real

time with a varying plastic hinge length.
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Chapter 7 Appendix

7.1 Calculation of deformation parameters in a typical load step

Calculation of backbone curve parameters for the bottom element of the twelve-story coupled wall
system shown below, within a typical load step (Load step 2,361) is presented in this chapter. The
wall is loaded with a displacement — controlled scheme and a distribution of lateral loads shown

in the figure below.
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The wall cross section for the left side pier is shown below. The wall piers are symmetric with
respect to the coupling beams centerline. The section is discretized into fibers to model the walls

using MVL elements. Two elements are used in each story.

141



B  Confined concrete
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The thickness, with, reinforcement ratio, concrete area, steel area and local coordinate of the fibers

of the wall cross section, from left to right, is shown in the table below.

Fiber No. tr Wy p A Ag Xp
in in in? in in
1 16 3 0.0423 2.0304 45.9696 -58.5
2 16 12 0.0423 8.1216 183.878 -51
3 16 12 0.0423 8.1216 183.878 -39
4 16 39 0.0122 7.6128 616.387 -13.5
5 16 39 0.0122 7.6128 616.387 25.5
6 16 12,5 0.0423 8.46 191.54 51.25
7 16 25 0.0423 1.692 38.308 58.75

Roof drift [%]

Jo0

Roof drift

1000 1500
Load step
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The history of controlled roof drift is shown in the diagram below.
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The element nodal forces for a typical wall element are shown in the figure below.




The forces of the bottom element of the left pier at the last converged load step, and at a trial

state to solve for the current load step, are shown in the table below.

Load Step Vpot Pyot Myor Viop Peop Mo,
kips Kips k - ft kips kips k- ft

2,360, C 493.318 4800.1 -20564.9 -493.318 -4800.1 18098.3

2,361, T 542.732 5177.35 -23059.9 -542.732 -5177.35 20346.3

The normalized shear stress of the element, at the end of the last converged load step, »,“ and at a

trial deformation to solve for the current load step, v,,” is:

W)W, 493318 x 1,000
tyLyyff. 12 x 120 X /6,000

_542.732 x 1,000
" 12 x 120 x /6,000

v, € =4423, 7 = 4.866

The element nodal displacements for a typical wall element are shown in the figure below.
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The nodal displacements of the bottom element of the left pier, at the last converged load step

(Load step 2,360), and at a trial deformation to solve for the current load step are shown in the

table below.
Load Step Upot Ubot Hbot utop vtop gtop
in in in In
2,360, C 0 0 0 -0.58159 0.15375 0.01535
2,361, T 0 0 0 -0.75731 0.22421 0.020136

The deformation vector of Figure 4-18, from the last converged state to the trial deformation at the

current load step, for the element is shown below.

0.0007
0.00065
0.0006

-Hn. -
*:: >< 0.00055

& >< 0.0005
0.00045

X

X Last converged 0.0004
X Trial 0.00035

0.0003

0.01 0.015 0.02 0.025

p=¢L,/2

Parameters C, and D of Eq. 4-26 are
C = 0.0054071, D = 0.00037094

Assuming the shear force deformation has an elastic linear response, the stiffness assigned to the

shear spring of the element is

.4 O x 27X 6,000 V6'000><%><12><120
Kyg = cefffers _ ~ 2X (1 +02) = 18,397
59 H, 60 '

The shear stress of Table 4-2, in terms of curvature comes from Eq. 4-28 and is determined as

follows.
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L
w,Viy KssHe (Clo =7+ D) 18,397 x 60 x (0.0054071[¢ x 60] + 0.00037094)
ult 2 (p
v, () = == : = S

Acu f c Acv f c 12 X120 % 6 X \/6,000

Simplified here.

v, () = 3,853¢ + 4.405

The computation of the compression zone depth requires knowing zero — stress — strain based on
the material properties at the converged load step. Figure below shows the strain stress history of

the steel material in fiber 1.

Fiber 1 steel strain stress

Stress [ksif

History -80
X X Last converged -100
-120
-0.02 0 0.02 0.04 0.06 0.08

Strain [in / in]
The zero — stress — strain is calculated based on the properties of the material at the last converged
step. Note that the stress is compressive and the material needs to be loaded in tensile loading to
turn back to zero stress. The strain stress equation for this tensile load path is governed by MP

equations.

1-Db)e* E—¢
o—* =b£*+(—)1’ E* =—T" o =
(1 +€*R)E ET _EO O-T _O-O

o is the material stress and ¢, is the material strain. Other parameters are shown in the table below,

based on the material properties at the last converged load step.
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& &R o OR R

ksi ksi in
-0.0059827 | -0.012399 91.6483 -04.4342 1.6146

To solve for o =0, Newton’s approach is used within a newly added member function to the

material object. An initial guess for the zero-stress strain is:

C —

o 4.43
Eg=0 = EC - E— = —0.012399 — m = —0.009143
0 )

Iterations that lead to finding the exact strain corresponding to zero stress is shown in the table

below.
. do”
Iterations £ e* c* o T =
os*
1 -0.009143 | 0.5074859 | 0.4252614 | -15.30054 -0.082224
2 -0.008306 | 0.6379095 | 0.5009503 | -1.216157 -0.006536
. .\ . do*
Iterations € £ o o T =
os*
3 -0.008227 | 0.6501836 | 0.5074335 -0.00974 -5.23E-05
-0.008227 | 0.6502835 | 0.5074859 | -6.39E-07 -3.43E-09

The zero-stress strain, £°=°, and the load path from converged state to the zero-stress point is

shown in the figure below.

Fiber 1 steel strain stress

120
100
80
60
40
20

-20

Stress [ksi]

History -40
Zero stress path -60
X Last converged -80
X Zero stress -100
-120
-0.02 0 0.02 0.04 0.06 0.08
Strain [in / in]

Same calculations are done for steel material of other fibers.
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Fiber 2 steel strain stress

120
100
80
60
'E" 40
=, (2)0
- [
8 20
71 History -40
Zero stress path -60
X Last converged -80
X Zero stress -100
-120
-0.02 0 0.02 0.04 0.06 0.08
Strain [in /in]
Fiber 4 steel sirain stress
120
100
80
60
'-T‘;" 40
&=, 20
- I — ——— 0
g -20
%] History -40
Zero stress path -60
X  Last converged -80
X Zero siress -100
-120
-0.02 0 0.02 0.04 0.06 0.08
Strain [in /in]
Fiber 6 steel strain stress
120
100
80
60
'f-“;;" 40
£ 20
- 1
§ -20
%] History -40
Zero stress path -60
X Last converged -80
X Zero stress -100
-120
-0.02 0 0.02 0.04 0.06 0.08

Strain [in / in]

Fiber 3 steel strain stress

120
100
80
60
'E" 40
2 20
= L
32
g -20
© History -40
Zero stress path -60
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The profile of zeros-stress strain (Figure 4-15) over the section at the last converged load step is

shown in figure below.
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Each segment of the profile is governed by an ¢ = mx + n with coefficients, from left to right, in

the table below.

Segment m n

1 0.00021820 0.00498794
2 0.00021754 0.00495429
3 0.00021196 0.00473659
4 0.00010053 0.00323222
5
6

0.00019915 0.00071722
0.00020612 0.00036004

The strain profile of the element, corresponding to the last converged load step, and to a trial
deformation to solve for the current load step, is shown in figure below. The location of the hinge

in Figure 4-16 is x,, = —13.12 in, &, = —0.001228
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The strain profiles cross the fourth segment. The equation of the compression zone depth using

Eq. 4-22 is shown below.

. L,\ —13.12¢ +0.003232 + 0.001228
Ce(9) = xcz = <_ _) - @ — 0.0001005

2

The compression zone parameter A in terms of curvature is shown below

CgL, —10.93¢ +0.003717
b2~ ¢ —0.0001005

Ap) =

Knowing the compression zone parameter, 1, and the shear stress parameter, v,,, The capacity for

deformation parameter d is obtained by double-interpolating through Table 4-2.

0.026 — 0.032
Cy(@) = <0.o32 e ((e) - 4)> +
(0.018 + 2020018 ) - 4)) - <o.032 202029052, () - 4)>
—— () - 10)
Ca(9) = (0.032 — 0.003(v, () — 4)) + 0.001(v,(p) —4) — 0.014 (A(p) — 10)

60

Ca(@) = (0.044 — 0.003v,(9)) + (0.001v, () — 0.018) ’1(‘!’)670_10

The demand of plastic hinge rotation in terms of curvature is

D4(p) = @H,
Cy(p) = Dy(e)

Alp) =10

F(p) = (0.044 — 0.003v,(p)) + (0.001v,(¢) — 0.018) 0

pH, =0

Newton’s approach is used to solve the nonlinear equation.
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, , , o Ale) —10 2(p)
F'(¢p) = —0.003v',(p) + 0.001v u((p)T+ (0.001v,(p) — 0.018) 0

He

F(oy)
F'(on)

Pn+1 = PN —

All functions v, (@), v'y, (¢), A(¢), and A'(¢) have been computed before. The table of iterations to
solve for element curvature ¢, at deformation parameter d, is shown in table below. The initial
guess is obtained by interpolation. The curvature, ¢, and demand to capacity ratio for parameter
d, [D/C],, at the last converged load step, and at a trial deformation to solve for the current load

step is shown in the table below.

Load step ® [D/Cla
2,360 C 0.000234220 0.7869
2,361 T 0.000347763 1.118

An initial guess, ¢4, to solve for [D/C],; = 1 is calculated here using the table.

0.000347763 — 0.000234220
1.118 — 0.7869

¢, = 0.00023422 + (1.118 — 1.0) = 0.0003073

Table below shows the iterations to solve for [D/C],; = 1.

@ vy v,/ A A F F'
1/in

0.00030730 5.589 3853 51.73 -61,223 1.646E-02 -56.2143

7} Uy v, A A F F'
0.00060014 6.717 3853 4431 -10,487 -1.861E-02 -67.3829
0.00032395 5.653 3853 50.78 -52,438 -7.881E-04 -58.1482
0.00031039 5.601 3853 51.54 -59,430 -1.010E-05 -56.6091
0.00031022 5.600 3853 51.55 -59,531 -1.988E-09 -56.5868
0.00031022 5.600 3853 51.55 -59,531 -7.633E-17 -56.5868
0.00031022 5.600 3853 51.55 -59,531 0.000E+00 -56.5868
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Once deformation parameter d is determined, other parameters (d’, ¢, and e) would be computed

based on compression zone parameter 4, and axial load ratio p,, at element rotation of d.

7.2 Transition equations used in strain stress curves

Figure below shows the strain stress curve of a typical steel material. To provide a transition from
segment 1, governed by the Menegotto Pinto equation, to segment 2, the stress degradation curve,
the coordinates of the start of the transition assumed to be at point 1, P1, must be determined. In

the sample problem below, the start of the transition is assumed to be at 0.8 x D.
oonfe]

R R
<1 + [x‘“] )

The tangent at point 1, T, , is also determined.

X
Xp1=0.8XD, —b[P1

&—bE]
T —yﬁ_ Xpy ’
Pq Xp, 14 1

=%
&y

In equations above, b is the strain-hardening ratio and E; is the initial stiffness of the material.

Yy
P, P;
Ps
g
a‘;‘.‘e}%
o
D

Segment 2 of the curve is governed by the coordinates of point 2, P2, and a constant tangent, T.
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Yo =T(x=%p,)+Yp,, X5, =D

The intersection of the first segment, and the second segment happens at point 2, P>. Assuming
the transition starts at point 1, P1, and the tangent varies uniformly till the landing point, equation
of the transition, (xz, yr), is governed by a polynomial shown below.

Vr = a(x - xpl)z + Tp, (x - xpl) +¥p,

The coordinates of the landing point, Ps, is obtained by setting equal, the tangent of the transition

and descending segment.

T_TP1

Ty, =Ty, 2 - Tr. =T, = —
D T a(x xP1) + 1p, a Z(X _ xP1)

The x, and y coordinate of the landing point, Ps, is obtained by setting equal, the ordinate of the
transition and descending segment.
Yo =Y, a(xP:s - xpl)z + TPl(xP:«; - xP1) + Yp, = T(xP3 - xPz) + Yp,

7.3 Analysis and design of the structural walls in case study 3.13

The seismic properties of the building site are assumed as follows.
Sy =2136, S, =0.718

The Site class is assumed to be C. From table 11.4-1 and 11.4-2, and knowing that the site class is

C, and S > 1.25, S; = 0.5, we will find F, and E,.
F,=10, F,=13
ASCE 7 Equation 11.4-1 and Equation 11.4-2 turn Sy,s and Sy,;.

Sus = F,S¢ = 1.0 X 2.136 = 2.136
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Sy = E,S; = 1.3 x 0.718 = 0.9334

ASCE 7 Equation 11.4-3 and Equation 11.4-4 turn Sy and Sp,.

2 2
Sps =5 Sus =3 X 2136 = 1.424

2 2
Sp1 =551 =5 X 0.9334 = 0.6223

0.6223 0.0874 - Sp1 06223 0.437
- ’ ST Sps 1424

T, = 02221 = 02 x
O sy T 1424

The seismic response spectra are calculated and shown in Figure 7-1 and Figure 7-2.

Response Spectra
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Figure 7-1 Response spectrum (Acceleration) of the building site
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Figure 7-2 Response spectrum (Displacement) of the building site
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The preliminary design starts with satisfying the drift limit. The fundamental period for the wall
is estimated assuming uniform distributed mass over the height of the wall. The mass of each floor
is calculated first. Referring to the floor plan of Figure 3-37, and assuming an 8 in. slab and a 25

psf super-imposed dead load, the total dead load of the floor is:
— 150 X—+ 25 = 125
wp = X5 +25= psf

Floors are all square and 131 ft. by 131 ft.

Wy 2,145 kips — s?
— =————-=1>5.551 -
g 322x12 in

Wy = 131 x 131 X 0.125 = 2,145 kips, my =

Two walls resist the seismic load of the building. The tributary mass of each floor for one wall is

_ 5551 2776 kips — s?
M ==& in

Assuming the mass is uniform over the wall height, the mass per unit height of the wall is

_m, 2776 0019278 kips — s?
M=, T 144 in?

Assuming the length of the wall is 12 times the thickness as an initial guess. The effective flexural

stiffness factor for the wall is 0.5.
1 3
L, =12t,,  EI,=0.5Xx EtWLW =72t,*

The modal periods for the wall can be estimated by

, | EI
w, = (aH) mH*

Where H is the total height of the building, and m is the uniform mass over the wall height. ACI

318-14 section 19.2.2.1(b) estimates concrete’s modulus of elasticity as follows.
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E. =57f'. = 57 X /6,000 = 4,415 ksi
For the first mode period aH, = 1.875. The total height of the building is:
H=10x%x 12X 12 = 1440 in

After substituting for all the parameters, the first mode frequency for the wall is:

2 El -3 2
w01 = (aH)? |—7 = 7216 X107,

2 2 870.8

T = —= =
17w, 7216 x1073t,2 t,2

Assuming the maximum story drift ratio for the wall is 2%, the average drift ratio over the entire

height is approximately:

5roof 3 i
=-X2=15% 80 =0.015% 10 x 144 = 21.6 in
H, 4

Knowing the displacement at roof, the lateral displacement at the effective height of first mode for

the wall is approximately:

Srooy 216 _
5Heff =F=1_.5= 14.4in = Sd

Knowing the response spectrum of the site, the period that turns this spectral displacement is

estimated.

yields
Sq=144in— T = 2.36 sec

So, if the building’s period is almost equal to 2.36, it will meet the drift limit.

870.8 yields 870.8 .
2.36 = ———ty, = =~ 20.0 in, L, =20ft
tw 2.36
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It was discovered later that a larger section is required to provide enough strength. The final design

is a section with the length L, = 27 ft, and thickness of ¢,, = 26 in.

Lateral forces for strength design of the wall are calculated using ASCE 7 chapter 12.8, The
Equivalent Lateral Force Procedure. The response spectrum of the building and the modal periods

of the building have been calculated before.
T, = Cthnx

Referring to Table 12.8-2, for a RC bearing walls, the coefficients for calculating the approximate

fundamental period are:
C, =002, x=075
T, = 0.02 x 120°7% = 0.725 sec

Table 12.8-1 gives the coefficient for upper limit on approximate period.

yields
Spy = 04— C, = 1.4
T, =C,T, = 1.4 x0.725 = 1.02 sec

The first mode period of the building in the direction of the walls is calculated using a modal
analysis in MATLAB with walls modeled using elastic beam column elements. An effective

stiffness factor of 0.5 is assumed and shear deformation is ignored.
T, = 1.403

Note that the calculated first mode period is more than the upper limit set by 12.8.2. So, T,, shall
be used for calculation of seismic forces. From the response spectrum, the Pseudo Spectral

Acceleration, pSa, for the building in the direction of walls is
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@) 1o

Equations 12.8-5 and 12.8-6 set a minimum for Seismic Response Coefficient.

pSa=0610g, C,= =0.1226

CIMin = 0044851, = 0.044 x 1.424 x 1.0 = 0.06266

. 0.55; 0.5x0.718
Mt = = g = 0.07180

I, 1.0

The calculated seismic response is more than the minimum. The seismic weight of each floor is

determined per Section 12.7.2. The effective seismic weight, W, of a structure shall include the
dead load as defined in section 3.1. The assumed total dead load of the building distributed over

the floor plan is.

wp = 100 + 25 = 125 psf

Wr = 131X 131 X 0.125 = 2,145 kips, W = 10W; = 10 X 2,145 = 21,450 kips

V=CW, V=0.1226x 21,450 = 2,630 kips

Assuming two walls for resisting the lateral loads, base shear in one wall would be one half of the
total base shear of the building.

1
Vi, = 5 X 2,630 = 1315 kips

Accidental torsion is calculated assuming displacement of the center of mass each way from its
actual location by a distance equal to 5 percent of the dimension of the structure perpendicular to

the direction of applied forces.

e=0058;, B;=131ft, e=005x131=655ft

157



The torque caused by the accidental torsion is calculated multiplying the eccentricity by the base

shear.
Mg, = eV = 6.55 x 2,630 = 17,227 kips — ft

This torque would induce additional shear force in the shear wall of one side of the building, and
decreases the shear force of the wall on the other side. Assuming d is distance between walls, the

additional shear is:

yields M t
Vard = Mgy — Vo = Ta

eV 0058V

7 P 0.05V

So, considering the accidental torsion, the shear wall on one side takes 55 percent of the total base
shear and the shear wall on the other side takes 45 percent. So, base shear of each wall should be

amplified to 10 percent more shear.
V; = 1,315 x 1.10 = 1,447 kips

This is the total shear that should be resisted by the entire building. The lateral seismic force, F,,

induced at any level shall be determined from equations 12.8-11 and 12.8-12.

E, =C,V Cpy = why " k—10+1'02_0'5x(20 1.0) = 1.26
x = MvxVo vx T ?’zlwihik’ - 1. 25-05 . . — 4.

The definition for each parameter is in Section 12.8.3 of ASCE 7. The numerical value for each

parameter with the lateral force on one wall are shown in the following table.

Level Floor height Floor w;h;* Cyi F; [k]
[ft] weight [K]

R 120 2,145 883,512 0.203 293
F 10 108 2,145 773,870 0.177 257
F9 96 2,145 667,328 0.153 221
F8 84 2,145 564,169 0.129 187
F7 72 2,145 464,748 0.107 154
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Level Floor height Floor w;h* Cyi F; [K]
[ft] weight [k]

F6 60 2,145 369,522 0.0847 123

F5 48 2,145 279,104 0.0640 92.5

F4 36 2,145 194,377 0.0446 64.4

F3 24 2,145 116,733 0.0268 38.7

F2 12 2,145 48,823 0.01119 16.2

For a Risk Category Il Building with S, of 1.424, and Sj,, of 0.6223, the seismic design category
referring to tables 11.6-1 and 11.6-2 is D. For a seismic design category D building, the redundancy
factor is determined from Section 12.3.4.2. The structure is regular in plan at all levels and there
are two walls on each side of the building in the perimeter. The equivalent number of frames, per

section 12.3.4.2, part b, is calculated as the length of the shear wall divided by the story height.

Ly 27
VTR T2~

So, the building consists of at least 4 frames of lateral force resisting elements in the direction
under consideration, and the redundancy factor is equal to 1.0. The shear and moment demands

are shown in the table below.

Story Shear [Kips] Bottom Moment
[1,000 Kips - ft]
10 293 3.515
9 550 10.11
8 771 19.36
7 958 30.85
6 1,112 44.2
5 1,234 59.01
4 1,327 74.94
3 1,391 91.63
2 1,430 108.8
1 1,446 126.2
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The lateral loads for calculating the lateral displacements for drift check are calculated next. Per
section 12.8.6.2, to determine compliance with the story drifts of section 12.12.1, it is permitted to
calculate the elastic drifts, &,., using seismic design forces based on the computed fundamental
period of the structure without the upper limit specified in Section 12.8.2. So, T = 1.403 sec is

used for calculating the lateral forces for drift check.

Story Floor lateral Floor lateral Drift ratio for
forces for drift displacements for drift check [%]
check [Kips] drift check [in]
10 207.2 19.06 1.849
9 177.8 16.40 1.833
8 149.9 13.76 1.794
7 1235 11.18 1.720
6 98.72 8.700 1.604
5 75.77 6.390 1.439
4 54.80 4.318 1.221
3 36.09 2.559 0.9466
2 20.04 1.196 0.6125
1 7.325 0.3135 0.2177

The upper bound and lower bound of distributed gravity loads are calculated as follows.

wS = (1.2 4 0.2Sp5)wp + 0.5w;, = (1.2 + 0.2 X 1.424) x 125 + 0.5 X 40 = 205.6 psf

w? = (0.9 —0.2Sy9)wp = (0.9 — 0.2 X 1.424) x 125 = 76.9 psf

Assuming 55 ft x 35 ft tributary area of gravity loads for each wall (estimated using a finite

element analysis in ETABS), the axial gravity load over the height is computed in table below.

Story LC5 axial load | LC7 axial load
10 395.8 148.0
9 791.6 296.1
8 1187 444.1

160



Story LC5 axial load | LC7 axial load
7 1583 592.1
6 1979 740.2
5 2375 888.2
4 2770 1036
3 3166 1184
2 3562 1332
1 3958 1480

Note that for a nonlinear dynamic analysis, an estimate of the expected gravity loads determined
by PN = DL + 0.25LL is used to reduce the number of required runs. The total gravity load at the

base of the wall using tis load combination is:
1
PN =DL + 7 LL = 2,600 kips

The flexural demand of 126,200 k - ft, paired with axial gravity loads of 3,958 kips and
1,480 kips control the flexural design of the wall. The P-M interaction diagram of the final design

(Cross section shown in Figure 3-38) is shown below.
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The reduced, and nominal flexural capacity of the wall for the upper bound and lower bound of

the gravity loads, and the gravity load of the nonlinear dynamic analyses are shown in table below.

LC7 axial load Nonlinear dynamic LC5 axial load
analysis axial load

oM, [1,000 k — ft] 136.3 144.9 155.0
M, [1,000k - ft] 151.3 161.0 172.2

The deformation parameters of the backbone curve for nonlinear modeling of the wall are
calculated here. Table 4-1 and Table 4-2 determine the deformation parameters based on the
axial load on the wall section, maximum probable shear demand, and the maximum depth
of compression zone. Ignoring the effect of slab shear on the axial load of the wall, the

maximum axial load on the wall is equal to the expected gravity load.

P, 2,600

- = = 0.0396
Agf'c 26x324x7.8

Pu

ACI 318-19 section 18.10.3.1 estimates the maximum shear demand of the wall, V,.

In this equation, V,, is the shear force determined per Equivalent Lateral Force Procedure.
V, = 1,446 kips

w,, 1S the dynamic amplification factor due to effect of higher modes. ACI and the New Zealand

Standard estimate this per number of stories.

n
w, =13 +£ <18,  w,=1.633
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1, is the flexural overstrength factor. The flexural capacity of the wall considering the over
strength of the material is approximately 1.25 of the nominal capacity, calculated with the

nonlinear analysis axial load on the wall. The overstrength is then computed as follows.

0 _M,,,_1.25><161.0_159>15
v M, 1262 '

The maximum shear demand is then:
V, = 0,w,V, = [1.595 x 1.633 = 2.605 < 3] X 1,446 = 3,768 kips
The shear stress to use for finding deformation parameters in Table 4-1 is:

3,768 x 1000 :
v, = = D.
¢ 26x324 x+/7,300

The last parameter to be calculated is the compression zone parameter. The approximate depth of
compression zone, using the nonlinear analysis gravity load, and the compression zone parameters

are:

Lycp 324 x71.82

cp =71821in, A= b = 26X 26

= 3442

Deformation parameters d, d’, and e are calculated by interpolating the values in the table.

d = 0.02354, d' =0.02867, e =0.03186

The values obtained from the table are based on the height of the plastic hinge being equal half the
length of the wall, as recommended by Moehle and Wallace, and modeling with a nonlinear

element of Figure 5-2 (c).

=
N

h
S

w
]
A~
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To convert these values to deformation parameters of a nonlinear element with fiber section over

the entire height, Eq. 5-28 is used. One element over the bottom story is used.

To find the elastic rotation of the wall, a moment curvature analysis is done on the wall section.

The moment curvature diagram with critical points is shown in the figure below. A bilinear is fit

on the curve to estimate the yield point.

Moimnent curvature of wall section

250

< e ¢
2
S 150
S‘ — MC curve
E—' —— Bilinear fit 100
; X Initial yield
53 X et =005 50
X ec=-0.004
0
0 0.00005 0.0001 0.00015

Curvature [1/in]
The yield moment, and the effective flexural stiffness of the wall are obtained using the bilinear

fit on the moment curvature. The elastic rotation of the element in calculated per Eq. 5-20.

. o My My
My = 194,400 kips — ft,  El, = 1657 x 10" kips —in?, 0} =-——=——7 = 0.002280
NLE ‘e
[, =162in.

The elastic rotation of the nonlinear element used in the study is calculated in the same way. Only

the element size is different.

My My
¢ Kyg __ El
I, = 144 in.
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Parameter r in Eq. 5-20 is calculated as follows, with the assumption that the extent of nonlinearity

is equal to the length of the wall, Hp,; = L,,,.

_ 14444
"T3m T

The new deformation parameters are calculated as follows.

d =0.01673, d' = 0.02027, e =0.02248

These rotations are then divided by the element height to obtain the equivalent curvature. The

equivalent curvatures are inserted in commands that builds the wall element.
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7.4 Details of tested wall specimens in the database

Some additional data and Metadata regarding the structural wall tests in the database of 5.6 are

presented in this chapter.

7.4.1 Tests conducted by Segura and Wallace (2017)

Figure 7-3 shows the layout of LVDTs in Segura’s tests used to measure curvature profile over
height. The rotations calculated by LVDTs 4, and 5 measure the curvature over the bottom three
segments and the base rotation due to slippage and extension of longitudinal bars. Once the total
rotation due to deformation of bottom three segments is subtracted from the rotation of LVDTSs 4

and 5, the base rotation is obtained.

-~ 2in 2 in— 1 2 in—-—
Segment 4 38in 6i Segment 4 38in
in
Segment 3 18in Segment 3 18in
~ -y =~ -
&~ &~ B~ &~
E Segment 2 12in E E Segment 2 12in E
~ ~ ~ ~
Segment 1 o 1210n Segment 1 o 12in
- 2in rZ’m i 2in+{|~ {21;1 f 2in—+{-
| dink—20m—L 20T 14l | | sin 37 in L 295 in 13.5 in
‘ 90 l"l ‘ ‘ 90 I.H ‘

Figure 7-3 Layout of LVDTs used for measuring curvature in tests conducted by Segura and
Wallace. Right: Specimen WP4, Left: All other specimens

The force deformation response of specimens, and the load steps at which the curvature profiles
are calculated are shown in Figure 7-4. In these figures, the plastic hinge rotation (The reference

deformation) refers to the rotation calculated by LVDTs 4 and 5 shown in Figure 7-3.
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Figure 7-4 Force deformation response of specimens tested by Segura and Wallace. The load
steps at which the curvature profile is calculated at are marked by red crosses.

Specimens do not have symmetric cross sections. So, the positive and negative direction of loading

are treated as different data points for analyses.

The profiles of curvature over height, for specimens tested by Segura and Wallace are shown in
Figure 7-5. The curvatures are normalized by the yield curvature calculated according to 5.6.3.
The figures also show the bilinear fits on the curvature profiles. The bilinear fit is used to estimate

the nonlinear height of the specimens, as discussed in 5.6.1.
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Figure 7-5 Curvature profile of specimen WP7 tested by Segura and Wallace in positive and
negative directions

7.4.2 Tests conducted by Dazio, Beyer, and Bachmann (1999)
Figure 7-6 shows layout of LVDTSs used to measure curvature over height. LVDT “1 N”and LVDT

“1 S” measure curvature over the bottom 60-mm segment in addition to the rotation at the base of
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the wall due to slippage and extension of longitudinal bars. Note that the bottom pin of these

LVDTs lie on the footing.
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Figure 7-6 Layout of LVDTs used for measuring curvature in tests conducted by Dazio et al.

The force deformation response of specimens, and the load steps at which the curvature profiles

are calculated are shown in Figure 7-7. In these figures, the reference deformation is the drift of

the wall measured by the string potentiometer installed at the elevation of horizontal actuator

(4,520 mm for WSH2 through WSH5, and 4,560 for WSH6).
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Figure 7-7 Force deformation response of specimens tested by Dazio et al. The load steps at
which the curvature profile is calculated at are marked by red crosses.

The profiles of curvature over height, for specimens tested by Dazio et al. are shown in Figure 7-6.

The curvatures are normalized by the yield curvature calculated according to 5.6.3. The figures
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also show the bilinear fits on the curvature profiles. Bilinear fit is used to estimate the nonlinear

height of the specimens.
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Figure 7-8 Curvature profile of specimens tested by Dazio et al.
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7.4.3 Tests conducted by Tran and Wallace (2012)

Figure 7-9 shows layout of LVDTs used to measure curvature over height. The left figure
corresponds to specimens “RW A20 P10 S38” and “RW A20P10S63”, and the right figure
corresponds to specimens “RW A15 P10 S517, “RW A15 P10 S78”, and “RW A15 P25 S64”.
LVDT 29 and LVDT 30 measure curvature over the bottom 24-inch segment in addition to the
rotation at the base of the wall due to slippage and extension of longitudinal bars. Note that the

bottom pin of these LVVDTSs lie on the footing.
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Figure 7-9 Layout of LVDTs used for measuring curvature in tests conducted by Tran and
Wallace

The force deformation response of specimens, and the load steps at which the curvature profiles

are calculated are shown in Figure 7-10. In these figures, the reference deformation is the drift of
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the wall measured by the string potentiometer installed at the elevation of horizontal actuator (96

in for A20 specimens, and 72 in for A15 specimens).
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Figure 7-10 Force deformation response of specimens tested by Tran and Wallace. The load
steps at which the curvature profile is calculated at are marked by red crosses.
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The profiles of curvature over height, for specimens tested by Tran and Wallace are shown in
Figure 7-11. The curvatures are normalized by the yield curvature calculated according to 5.6.3.
The figures also show the bilinear fits on the curvature profiles. Bilinear fit is used to estimate the

nonlinear height of the specimens.
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Figure 7-11 Curvature profile of specimens tested by Tran and Wallace
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