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Abstract 

Mathematics is critical for making sense of the world. Yet, 
little is known about how people evaluate mathematical 
explanations. Here, we use an explanatory reasoning task 
to investigate the intuitive structure of mathematics. We 
show that people evaluate arithmetic explanations by 
building mental proofs over the conceptual structure of 
intuitive arithmetic, evaluating those proofs using criteria 
similar to those of professional mathematicians. 
Specifically, we find that people prefer explanations 
consistent with the conceptual order of the operations 
(“9÷3=3 because 3´3=9” rather than “3´3=9 because 
9÷3=3”), and corresponding to simpler proofs (“9÷3=3 
because 3´3=9” rather than “9÷3=3 because 3+3+3=9”). 
Implications for mathematics cognition and education are 
discussed. 

Keywords: Mathematics cognition; philosophy of 
mathematics; explanation; reasoning; concepts and 
categories. 

Introduction 
People track statistical regularities and use these 
regularities to make sense of the world. Some statistical 
learning abilities emerge early: Infants use statistics to 
extract complex visual features (Fiser & Aslin, 2002) and 
form categories (Gómez & Lakusta, 2004). Statistical 
generalizations are also critical for sense-making in 
higher cognition. For example, adults and children prefer 
simpler causal explanations in part because they have 
higher prior probabilities (Bonawitz & Lombrozo, 2012; 
Johnson, Valenti, & Keil, 2017; Lombrozo, 2007). 

Yet, we also seem to track other truths that do not rely 
on statistical regularities—Platonic, logically necessary 
regularities such as mathematical truths. From early on, 
people use mathematical truths to make sense of the 
world: Even young infants know that if two puppets 
venture behind a screen, and one comes out, then only one 
puppet remains behind (Wynn, 1992). Without an 
understanding of mathematics (i.e., 2–1=1), this event—
and many others—would be inexplicable. Mathematical 
explanation grows even more essential in adulthood, as 
consumers must account for their spending, programmers 
must understand the logic of their code, and CEOs must 
explain their bottom line. For this reason, educators 
increasingly emphasize the explanatory function of 
mathematics (Schoenfeld, 1992). For example, the 
Common Core Standards (2010) state that “one hallmark 
of mathematical understanding is the ability to 
justify…why a particular mathematical statement is true 
or where a mathematical rule comes from” (p. 4). 

But to what extent, and by what mechanisms, can 

people track such mathematical regularities? Here, we 
claim that people use a sophisticated set of mechanisms to 
evaluate mathematical explanations. We argue that people 
(1) are sensitive to the conceptual structure of arithmetic, 
(2) construct mental proofs over this structure, and (3) 
evaluate those proofs using principles that mirror the 
history, philosophy, and practice of mathematics. 

Just as there are intricate connections among concepts 
in physics and biology, so are mathematical concepts 
richly structured (Whitehead & Russell, 1910). For 
example, geometric facts are grounded in facts about 
analysis (Bolzano, 1817), and arithmetic facts in set 
theory (Frege, 1974/1884). More basically, subtraction 
can be viewed as grounded in addition, multiplication in 
addition, division in multiplication, and so on (Figure 1; 
see also Dedekind, 1995/1888; Tao, 2016). Although 
these concepts need not be viewed asymmetrically, these 
asymmetries may be psychologically natural. For 
example, people may follow the principle that more 
fundamental operations begin with small things and 
assemble larger things, rather than vice versa. This would 
make addition more fundamental than subtraction (which 
breaks larger things into smaller pieces). 

We explored the intuitive conceptual structure of 
mathematics using a simple method—asking people to 
evaluate mathematical explanations. Consider the 
explanation “9÷3=3 because 3+3+3=9.” In one sense, this 
is a terrible explanation because it is tautological—both 
facts are necessarily true and logically equivalent. 
However, we propose that people are willing to evaluate 
explanations of this sort, and do so as if constructing a 
mental proof of the explanatory target (here, “9÷3=3”) 
from the putative explanation (“3+3+3=9”), over the 
conceptual structure in Figure 1. For example, to evaluate 
“9÷3=3 because 3+3+3=9,” one would first derive a 
multiplication fact (“3´3=9”) from the addition fact, and 
then derive the division fact from that intermediate 
multiplication fact. We test two principles that people 
might use for evaluating implicit mental proofs. 

First, people may be sensitive to the asymmetric nature 
of mathematical explanation (Bolzano, 1817; Kitcher, 
1975). For example, consider the explanation “4-2=2 
because 2+2=4.” Although tautological, if this 
explanation respects a perceived conceptual order, it may 
be seen as superior to an explanation that does not, such 
as “2+2=4 because 4-2=2.” That is, a statement may be 
explained in terms of a logically equivalent statement, if 
that explanation helps to highlight the more conceptually 
primitive facts grounding it. 
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Figure 1: Proposed intuitive structure of arithmetic. 

Note. Numbers correspond to the proof rules in Table 1, with 
forward proof rules flowing in the direction of the arrows and 
reverse proof rules flowing against the direction of the arrows. 
 

Rule Input Output 
Addition/Subtraction Conversion 

1F X + Y = Z Z - X = Y 
1R Z - X = Y X + Y = Z 

Addition/Multiplication Conversion 
2F SY X = Z X ´ Y = Z 
2R X ´ Y = Z SY X= Z 

Multiplication/Division Conversion 
3F X ´ Y = Z Z ÷ X = Y 
3R Z ÷ X = Y X ´ Y = Z 

Multiplication/Exponent Conversion 
4F X ´ X = Z X2 = Z 
4R X2 = Z X ´ X = Z 

Exponent/Root Conversion 
5F X2 = Z ÖZ = X 
5R ÖZ = X X2 = Z 

Table 1: Hypothesized rules for mental proofs. 
 
Second, people may prefer explanations that involve 

fewer steps because such proofs more readily confer 
understanding (Descartes, 1954/1684; Hardy, 2004/1940; 
Kitcher, 1983) and are less prone to error (Hume, 
1978/1738). For example, “9÷3=3 because 3+3+3=9” 
might be seen as a worse explanation than “9÷3=3 
because 3´3=9,” since the proof for the former 
explanation requires two steps (addition to multiplication, 
multiplication to division) whereas the latter requires only 
one step (multiplication to division), even though both 
proofs proceed in the same conceptual order. We test 
whether people scale their explanatory judgments to proof 
complexity. If so, this would be evidence not only that 
people use complexity as a criterion to judge explanatory 

quality, but also that people spontaneously construct 
proofs over the conceptual structure depicted in Figure 1. 

Our model assumes that people evaluate these 
explanations by constructing and evaluating a proof of the 
explanatory target from the base, using the transformation 
rules given in Table 1. These correspond to the forward 
(F) and reverse (R) version of each arrow in Figure 1 (see 
Rips, 1983 for a related idea in propositional reasoning). 
Proofs are evaluated by assuming a rule cost is incurred 
for applying each rule, and that the total proof cost is the 
sum of the costs of the individual rules invoked in the 
proof. If people are sensitive to proof complexity, then 
they should prefer proofs with smaller costs. To capture 
the idea that people prefer explanations consonant with 
the conceptual order, our model allows forward and 
reverse rules to have different costs: We predict that 
reverse rules carry a higher cost than forward rules. That 
is, a proof has a higher cost to the extent that it uses more 
rules in general, and more reverse rules in particular. 
Equivalently, short proofs flowing with Figure 1’s arrows 
would correspond to better explanations than long proofs 
flowing against the arrows (see examples below). 

Method 
We recruited 97 participants from Amazon Mechanical 
Turk in exchange for a small payment (50.5% female, 
Mage = 34.0). Participants were excluded from data 
analysis if they gave inappropriate answers to the check 
questions (N = 6; see below for details). 

Participants rated a series of 30 mathematical 
explanations. For each explanation, participants were 
asked “How satisfying do you find this explanation?” on a 
scale from 0 (“not at all satisfying”) to 10 (“very 
satisfying”). These explanations consisted of all possible 
pairings of addition, subtraction, multiplication, division, 
exponent, and root operations, where the constituents 
were 3s; examples are given in Table 2 in the Appendix. 
For example, across different blocks, participants 
completed a pair of multiplication/exponent items: 

32 = 9 because 3 ´ 3 = 9 [forward] 
3 ´ 3 = 9 because 32 = 9 [reverse] 

Because there are 15 ways of pairing these 6 operations 
with each other, and two orders (forward and reverse), 
participants completed a total of 30 items. The forward 
and reverse items were presented in separate blocks, with 
the order of the items randomized within each block. The 
order of the blocks was also randomized. 

Check questions were included after the test questions 
to detect participants who were responding randomly. 
These always included two items for which one of the 
equations was false (e.g., “4+3=7 because 4+3=2” or 
“743+259=1,002 because 743+259=713”) and two items 
for which the numbers differed between the two equations 
(e.g., “26´47=1222 because 678-234=444”). Participants 
with average answers to these questions that were above 
the scale midpoint were excluded from data analysis. 
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Results 
Participants were sensitive to both criteria of conceptual 

order and proof complexity. We first describe the results 
relative to the qualitative predictions of the model in order 
to explain how the model works, and then assess the 
quantitative fit at both the group and individual levels. 

Qualitative model predictions. We anticipated that 
people would penalize explanations to the extent that the 
most direct proof requires applying a large number of 
rules (see Tables 1 and 2), and that application of 
‘reverse’ rules would correspond to a greater penalty. 
These two principles are captured by (1) computing the 
shortest distance between the two operations in Figure 1, 
and (2) penalizing the explanation for each arrow along 
that shortest path, with arrows in the ‘reverse’ direction 
receiving a larger penalty (we call this penalty R) than 
arrows in the ‘forward’ direction (a smaller penalty of F). 

For example, consider explaining a root formula in 
terms of division (e.g., “Ö9=3 because 9÷3=3”). 
According to our model, people would rate this 
explanation by producing a mental proof of ‘Ö9=3’ from 
‘9÷3=3’. As noted in Table 2, this requires the application 
of three rules: 3R (to derive ‘3´3=9’ from ‘9÷3=3’), 4F 
(to derive ‘32=9’), and finally 5F (to derive ‘Ö9=3’). Two 
of these rules are forward and one is backward, so the 
total penalty is 2F + 1R—since this is a relatively high 
penalty, we would expect this explanation to be rated 
poorly. In contrast, addition would be seen as an excellent 
explanation of subtraction, because a subtraction formula 
(e.g., ‘9–3–3=3’) can be derived from addition 
(‘3+3+3=9’) using only one forward rule (1F), leading to 
a penalty of only 1F. The penalty scores for several of the 
explanations are given in Table 2 in the Appendix, along 
with the rules required to perform these proofs. 

This model captures several patterns in the means 
(Table 3 in the Appendix). First, for each operation, we 
can consider which explanation was rated highest (i.e., the 
highest mean in each row of Table 3). For the addition 
operation, which is not conceptually dependent on any of 
the other operations, its highest rated explanations were 
subtraction and multiplication—the closest downstream 
operations. For both subtraction and multiplication, 
addition is the highest rated explanation, consistent with 
the topology of Figure 1, wherein both operations depend 
directly on addition. Similarly, for explaining division and 
exponentiation, multiplication is highest rated, consistent 
with Figure 1, in that both operations depend directly on 
multiplication. Finally, for roots, exponentiation was seen 
as the best explanation, again consistent with the direct 
dependence of roots on exponents.   

More generally, our model predicts a central role of 
multiplication and a peripheral role of subtraction. As 
Figure 1 shows, multiplication is a central node in the 
conceptual structure of arithmetic—most roads lead to (or 
from) multiplication—but subtraction is on the periphery. 
This prediction is borne out by the data. Multiplication is 
both the most easily explained operation (i.e., the highest 

mean in the rightmost column of Table 3) and the 
operation that explains the most (i.e., the highest mean in 
the bottom row of Table 3). In contrast, subtraction is 
least easily explained and explains the least.  

Group-level model fitting. We model the results in 
terms of the sum of the rule costs, shown in Table 2. This 
analysis assumes that the cost of each rule is determined 
only by whether it is a forward or reverse rule. Thus, one 
free parameter R/F is used, reflecting the extent to which 
R rules were penalized more heavily than F rules. 

We modeled the explanation ratings in terms of the 
summed rule costs, where only the R/F parameter was 
free to vary. These scores were good predictors of the 
explanation ratings, r(28) = –.86, p < .001. The best 
fitting value for the R/F parameter was 1.18, indicating 
that the explanatory cost of applying reverse rules that go 
against the conceptual grain of mathematics is 18% higher 
than the explanatory cost of applying forward rules. This 
supports our conjecture that forward explanations (e.g., 
explaining subtraction in terms of addition) are preferred 
to their logically equivalent reverse explanations (e.g., 
explaining addition in terms of subtraction). 

This asymmetry between forward and reverse rules is 
also evident from looking at the means in Table 3. For 
example, explanations of subtraction in terms of addition 
were rated more satisfying than explanations of addition 
in subtraction, since the former grounds an operation in a 
more psychologically basic operation whereas the latter 
does the opposite. Since there are five rules in Table 1, 
there are five directly reversible pairs, as well as four 
pairs of operations (addition/division, addition/ 
exponentiation, addition/root, and multiplication/root) that 
are connected by applying two or more rules in the same 
direction (see Proof column in Table 2). Averaging across 
these pairs, the forward explanations were seen as more 
satisfying than the reverse, t(90) = 3.90, p < .001.  

Individual-level model fitting. Our model also 
captures individual participants’ explanatory judgments. 
To test the proof complexity factor, we calculated, for 
each participant, the correlation between the explanatory 
judgment for each of the 30 items and the number of rules 
required for that item’s proof (i.e., the sum of the F and R 
columns in Table 2). This parameter-free model captured 
a substantial amount of the variance within each 
participant’s response pattern, with a mean correlation of 
–.46 between number of rules and explanatory judgment 
(Fisher-transformed to a z-score before averaging, and 
inverse-transformed back to a correlation). Furthermore, 
almost all participants (95.6%) had a negative correlation, 
demonstrating that the excellent model fit at the group 
level is not due to a small subset of participants, but 
instead generalizes across almost all participants. 

Although this parameter-free model is useful in 
showing that considerable within-subject variability can 
be explained via proof complexity, it is less useful for 
testing asymmetries between the forward and backward 
rules, since this requires estimating the relative penalties 
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associated with each rule. To do so, we conducted a linear 
regression for each participant, using ten dummy-coded 
variables to represent whether each of the ten rules figures 
in each item’s proof. For example, for the item explaining 
division in terms of subtraction, the dummy variables for 
rules 1R, 2F, and 3F were set to 1, and all others set to 0. 
For each participant, we calculated the regression weights 
for each rule, reflecting the relative penalty associated 
with each rule (thus, all regression weights would be 
expected to be negative), and these weights (averaged 
across participants) are depicted in Figure 2. 

 
 

Figure 2: Regression coefficients on each rule. 
Note. These coefficients represent the explanatory ‘cost’ of a 
given rule appearing in the proof of the explanation. Error bars 
represent 95% confidence intervals, calculated over participants. 

 
Mirroring the group-level findings, Figure 2 reveals 

higher costs for reverse rules than for forward rules, 
leading to more negative regression coefficients for the 
reverse rules. This was true for rules 1F and 1R (95% CI 
[0.28, 1.15] for the difference in regression coefficients), 
rules 3F and 3R (95% CI [0.13, 0.81]), rules 4F and 4R 
(95% CI [-0.02, 0.58]; marginally significant), and rules 
5F and 5R (95% CI [0.17, 0.85]). This difference was not 
significant for the addition/multiplication rules 2F and 2R 
(95% CI [-0.41, 0.39]), perhaps because repeated addition 
of the same addends is uncommon except in the context 
of multiplication. Overall, these findings are consistent 
with the best-fitting value of the R/F parameter of 1.18 in 
the group-level analysis, indicating a higher explanatory 
cost for reverse rules than for forward rules. 

Discussion 
Mathematical knowledge is critical for explaining patterns 
in both the physical and symbolic worlds, and for building 
an understanding conceptually dependent mathematical 
facts. Here, we proposed that people evaluate 
mathematical explanations (e.g., “9–3–3=3 because 
3+3+3=9”) by building a proof from the explanatory base 
(“3+3+3=9”) to the explanatory target (“9–3–3=3”) using 
a set of transformation rules (e.g., deriving subtraction 
from addition). Supporting this idea, participants 

preferred explanations that obeyed the conceptual order of 
mathematics and which required fewer derivational steps. 

Where might these intuitions come from? One 
possibility is that they are rooted in a more basic 
understanding of the natural numbers (e.g., Carey, 2009; 
Dehaene, 1997; Rips, Bloomfield, & Asmuth, 2008) that 
begins to emerge early in development. For example, 
addition and subtraction are intimately related to 
counting, both in development (Rips et al., 2008) and in 
mathematics (Tao, 2016). This is because the natural 
numbers are constructed by using the successor function 
(e.g., 9 is the successor to 8). Such psychologically and 
mathematically primitive mechanisms may underlie later-
emerging explanatory intuitions. 

Alternatively, could it be possible that people simply 
parroted explanations as introduced in school? This 
possibility is unlikely for two reasons. First, 
multiplication was strongly preferred over subtraction as 
an explanation. This pattern is consistent with our claims 
about conceptual structure but conflicts with this 
alternative account, since subtraction is typically learned 
before multiplication. Second, we doubt most people have 
ever heard (for example) division explained in terms of 
addition, exponential, roots, etc., so differences across 
these explanations must be due to a chaining mechanism 
of the type we proposed.  

Might analogous results hold beyond arithmetic 
explanations? Indeed, people have a rich intuitive 
understanding of other mathematical domains such as 
geometry (Dillon, Huang, & Spelke, 2013), suggesting 
that people have intuitive theories of Platonic regularities 
across a variety of domains. Moreover, the proof 
construction and evaluation principles may be the same 
used in more general deductive reasoning processes (Rips, 
1994; but see Johnson-Laird & Byrne, 1991), in which 
case our method may generalize. Our studies focused on 
simple arithmetic operations (e.g., Ashcraft, 1992), but 
future work could extend this inquiry to other areas of 
mathematics (such as geometry), populations (such as 
children or expert mathematicians), or domains (such as 
dependencies among physics concepts or among mental 
states) to further map our intuitive theories. 

The ontological implications of this work are within the 
domain of philosophy. For now, we merely contrast two 
possible views. According to the dominant Platonist view 
(e.g., Frege, 1974/1884), mathematical truths are ‘out 
there’ in the world. On the Platonist view, our results 
reflect aspects of mathematical structure that have been 
internalized from the world. However, others with 
Kantian views argue that mathematical cognition reflects 
structure imposed on the world by our minds rather than 
anything intrinsic in the world (Kant, 1998/1781; Mill, 
2002/1843; see Lakoff & Núñez, 2000). On the Kantian 
view, our results reflect the intrinsic structure of our 
minds themselves, which we impose on the world. 

As for the instructional implications of these findings, 
we believe mathematics educators are best-positioned to 
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make the assessment. However, we do make some 
tentative suggestions. First, mathematical proof may not 
be intrinsically unintuitive—it may instead be the level of 
abstraction of many proofs that masks intuitive 
understanding. If so, introducing simple deductive proofs 
of simple arithmetic relationships at an earlier educational 
stage could lay an intuitive foundation for more formal 
proofs later on (see Carpenter, Franke, & Levi, 2003). 
Second, people use the conceptual structure of 
mathematics to understand derivative concepts in terms of 
more basic ones. Educators may wish to emphasize these 
abstract connections, in conjunction with more concrete 
applications, in order to tap into this intuitive 
understanding; for example, explaining division both as a 
way to divide resources and as the inverse of 
multiplication. Finally, our methodology might be used to 
assess the explanatory trade-offs between different kinds 
of examples. Studying explanatory preferences in adults 
may provide a simple laboratory for testing out 
explanatory methods that might be used in educational 
settings, prior to undertaking expensive and risky 
intervention studies. This method could be used not only 
to illuminate mathematical understanding, but also the 
conceptual structure of other domains. 
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Appendix 
 

Operation 
Explained 

Operation Used 
to Explain Stimuli Proof F R 

Addition Subtraction 3 + 3 + 3 = 9 because 9 - 3 - 3 = 3 1R 0 1 
 Multiplication 3 + 3 + 3 = 9 because 3 ´ 3 = 9 2R 0 1 
 Division 3 + 3 + 3 = 9 because 9 ÷ 3 = 3 3R, 2R 0 2 
 Exponent 3 + 3 + 3 = 9 because 32 = 9 4R, 2R 0 2 
 Root 3 + 3 + 3 = 9 because Ö9 = 3 5R, 4R, 2R 0 3 
Subtraction Addition 9 - 3 - 3 = 3 because 3 + 3 + 3 = 9 1F 1 0 
 Multiplication 9 - 3 - 3 = 3 because 3 ´ 3 = 9 2R, 1F 1 1 
 Division 9 - 3 - 3 = 3 because 9 ÷ 3 = 3 3R, 2R, 1F 1 2 
 Exponent 9 - 3 - 3 = 3 because 32 = 9 4R, 2R, 1F 1 2 
 Root 9 - 3 - 3 = 3 because Ö9 = 3 5R, 4R, 2R, 1F 1 3 
Multiplication Addition 3 ´ 3 = 9 because 3 + 3 + 3 = 9 2F 1 0 
 Subtraction 3 ´ 3 = 9 because 9 - 3 - 3 = 3 1R, 2F 1 1 
 Division 3 ´ 3 = 9 because 9 ÷ 3 = 3 3R 0 1 
 Exponent 3 ´ 3 = 9 because 32 = 9 4R 0 1 
 Root 3 ´ 3 = 9 because Ö9 = 3 5R, 4R 0 2 
Division Addition 9 ÷ 3 = 3 because 3 + 3 + 3 = 9 2F, 3F 2 0 
 Subtraction 9 ÷ 3 = 3 because 9 - 3 - 3 = 3 1R, 2F, 3F 2 1 
 Multiplication 9 ÷ 3 = 3 because 3 ´ 3 = 9 3F 1 0 
 Exponent 9 ÷ 3 = 3 because 32 = 9 4R, 3F 1 1 
 Root 9 ÷ 3 = 3 because Ö9 = 3 5R, 4R, 3F 1 2 
Exponent Addition 32 = 9 because 3 + 3 + 3 = 9 4F, 2F 2 0 
 Subtraction 32 = 9 because 9 - 3 - 3 = 3 4F, 2F, 1R 2 1 
 Multiplication 32 = 9 because 3 ´ 3 = 9 4F 1 0 
 Division 32 = 9 because 9 ÷ 3 = 3 4F, 3R 1 1 
 Root 32 = 9 because Ö9 = 3 5R 0 1 
Root Addition Ö9 = 3 because 3 + 3 + 3 = 9 5F, 4F, 2F 3 0 
 Subtraction Ö9 = 3 because 9 - 3 - 3 = 3 5F, 4F, 2F, 1R 3 1 
 Multiplication Ö9 = 3 because 3 ´ 3 = 9 5F, 4F 2 0 
 Division Ö9 = 3 because 9 ÷ 3 = 3 5F, 4F, 3R 2 1 
 Exponent Ö9 = 3 because 32 = 9 5F 1 0 

Table 2: Mental proofs and penalty scores for all explanations. 

 
 

  Operation Used to Explain 
  Addition Subtraction Multiplication Division Exponent Root Average 

O
pe

ra
tio

n 
E

xp
la

in
ed

 Addition — 6.37 7.96 5.70 5.69 4.47 6.04 

Subtraction 7.14 — 4.45 4.93 4.01 3.82 4.87 

Multiplication 8.11 4.20 — 7.12 8.02 6.01 6.69 

Division 5.76 4.65 7.46 — 5.70 5.45 5.80 

Exponent 6.12 3.65 8.75 5.26 — 6.49 6.05 

Root 5.27 3.43 7.11 5.45 7.44 — 5.74 

Average 6.48 4.46 7.15 5.69 6.17 5.25  

Table 3: Explanatory ratings for each pair of operations. 
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