
UNIVERSITY OF CALIFORNIA,
IRVINE

Federated Learning for Mobile Data Privacy

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Networked Systems

by

Evita Bakopoulou

Dissertation Committee:
Professor and Chancellor’s Fellow Athina Markopoulou, Chair

Chancellor’s Professor Carter T. Butts
Assistant Professor Yanning Shen

2021

Chapter 4 © 2021 IEEE
All other materials © 2021 Evita Bakopoulou

DEDICATION

To my loving husband, Konstantinos Pieros, who put his own profession and dreams on hold to
help me achieve mine. You have been the best source of constant support, patience, and

encouragement through the challenges of my PhD studies.
To my family for always believing in me.

ii

TABLE OF CONTENTS

Page

LIST OF FIGURES v

LIST OF TABLES xi

ACKNOWLEDGMENTS xiii

VITA xiv

ABSTRACT OF THE DISSERTATION xvi

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 3

1.2.1 Exposures Exposed: A Measurement and User Study to Assess Mobile
Data Privacy in Context . 4

1.2.2 FedPacket: Federated Packet Classification 4
1.2.3 Federated Signal Maps and Location Leakage 5

1.3 Thesis Outline . 6

2 Related Work & Background 7
2.1 Mobile Tracking & Packet Classification . 7

2.1.1 Mobile Packet Collection via AntMonitor/AntShield 8
2.1.2 User Studies on Mobile Data Privacy . 10
2.1.3 Packet Classification . 11

2.2 Federated Learning . 12
2.3 Data reconstruction based on gradients . 14
2.4 Datasets . 15

3 Exposures Exposed: A Measurement and User Study to Assess Mobile Data Privacy
in Context 18
3.1 Overview . 18
3.2 PII Exposures Found in the Datasets . 21
3.3 User Study: Mobile Data Privacy in Context . 27

3.3.1 User Study Design . 27
3.3.2 User Study Results . 33

iii

3.4 Summary . 44

4 FedPacket: A Federated Learning Approach to Mobile Packet Classification 46
4.1 Overview . 46
4.2 Methodology . 51

4.2.1 Problem Setup . 51
4.2.2 HTTP Features . 53
4.2.3 Model Selection: Federated SVM . 56

4.3 Datasets Description . 60
4.4 FedPacket Evaluation . 64

4.4.1 Scenario 1: Centralized Models . 65
4.4.2 Scenario 2: NoMoAds for PII, Ad Request 69
4.4.3 Scenario 3: AntShield for PII Prediction 73
4.4.4 Scenario 4: In-house Datasets for PII Prediction 75
4.4.5 Scenario 5: Client Selection and Convergence 82
4.4.6 Scenario 6: Interpreting SVM vs. DT . 84

4.5 FedPacket: Privacy Considerations . 86
4.5.1 Inference Attacks . 87
4.5.2 Mitigation via Aggregation . 92

4.6 Summary . 99

5 Federated Signal Maps and Location Leakage 102
5.1 Overview . 102
5.2 DLG Attack to Infer Location . 106
5.3 Problem Setup . 108

5.3.1 DLG Convergence to the Average Location 114
5.3.2 Assessing the Success of the Attack . 115

5.4 Datasets . 118
5.5 Results . 120

5.5.1 Location Leakage with FedSGD . 122
5.5.2 Location Leakage with FedAvg . 125
5.5.3 Diverse Batch Algorithm for High Location Variance 130
5.5.4 Multiple Users in FL . 136

5.6 Summary . 139

6 Conclusion 141

Bibliography 143

iv

LIST OF FIGURES

Page

2.1 AntShield System used for Data Collection: Architecture and Screenshot. Ant-
Shield was developed by A. Shuba in [121] and used for collecting the dataset that
is the basis to the user study here (Chapter 3) and in [30]. It is repeated here for
completeness. 9

3.1 Application behavior exposing PII, while running in the background vs. toreground 21
3.2 Understanding the behavior of app that expose PII through graph analysis of the

AntShield dataset. The graph consists of nodes corresponding to destination do-
mains and edges representing the similarity of two domains. Two domains are
similar if there are common apps that send packets with PII exposures to both do-
mains; the more common apps expose PII to these domains, the more similar they
are, the larger the width of an edge between them. The color of a domain node
indicates the types of PII it receives. One can observe from the graph structure that
domains form communities that capture interesting patterns: (1) The large com-
munities on the left and bottom consist mostly of ad networks; ad exchanges are
nodes in between ad communities; (2) Facebook/Google domains are a different
community on their own, on the top left; (3) small apps contact only their own do-
main, leading to isolate domain nodes; (4) domains in the same community receive
the same type of PII (as indicated by the color of nodes). 25

3.3 Terms defined before being used in the categorization tasks. 29
3.4 Task to assess how comfortable users are with sharing certain PII type with certain

type of remote server. 30
3.5 Task to assess user concern about privacy exposures in context. 31
3.6 Assessing users concern and potential actions. (a) Do users care about privacy?

What they are willing to do about it: (c) share their data with a crowdsourcing
system (b) use and/or pay for a privacy app). And (d) do they change attitude after
being educated? . 32

3.7 How comfortable are users with sharing PII with advertisers and app developers?
(a) Average rating of user responses to categorization task of Fig. 3.4 (b) Recom-
mended rating by us (“experts”). 35

v

3.8 Heatmap severity of (PII type, app category). The darkness of the color indicates
the perceived severity of the PII exposure: the darkest corresponds to 4.0 (“Not
needed by the app and maybe harmful”), while the lightest indicates 1.0 (“I don’t
care”). Zeros represent missing values for combinations we did not have in our
datasets. We compare the average ratings among users who answered that question
(on the left column) vs. labeling recommended by us (on the right column). 37

3.9 Heatmaps assessing the severity of exposures in encrypted vs. unencrypted pack-
ets, as assessed by users vs. us (“experts”). 38

3.10 Heatmaps assessing the severity of PII sent to different destination: Third-party
(Ad Servers) vs App Developers. Assessed by users (average user rating shown).
The darker the color the more concerned the users). 40

3.11 Answers to questions of Fig. 3.6: how much do users care about mobile privacy
and what they are willing to do to protect it? Some questions are purposely re-
peated in the beginning and at the end of the study. 42

3.12 Overview of main keywords extracted from 99 MTurk workers’ comments 43

4.1 Example of an outgoing HTTP packet, sent from an app on the mobile device to a
remote server. The URI field alone reveals a lot of information, including various
identifiers, referred domain, location, etc. that can be used for fingerprinting and
tracking users. 47

4.2 Overview of general approaches to train machine learning models for packets from
mobile devices. 48

4.3 Our pipeline for FedPacket. During training, the input is a packet trace with HTTP
packets sent from mobile apps to remote destinations, labeled for the Tasks (PII
Exposure, Ad Request); the output is an ML model, which is trained in a local,
centralized or federated way. During testing, the input is an HTTP packet, and the
output is a binary label (indicating the presence of PII or Ad request). 52

4.4 An HTTP packet in JSON, where Android Id, Advertiser Id and zipcode are sent by
Bitmoji app to an ad server (doubleclick.net) and thus, it would be labeled positive
both for PII exposure and Ad request. Our HTTP Keys features are highlighted
in bold: these keys are defined by the HTTP protocol and extracted from (1) the
URI query keys, (2) the Cookie keys and (3) custom HTTP headers (i.e., “Bitmoji-
User-Agent”). Compared to baselines (All Words, Recon Words), HTTP Keys do
not use sensitive information i.e., “city X”. 54

4.5 Number of features and domains for the top 12 apps with most features from our
in-house dataset. The number of features correlates with number of visited domains. 63

4.6 Feature explosion and privacy vs. utility for top 20 important HTTP Keys (from
Fig. 4.8), HTTP Keys (3,000), Recon Words (6,580), All Words (12,195) depicting
Table 4.4. 66

4.7 Utility vs. privacy and feature explosion when using features from different parts
of the URI compared to HTTP Keys feature space. 67

4.8 Top 10 negative and positive coefficients and the corresponding features obtained
from Centralized SVM with HTTP Keys for PII. 67

4.9 Regularization term α and its effect on F1 score for Centralized SVM with SGD
for both tasks. 68

vi

4.10 Results 2c. Comparison of average (from 5 runs) training time for Centralized
models with NoMoAds data using HTTP Keys and Federated SVM with 20 syn-
thetic users for both prediction tasks. 72

4.11 Comparison of average training time for all Centralized models from Table 4.4 with
NoMoAds data using HTTP Keys and Federated SVM with 20 synthetic users for
both prediction tasks. 72

4.12 Results 3b. Convergence of AntShield with 100 synthetic users with uneven spit
when B = 10, E = 1, and varied C. 74

4.13 Distribution of packets for Facebook and Chrome. 75
4.14 Results 4c. Convergence of F1 score over R rounds for Chrome, with C =

0.5, B = 10 and varied E. Models are trained 5 times, and shaded regions rep-
resent standard deviation from average F1 score. The Centralized model (dashed
line) reaches F1 score 0.92. 77

4.15 Results 4d. Convergence of F1 score over R rounds for Facebook with C =
0.5, B = 10, E = 1 and learning rate η varied. 78

4.16 Results 4e. Benefit of crowdsourcing with k users for Chrome and Facebook. The
average F1 score is shown for all users’ test data (thin line) and for test data of k
users (bold line). 79

4.17 Comparison of Local vs. Federated vs. Centralized models when tested on each
of the 100 uneven synthetic users with AntShield data. Federated F1 score is
comparable to Centralized and both perform better (positive difference in F1) than
the corresponding Local models. All users benefit from the crowdsourced models
due to IID nature of the data, but at a different degree: the increase in F1 can be up
to 0.4, with 80% of the users up to 0.2. 81

4.18 Results 5a. Convergence of F1 score over R rounds vs. various client selection
strategies for Facebook (non-IID) data with C = 0.5, B = 10, E = 1. 83

4.19 Results 5b. Convergence of F1 score over R rounds vs. various client selection
strategies with NoMoAds 20 synthetic (non-IID) users when predicting PII with
C = 0.5, B = 10, E = 1. 83

4.20 Top 10 negative and positive coefficients and the corresponding features obtained
from Centralized SVM. 85

4.21 Interpretability of DT vs. SVM in Setup 5. 85
4.22 Evaluating the success of our privacy attack in terms of features recovered (%)

when we vary the FL parameters. 88
4.23 Convergence in terms of F1 score for selected FL parameters corresponding to

privacy attack. 89
4.24 Comparison of per-domain prediction with SVM and two feature spaces: Recon-

Words and HTTP Keys for all 105 domains. “Advertising and Tracking” (ATS
domains), marked with “o”, are usually contacted by third party libraries used by
mobile apps, and are thus less sensitive. “Other” (non-ATS) domains, marked with
“x”, reflect the domains the user actually intended to visit and are more sensitive. . 93

4.25 Zoomed-in version of per-domain prediction with SVM and two feature spaces:
Recon Words and HTTP Keys. 94

vii

4.26 Evaluating Attack Algorithm 3, with secure aggregation on. We report the percent
of the target user’s recovered features, for varying k (participating users in a round)
and confidence thresholds. 96

4.27 Evaluating Attack Algorithm 6c, with secure aggregation on. We report the accu-
racy (TP+TN

T+P
), for varying k (participating users in a round) and confidence threshold. 97

4.28 Per user unique HTTP Keys features for in-house Facebook dataset. 97
4.29 Pairwise user similarity based on Jaccard similarity of common features for in--

house Facebook dataset. 98
4.30 Accuracy of recovered features for different target users from Facebook dataset

with maximum confidence. The fewer the unique features a user has (user 4 has the
fewest), the better the worst case accuracy is for features recovered with maximum
confidence. 98

4.31 Percent of recovered features for different target users from Facebook dataset with
maximum confidence. 99

4.32 Cosine similarity of true and recovered features for different target users from
Facebook dataset. The larger the k the worse the cosine similarity is due to de-
creasing confidence levels which increases the distance between true and recovered
features. 100

5.1 Locations where signal strength (RSRP) measurements are collected by different
mobile users on the UCI Campus LTE Dataset. Users have different trajectories;
see Fig. a) and b). Fig. c) shows the measurements from all users merged, which
motivates crowdsourcing-based training for signal maps. 105

5.2 Example for 1-day rounds (∆t = day) in online FL that results into R total rounds.
The client/target k collects Dk

t data batch (light blue) in each t round, which is
used for local training to obtain the updated weights wkt and share them with the
server. The Dk

t is split into a list Bk
t depending on the mini-batch size B. The

server launches a DLG attack in each t round and aims to reconstruct those average
locations (dark blue) across rounds. 110

5.3 DLG attack based on the gradient obtained on a batch of ground truth locations
(light blue) that reconstructs their average/centroid. The DLG attack starts with a
randomly initialized location (yellow) and it gets closer to the centroid with more
iterations (darker color indicated progression in iterations) by minimizing the co-
sine distance of the observed gradient and the gradient obtained on the current
reconstructed point. The distance between the final reconstructed (dark purple)
and the centroid (dark blue) is 20 meters. 112

5.4 We consider a target user and its real locations on campus, 489 in total, depicted in
light blue. The over-sampled area on the right corresponds to home location of that
user. The other area on the left, corresponds to his work on campus. We see that a
DLG attacker processing updates from 1h intervals can successfully reconstruct the
important locations of the user: the difference between the distribution of real and
the inferred locations is EMD=5.2. To put that in context, if one would randomly
guess the same number of locations, the EMD would be 21.33. 116

viii

5.5 Distribution statistics for Campus dataset and the top 3 cell towers.The data is split
into batches based on time granularity; the finer the granularity the more batches
(and more FL rounds/updates in Online Federated Learning) are obtained but each
batch has few datapoints in contrast to coarser granularities which result to few but
large batches/updates. 119

5.6 Total datapoints in each batch per user for 1-week intervals in Radiocells. 120
5.7 Tuning learning rates. We use the 1-week rounds to tune η for both B=inf and

B=20 and show how utility (RMSE) and privacy (EMD) is affected. We choose
η = 0.001 as our default learning rate (unless stated otherwise) and η = 10−5 for
B=20, since both minimize RMSE and EMD. 121

5.8 The corresponding recovered locations in the case of strongest attack with eta=0.001
for various time granularity of FL rounds. The light blue square points are the
ground truth points and the circle points are the reconstructed points for each
round; the darker color represents the later rounds. RMSE is 4.93, 4.91, 5.16
for 1w, 24h, 1h respectively. Reconstruction with 1-hour rounds (Fig.5.4a) reveals
user trajectories. The coarser rounds (24-h, 1-week) still reveal the frequent loca-
tions of the target, e.g., their home/work locations. 122

5.9 FedSGD for one Round. DLG converges (visually and it terms of cosine loss) to
the average location regardless of the initialization point, or how far it was initial-
ized from the average. 123

5.10 Strongest Attack and two different initializations: i) mean of the batch with
Gaussian noise, ii) Campus center and then optimized initialization where the next
batch is initialized with the previously reconstructed location. The finer the round
granularity, the more leakage. Both are strong attacks regardless of the initializa-
tion (all reconstructed points converge) and result in similar behavior in terms of
EMD. 124

5.11 FedSGD vs. Multiple Rounds. The gradients are converging to zero with more
FL rounds, which results to higher cosine loss and the reconstructed points are
farther away from the centroid/average location. Here, the attacker also tries the
same random initialization as in the single round case. 126

5.12 Impact of minibatch size B. Reducing minibatch size B introduces more averag-
ing of the gradients which increases EMD (and privacy) and makes the attack more
expensive due to divergence. B=∞ corresponds to FedSGD (minimum averaging)
which leads to reduced privacy but also to higher RMSE for the lower η. Here
we use 1-week rounds. The default η seems to be less sensitive to B in terms of
RMSE. for B=1000, the user performs one SGD step with all available local data
in each round. 127

5.13 Impact of local epochs E on 1-week rounds. We set B = 20 with default eta and
η =1e-5 (optimized for mini-batches). Introducing more local epochs increases
the EMD and thus, increase privacy, while utility is preserved. Increasing epochs
also makes the attack more expensive in terms of time and less accurate (more
divergence). 128

ix

5.14 1-week rounds, no averaging (B=inf, E=1) vs. B=20, E=5 vs. cumulative online FL.
Without any averaging, even for coarser intervals the attacker can reconstruct accurately
target’s most frequent locations which correspond to home/work locations. Adding aver-
aging results to more divergence (90%) and the converged locations are farther from the
true locations. Cumulative online FL has increased EMD, although it still recovers the
oversampled location (home/office) in the first round, but it also requires storage of all
local data from all rounds which increases local training time. 130

5.15 Average standard deviation (in meters) per batch for each coordinate and how it
increases based on the eps parameter of DBSCAN which controls the maximum
distance between points in a cluster. This motivate us to use the Algorithm 6 for
creating batches with high variance. Here 1-week intervals were utilized. 131

5.16 Batch Manipulation. User’s locations (light blue), chosen points (dark blue) with Diverse
Batch algorithm with eps=0.05 km, and the final reconstructed points (circles). Only the
converged reconstructed points are shown here. The baseline randomly samples from each
round the same amount of locations as the chosen locations with DBSCAN but the high
variance in the batch is not controlled which results to lower EMD. Unlike FedAvg, the
oversampled location is not revealed with our algorithm which makes it a stronger defense. 134

5.17 Comparison for 1-week rounds. We start with strongest attack (FedSGD) without
averaging (B=inf, E=1), then add minibatches B = 20, then add local epochs
E = 5. Finally, we add the manipulated batches with averaging which increase
EMD but RMSE is not significantly higher. Our method increases privacy but
maintains utility while only less than 1% of the data. 135

5.18 Diverse Batch algorithm with various η. For lower eta, the EMD behaves simi-
larly but RMSE is higher. We choose η = 0.001. 136

5.19 Radiocells users for cell x455. User 0 contains multiple users across all London region,
while users 1, 2, 3, 4, 5 are possible target users. 137

5.20 Radiocells LTE x455 with target user 3 for 1-week rounds with η = 0.001. The
RMSE is evaluated on global test set when multiple users. The avg random EMD
is 34 (0.5). 138

x

LIST OF TABLES

Page

2.1 Summary of Manual and Auto AntShield datasets collected on the device. 16

3.1 TCP packets (non HTTP/S) sending PII over ports other than 80, 443, 53 22
3.2 Summary of applications and domain names with HTTPS exposures in our dataset

(manual and auto). 23
3.3 Applications with “jailbroken” field . 24

4.1 Summary of datasets: total features (our HTTP Keys vs. prior work), total packets,
users, visited domains and classification labels. 60

4.2 Two Webview apps and comparison of their feature space in our datasets. We
present the intersection/union of features, number of packets and domains across
all datasets. 62

4.3 Parameters of the Evaluation Setup. 64
4.4 Results 1a and 1b. The performance of various ML models on the NoMoAds

dataset for the two tasks: Ads and PII prediction. The reported F1 score is aver-
aged, after training and testing each model 5 times. We show that SVM with SGD
performs as well as DT and RF. We increase the feature space (packet information
used) from left to right. HTTP Keys results in significant reduction in the number
of features, while achieving high F1 score for PII (0.94) and for Ads prediction
(0.85). 66

4.5 Results 2a. Federated performs as well as Centralized and outperforms Local
models. We show the F1 score for each user, when testing on their hold-out test
set and on the union of all users test data. 70

4.6 Results 2b. Impact of Federated parameters for NoMoAds data with 20 synthetic
users. All models are trained until they reach a target F1 score (selected to match
Centralized per task). We vary the parameters C, B, E and we report the rounds
R) until the target F1 score is reached: average and [min, max] are reported over 5
runs. 71

4.7 Results 3a. AntShield dataset for predicting PII exposures, for 5 synthetic users
created with uneven and even split of data. The F1 score is averaged from 5 runs
for C = 1.0, B = 10, E = 5. 73

xi

4.8 Results 4b. We report the average [min, max] R communication rounds required
to reach a target F1 score (0.94 for Facebook, 0.84 for Chrome). We vary the batch
size (B) and local epochs (E) to evaluate their impact on R, with C = 0.5. If the
target F1 score is not reached within 800 rounds over 5 runs, we assume that it
does not converge. 76

4.9 For Results 4e, we compare the F1 score of Centralized vs. Federated vs. Local
models, tested on each user’s test data vs. test data from all users (merged). The
Local model is better for some users than the Centralized and Federated models.
However, when these Local models are tested on the test data from all users, the
F1 score drops significantly. This is because these models do not generalize well
for other users. (Note: We only show users who have some positive labels and
omit the rest (users 4, 6, 8) whose F1 score is always 0.) 80

4.10 Summary of domains that reached F1 score above 0.80 when using two different
feature spaces: HTTP Keys and Recon Words. Recon Words resulted in more
domains that were predicted successfully and many of those domains were non-
advertising/tracking resulting in a higher privacy risk. 92

5.1 Summary of main parameters. 111
5.2 Batch manipulation with 1-week rounds via Algorithm 6: the DBSCAN algorithm

is run in each round to obtain clusters and add the center-most points to a batch.
We set η = 0.001, dropout=0.05. Default values correspond to B=inf, E=1. The
second values in RMSE, EMD, % diverged, correspond to B=20, E=5. As a base-
line, we choose randomly the same amount of datapoints chosen by DBSCAN per
batch with E=5, B=20. Although RMSE is not impacted, the EMD is approx. half
with the random method since the variance of the batches is not affected. An-
other baseline is to use all the data in each round with B=20, E=5 which results to
RMSE=6.26, EMD=10.73 (0.24) with 72% divergence. We also report the average
distance of the converged reconstructed locations. 133

5.3 Single vs. Multi-user for Radiocells Dataset for target 3. η = 0.001 results are
averaged from multiple runs. FedAvg corresponds to E = 5, B = 10. When ε (in
meters) is reported, Diverse Batch algorithm was applied on the target’s local data. 139

xii

ACKNOWLEDGMENTS

I would like to thank those who made this thesis possible. First and foremost, I am deeply grateful
to my advisor, Professor Athina Markopoulou, for providing me this life-changing opportunity. I
thank her for the continuous support, guidance and mentorship during my PhD journey.

Second, I would like to extend my sincere thanks to the members of my doctoral committee -
Professor Carter T. Butts and Professor Yanning Shen, and for their insightful comments and sug-
gestions during my PhD studies. I would also like to thank Professors Gene Tsudik, Scott Jordan
and Sameer Singh for serving on my candidacy committee. I would like to thank my co-authors:
Dr. Anastasia Shuba, Dr. Balint Tillman, Professor Konstantinos Psounis, Justin Ley, and Jiang
Zhang. I would also like to thank my labmates who became dear friends during my years at UCI:
Dr. Balint Tillman, Dr. Anastasia Shuba, Dr. Emmanouil Alimpertis, Milad Asgari, Janus Var-
marken, Hieu Le, for their support and all the brainstorming sessions. A special thanks goes to
Dr. Tillman for his friendship and mentorship: his guidance was key in the early stages of the
FedPacket project. Another special thanks goes to Dr. Alimpertis for his friendship and men-
torship on the signal maps problem: without him introducing me to the problem, the Federated
Signal Maps project would not be possible. I also thank the newest members of our lab: Dr. Rah-
madi Trimananda, Olivia Figueira, Jad Aaraj, Hao Cui and Mengwei Yang. A thank you is in
order to Professor Vana Kalogeraki for introducing me to research and for advising me during my
Bachelor’s and Master’s theses at Athens University of Economics and Business. I also thank my
internship mentors: Dr. Paul Rigor, Dr. Harkeerat Bedi, Alejo Grigera Sutro, and Jessica Wong.

I have greatly appreciated all the funding support from the University of California, Irvine through
the Networked Systems Fellowship, Henry Samueli Fellowship, a UCI Proof-of-Concept Award
in 2017; the Broadcom Foundation Fellowship; Gerondelis Foundation Graduate Fellowship; the
National Science Foundation Awards 1649372, 1815666, 1900654, 1649372 and 1526736, and
Bell Labs, Oath/Verizon Digital Media Services and Google for the summer internships. I would
like to thank E. Alimpertis, A. Shuba, and M. Gjoka, former members of our group, for the UCI
Campus LTE, NoMoAds and in-house datasets, used for evaluation in this thesis. I also thank
IEEE for granting me permission to use previously published work in this dissertation. Portion
of this dissertation’s text is a reprint of the material as it appears in Evita Bakopoulou, Balint
Tillman, and Athina Markopoulou: “FedPacket: A Federated Learning Approach to Mobile Packet
Classification”, IEEE Transactions on Mobile Computing, 2021.

I am thankful to my family and friends for believing in me and providing me support and encour-
agement during challenging times. Thank you Maria Oikonomou, you have always supported me
since high school. Lyn Lee, I am so glad we met at the Broadcom workshop and I can call you
my friend ever since. Thank you for always cheering me up. A thank you is in order to Dr. Geor-
gios Detorakis, for being always there for me as a friend and a mentor, and for our discussions
on machine learning, science, cats and everything in between. I owe another special thanks to
Konstantinos Pieros for believing in me and being my rock for more than 11 years and counting.
Finally, I would like to thank my non-humans friends, my cats Besito, Scratch and late Otisep, for
their emotional support and calming purring in the last 10 years.

xiii

VITA

Evita Bakopoulou

EDUCATION

Doctor of Philosophy in Networked Systems 2021
University of California, Irvine Irvine, CA, USA

Master of Science in Networked Systems 2021
University of California, Irvine Irvine, CA, USA

Master of Science in Computer Science 2016
Athens University of Economics and Business Athens, Greece

Bachelor of Science in Computer Science 2014
Athens University of Economics and Business Athens, Greece

RESEARCH EXPERIENCE

Graduate Research Assistant 2016–2021
University of California, Irvine Irvine, CA, USA

Research Assistant 06/2016–07/2016
Athens University of Economics and Business Athens, Greece

TEACHING EXPERIENCE

Teaching Assistant Fall 2017
University of California Irvine Irvine, CA, USA

Teaching Assistant Spring 2015
Athens University of Economics and Business Athens, Greece

INTERNSHIPS

Privacy Engineer Intern Summer 2020
Google Sunnyvale, CA, USA

Research Intern, Security Summer 2018
Oath/Verizon Digital Media Services Los Angeles, CA, USA

Summer Intern Summer 2017
Bell Labs Sunnyvale, CA, USA

xiv

REFEREED JOURNAL PUBLICATIONS

E. Bakopoulou, B. Tillman, and A. Markopoulou. “FedPacket: A Federated Learning Approach to
Mobile Packet Classification”. IEEE Transactions on Mobile Computing, 2021.

REFEREED CONFERENCE PUBLICATIONS

A. Shuba, E. Bakopoulou, and A. Markopoulou. “Privacy Leak Classification on Mobile De-
vices”. IEEE International Workshop on Signal Processing Advances in Wireless Communications
(SPAWC), 2018.

REFEREED POSTER PRESENTATIONS

E. Bakopoulou, P. Thanopoulos, I. Boutsis, and V. Kalogeraki. “ICU: A Tool for Intent Filtering
on Android devices”. 9th International ACM Conference on Pervasive Technologies Related to
Assistive Environments (PETRA), 2016.

TECHNICAL REPORTS

E. Bakopoulou, J. Zhang, J. Ley, K. Psounis, and A. Markopoulou, “Location Leakage in Federated
Signal Maps”. in preparation, 2021.

E. Bakopoulou, A. Shuba, and A. Markopoulou, “Exposures Exposed: A Measurement and User
Study to Assess Mobile Data Privacy in Context”. arXiv preprint arXiv:2008.08973, 2020.

E. Bakopoulou, B. Tillman, and A. Markopoulou, “A Federated Learning Approach for Mobile
Packet Classification.” arXiv preprint arXiv:1907.13113, 2019.

xv

ABSTRACT OF THE DISSERTATION

Federated Learning for Mobile Data Privacy

By

Evita Bakopoulou

Doctor of Philosophy in Networked Systems

University of California, Irvine, 2021

Professor and Chancellor’s Fellow Athina Markopoulou, Chair

Mobile devices have access to rich personal, potentially sensitive data, from online activity and

multiple sensors that include personally identifiable information (PII), such as user identifiers, de-

vice identifiers, location, health data etc. Mobile crowdsourcing (MCS) is a prevalent practice

today: a large number of mobile devices upload measurements to a server, often including the

location where they were collected. This data is used to provide various services (including spa-

tiotemporal maps of cellular/WiFi coverage, sentiment, occupancy, COVID-related information

etc.) but also poses privacy threats due to untrusted servers and/or third party sharing. In this

thesis, first, we design and launch a user study in order to better understand of not just the extent

of personally identifiable information (PII) exposure, but also its context (i.e., functionality of the

app, destination server, encryption used, etc.) and the risk perceived by mobile users today on a

real-world dataset from 400 apps. Next, we consider two applications of learning from mobile

crowdsourced data, using the Federated Learning (FL) framework: FL improves privacy by allow-

ing mobile devices to collaboratively train a global model, while keeping their training data local

and only exchanging model parameters with the server.

First, we consider training classifiers that predict PII exposures and advertising requests in mobile

data packets, and use them to block those packets on mobile devices. While such classifiers have

been previously trained in a centralized way, we propose, for the first time, a federated packet clas-

xvi

sification framework and we demonstrate its effectiveness in terms of classification performance,

communication and computation cost via evaluation on three real-world datasets. Methodologi-

cal challenges include model and feature selection, and tuning the federated learning parameters.

We also design, for the first time, two privacy attacks based on HTTP features for an honest-but-

curious server and demonstrate one mitigation approach, where the aggregation of sufficient users

can limit the attack’s effectiveness.

Second, we consider training mobile signal strength maps based on crowdsourced measurements.

State-of-the-art trained centralized models using location and other features to predict signal strength.

In this work, we apply online federated learning to this problem, since mobile users move around

and collect measurements over time. We consider a Deep Leakage from Gradients (DLG) at-

tack, where an honest-but-curious server can infer information about an individual user’s trajectory

based on its gradient updates. Such DLG attacks have been studied before only for image/text data

and are applied for the first time in this setting. We evaluate the effect of various FL parameters,

we show that averaging of gradients provides some protection against such DLG attacks in our set-

ting, and we propose an algorithm that can further improve the privacy-utility tradeoff by selecting

which data to include in a batch and use for local training.

xvii

Chapter 1

Introduction

1.1 Motivation

There is recently increased public awareness and concern about how sensitive information avail-

able on mobile devices is shared and tracked. In particular, mobile apps and third party libraries

(including developer, tracking and advertising libraries) routinely send such information (i.e., per-

sonally identifiable information or “PII”, sensory data, user activity) to servers, typically without

the user being aware or in control of this information flow. Users often share their mobile data,

e.g., via crowdsourcing, which is a common practice and useful in many contexts, i.e., gaining

insights based on mobility patterns, etc. Explicitly or implicitly obtaining users’ mobile data in-

troduces privacy risks due to the sensitive nature of such data. In explicit mobile tracking, a large

number of mobile applications and third-party libraries collect information on the mobile device

and transmit it over the network to remote servers (examples include app developer servers, ad-

vertising and third party servers). Tracking might be necessary for the functionality of the apps or

may be happening for monetization of user data, for example through targeted advertising. Efforts

to increase online data transparency include landmark privacy laws (such as GDPR [9] and CCPA

1

[7]) as well as technical approaches (e.g., permissions [101], static and dynamic analysis [89, 57],

and network-based approaches [111, 115, 122, 121]).

In this thesis, first, we design and launch a user study in order to better understand of not just the

extent of PII exposure, but also its context (i.e., functionality of the app, destination server, en-

cryption used, etc.) and the risk perceived by mobile users today on a real-world dataset from 400

apps. In implicit tracking, a common example is malicious actors getting access to crowdsourced

locations from devices and obtaining the whereabouts of users and thus, breaking their privacy. In

order to limit mobile tracking, the devices can stop sharing their data but this negatively impacts

the utility or they can use privacy-preserving techniques.

Mobile crowdsourcing is widely used to collect data from mobile devices at a large scale, which is

used to train machine learning models for properties of interest, such as cellular/WiFi. Leveraging

data from mobile devices in order to train machine learning models for a task of interest increases

utility but introduces privacy risk due to the sensitive nature of the data that can enable tracking.

On one hand, the mobile devices could train local models without sharing their data, but the local

models will have low utility due to limited data available on the device. On the other hand, the

devices can share their data with a server who collects it and trains a more powerful centralized

model at the expense of the privacy of mobile devices. Federated learning (FL) is an approach to

collaboratively train machine learning models and it combines the best from both worlds. It in-

creases utility compared to local training and it increases privacy compared to centralized training,

while maintaining utility by allowing to keep data on the devices; the devices and server exchange

only model parameters and not raw training data. Although FL raises the privacy bar, the gradi-

ents of model parameters can leak information about the local data of devices that participate in

training, which enables tracking via inference. In this thesis we consider two applications of FL

for mobile data and we evaluate the corresponding privacy attacks based on gradients (originally

developed to reconstruct training data of DNN image classifiers) for an honest-but-curious server

who observes gradients and aims to reconstruct the private data of a participating device.

2

First, we propose for the first time, a federated learning approach for two packet classification

tasks (i.e., to predict PII exposure or ad request in individual packets). In order to limit explicit

mobile tracking, machine learning approaches have been proposed for PII detection in mobile

packets. State-of-the-art approaches use features extracted from HTTP packets and train packet

classifiers in a centralized way: users collect and label network packets on their mobile devices,

then upload data to a central server; the server uses the data contributed by all users to train a packet

classifier. We propose FedPacket, a federated learning framework for mobile packet classification

that raises the privacy bar and demonstrate its effectiveness in terms of classification performance,

communication and computation cost via evaluation on three real-world datasets. Moreover, we

design and launch, for the first time, two privacy attacks based on HTTP features and we show that

it is possible to infer the browsing history of a user based on HTTP features leakage.

The second application of FL is on the cellular signal strength prediction problem, where the users

collaboratively train a regression Deep Neural Network (DNN) that predicts the cellular signal

strength given location features without sharing their location data. In this application, users may

not want to share their measurements to enable centralized training, as they contain sensitive in-

formation like device information, trajectories etc. To that end, we propose online federated signal

maps, where the data on each device becomes available in online fashion and we evaluate the leak-

age from gradients specifically on this problem. Such Deep Leakage from Gradients (DLG) attacks

have been demonstrated so far only on image/text data with limited evaluation on FL parameters,

and we demonstrate their effectiveness for the first time in online federated signal maps where it is

possible to reconstruct the users’ locations over time via observing gradients. Finally, we propose

a mitigation algorithm that chooses which locations to put in a batch without hurting utility.

1.2 Contributions

In this thesis, we make the following contributions.

3

1.2.1 Exposures Exposed: A Measurement and User Study to Assess Mobile

Data Privacy in Context

In Chapter 3 and in [30], we are interested in better understanding not only the extent of personally

identifiable information (PII) exposure, but also its context (i.e., functionality of the app, destina-

tion server, encryption used, etc.) and the risk perceived by mobile users today. To that end, we

take two steps. First, we perform a measurement study: we analyze the AntShield dataset that was

generated via manual and automatic testing and captured the exposure of 16 PII types from 400

most popular Android apps. We analyze these exposures and provide insights into the extent and

patterns of mobile apps sharing PII, which can be later used for prediction and prevention. Second,

we perform a user study with 220 participants on Amazon Mechanical Turk: we summarize the re-

sults of the measurement study in categories, present them in a realistic context, and assess users’

understanding, concern, and willingness to take action. To the best of our knowledge, our user

study is the first to collect and analyze user input in such fine granularity and on actual (not just

potential or permitted) privacy exposures on mobile devices. Although many users did not initially

understand the full implications of their PII being exposed, after being better informed through the

study, they became appreciative and interested in better privacy practices.

1.2.2 FedPacket: Federated Packet Classification

In Chapter 4 and in [32], we propose a federated learning approach to mobile packet classification,

which enables devices to collaboratively train a global model, without uploading the training data

collected on devices. We apply our framework to two packet classification tasks (i.e., to predict

PII exposure or ad requests in individual packets) and we demonstrate its effectiveness in terms of

classification performance, communication and computation cost, using three real-world datasets.

Methodological challenges we address in the process include model and feature selection, as well

as tuning the federated learning parameters specifically for our packet classification tasks. We

4

extend FedPacket further and demonstrate for the first time two privacy attacks for an honest-but-

curious server, based on gradients that reveal information about user data (HTTP(s) packet traces).

First, we show the attack that reconstructs HTTP features of the user. Second, we shown how the

recovered features can reveal user’s visited domains or browsing history. Finally, we demonstrate

one mitigation approach via aggregation of multiple users gradients and how the aggregation of

sufficient users can be used to limit the attack’s effectiveness [32].

1.2.3 Federated Signal Maps and Location Leakage

In Chapter 5 and in [33], we present our second application of FL to mobile data. We consider the

problem of signal maps prediction (i.e., training a machine learning model that predicts cellular

performance based on location and other features) using measurements collected from different

mobile devices. We formulate the problem within the online federated learning framework: (i)

federated learning enables users to collaboratively train a model, while keeping their training data

on their devices; (ii) measurements are collected as users move around over time and are used for

local training in an online fashion. Without additional privacy enhancing mechanisms, federated

learning is well-known to be vulnerable to privacy attacks. We consider an honest-but-curious

server, who observes the updates from target users participating in federated learning and infers

their location using a deep leakage from gradients (DLG) type-of-attack, originally developed to

reconstruct training data of DNN image classifiers. We make the key observation that a DLG

attack, applied to our setting, infers the average location of a batch of local data, and can thus be

used to reconstruct the target users’ trajectory at a coarse granularity. We show that a moderate

level of privacy protection is already offered by the averaging of gradients, which is inherent in

FedAvg and controlled by parameters such as the batch and mini-batch size, the number of local

epochs etc. Furthermore, we propose an algorithm that devices can apply to their local data to

carefully curate the batches used for local updates, so as to effectively protect their location privacy

without hurting utility. Finally, we show that the effect of multiple users participating in federated

5

learning depends on the similarity of their trajectories. To the best of our knowledge, this is the

first study of DLG attacks in the setting of federated learning from crowdsourced spatio-temporal

data.

1.3 Thesis Outline

The structure of this thesis is as follows. Chapter 2 discusses related work and background. Chapter

3 presents a measurement and user study to assess mobile data privacy in context. Chapter 4

presents the first application of federated learning to mobile data: FedPacket, a federated learning

approach for mobile data privacy, which is evaluated in various scenarios. It also demonstrates

and discusses privacy attacks on the feature space. Chapter 5 presents the second application of

federated learning on mobile data: signal strength prediction and the corresponding privacy attacks.

Chapter 6 concludes the thesis.

6

Chapter 2

Related Work & Background

2.1 Mobile Tracking & Packet Classification

There is increasing interest in understanding and controlling Personally Identifiable Information

(PII) exposure and user tracking on mobile devices. Proposed approaches include: permissions

[101], static analysis [89], dynamic analysis [57], and network-based approaches [109, 114, 131].

Chapters 3 and 4 fall within the latter which inspect mobile traffic for PII exposure, or other infor-

mation i.e., tracking, malware, advertising. State-of-the-art tools for network traffic interception

and inspection include Haystack/Lumen [111], AntMonitor [122] which use string matching to

detect PII in outgoing packets sent from apps to remote destinations. The interception of mobile

traffic is not part of our contribution, although mobile data collected using AntMonitor [122, 121]

and its extension to signal maps [23] are used for Chapter 3 and 4 respectively.

7

2.1.1 Mobile Packet Collection via AntMonitor/AntShield

We are interested in understanding real-world cases of PII exposure in packet traces of outgoing

packets as captured in AntShield dataset [121, 120] via AntMonitor [122]. We focus on PII that

have been previously defined in related work that includes the following list:

• Device Identifiers: IMEI, IMSI, Android ID, phone number, serial number, ICCID, MAC

Address, available through Android APIs.

• User identifiers: usernames and passwords used to login to various apps (unavailable through

Android APIs); Advertiser ID, email (available through Android).

• User demographic: first and last name, gender, zipcode, city, etc. - unavailable through

Android APIs.

• Location: latitude and longitude coordinates, available through Android APIs.

The AntShield [121, 120] dataset collected real cases of when the PII defined above are exposed, via

AntMonitor, an app that intercepts all network traffic from the device without requiring rooting. Ant-

Monitor is a representative VPN-based tool for privacy protection and it is easy to extend it for data

collection. The traffic interception, along with several utility functions of AntMonitor have been

made available as a library, and we will refer to it as the AntMonitor Library [122]. We will refer to

the data collection app that extends the AntMonitor Library, as AntShield [121, 120]. The design and

performance evaluation of the AntShield system is a contribution on its own. However, we consider

it out of the scope of this dissertation. AntShield was used as a tool to collect the packet traces in

the AntShield dataset which is the starting point of our measurement and user studies in Chapter 3.

As shown in Fig. 2.1a, AntShield receives outgoing packets via the PacketFilter interface provided

by the AntMonitor Library. Note that the AntMonitor Library also implements a TLS proxy, which

allows it to decrypt SSL/TLS traffic of applications that do not use certificate pinning (see [122] for

8

PrivacyShield

Android Device

acceptIP
Datagram()

acceptDecrypted
SSLPacket()

Storage
JSON Files

Target
Internet

Host

AntMonitorLib

Packet-to-App
Mapping

DPI Module

Packet Filter

Online Traffic

Offline Logs

Other
Apps

Connector Type

Data Collector

JSON Object
App Name

PII
Packet Headers

Packet Data

PII
DPI

MapPacket()

search()

(a) AntShield Architecture. Data collection consists
of the following steps: each packet is intercepted by
AntMonitor Library, searched for any PII, and mapped
to an app.

(b) PII, including those manually entered (e.g.,
First/Last Name).

Figure 2.1: AntShield System used for Data Collection: Architecture and Screenshot. AntShield
was developed by A. Shuba in [121] and used for collecting the dataset that is the basis to the user
study here (Chapter 3) and in [30]. It is repeated here for completeness.

details). These decrypted packets are also passed to AntShield via the PacketFilter interface. Each

intercepted packet (unencrypted or decrypted) is searched for PII using the AntMonitor Library’s

Deep Packet Inspection (DPI) module. Some of the PII defined above is available to all apps via

Android APIs and is thus easy to find in packets. To find PII that is unavailable through APIs,

we add it to the list of strings to search for using AntShield’s GUI – see Fig. 2.1b. Note that this

methodology may miss PII that is obfuscated by applications prior to transmission, but as shown

in [49] such behavior is rare. After DPI, the AntMonitor Library’s mapPacket API call is used to

9

note which app was responsible for generating the outgoing packet in question.

2.1.2 User Studies on Mobile Data Privacy

Several experimental studies have analyzed mobile app behavior and several users studies have

analyzed user interactions and mobile usage (e.g., Mehrotra et al. [95], Tian et al. [127], EarlyBird

[136] and Xu et al. [140]). Most closely related to this dissertation, are user studies that focus

specifically on privacy. Permissions and how users interact with them have been extensively stud-

ied in [74, 75, 135, 28, 87, 88]. Almuhimedi et al. [28] studied how sending users privacy nudges

affected their permission settings. Wang et al. [135] studied user decisions when presented with

permission settings that are separated between apps and ad libraries. More recently, Ismail et al.

[74] showed that it is possible to maintain app usability even when disallowing certain permissions.

Chitkara et al. proposed a retrofitted Android system, ProtectMyPrivacy [48], that allows users to

make fewer privacy decisions by setting permissions based on third-party libraries instead of ap-

plications. Taking a different approach, PrivacyStreams [86] proposes and evaluates (with a user

study) a tool for developers to write code in a more privacy-preserving way. In the web ecosystem,

the work in [107] studies online privacy in websites to identify mismatched user expectations and

the factors that impact these mismatches. The work by Kleek et al. [132] is closest to our work in

that they use information captured from network monitoring to see if it influences users’ decisions

to install apps. Unlike their work, however, we are interested in learning what users would do if

given more fine-grained control over their data.

In Chapter 3, we analyze packet traces from the AntShield dataset and the privacy exposures found

therein. This approach has the advantage that it analyzes actual real-world privacy exposures,

as opposed to e.g., potential exposures described by permissions. In addition, we compile the

large volume of information from the packet traces and present it to users in a way that they can

process and assess. The combination of a measurement study (volume and coverage of packet

10

traces obtained through extensive and systematic experiments) with a user study (summarizing the

information into categories, defining context, and obtaining fine-granularity feedback from users)

is one of the contributions of this work, in addition to the detailed findings of both studies.

2.1.3 Packet Classification

There are many approaches based on manually curated blacklists [8, 11, 1] of domains on which

they decide to block the whole packet destined to such domains or cookies from such domains

[63]. Since blacklists are hard to maintain due to the ever-changing advertising ecosystem, addi-

tional graph analysis [131], or machine learning (ML) [67, 124] are used. NoMoAds [124] and

NoMoATS [123] are state-of-the-art approaches for detecting Advertising and Tracking requests,

respectively. They train classifiers, based on URL requests labeled by blacklists [8], to detect ad-

vertising and tracking; conversely, the classifiers trained this way can generalize, complement and

enhance blacklists’ manual curation. Recon [115] and AntShield [121] use ML to detect PII expo-

sure in outgoing HTTP packets: they train (offline, and in a centralized fashion) per-app/domain

Decision Trees to detect PII exposures, based on features extracted from HTTP packets. We build

on top of these ML approaches to introduce mobile packet classification learning in a distributed

way. A step towards a more privacy-preserving PII detection is PrivacyProxy [126], which pro-

cesses user data locally and sends only hashed data to a server, however it has to wait for enough

data to be collected from other users in order to detect PII. All these approaches are Centralized,

as they do not consider collaboration between users to leverage diverse app usage behaviors that

can generate PII or Ad requests. In this work, we focus on two classification tasks: PII exposure

and Ad request detection because of the availability of labeled datasets that support these per-

packet classification tasks, but our federated mobile classification approach can be used towards

predicting other tasks, i.e., fingerprinting [148], or tracking [123] detection.

In Chapter 4 our focus is on how to adapt and evaluate the FL framework specifically for mo-

11

bile packet classification (as opposed to the image/text classification that is most commonly used

for). We showed in [120] showed that systematic crowdsourcing where users collaborate with

each other via data sharing helped to train better classifiers to detect PII exposures. To leverage

crowdsourcing in a more privacy-preserving way, we considered FL for federated packet classi-

fication. In contrast to related work in the field that is using image classification or next word

prediction via word/character embeddings [93], we focus on a problem where pre-trained word

embeddings (i.e., Word2Vec [15]) are not applicable due to non-dictionary words present in HTTP

packets. We apply FL in a setting where shallow models’ (i.e., SVM) performance is comparable

to state-of-the-art methods, this means that deep learning architectures (e.g., Convolutional Neu-

ral Networks [93]) are unnecessary. In terms of privacy, we demonstrate a privacy attack by an

honest-but-curious server that uses non-zero gradients to recover the features (shallow leakage) of

a target user. In Sec. 4.5, we evaluate the sensitivity of the attack to various FL parameters. More

specifically, we quantify the success of the attack in terms of percentage of total features recovered

in each FL round. Moreover, we show what sensitive information can be inferred about a target

user, once the server has reconstructed all their local data based on two different feature spaces

(our proposed one and one baseline). To the best of our knowledge, this is the first work to show

what information can be inferred in case of “leaked” HTTP packet traces in the context of mobile

packet classification, as prior works focused on reconstruction of input images [147, 146, 64, 138]

or text sentences [147] based on gradients.

2.2 Federated Learning

The Federated Learning Framework. An early version of distributed learning was proposed

in [119], where users trained models locally and shared the Stochastic Gradient Descent (SGD)

updates of certain parameters with a server, which then updated the global model. However, [119]

had no averaging mechanism and the evaluation was limited. The paper that coined the term

12

“Federated Learning” (FL) was introduced in [93], in order to train text and image classifiers

using training data available on a large number of mobile devices. The idea is that devices train

SGD-based classifiers based on their local data and send updates (model parameters) to a trusted

server, which aggregates them to update a global model. The main advantage of FL is that the

training data does not leave the device and thus, it is more privacy-preserving than a centralized

model. A secondary advantage is that exchanging model parameters requires less communication

(assuming fast convergence) than exchanging the raw training data, but this communication saving

comes at some computational cost imposed on the devices to train models locally. Subsequent

papers introduced optimizations in terms of communication efficiency, scalability and convergence

[78, 45, 68, 37, 69].

This scheme, also called Federated Averaging (FedAvg), provides more privacy in contrast to fully

centralized training where the devices must send their data to a server and more utility in contrast

to fully decentralized learning where each device trains its own local model. A similar scheme,

Federated SGD (FedSGD), has a significant difference from FedAvg: in the former each device

performs a single SGD step on their local data and sends the gradient to the server, while in FedAvg

each device performs multiple SGD steps on the local training data before sending a gradient to the

server, depending on the minibatch size B and local epochs E parameters. FL has the following

parameters: R number of FL rounds, B local minibatch size (B=∞ means the whole dataset is

treated as a single batch), E number of local epochs, C fraction of users that participate in an FL

round. These parameters control the client computation and communication between the server

and clients. An overview of the algorithm is shown in Algorithm 1.

Federated Learning & Privacy. Several security and privacy attacks are known for machine

learning systems; e.g., [21, 71, 96, 116, 35] which include membership inference attacks, model

inversion/extraction and model poisoning via malicious clients/server. Although FL protects the

training data of each device and shares only model parameter updates, these updates may them-

selves leak information, due to privacy vulnerabilities of SGD [96, 98]. Examples of leakage

13

Algorithm 1: Federated Averaging Algorithm [93].
1 Given K clients (indexed by k); B local minibatch size; E number of local epochs; R number of

global rounds; C fraction of clients; nk is the training data size of client k; n is the total data size
from all users and η is learning rate.

2 Server executes:
3 Initialize w0

4 for each round t = 1,2, ... R do
5 m← max(C ·K, 1)
6 St ← (random set of m clients)
7 for each client k ∈ St in parallel do
8 wkt+1 ← ClientUpdate(k,wt)

9 wt+1 ←
∑K

k=1
nk
n w

k
t+1

10

11 ClientUpdate(k,w):
12 Bk ← (split of local data into batches of size B)
13 for each local epoch i from 1 to E do
14 for batch b ∈ Bk do
15 w ← w − η∇`(w; b)

16 return w to server

include membership inference of data points [96], inference of certain property of training data

[96] or reconstruction of training data [71, 137, 147, 146, 64, 138]. Reconstruction of local data

usually requires either training auxiliary models (GANs) [71, 137] and/or having access to an aux-

iliary dataset [96], however, recent works called “Deep Leakage from Gradients” or DLG attacks

[147, 146, 64, 138] introduced new methods for reconstructing local training data based on gradi-

ent updates without the need of auxiliary data. To prevent privacy attacks, additional mechanisms

have been proposed on top of FL, most notably, Secure Aggregation based on secure Multi-Party

Computation (MPC) [38] or Differential Privacy [53] to offer privacy guarantees [94, 65, 36] or

both [128], but tuning these add-ons are application specific and utility is not always maintained.

2.3 Data reconstruction based on gradients

Federated learning raises the privacy bar but it can still leak information about local data based on

the exchanged gradients of model parameters. The first work that showed possible reconstruction

14

of training data (and their corresponding labels) based on shared gradients in FL, without the

need of additional models (e.g., GANS [71]) or side information, is DLG [147]. However, they

considered an attack scenario where the attacker observes a single gradient after the user performs

a single SGD step on their local data before sending their model parameters to the server, which

is the case of FedSGD. A subsequent paper called iDLG [146] optimized the way the target label

is reconstructed and thus, improved the convergence speed of the attack. However, the iDLG

method is only suitable for classification tasks, as the reconstruction of the target labels is obtained

analytically in that case. A more recent work [64] showed for the first time the performance of the

DLG attack with FedAvg and impact of local epochs on the attack and improved its convergence

by proposing a cosine based distance instead of Euclidean.

2.4 Datasets

In this thesis, we use several existing mobile datasets for evaluation.

AntShield [120, 121, 4]. The tool AntShield was developed by A. Shuba et al. in [121] and

was used to collect the dataset with the same name, we use in this thesis. It consists of HTTP(S)

packets labeled to indicate if they contain a PII exposure or not. The data was generated with

manual and automated testing in 2017, which we combine to a single dataset and consider the 297

apps out of 400, that generated HTTP/HTTPS traffic. Using AntShield’s packet capturing ability,

we interacted manually or via Monkey [18] and collected packet traces from 100 and 400 most

popular free Android apps respectively, based on rankings in App Annie [5]. In addition to being

used to generate survey questions in our user study in Chapter 3, the AntShield datasets are also

used for training the classifiers in the FedPacket approach in Chapter 4.

15

Auto Manual
of Apps 414 149

of packets 21887 25189
of destination domains 597 379
of exposures detected 4760 3819

of exposures in encrypted traffic 1513 1526
of background exposures 2289 639

of HTTP packets 13694 13648
of HTTPS packets 6830 8103
of TCP packets 867 2264

of exposures in TCP (other ports) 38 7
of UDP packets 496 1174

of exposures in UDP 17 12

Table 2.1: Summary of Manual and Auto AntShield datasets collected on the device.

NoMoAds dataset [124, 13]. The tool NoMoAds was developed by A. Shuba et al. in [124] and

was used to collect the dataset with the same name, we use in this thesis. It consists of HTTP

and unencrypted HTTPS packets, labeled with Ad requests and PII exposures they may contain,

from 50 most popular apps in the Google Play Store. It was generated in 2017 via manual testing

(interacting with each app for 5 minutes) with test accounts (no human subjects were involved)

similarly to the AntShield data. It is similar to the AntShield dataset in terms of PII labeled packets,

but it also contains state-of-the-art labels for advertising; whether a packet contains an Ad request

or not. This dataset is used in the FedPacket approach in Chapter 4.

In-house datasets with real users. This dataset was collected by M. Gjoka, from 10 real users

from our lab, in 2015 who contributed their packet traces for a period of 7 months. IRB review

was not required as the proposed activity was deemed as non-human subjects research by the IRB

at UC Irvine. The packet traces were collected by running AntMonitor [122] which intercepts

outgoing network traffic generated from each mobile app. These users installed AntMonitor on

their personal phones for 7 months and continued to use their phone as usual – no restrictions

there. To evaluate the FedPacket approach in Chapter 4, we consider the two most popular apps

across all users: Chrome (8 users) and Facebook (10 users) and treat them as separate datasets.

UCI Campus LTE Dataset [25]. This dataset was collected by E. Alimpertis by running a modi-

fication to AntMonitor. The dataset has been used as the basis of many papers since [24, 22, 33]. It

consists of 180,000 measurements of cellular signal strength, as opposed to measurements of app

16

network traffic, across 7 different devices from members in our lab collected during a five month

period. IRB review was not required as the proposed activity was deemed as non-human subjects

research by the IRB at UC Irvine. The UCI campus dataset, although it is small in terms of ge-

ographical area (approx. 3 km2), it is very dense. This dataset is used for evaluation in Chapter

5, where the regression problem is signal strength (RSRP). In particular, we consider the top three

(out of 25) cell tower data with the most measurements, where the pseudo-IDs are used as proxies

for user splits under federated learning.

Signal Maps Radiocells Data [16]. In Chapter 5, we also use the large-scale real-world Radiocells

dataset publicly available in [16], and used in several papers [43] before us. It contains multiple

upload files and each file contains RSRP values, location, timestamp, device information (make,

model). It does not contain user ids, but each upload file corresponds to a single device. We focus

on data from 2017 and the area of London, UK, which had the most measurements and approx.

3500 upload files and use heuristics in order to obtain large users by concatenating multiple upload

files.

17

Chapter 3

Exposures Exposed: A Measurement and

User Study to Assess Mobile Data Privacy in

Context

3.1 Overview

Applications and third party libraries routinely transmit user data to remote servers, including

application servers but also ad servers and trackers, and users have typically limited visibility and

understanding of what part of their personal data is shared, with whom, and for what purpose. With

the increased interest in online privacy, there are several bodies of related work. On one hand, a

number of systems have been proposed that improve data transparency and protect personally

identifiable information (PII). In general, these systems fall into three categories: (i) static analysis

and application re-writing [97, 66, 54], (ii) dynamic analysis with a modified or rooted OS [56,

14, 130, 58, 139], and (iii) VPN-based network monitoring [106, 112, 125, 115, 122, 121]. While

these tools provide more fine-grained control over sensitive data (as opposed to just permissions),

18

the way users engage with these privacy-preserving systems is less well studied. On the other

hand, in the human-computer interaction (HCI) community, researchers have extensively studied

how different designs for app permissions affect users’ decisions on which apps to install and

which permission requests are considered legitimate by users [74, 75, 135, 28, 87].

In this chapter, we are interested in understanding privacy exposures, which we define as PII trans-

mitted by a mobile app (or third party library used by the app) on the device, over the network

interface, towards a remote server. Our goal is to understand not only the extent and mechanisms

of PII exposure, but also its context (i.e., functionality of the app, destination server, encryption

used, frequency, etc.) and the risk perceived by mobile users today. For example, location needs to

be shared for a navigation app to perform its intended and legitimate function, and should not be of

concern to the user. In contrast, if the same navigation app uses a library that shares device ids with

a third-party server, this is more likely a privacy leak1 and should be of concern to the user. We

are also interested in PII actually exposed in real network traffic, as opposed to potential privacy

exposures as captured by permissions. To that end, we make the following two contributions.

Measurement Study. We use the AntShield datasets [120, 121, 4] which contains 47,076 outgoing

packets in total and we identify whether these packets contain any of 16 predefined types of PII

(as defined in Section 2.1.1), together with related information, which we collectively refer to

as context. We define as context the following information: the destination server/domain (i.e.,

whether it is an App Developer server or a third-party Advertisers & Analytics server), the app

category (games, shopping, navigation etc.) which reveals the intended functionality of the app,

whether the PII is exposed in clear text or is encrypted, and whether the app runs in the background

or foreground. The AntShield datasets partly confirm findings of previous measurement studies of

mobile devices but are richer: e.g., they contain previously unseen exposures over plain TCP and

1Most prior work [115, 110, 121] refers to PII found in outgoing packets as a “privacy leak”, because PII is by
definition private information and an outgoing packets indicates exfiltration or a “leak”. However, we purposely dis-
tinguish between “privacy exposure” (a PII contained in an outgoing packet) and “privacy leak” (which is an exposure
that is not necessary for the intended functionality of the app, and/or goes to a third party server, or happens in clear
text). This distinction, between a PII exposure and an actual leak, can only be made based on the context, which is one
of the main aspects we investigate in this chapter.

19

UDP, exposures while the app is in the background, and malicious scanning for rooted devices. We

analyze the datasets and provide insights into the extent and nature of how PII is exposed today.

We also identify behavioral patterns, such as communities of domains and mobile apps involved

in exposing private information. These patterns can be used in the future to design automated

prediction and prevention methods. We plan to make the datasets available to the community.

User Study. Second, we perform a user study on Amazon Mechanical Turk (MTurk) with 220

users. We summarize the results of the measurement study in categories, present participants

with real-world scenarios of private information exposure in context (type of PII, whether it is

shared with the application or a third party, use of encryption, etc.) and we ask them to assess

the legitimacy (i.e., whether the information is needed for the app’s functionality) and privacy

risk posed. We also educate the participants on how a single piece of PII can lead to even more

information being discovered when combined with data fetched from a data broker. Finally, we ask

users before and after the survey what actions they would be willing to take to protect their privacy,

including using free/paid privacy-enhancing tools and contributing their data to crowdsourcing. To

the best of our knowledge, our user study is the first to collect and analyze user input in such

fine granularity (i.e., taking context into account) and on actual (not just potential or permitted)

privacy exposures from mobile devices. We found that (i) many users did not initially understand

the full implications of their PII being exposed but (ii) after being better informed through the

study, they became appreciative and interested in better privacy practices. The insights gained by

the study can inform the design of fine-grained data transparency and privacy preserving tools such

as AntMonitor [122].

The structure of the rest of this chapter is as follows. Section 3.2 presents the data analysis of

PII exposures found in the datasets. Section 3.3 presents the Amazon Mechanical Turk study and

findings based on our datasets. Section 3.4 concludes the chapter.

20

m
op

ub
.c

om

am
az

on
-a

ds
ys

te
m

.c
om

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

N
um

be
r o

f e
xp

os
ur

es

Background
AdvertiserId
City

m
op

ub
.c

om

am
az

on
-a

ds
ys

te
m

.c
om

cr
as

hl
yt

ic
s.

co
m

ap
ps

fly
er

.c
om

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
um

be
r o

f e
xp

os
ur

es

Foreground
AndroidId
AdvertiserId

com.bigduckgames.flow3.6

(a) Flow Free, a puzzle game, exposes the user’s city
to an advertising server when the application is in the
background.

vr
tc

al
.c

om
m

op
ub

.c
om

ad
sy

m
pt

ot
ic

.c
om

ne
xa

ge
.c

om
qu

an
tc

ou
nt

.c
om

lk
qd

.n
et

tu
be

m
og

ul
.c

om
do

ub
le

cl
ic

k.
ne

t
bt

rll
.c

om
in

ne
r-

ac
tiv

e.
m

ob
i

on
lin

e-
m

et
rix

.n
et

ad
ve

rti
si

ng
.c

om
xa

d.
co

m
ca

rn
iv

al
m

ob
ile

.c
om

ad
nx

s.
co

m
ae

rs
er

v.
co

m
sm

aa
to

.n
et

cr
as

hl
yt

ic
s.

co
m

ca
rd

ly
tic

s.
co

m
yo

om
ee

ga
m

es
.c

om
op

en
x.

ne
t

tre
m

or
hu

b.
co

m

0

5

10

15

20

25

30

N
um

be
r o

f e
xp

os
ur

es

Background
AndroidId
AdvertiserId
City

vr
tc

al
.c

om
do

ub
le

cl
ic

k.
ne

t
ae

rs
er

v.
co

m
yo

om
ee

ga
m

es
.c

om
m

op
ub

.c
om

lk
qd

.n
et

in
ne

r-
ac

tiv
e.

m
ob

i
qu

an
tc

ou
nt

.c
om

sm
aa

to
.n

et
at

dm
t.c

om
ne

xa
ge

.c
om

to
rr

en
ti.

al
tre

m
or

hu
b.

co
m

ad
ve

rti
si

ng
.c

om
xa

d.
co

m
tu

be
m

og
ul

.c
om

0

5

10

15

20

25

N
um

be
r o

f e
xp

os
ur

es

Foreground
Location
Zipcode
AdvertiserId
City

com.myyearbook.m11.8.0.681

(b) MeetMe, an app for meeting people on-line con-
tacts different domains with different PII types de-
pending on whether it is in the background or the
foreground.

Figure 3.1: Application behavior exposing PII, while running in the background vs. toreground

3.2 PII Exposures Found in the Datasets

The AntShield datasets provide us with insights into the current state of privacy exposures in the

Android ecosystem. Some of the captured patterns were previously unknown, and are revealed for

the first time here. For example, we were able to detect exposures happening in the background,

exposures in plain TCP and UDP (not belonging to HTTP(S) flows), and malicious scanning for

rooted devices.

Background Exposures. AntShield is in a unique position to capture exposures that happen in

the background vs. foreground, and other contextual information that is only available on the

device. Table 2.1 shows that there is a substantial number of background exposures (e.g., half of

all exposures in the automatic dataset) that should be brought to users’ attention. Digging deeper,

we found several interesting patterns in apps that expose PII both in the background and in the

foreground. Fig. 3.1a shows how Flow Free, a puzzle game behaves differently in the background

21

App Name Leak Types Port
System IMEI, IMSI, AndroidId 8080
com.jb.gosms AndroidId 10086
com.jiubang.go.music AndroidId 10086
air.com.hypah.io.slither Username 10086
com.jb.emoji.gokeyboard AndroidId 10086
com.gau.go.launcherex AndroidId 10086
com.steam.photoeditor AndroidId 10086
com.jb.zcamera AndroidId 10086
com.flashlight.brightestflashlightpro AndroidId 10086

Domain Name Leak Types Port
206.191.155.105 Username 454
206.191.154.41 Username 454
23.236.120.208 AndroidId 10086
3g.cn IMEI, IMSI, AndroidId 8080
23.236.120.220 AndroidId 10086

Table 3.1: TCP packets (non HTTP/S) sending PII over ports other than 80, 443, 53

vs. the foreground: in the foreground several device identifiers are sent to ad and analytics servers,

and in the background, one of the ad servers (mopub.com) also collects the user’s city. Perhaps

this information is needed to serve personalized ads based on the user’s location, but it is unclear

why it is needed when the application is in the background and no ads are being shown. Another

example is MeetMe, an app for meeting people on-line, whose behavior is shown in Fig. 3.1b.

In this case, the app collects less PII in the background, but is contacting more ad servers. Such

findings are concerning, since apps are causing users data usage and are posing privacy risks even

when the user is not interacting with the app.

Non-HTTP Exposures. Prior state-of-the-art datasets [115, 113] reported only HTTP(S) expo-

sures. Table 2.1 reports, for the first time, exposures in non-HTTP(S), including plain TCP or

UDP packets. The AntShield dataset contains 29 UDP exposures, all of which were exposing Ad-

vertiser ID and Location. As shown in Table 3.1, we also found some apps (mostly games and

photo-editing apps) that exposed the Android ID over non-standard (80, 443, 53) TCP ports, such

as 8080 or 10086 (a port known to be used by trojans, Syphillis and other threats [17]). The des-

tination IPs could not be resolved by DNS, indicating that the application may have hard-coded

22

App Name PII Types # Exposures
com.ss.android.article.master City, Adid, Location, AndroidId, IMEI 752
com.cleanmaster.security Adid, AndroidId 174
com.paypal.android.p2pmobile City, FirstName, LastName, Zipcode, Adid, SerialNumber, An-

droidId, Password, Email
131

com.offerup Adid, Username, FirstName, Location, Zipcode, AndroidId 114
com.cmcm.live Adid, AndroidId, Location, IMEI, SerialNumber, IMSI 114
me.lyft.android City, FirstName, LastName, SerialNumber, Zipcode, PhoneNum-

ber, Location, AndroidId
112

com.pinterest Adid, AndroidId 111
com.weather.Weather Adid, Location 110
com.qisiemoji.inputmethod Adid, IMEI, AndroidId 83
· · · · · · · · ·
All All 3039

Domain Name Leak Types # Exposures
mopub.com Adid 2380
isnssdk AndroidId, IMEI 805
roblox.com Location 679
applovin.com Adid 566
rbxcdn.com Location 561
appsflyer.com Adid 549
facebook.com Adid 391
bitmango.com Adid 371
goforandroid.com AndroidId 262
ihrhls.com Adid 219
pocketgems.com AndroidId 211
ksmobile.net SerialNumber, Location, AndroidId 159
tapjoy.com Adid, AndroidId 151
tapjoyads.com IMEI, AndroidId 147
wish.com Adid 139
paypal.com AndroidId 131
· · · · · · · · ·
All All 3039

Table 3.2: Summary of applications and domain names with HTTPS exposures in our dataset
(manual and auto).

those IPs.

HTTPS Exposures. Since the usage of encryption is increasing, we also collected and analyzed

PII sent over HTTPS. Table 3.2 summarizes the exposures we discovered in HTTPS traffic. The top

app com.ss.android.article.master is a news app, thus it makes sense for it to query the user’s city,

perhaps to fetch localized news. However, it is unclear why the app needs the user’s IMEI (when

it already has the Advertiser ID) and the specific longitude and latitude coordinates of the user.

In this case, the city is needed by the app, but the IMEI and location coordinates are potentially

privacy exposures. Another example is com.cmcm.live - it exposes 5 different device identifiers

for no apparent reason. Hence, although well-behaving apps should use HTTPS, they should also

be inspected for potential privacy exposures as not all information that they gather is necessary for

their functionality. We also found that the majority of top domains receiving PII over HTTPS were

23

App Name Domain PII Types
com.bitstrips.imoji 10.2.32, 10.3.76 pushwoosh.com AndroidId
com.nianticlabs.pokemongo 0.57.4 upsight-api.com Location, AndroidId
com.psafe.msuite 3.11.6 , 3.11.8 upsight-api.com AndroidId
com.yelp.android 9.5.1 bugsnag.com AndroidId
com.zeptolab.ctr.ads 2.8.0 onesignal.com AndroidId
com.namcobandai-
games.pacmantournaments 6.3.0

namcowireless.com AndroidId

com.huuuge.casino.slots 2.3.185 upsight-api.com AndroidId
com.cmplay.dancingline 1.1.1 pushwoosh.com AndroidId

Table 3.3: Applications with “jailbroken” field

ad-related. Although it is expected for ad domains to receive the Advertiser ID, other PII should

not be collected. These findings motivated us to conduct this user study to crowdsource answers to

the question of when a privacy exposure becomes a privacy leak.

Checking for Rooted Devices. We noticed a suspicious flag called “jailbroken” or “device.jail-

broken” exposed by several apps (e.g., com.bitstrips.imoji, com.yelp.android, com.zeptolab.ctr.ads,

etc). This flag was found in the URI content or in the body of a POST method in the packets, and

it was set to 1 if the device was rooted, or to 0 otherwise. In Table 3.3, we show the applications

that contain this field in our dataset and the domain to which the “jailbroken” flag is being sent.

We also show other types of exposures that the particular domain collects. From the table, we see

that the flag is usually accompanied with a device identifier. Several apps send this flag to the same

domain (upsight-api.com, an ad network), which indicates that an ad library is probably exposing

this information, rather than the app itself.

Behavioral Analysis of PII Exposures. An interesting direction for analyzing the AntShield

dataset is via behavioral analysis. For instance, we can ask: (i) what can the communication

between mobile apps and destination domains reveal about tracking and advertising? (ii) what

type of information exposes to what domains and how to define similarity of apps or domains with

respect to exposures? Fig. 3.2 showcases one graph that visualizes similar destination domains

with respect to exposures they received, as captured in the AntShield dataset. We define two do-

mains to be similar if they are contacted by the same set of applications (see the box on the right

inside Fig. 3.2). For example, domains A and B are similar because they are contacted by two apps

24

Figure 3.2: Understanding the behavior of app that expose PII through graph analysis of the Ant-
Shield dataset. The graph consists of nodes corresponding to destination domains and edges rep-
resenting the similarity of two domains. Two domains are similar if there are common apps that
send packets with PII exposures to both domains; the more common apps expose PII to these do-
mains, the more similar they are, the larger the width of an edge between them. The color of a
domain node indicates the types of PII it receives. One can observe from the graph structure that
domains form communities that capture interesting patterns: (1) The large communities on the left
and bottom consist mostly of ad networks; ad exchanges are nodes in between ad communities;
(2) Facebook/Google domains are a different community on their own, on the top left; (3) small
apps contact only their own domain, leading to isolate domain nodes; (4) domains in the same
community receive the same type of PII (as indicated by the color of nodes).

(app1, app2). We depict the similarity of domains A and B as an edge on the graph of domains, at

the bottom of the box. This data can be readily extracted from our trace, together with the type of

information that was transmitted from apps to domains.

The graph depicted on the left side of Fig. 3.2 shows a projection of the underlying bipartite graph

(middle step in the box) on domains (last step in the box); the graph is plotted and analyzed using

Gephi [34]. Nodes in this graph represent domains; the edges indicate similar nodes as per above

definition; the width of the edge indicates the number of common applications; and the domain

color corresponds to the type of exposed PII. The clusters of domains in the graph are the output

25

of a community detection algorithm, which is a heuristic that tries to optimize modularity.2

Interesting patterns are revealed in Fig. 3.2. First, advertising is the result of coordinated behavior.

For example, it is easy to identify ad exchanges: mopub.com is in the center of all communication;

and inner-active.mobi and nexage.com are also clearly shown as hubs. All three large communities

on the bottom and left of the graph correspond to ad networks. Second, on the top left, there is

a community of domains that belong mostly to Google and Facebook, and two domains (pof.com

and plentyoffish.com) of a dating service. The latter could be because the dating app also sends

statistics (e.g., for advertising purposes) to Google and Facebook, in addition to its own servers, as

suggested by the type of PII being sent (gender and device ID, represented by the yellow color).

Third, not all domains belong to a community: some are well-behaved and are contacted only by

their own app. For instance the white-colored domain zillow.com towards the bottom center of the

graph is an isolate node and only receives information about the user’s location, which makes sense

since it provides a real-estate service. Another example is the blue-colored domain hbonow.com:

it is only contacted by its own app and only receives the Advertiser ID to serve ads. Another

observation from Figure 3.2 is that most domains in the same community receive the same type of

PII (as indicated by the domain color). This can be explained by the common ad libraries shared

among different apps that fetch the same PII.

In general, similarity of apps and domains based on their PII exposure found in their network

activity can be exploited to detect and prevent abusive behavior (e.g., advertising, tracking, or

malware) in mobile traffic. This is one promising direction for future work.

2The main idea is that for specific node i, it tries to assign different communities of its neighbors like node j’s
community as i’s community and compute the gain of modularity for whole network. The community which maximize
the modularity will be the proper one. If the gain of modularity be negative or zero, i keeps its community. This process
is an iterative process which is done for all nodes. This algorithm is implemented in Gephi software [34], and works
with weighted graphs also.

26

3.3 User Study: Mobile Data Privacy in Context

In this section, we design a user study on Amazon Mechanical Turk (MTurk) in order to assess

user’s awareness and understanding of mobile data exposure, as well as their level of concern

and potential for adopting solutions. We use the AntShield datasets as analyzed and presented

in the measurement study in the previous section in order to present participants with real-world

scenarios of private information that was actually exposed by mobile apps in our experiments. We

provide the user with information about the types of PII exposed, as well as information about

the context this exposure occurred, i.e., whether the PII is shared with the application or a third

party server; what was the app category/intended functionality; whether it is shared in clear or

encrypted text, etc. We then ask the users to assess the legitimacy (i.e., whether the information

is needed for the app’s functionality) and the risk posed by the particular PII type exposed in that

particular context. We also educate the participants on how a single piece of PII can lead to even

more information being discovered when combined with data fetched from a data broker. Finally,

we ask users before and after the survey whether they would use privacy enhancing tools. To the

best of our knowledge, this user study is the first one that collects and analyzes user input in such

fine granularity (context) and on actual (not just potential or permitted) privacy exposures at large

scale (as found in the packet traces of the measurement study). Section 3.3.1 presents the design

rationale and questions asked in the MTurk study. Section 3.3.2 summarizes and analyzes the

responses from 220 participants.

3.3.1 User Study Design

MTurk Setup.3 We designed a Human Intelligence Task (HIT) on Amazon Mechanical Turk

(MTurk) [3] and restricted it to workers who are based in the U.S., are at least 18 years old, have

3We went through the IRB process in our institution and obtained exempt research registration HS# 2018-4272
“Amazon Mechanical Turk Survey on Mobile Data Privacy”.

27

completed at least High School (in the US), and own a smartphone or a tablet device. The workers

were rewarded at a rate of $0.10 per minute of their time – a standard followed in other studies

[87, 74, 92]. We allotted 30 minutes for the completion of our HIT, but the majority of workers

completed it within 13 minutes approximately. The participants had to pass at least one of three

attention check questions in order to have their HIT approved and to receive the $3.00 payment.

The HIT was open for 9 days in early May 2018. At the end, we analyzed the responses of 220

workers that passed the attention test.

Demographic questions. First, we asked a set of demographic questions, such as level of educa-

tion, age, and employment sector (tech vs. non-tech). We also asked what kind of mobile operating

system (OS) they use and how many different apps they use daily. In addition to these questions,

we added three attention-check questions to prevent workers from gaming the system by providing

answers randomly. We discard answers from participants that failed to correctly answer all three

attention check questions.

Categorization questions. The main goal of our study is to learn how concerned are users about

privacy exposures in different contexts, defined as: the type of PII exposed, the app category,

whether the information was shared with a relevant application server (thus may be useful for the

functionality of the app) or third party advertiser and analytics servers, and whether it is shared in

plain text or is encrypted. To that end, we first defined these terms and categories as shown in Fig.

3.3.

First, we asked the participants how comfortable they are with sharing various PII types with

different types of remote servers, as depicted in Fig. 3.4. Different PII types include: various

device ids (such as phone number, IMEI, IMSI, ICCID, Android Id, etc), user ids (e.g., email,

Advertiser Id, username and password), location (GPS coordinates), and demographic information

(e.g., gender, city, zipcode, first and last name). Destination servers are roughly divided into two

categories: app developers vs. ad & analytics servers. The rationale is that the application servers

may need the PII to perform their functionality (e.g., Google Maps clearly needs location) while

28

(a) Definitions used to categorize a PII exposure.

(b) Definitions used to describe additional context of a PII exposure.

Figure 3.3: Terms defined before being used in the categorization tasks.

third party servers do not (thus causing more of a privacy leak rather than an exposure). For each

pair of (PII type, destination type) we asked the participants to rate their comfort level of sharing

that PII type with that remote server, on a scale from 0 to 3; where 0 represents the least concern

and 3 represents maximum concern (and their willingness to pay for a privacy-preserving solution).

See Fig. 3.4 for details.

Second, we asked participants to rate their concern in real-case scenarios of PII exposures from the

AntShield dataset. For each packet that contained a PII in our dataset, we considered a broader

context beyond just PII type and destination server type (i.e., application server or ad/analytics

server). Furthermore, we considered the category of the app (e.g., game vs. navigation), whether

the PII was encrypted or sent in plain text, and the frequency of this PII being exposed by this app

category. The rationale is that the same PII type exposed may be more or less concerning to users

29

10. Now consider different types of information available on your phone and shared by mobile apps with various servers. For each type of
private information below, please indicate how much you are concerned about it being shared (in a scale of 0-3), and what measure you would be willing
to take in order to protect your data. Enter:
• 0: if you are not concerned about sharing that private information with a remote server.
• 1: if you are concerned, but you wouldn't take any action to protect it from being shared with a remote server.
• 2: if you are concerned, and you would be interested in a free solution that would prevent your private information from being shared without your

consent.
• 3: if you are concerned and you would pay for a solution (if a free solution is not available) that would prevent your private information from being

shared without your consent.

Figure 3.4: Task to assess how comfortable users are with sharing certain PII type with certain
type of remote server.

depending on the context. For example, location exposed by a navigation app to that app’s server

in an encrypted packet is probably needed for the app to function, while sending a user id to an

unrelated third party (e.g., advertiser) server, frequently and/or in plain text, is indeed a privacy

leak.

A side benefit of the aforementioned categorization is that it helped reduce the number of cases to

be evaluated by users. Out of 8,579 exposures total (Table 2.1), 1,726 are unique when considering

the application responsible, the type of PII, the destination host, and level of encryption. To further

reduce the number of cases to label, we grouped the applications based on their Google Play Store

[10] category and destination type (ad & analytics or not). To find ad & analytics domains, we used

the hpHosts [11] list as it was found to be the most comprehensive list for the mobile ecosystem

30

9. Consider that you run the ROBLOX app on your smartphone. ROBLOX belongs to

app category GAME in GooglePlay. In our experiments, we noticed that this app sends your phone's GPS

location, in plain text and with high frequency, to both remote ROBLOX servers ("App Developer") and to

third-party Advertising and Analytics servers. This is summarized in the following table.

a)	Do	you	consider	the	sharing	of	location	with Advertising	&	Analytics	servers to	be...	(please	pick	one	option):

b)	Do	you	consider	the	sharing	of	location	with	App	Developer	to	be...	(please	pick	one	option):	

o Needed	by	the	App
o Not	Needed	by	the	App,	but	not	Harmful
o Not	Needed	by	the	App,	and	maybe	Harmful
o I	don’t	know/care.

o Needed	by	the	App
o Not	Needed	by	the	App,	but	not	Harmful
o Not	Needed	by	the	App,	and	maybe	Harmful
o I	don’t	know/care.

(a) Warm-up question with a hypothetical scenario of a particular example application
– the game Roblox.

14. Consider the Category: Game. Some example apps that belong to this category are: Baseball Boy!, Partymasters -
Fun Idle Game, Snake VS Block. Please evaluate each information type that is shared by the Game category in the
following table.

(b) Entire game category with real cases of PII types exposed and their broader context (remote server type
but also app category, encrypted/plain text, and frequency).

Figure 3.5: Task to assess user concern about privacy exposures in context.

to date [110]. These grouping reduced the total number of unique combinations to 256, which

contained 23 unique Google Play Store categories (out of 36 total). We split these combinations

31

(a) How much do users care about privacy?

(b) How much would users pay to protect their privacy?

(c) Would users contribute their data to a privacy app?
20.	 There	are	several	third-party	services	(data	brokers)	available	online	that	can	look	up	your	personal	information	based	on	
identifiers	such	as	your	email.	This	information	can	be	shared	with	advertisers,	trackers	or	anyone	using	the	services	of	those	
data	brokers.	Below	we	show	you	an	example	of	us	looking	up	one	email	on	such	a	website	and	getting	all	this	information	
back	in	return:

Now	that	you	know	this,	would	you	be	willing	to	use	an	app	that	protects	your	email	from	being	shared	with	advertisers	and	
third	parties?

• Yes,	I	would	use	it	for	free.
• Yes,	I	would	pay	to	use	it.
• No,	I	would	not	use	it.
• I	cannot	decide/need	more	information.

(d) Do users care more after being educated about data brokers?

Figure 3.6: Assessing users concern and potential actions. (a) Do users care about privacy? What
they are willing to do about it: (c) share their data with a crowdsourcing system (b) use and/or pay
for a privacy app). And (d) do they change attitude after being educated?

into five batches of HITs, where each HIT contains five (or three for the last batch) categories of

apps to be labeled. To prepare the participants for the labeling task, we first showed a “warm up”

question (Fig. 3.5a) with a hypothetical scenario of the Roblox app exposing certain PII and asked

them to assess the risk (Fig. 3.3b). Next, we asked the participants to label the exposure scenarios

for each of the five categories in their HIT – example shown in Fig. 3.5b. We also provide an

example app out of each category (from our actual dataset) along with a link to the app’s Google

Play Store page.

32

Assessing User Concern and Possible Actions. In order to assess participants’ privacy awareness

and understanding, we asked another set of questions shown in Fig. 3.6. First, we asked the

participants how much they care about information being shared by their mobile device (Fig. 3.6a)

and what would they do in order to better protect their information. Next, we asked if they would

use an app (e.g., AntMonitor) that can prevent privacy exposures and how much would they pay for

such a service (Fig. 3.6b). It was our hope that the categorization questions described previously

would educate users about mobile privacy and would make them more concerned towards the end

of the survey. To educate them further, we showed them that a single PII in the hands of a data

broker can help create or lookup a user profile and can reveal much more information (Fig. 3.6d);

the question was based on a real scenario where we fetched data from a data broker based on a

person’s email address. We then asked them (if they would use a privacy app (and if they would

pay for it) to protect their privacy. Finally, we asked them if they would contribute their mobile data

to an app that crowdsources information, train machine learning models and prevents privacy leaks

(e.g., as in Recon [115] and in [121]). In order to assess our hypothesis that users became more

privacy-aware after the categorization questions and the data broker example, the same questions

appeared twice during the survey: once in the middle of the survey and once at the end.

3.3.2 User Study Results

In this section, we summarize and analyze the main results of our user study. The main observation

is that users seem initially confused about the severity of PII shared in different contexts, but they

are interested in and are capable of being trained. Our main findings are as follows:

• Users do not seem to understand how severe it is to share certain PII types (especially device

identifiers) with either Advertisers or Developers. This may be because some of these ids,

such as Android ID, IMEI, IMSI, ICCID, are difficult to understand or relate to, yet they

uniquely identify the device and/or the user and hence should not be shared with remote

33

servers.

• As expected, users trust Application Developers more than Advertisers & Analytics. How-

ever, some comments stated that Developers are “a bunch of hackers behind servers”, indi-

cating possible confusion.

• Users also seem confused about sharing PII in plain text vs. using encryption. Sharing PII

in plain text is a bad practice, since it exposes private information not only to the destination

servers but also to anyone that is sniffing into the network.

• Towards the end of the study, most users seem to obtain a much better understanding of

mobile privacy. For example, several comments state that users are grateful for our short

tutorial in mobile privacy. They are willing to educate themselves more in the future and to

adopt data transparency and privacy tools. These are encouraging results for future work in

developing privacy-enhancing technologies.

Summary of Demographic Info. We collected 223 responses, in total, on our MTurk survey.

Since we posted multiple HITs, each with different categorization questions (see Sec. 3.3.1), some

users completed more than one HIT, and there were a total of 151 unique participants. Two re-

sponses were discarded due to failing the attention-check questions, and one worker was discarded

due to incomplete answers. This leaves a total of 220 valid responses, which we analyze in the

rest of the section. The majority of the participants were between 25 and 34 years old, held a

Bachelor’s degree and were employed in a non-tech sector. 61.8% and 37.7% of the workers were

Android users, and iOS users, respectively. 118 of our workers use six to ten different apps every

day, 53 use between 11 and 20 apps, 41 use fewer than five apps, and only 8 use more than 20

apps.

Categorization Results: Privacy Exposures in Context. In this subsection, we provide the re-

sults we obtained by processing user answers to the categorization questions (see Figures 3.4 and

3.5). We asked participants to rank the severity of PII exposures in different contexts since whether

34

(a) Rated by users.

Concerned	and	would	pay	to	protect	it

Concerned	but	do	nothing	to	protect	it

Concerned	and	would	use	a	free	app	to	stop	it

Not	concerned

(b) Rated by us.

Figure 3.7: How comfortable are users with sharing PII with advertisers and app developers? (a)
Average rating of user responses to categorization task of Fig. 3.4 (b) Recommended rating by us
(“experts”).

or not an exposure is considered a privacy leak depends on the context. There are four main di-

mensions in each exposure: (i) its destination (app developers or advertisers), (ii) category of the

app responsible, (iii) level of encryption used, (iv) PII type. These dimensions play an important

role in distinguishing privacy leaks from exposures.

Figure 3.7a demonstrates the results when we asked the users how concerned they are with sharing

a certain information type with a particular destination (Advertisers & Analytics or App Developer

35

servers), as shown previously in Fig. 3.4. In this task, we observe that sharing all types of PII

is concerning for our participants, regardless of its destination, and they are willing to use a free

app to protect them. Furthermore, they would also pay for a tool that protects their phone number

and password from leaking to advertisers. As expected, participants are more concerned over their

precise longitude and latitude coordinates being shared as opposed to zipcode and city. Overall,

our participants seem to trust developers more than advertisers, which is not surprising.

In Fig. 3.7b, we also provide our own “expert” rating for comparison. In particular, we would

like to protect device identifiers regardless of their destination, by using a paid solution if a free

version is not available. In contrast, our participants chose only to protect their device identifiers

with a free solution and they are not willing to pay to protect them. Moreover, they give similar

rating to their location data regardless of the destination, although they should be more careful with

advertisers than developers, as there are apps that need location in order to function. On the other

hand, Advertiser ID should not be protected as well as the other identifiers, since this id is known

by advertisers anyway.

Understanding whether PII is needed by the app. We ask users to assess whether sharing a

particular PII is legitimate and needed for the functionality of the app (or more broadly by apps in

the same category), or if it is unnecessary and potentially harmful. For example, Google Maps is

an app in the Navigation category and needs to share location to provide the service.

Fig. 3.8 presents a heatmap of the perceived severity of different PII types per application category.

The x-axis show the different PII types and the y-axis contains the categories of apps responsible

for sending that PII over the network. The values and colors represent the level of concern the

participants have regarding each pair (category, PII type): “not needed by the app and maybe

harmful” (value 4 - dark color), “not needed by the app and not harmful” (value 3), “needed by

the app” (value 2), “don’t care” (value 1 - light color). White color (or 0 value) represents missing

combinations of PII and category, that were not present in our datasets. In order to produce the

heatmap, we consider the mean values of all participants’ answers.

36

users recommended

1:	I	don’t	know/care

4:	Not	needed	
and	maybe	
harmful

3:	Not	needed	
and	not	harmful

2:	Needed	by	
the	App

0:	Missing	
values

Figure 3.8: Heatmap severity of (PII type, app category). The darkness of the color indicates the
perceived severity of the PII exposure: the darkest corresponds to 4.0 (“Not needed by the app and
maybe harmful”), while the lightest indicates 1.0 (“I don’t care”). Zeros represent missing values
for combinations we did not have in our datasets. We compare the average ratings among users
who answered that question (on the left column) vs. labeling recommended by us (on the right
column).

For comparison, we also show a heatmap labeled by us to express our “expert” opinion. First,

location information (latitude and longitude coordinates, zipcode, and city) should be available to

system, maps & navigation, weather, and travel & local categories only. All the other categories do

not need this kind of information for their functionality and hence when apps transmit such data, it

may be considered harmful. Second, user identifiers, such as email, password, username, gender,

etc. may be needed in some app categories (e.g., social, games, communication), but not in others

(e.g., photography, personalization, tools). Finally, device identifiers, such as IMEI, IMSI, Serial

Number, ICCID, and Android ID should not be used by any app category, except perhaps for the

System. These identifiers are unique and can be used to track users across different apps and build

profiles, such as the one we showed in Fig 3.6d. Furthermore, Google explicitly discourages app

developers from using these identifiers and asks them to instead create and use their own unique

identifiers within their app [6].

Comparing the two heatmaps in Fig. 3.8 reveals that users are not as concerned about device

identifiers as they should be: 32.6% of the device identifiers per app category were categorized

37

Users Recommended

0:	Missing	
values

3:	Not	
needed	and	
not	harmful

2:	Needed	by	
the	App	

1:	I	don’t	
know/care

4:	Not	
needed
and	maybe	
harmful

(a) Exposures in plain text: Avg user rating vs. our recommended rating.

0:	Missing	
values

3:	Not	
needed	and	
not	harmful

2:	Needed	by	
the	App	

1:	I	don’t	
know/care

4:	Not	
needed	and	
maybe	
harmful

(b) Exposures in encrypted traffic: average user rating.

Figure 3.9: Heatmaps assessing the severity of exposures in encrypted vs. unencrypted packets, as
assessed by users vs. us (“experts”).

by workers as “Not needed by the app and not harmful”, although they should only be accessed

by the System. However, other responses make sense: app categories that should not require any

information to function are trusted the least (games, lifestyle, music & audio, personalization, and

tools), and categories such as weather and travel & local are trusted with location information.

Understanding Encryption. We further split the heatmap in Fig. 3.8 into Fig. 3.9a and Fig. 3.9b,

depending on whether the unencrytetd packet containing the PII was unencrypted or encrypted,

38

respectively. Our heatmaps not only reveal participants’ opinions about exposures, but also showed

behavioral patterns of app categories. From Fig. 3.9a, we see that the weather category does not

use encryption and sends Advertiser Id, Location and City to remote servers in plain text. Similarly,

maps & navigation category sends Serial Number, Location, Zipcode and City information in plain

text, but encrypts the Android ID and Advertiser ID. Sending PII in plain text is more harmful since

this traffic can be sniffed. Unfortunately, our MTurk participants did not seem to understand the

implications of transmitting data in plain text.

Understanding Destinations. We also split our heatmaps based on whether the packet is going

to App Developers (Fig. 3.10b) or Advertiser & Analytics Servers (Fig. 3.10a). As expected,

developers require more types of information in contrast to advertisers. On the other hand, ad-

vertisers should ideally only require the Advertiser ID, which is indeed fetched by almost every

app category. However, most of our participants indicated that none of the PII need to be sent to

advertisers for the app’s functionality (only 2 out of 31 values in Fig. 3.10a are below 2.5). This

indicates that perhaps users don’t consider ads being served a part of the app’s functionality. In

contrast, participants indicated more trust towards app developers (Fig. 3.10b), which is expected

as certain app categories require PII to function correctly. For example, the following pairs of PII

and categories are expected: username for applications with logins (communication, games, and

social), email for communication, and location information for travel & local and maps & navi-

gation. However, device identifies, such as IMEI, IMSI, Serial Number and Android Id are not

needed by any app category and they should not be shared with advertisers nor developers. Our

participants seem to not understand this point and they labeled most of these exposures as “Not

needed and not harmful,” while in fact these ids are most likely used for tracking. One interesting

finding is that participants showed more concern over their IMEI vs. other device identifiers. This

indicates that they may need more education about the other device identifiers.

Towards A Solution: Tools Enhancing Data Transparency and Privacy. Fig. 3.11a shows the

distribution of answers to the questions of Fig. 3.6, which essentially ask how much users care

39

(a) PII sent to Ad Servers.

1:	I	don’t	know/care

4:	Not	needed	
and	maybe	
harmful

3:	Not	needed	
and	not	harmful

2:	Needed	by	
the	App

0:	Missing	
values

(b) PII sent to Developer Servers.

Figure 3.10: Heatmaps assessing the severity of PII sent to different destination: Third-party (Ad
Servers) vs App Developers. Assessed by users (average user rating shown). The darker the color
the more concerned the users).

about privacy exposures and what they are willing to do about it. The overwhelming majority of

users would like more control over their information being shared, if a free option is available.

40

Fig. 3.11b demonstrates what payment options users would prefer for a privacy app: the majority

would prefer a one-time fee between $1 and $5, than a subscription model. These results show

that users are not only interested in using privacy-preserving tools but are also willing to pay for

them. Towards the end of the study, after being educated about the extent and severity of sharing

PII, more users were willing to pay for a privacy app, e.g., compare Fig. 3.11a to Fig. 3.11c. This

demonstrates that although users may originally not be aware or understand the risks of privacy

exposures, they become more weary after being educated about the occurrence and risks of sharing

PII (especially after learning the power of data brokers). Finally, Fig. 3.11d shows the user’s

willingness to contribute data to a privacy-preserving tools that crowdsource information (such as

Haystack, Recon, AntMonitor) before and after completing our survey. Once again, completing the

study made users more open towards using and helping a privacy-preserving app.

User Comments. At the end of the study, we asked participants for their comments and sugges-

tions; 99 out of 220 users provided their feedback. In Fig. 3.12, we summarize the comments

of all workers in the form of a wordcloud. Overall, our MTurk workers seemed satisfied with the

survey and stated that it was an educational experience. Most of the participants are thankful for

our short tutorial on mobile privacy, as they gained more knowledge about privacy and how dif-

ferent apps share their information with various destinations. At the end of the survey, they seem

more concerned about privacy and interested in a solution, including a privacy app free or paid; see

Fig. 3.11. Several participants mentioned the recent Facebook and Cambridge Analytica scandal

and wondered if our user survey was inspired by it (it was not!). Below, we provide a sample of

representative user comments, out of 99 total comments, grouped by two recurrent topics.

They learned a lot:

• “I liked this. Was this all due to what is going on with Facebook and other privacy concerns?”

• “I enjoyed taking this survey. I would not share my information with anyone that would use

the information in anyway that would be damaging to my life. Right now I am getting phone

41

(a) How much users care about privacy exposures.
(b) Monetization question at the beginning of the study.

(c) Monetization question at the end of the study.

(d) Data contribution in the beginning vs. at the end
of study.

Figure 3.11: Answers to questions of Fig. 3.6: how much do users care about mobile privacy and
what they are willing to do to protect it? Some questions are purposely repeated in the beginning
and at the end of the study.

42

Figure 3.12: Overview of main keywords extracted from 99 MTurk workers’ comments

calls I don’t want. I would pay to have those stopped.”

• “I definitely became more concerned about how much data is taken. You don’t realize how

much of your personal data is sent to advertisers and it makes you more weary of download-

ing and using certain apps.”

• “I thought it was quite enlightening. I will certainly be paying more attention to what and

how an app uses my data in the future.”

• “I definitely became more concerned about my privacy. Thank you for the wake up call.”

• “Good Study. Made me really think about how much of everybody’s information is really

out there.”

• “I am surprised to learn how much information could be linked to my email address. It is

like telemarketing on steroids and I would be willing to keep that info private I think we

should always have the option to keep our private info private.”

• “I have become a little more concerned about my privacy as some of this was new informa-

tion to me. I will definitely be doing more research on this subject in the near future. Thank

43

you for the informative study! Everything was very clear and straight forward, I appreciate

the opportunity to participate.”

• “I definitely learned more about how my private information is shared and will be more

cautious in the future.”

They are interested in using a privacy-enhancing solution:

• “I did not know all of that and if you developed a product I want it.”

• “Yes - I have been concerned, but it has been difficult to know where to start with securing

my data. I live in the US, so there is no GDPR to protect me, however I feel I can review

application requests for information in a more informed manner. I would also love to find

the service you mentioned about protecting privacy of data.”

• “Thank you. I learned a lot from this study. I hope you are able to develop something that

can help protect consumers and still allow developers to flourish.”

• “I would love a reliable app that limited/reduced data collection and increased privacy. Prob-

lem is that it’s not possible to know which privacy apps are reliable and effective, while still

allowing a service or app to be used. Even a reliable, mainstream email alternative would be

good!”

3.4 Summary

We provided a combination of a measurement and a user study of actual PII exposed by mo-

bile apps. We also defined and analyzed the context (PII type, destination domain, app cate-

gory/functionality, background/foreground, use of encryption vs. plain text) where these PII expo-

sures occur, and we distinguished between PII exposure and PII leak (which is more likely to be

44

harmful) depending on the context. In the measurement study, we analyzed a new richer dataset,

AntShield, which reveals interesting PII exposures and patterns, some of which were previously

unknown. Preliminary graph analysis revealed interesting patterns of apps and domains colluding

to expose private information. In the user study, we compiled the large amount of information from

the measurement study into a smaller number of categories (contexts) and we asked users to assess

the privacy exposures in the actual context they appeared, w.r.t. their legitimacy and risk they pose.

Most users were initially unaware of the severity and potential implications of PII exposures: they

could not identify the most critical PII or context (e.g., that it may be OK to share information

with the application server instead of third parties, such as advertises and trackers). However, they

seemed to appreciate the information they got through the study, which made them more willing to

adopt privacy enhancing tools. Our analysis combines the scale and coverage of the network-based

measurement study with the fine-granularity user input assessing privacy exposures in context [30].

Future Work. There are several directions for future work, building on the observations of this

chapter. First, the behavioral analysis of PII leaks at the end of Section 3.2 of the Chapter, revealed

similarities in the way apps and destination domains extract PII from mobile devices. Those ob-

servations can be further exploited to design machine learning approaches that can detect packets

with potential privacy exposures [120, 31], further inspect them and eventually prevent an actual

leak (e.g., by using real-time tools like AntMonitor to block a packet or obfuscate a PII). Second,

the user study showed that users are interested in and are capable of being educated about their

data, and they want to adopt better privacy practices and new tools (such as AntMonitor, Recon or

Haystack) to enhance data transparency and privacy control.

45

Chapter 4

FedPacket: A Federated Learning

Approach to Mobile Packet Classification

4.1 Overview

In this chapter,1 we focus on network-based approaches that inspect packets transmitted out of

mobile devices in order to detect PII, tracking, ad requests, malware or other activities; an example

is depicted on Fig. 4.1. This information can then be used to take action (e.g., block outgoing

packets), to inform the user, or for measurement studies. Early approaches (e.g., Haystack/Lumen

[111] and AntMonitor [122]) performed deep packet inspection (DPI) and string matching to find

PII in a network packet. Mobile browsers [2] use manually-curated filter-lists [8] to match URI

and other information and block ad requests.

Machine learning approaches have been proposed to predict PII [115, 120, 121], ad requests [124]

or tracking [123] in outgoing packets, based on features extracted from HTTP requests. These

1© 2021 IEEE. Reprinted, with permission, from E. Bakopoulou, B. Tillman, A. Markopoulou, “FedPacket: A
Federated Learning Approach to Mobile Packet Classification”, IEEE Trasactions on Mobile Computing, 2021. The
published version can be found here: https://ieeexplore.ieee.org/document/9352526.

46

https://ieeexplore.ieee.org/document/9352526

Figure 4.1: Example of an outgoing HTTP packet, sent from an app on the mobile device to
a remote server. The URI field alone reveals a lot of information, including various identifiers,
referred domain, location, etc. that can be used for fingerprinting and tracking users.

classifiers are trained using labeled packet traces, obtained either through manual/automatic testing

of apps, or by devices labeling packets from real user activity and uploading them to a server. Fig.

4.2 depicts the spectrum of approaches for training such models. At one extreme, we have the the

Local approach (Fig. 4.2(a)): mobile users label packets on their device, train and apply their own

classifier locally. In this case, users do not share any information with untrusted servers or other

users, thus preserving their privacy. However, they do not benefit from the global training data that

is available on a large number of devices to generalize. At the other extreme, we have the Centra-

lized approach (Fig. 4.2(b)): mobile users upload their packet logs to a central server, which then

trains a global classifier and shares it with all users to apply on their devices. However, network

packet traces, collected on users’ devices, contain sensitive information (in the label, features, or

any part of the HTTP packet) that users may not want to share with a server or other users, because

it directly exposes sensitive identifiers (GPS location, device ids) and can be used to infer further

sensitive information, such as browsing history.

In this chapter, we propose FedPacket for federated mobile packet classification, which combines

the best of both worlds: it allows devices to collectively train a global model, without sharing their

raw training data. The Federated Learning (FL) framework was originally proposed to collabora-

tively train machine learning models, for text and images, from mobile devices without sharing raw

training data [93]. An overview is depicted on Fig. 4.2(c). The main idea is that mobile devices

47

(a) Local: share nothing (b) Centralized: share training data

(c) Federated: share model parameters, not data

Figure 4.2: Overview of general approaches to train machine learning models for packets from
mobile devices.

train a local model, and send only model parameters to the server, instead of their raw training

data; the server aggregates the information from all users, and sends the updated parameters of the

global model to all devices, and the process repeats until convergence. In this chapter, we apply

FL to classify outgoing HTTP packets w.r.t. two specific tasks, namely predicting whether an out-

going packet contains: (1) exposure of Personally Identifiable Information, which we refer to as

PII; or (2) an Advertising (Ad) request, which typically results in an ad being served in the HTTP

response. Methodological challenges we had to address include model and feature selection and

tuning the FL parameters, specifically for packet classification.

With respect to model selection, we had to bridge the gap between the theory of federated learn-

ing (originally developed for image classification using Stochastic Gradient Descent (SGD)-based

models, such as Deep Neural Networks (DNNs)) and the practice in network packet classifica-

tion (previously relying on Decision Trees (DTs) [115, 121, 124, 123], whose rules have intuitive

48

interpretation and can be implemented as regular expressions to easily filter traffic on mobile de-

vices). Unfortunately, DTs do not naturally lend themselves to federation, because they are not

SGD-based. In this chapter, we choose Federated SVM as the core of our FedPacket framework,

as discussed in detail in Section 4.2.3.

With respect to feature selection, we propose a feature space based on HTTP keys that performs

well for both classification tasks (since PII exposure and Ad requests use the same fields to profile

users), while protecting sensitive information and reducing the feature space. First, we observe

that not only training data, but also features can expose sensitive information; e.g., that would be

the case if some of the PII shown in Fig. 4.1 were selected as features.Therefore, we use only

HTTP Keys as features from an HTTP packet, (i) keys from URI and Cookie fields (ii) custom

HTTP headers and (iii) the presence of a file request. We purposely do not use neither destination

domains or hostnames, nor any information from the URI path (which could be sensitive itself if

a user visits a sensitive website with i.e., political, medical or religious content) but only the keys

mentioned above. Prior work [115, 124] used all the words from the HTTP packets after discarding

the most frequent ones and the rarest ones. Our choice of features not only minimizes the sharing of

sensitive information, but also reduces the number of parameters that need to be updated. Second,

we observe that the size of the feature space depends on the mobile apps and third-party libraries.

For example, Webview apps can access any domain, which leads to an explosion of feature space

size and wide variation across users; in contrast, non-Webview apps have limited APIs and result

in a small feature space, which is the same across different users.

We evaluate our methodology and show that it achieves high F1 score for both classification tasks

(PII exposure and Ad Request), with minimal computation and communication. To that end, we

use three real-world datasets: the publicly available NoMoAds for Ad requests [124, 13] and

AntShield for PII exposures [120, 4]; and our in-house datasets collected from real users. For

the first two datasets, we create synthetic users by splitting the data evenly or unevenly, and we

evaluate how it affects FL. We compare Federated to Centralized and Local approaches w.r.t. the

49

classification performance, communication rounds and computation. We show that the Federated

models are superior to Local models and comparable to their corresponding Centralized models,

in terms of classification performance (they achieve an F1 score above 0.90 for PII and above

0.84 for Ad request prediction), without significant communication and computation overhead per

device. We also demonstrate the benefit of crowdsourcing: a relatively small number of users

is sufficient to train a Federated model that generalizes well. Finally, we evaluate different user

selection strategies w.r.t. convergence and show that random client selection performs well.

Finally, we address privacy considerations. FedPacket clearly improves the privacy of mobile

packet classification, by enabling devices to collaboratively train a classifier, without uploading

their raw training data to a server. Although it significantly raises the bar in the arm-race, federated

packet classification is not immune to inference attacks, which are inherent to any distributed

learning approach [96, 98, 147, 64, 138]. In Section 4.5, we demonstrate an attack by an honest-

but-curious-server that uses the non-zero gradient updates to infer the features of a target user,

and we evaluate its sensitivity to various FL parameters. Furthermore, we show what additional

sensitive information can be inferred, such as predicting the websites that a user has visited. To the

best of our knowledge, this is the first time that such inference attacks have been demonstrated on

HTTP data, and are specific to our problem setup. To mitigate these attacks, we show that Secure

Aggregation on top of FL [38], can provide effective protection against feature leakage, essentially

by anonymizing the gradient updates.

The rest of this chapter is organized as follows. Section 4.2 presents our methodology for Fed-

Packet. Section 4.3 provides more information about the datasets used for evaluation. Section

4.4 presents various scenarios and provides insights along the way. Section 4.5 presents privacy

attacks and mitigation approaches specific to FedPacket. Section 5.6 concludes the chapter.

50

4.2 Methodology

4.2.1 Problem Setup

Our goal is to train classifiers that use features extracted from HTTP requests coming out of mobile

devices, to predict whether those packets contain information of interest, i.e., a PII exposure or an

Ad request.2 In order to train such classifiers, we need training data, i.e., packet traces and labels

indicating whether a packet contains the information of interest. We assume that training data are

crowdsourced, i.e., obtained and labeled on mobile devices and sent to a server that aggregates

them and trains classifiers. We also assume that the devices do not trust the server or other devices

but they do want to contribute to the training and use the resulting global classifier. Our goal is

to provide a methodology that enables devices to collaborate in training global classifiers, while

avoiding to upload training data or even sensitive features to the server.

We apply Federated Learning (FL), for the first time, to the problem of mobile packet classification,

which has some unique characteristics and challenges. First, FL has been developed in the context

of either text classification (with dictionary words) or image classification. However, the features

extracted from packets are non-dictionary words (URI keys are random combination of letters

as defined by API developers) and we cannot use well-known pre-trained embeddings on NLP

corpus. Second, state-of-the-art on PII/Ad Request classification [115, 121, 124] trained DTs in

fully centralized way, and features e.g., words extracted from packets) were fixed a priori. In our

case, mobile devices must share their feature space before they start FL, which poses both privacy

and scalability challenges. The privacy concerns go beyond the usual ones in FL (i.e., sharing

training data) since a value used as feature may reveal sensitive information (thus we propose to

use only HTTP keys, not values, as features). W.r.t. scalability, the union of features from all users

may explode as more and more users participate and share their feature space. This is especially

2Being able to classify packets enables further action i.e., blocking the packet or obfuscating sensitive information,
which is out of scope here.

51

Figure 4.3: Our pipeline for FedPacket. During training, the input is a packet trace with HTTP
packets sent from mobile apps to remote destinations, labeled for the Tasks (PII Exposure, Ad
Request); the output is an ML model, which is trained in a local, centralized or federated way.
During testing, the input is an HTTP packet, and the output is a binary label (indicating the presence
of PII or Ad request).

true for Webview apps, where users have completely different browsing behaviors, thus URI keys.

This combined with the lack of well-known embedding for URL words, makes scalability a unique

challenge for federated packet classification setup, and one we demonstrate for the first time here.

Federated Learning Approach. To achieve this goal, we apply the FL framework (depicted on

Fig. 4.2c) for the first time to the problem of mobile packet classification. This requires addressing

several challenges and making design choices and optimizations, specific to our context, such as

the following.

Q1. What features can best predict the target label (i.e., PII exposure or Ad request) in a packet?

Section 4.2.2 discusses how we select HTTP Keys features from HTTP packets, to achieve high

classification performance while also meeting privacy and other constraints.

Q2. What model should we train with FL? Section 4.2.3 compares different models and proposes

Federated SVM.

Q3. What datasets should we use to train and test those classifiers? Our training dataset consists

of HTTP packets sent by mobile devices, labeled appropriately for each prediction task, i.e., with

binary labels to indicate PII exposure or Ad requests in each packet. Collection can be done using

an existing VPN-based tool for intercepting traffic on the mobile device [122], and labeling can

be done using DPI [115, 121, 120], blacklists [8] or other tools [124]. Section 4.3 provides more

information about the three real-world datasets used in this chapter.

52

We focus on adapting and evaluating the FL framework specifically for mobile packet classifi-

cation. An overview of our pipeline is provided on Fig. 4.3 and is described in the rest of this

section.

4.2.2 HTTP Features

Feature extraction. We build on the Recon [115] approach which was used by follow-up clas-

sifiers [121, 120, 124]: every HTTP packet is split into words based on delimiters; the resulting

words include keys and values from all HTTP packet headers. Fig. 4.4 shows an example HTTP

packet from Bitmoji (mobile app that creates personal avatars), which sends several identifiers

(Android Id, Advertiser Id and zip code) to an ad server. The question is which words to select as

features to predict the presence of PII or Ad request in packets, while facilitating FL, preserving

privacy and meeting other constrains.

There are several challenges when defining this feature space. First, we need to consider the trade-

off between privacy and classification performance. This implies that we may not use some words

that can help accurately classify packets, if these features themselves expose sensitive information

(e.g., part of URLs and domains can contain sensitive information about user’s political views,

medical conditions or sexual orientation); to that end we do not use any values as features, only

keys. Second, the feature space must have a small size (for high training speed, low memory and

computation overhead for updates) and be fixed and known to all participating devices in the FL.

Taking these constraints into account, we consider three different feature spaces, two baselines and

our proposed one.

Baselines: All Words vs. Recon Words [115, 121, 120, 124]. Instead of considering the union

of all words as the feature space (All Words), Recon applied heuristics to remove the words that

appear rarely and the most frequent words (stopwords, which correspond to common HTTP head-

ers, common values such as values parsed from the user agent header). This results in removing

53

Figure 4.4: An HTTP packet in JSON, where Android Id, Advertiser Id and zipcode are sent
by Bitmoji app to an ad server (doubleclick.net) and thus, it would be labeled positive both for
PII exposure and Ad request. Our HTTP Keys features are highlighted in bold: these keys are
defined by the HTTP protocol and extracted from (1) the URI query keys, (2) the Cookie keys
and (3) custom HTTP headers (i.e., “Bitmoji-User-Agent”). Compared to baselines (All Words,
Recon Words), HTTP Keys do not use sensitive information i.e., “city X”.

some but not all values from consideration. In particular, Recon discards the values after the “=”

delimiter, however certain values that do not follow this syntax will not be removed from the fea-

ture space and those might contain sensitive information. We refer to the remaining features as

Recon Words. The URI path also contains potentially sensitive information and words from URI

path are also included in Recon Words. Fig. 4.4 shows an example HTTP packet and a subset of

the vocabulary from Recon Words, which includes sensitive values such as “city X”.

Our feature space: HTTP Keys. HTTP keys describe the API calls made by an app or library to

destination domains, and they are common across all users of the app/library, as opposed to values

that may be specific to the users. For example, many apps use advertising/tracking libraries, and

will contain a key-value pair “adid=1234” in the URI header of their outgoing HTTP packets. All

users will have the key “adid” in their URI and the presence of such key indicates an ad request.

In contrast, the value of each user’s adid is specific to that particular user; if used as a feature (1)

54

it would lead to overfitting and (2) could be used as a sensitive PII. In FL, first, all mobile devices

and the server need to agree on the model and features and then they exchange model parameters

updates. Both the features themselves and the parameter updates can potentially contain sensitive

information. To avoid that privacy risk, we purposely limit our feature space to use only non-

sensitive keys from HTTP packets. In particular, we consider the structure of HTTP packets and

extract features from: (1) the URI query keys, (2) the Cookie keys, and (3) custom HTTP headers;

and (4) whether or not there is a file request in the packet. We refer to this set of features as

HTTP Keys.

First, consider the URI: it typically contains a relative path on a given domain and queries, usually

built using key-value pairs separated by “&”. Sensitive information in URI typically appears in

relative paths and query values, while query keys represent API calls to the destination domain.

We only use query keys as features. We do not extract any features from the domain or the URI

path, as it may contain sensitive information about the user. Second, we include keys from the

Cookie field. Query keys from these two fields are sufficient to extract features for most packets

in our datasets. Third, to differentiate more packets, we extract custom HTTP headers, which are

defined by apps and can embed sensitive information about users. In recent years, apps have started

using custom headers to provide app specific functionality. We remove the standard HTTP headers

[20] from all HTTP headers to retrieve the custom ones.

Finally, if a packet does not have any keys in the URI, Cookie fields or custom HTTP headers, we

include file request– a Boolean feature that indicates the presence of a file request. This case will

be mainly a benign activity i.e., requesting static HTML content. Packets that do not contain any

of the four features, which we refer to as keyless, are excluded from our pipeline.

Feature Space Size. Selecting HTTP Keys as features already reduces the feature space. However,

the feature space size varies widely across apps and users. Various apps use various APIs (which

leads to different query keys and thus HTTP Keys) and they may contact different domains. We

differentiate between two broad categories of apps based on the number of contacted domains:

55

apps with or without Webview. Webview apps can contact any domain and present web content in

the Webview (i.e., browsers, social media apps like Facebook). Non-Webview apps are more likely

to only contact a small fixed set of domains, e.g., back-end servers, analytic and advertisement

services. Apps with Webview present new challenges, as the feature space could explode with

hundreds of features from every new user, who visits previously unseen domains. We discuss

more about Webview apps and their impact on the features in Sec. 4.3.

Vocabularies. Vocabularies are used in ML models with non-numerical features; in our case the

vocabulary is the unique words in the dataset. Throughout this chapter, we refer to vocabulary and

feature space interchangeably. In this work, we use Multi-hot encoding to represent the extracted

words per packet, which is a sparse binary vector with the length of the vocabulary such that it has

1s at the locations of words in the vector; 0 otherwise. An example is shown at the bottom of Fig.

4.4. We use the same feature space for both classification tasks (Ad request and PII exposure),

because there is a relation between the two tasks: apps use PII information for serving ads. In FL,

the vocabulary must be fixed and shared apriori between all mobile devices and the server. Re-

con Words potentially expose sensitive information during the construction of such shared feature

space. Fixing a vocabulary across various users is successful when the feature space is fixed i.e.,

non-Webview apps. The intuition is that a single user might not explore the entire API of a service,

but across multiple users this is more likely to happen.

4.2.3 Model Selection: Federated SVM

Once the feature space is fixed, our goal is to train a model using FL. The first step is to select

the classification model, e.g., Decision Tree (DT), Random Forest (RF), Deep Neural Networks

(DNNs), Support Vector Machines (SVM), etc. Next, we train that model in a Federated way (Fig.

4.2(c)) and compare it to its Centralized (Fig. 4.2(b)) and Local versions (Fig. 4.2(a)). The choices

we evaluate across these two dimensions (classification model and degree of collaboration among

56

users) are summarized under “Model Training” on Fig. 4.3.

Selecting SVM as the Classification Model. State-of-the-art classifiers for mobile packets have

trained DTs [115, 120, 124] to predict PII exposure or Ad requests based on features extracted

from outgoing HTTP packets. DTs were chosen primarily due to: (i) their interpretability (nodes

in the trees are intuitive rules) for small tree sizes, and (ii) their good classification performance

and efficiency for on-device prediction [121, 120, 124] – they can be implemented as regular ex-

pressions to filter traffic on the mobile device. Unfortunately, DTs do not naturally lend themselves

to federation which has been developed for models based on Stochastic Gradient Descent (SGD),

and there is no framework for “aggregating” multiple DTs collected from multiple devices at the

server in a federated way. In this work, we choose Federated SVM as the core of the FedPacket

framework. We show that (i) SVM performs similarly to DTs for our problem, (ii) Federated

SVM achieves similar F1 score to Centralized SVM, within few communication rounds and with

low computation cost per user, and (iii) SVM can be as interpretable as DTs and we also discuss

knowledge transfer between the two.

Federated averaging uses models based on SGD, primarily DNNs [93]. In SGD-based models,

the mobiles and the server exchange gradient updates, and the server simply averages the local

gradients to update the global model. Unfortunately, DNNs require a large number of samples

to train, which is costly (in device resources and user experience) to obtain and train on mobile

devices. While FL is mostly used to train DNNs, it applies to any SGD-based model. In this work,

we select SVMs. Compared to DTs: SVMs are SGD-based (amenable to federation), achieve

similar F1 score (due to the simple binary vector representation with multi-hot encoding) and

interpretability (via weight coefficients). Compared to DNNs: (1) SVMs use fewer parameters

which means less computation, communication and faster training; (2) Linear Kernel SVMs have

convex loss functions where more principled guarantees can be provided for convergence; (3)

SVMs usually perform better than DNNs on datasets with limited size; (4) SVMs are easier to

interpret.

57

Algorithm 2: Federated SVM
1 Given K clients (indexed by k); B local minibatch size; E number of local epochs; R number of

global rounds; C fraction of clients; nk is the training data size of client k; n is the total data size
from all users and η is learning rate.

2 Server executes:
3 Initialize w0

4 for each round t = 1,2, ... R do
5 m← max(C ·K, 1)
6 St ← (random set of m clients)
7 for each client k ∈ St in parallel do
8 wkt+1 ← ClientUpdate(k,wt)

9 wt+1 ←
∑K

k=1
nk
n w

k
t+1

10

11 ClientUpdate(k,w):
12 Bk ← (split of local data into batches of size B)
13 for each local epoch i from 1 to E do
14 for batch b ∈ Bk do
15 w ← w − η

B

∑
i∈Bk

yi ·xi, when yi(wixi) < 1

16 return w to server

Federated SVM. In this work, we use Federated SVM with linear kernels. The linear kernel SVM

minimizes the following objective function, f , over weight vector w:

f(w,X, Y) =
∑
i

l(w, xi, yi) + α||w||2, (4.1)

where xi is the feature vector (i.e., the Multi-hot encoding for a packet), yi is the binary label, α is

the regularization term and the Hinge loss function: l(w, x, y) = max(0, 1 − y · (w ·x)). Pegasos

[117] applied the SGD algorithm for SVM, which we call “SVM SGD”. The Hinge loss function

is convex and has the necessary sub-gradients, i.e., if y ·w ·x < 1, then Ol(w, x, y) = −y ·x,

otherwise 0. This step is easily added to the SGD algorithm, but more importantly to Federated

Averaging [93].

Algorithm 1 shows the Federated SVM algorithm: we apply the SVM-based gradient updates to

the Federated Averaging [93]. Federated SVM trains an SVM model distributively over K clients

(corresponding to mobile devices), where C fraction of the clients update their model in each

58

round and all clients update the global model by averaging their model parameters. A client update

consists of multiple local epochs E, and minibatch split of local data into B batches similarly to

standard SGD algorithm. Clients compute the SGD updates based on the above Hinge loss.

Client Selection. To select the k clients in a round based on the C fraction of users, we follow

the original FL paper [93], where users are chosen at random and uniformly. However, there is

ongoing research on how client selection affects convergence [76]. The authors in [85] proposed

selecting clients based on probabilities proportionate to their train data size. In this work, we show

in Sec. 4.4.4 that the random client selection performs reasonably well in comparison to two other

client selection strategies based on train data size. However, in practice the server might not be able

to select clients with these ideal conditions, but rather it depends on how many users are connected

to Wi-Fi, charging their device and time of the day (e.g., night) [76, 99].

The Federated SGD algorithm is a special case of Federated Averaging for C = 1, E = 1, B =∞

[93] (i.e., use every client in a round with a single pass on all their local data once). Usually, we

look to push more computation to the clients by setting E > 1 and B to a small number, and use a

small fraction of clients C in each global round. [93] explores the trade-off between these hyper-

parameters and shows how to decrease the global rounds R required to reach a target accuracy on

the test sets for image classification and next word prediction. The FL framework trains a shared

model, hence the feature space has to be fixed and shared across multiple users. Moreover, the

feature space size affects parameter updates, and thus communication costs during training.

Federated vs. Centralized and Local models. Once we have fixed the feature space and the

underlying model (SVM with SGD and linear kernel), we compare the Federated vs. Centralized

and Local models, as shown in the overview depicted in Fig. 4.2.

• Local models are trained on data available on each device, similarly to prior works [115, 121,

120, 124]. Devices share nothing, thus preserving privacy but not prediction power.

• Centralized models: devices upload their training data to a server, where a global model

59

is trained, similarly to previous works [115, 121, 120, 124]. This approach trains better

classifiers but shares potentially sensitive training data.

• Federated models: devices do not share training data with the server, but send model param-

eter updates to the server, which then aggregates, updates the global model and pushes it to

all devices; the process repeats until convergence.

4.3 Datasets Description

Prior Work HTTP Keys

Dataset #Apps/Users #Packets #Ads/PII #Features #URI #Cookie #Custom #File #Keyless #Dest.
All/Recon Words keys keys Headers Requests POST Packets Domains

NoMoAds 50/(synth) 15,351 4,866/4,427 12,511/6,743 2,580 216 204 3,342 2,334/2,123 366
AntShield 297/(synth) 41,757 -/8,170 39,304/19,778 3,855 302 609 4,644 8,836/777 674
In-house

1/8 real 84,716 -/3,424 40,936/22,714 7,573 3,591 47 12,903 13,786/153 1,607
Chrome
In-house

1/10 real 33,580 -/1,347 11,921/6,718 4,370 1,160 19 172 12/0 861
Facebook

Table 4.1: Summary of datasets: total features (our HTTP Keys vs. prior work), total packets,
users, visited domains and classification labels.

We use three real-world datasets, summarized on Table 4.1, to evaluate the performance of our

federated approach, w.r.t. two packet classification tasks: PII exposures and Ad requests. For

the in-house datasets, to run our ML algorithms, we have preprocessed the raw packet traces into

JSON, by keeping only HTTP packet-level information. We redacted all user sensitive information

with a prefix and the type of PII it contained (e.g., ANT email) and labeled the packets with

exposures if they contained one of these scrubbed PII exposures.

Packet Classification Tasks. In all three datasets, a packet is considered to have a PII exposure,

if it contains some personally identifiable information (PII), including the following, as defined

in prior work: (i) device identifiers, i.e., International Mobile Equipment Identity (IMEI), Device

ID, phone number, serial number, Integrated Circuit Card ID (ICCID), MAC Address; (ii) user

identifiers i.e., first/last name, Advertiser ID, email, phone number; (iii) Location: latitude and

longitude, city, zipcode. Our framework can be used to detect more PII types if the corresponding

60

labeled ground truth is provided. If a packet contains at least one of these PII types, we assign

label 1 to the packet, otherwise 0. For the ad prediction task, if a packet contains an Ad Request it

is labeled as 1, otherwise 0.

Summary of the Datasets. Table 4.1 summarizes the feature space, as relevant to our federated

learning framework, including: number of unique features (URI keys, Cookie keys and custom

HTTP headers), number of packets, keyless packets and how many of them were POST requests,

packets that contain a file request only but no other features, and unique destination domains.We do

not include HTTP POST packets in our training or testing, or keyless packets, i.e., packets without

any features (query keys in the URI or Cookie field, custom HTTP headers, or file request). There

is no standardized syntax for the POST body in order to obtain only the keys without parsing the

values too. Thus, for privacy reasons we decided to not parse them at all and to discard such

packets from our experiments.

The AntShield dataset contains the most apps and packets with a PII exposure (8,170), while in--

house Chrome contains the most packets (84,716) and the highest number of unique domains

(1,607). In the NoMoAds dataset, the feature space has 12,511 features with All Words from the

HTTP packet (including values) and 6,743 using Recon Words. On the other hand, HTTP Keys

uses only 3,001 features (Table 4.1: sum of URI, Cookie keys, custom headers + 1 for file request),

which is less than half of the Recon Words. Similarly, in the AntShield dataset the feature space

increases from 4,767 with HTTP Keys, to 19,778 Recon Words and to 39,304 with All Words.

This explosion of feature space affects the training speed, the size of the trained models and might

expose sensitive information of user data (i.e., values to sensitive keys). The benefit of our HTTP-

Keys approach is the following: (1) our significantly reduced feature space can describe both

prediction tasks (Ads and PII), (2) users share limited sensitive information, without sacrificing

classification accuracy and (3) the reduced number of features leads to smaller models and faster

training, which is important in mobile environments.

Webview vs. non-Webview apps. Webview is an Android component that can be embedded into

61

Chrome Intersection Union #Packets #Domains
features features

In-house 370 11,212 84,716 1,607
AntShield - 75 206 15
NoMoAds - - - -

Facebook Intersection Union #Packets #Domains
features features

In-house 14 5,550 33,580 861
AntShield - 63 110 4
NoMoAds - 820 392 82

Table 4.2: Two Webview apps and comparison of their feature space in our datasets. We present
the intersection/union of features, number of packets and domains across all datasets.

an app to view the web (albeit more light-weight than a browser). We call “Webview-apps” the

apps that allow the user to browse the web, which in turns leads to more unpredictable URLs and

key-value pairs (HTTP Keys). An example is Chrome which can visit unlimited domains; each

domain will have its own set of features (HTTP Keys). As more domains are seen, the feature

space explodes. See Table 4.2, where users had only 370 common keys for Chrome but if we

consider the union of visited domains from all users, the feature space explodes to 11,212. We

observe a similar explosion of the feature space in our in-house Facebook data, which results in

only 14 common features out of 5,550 features across 10 users. In contrast, a non-Webview app

will, generally, have a fixed feature space that includes keys corresponding to API calls of that app.

Overall, the feature space of Webview apps depends on the usage of each app, e.g., the duration

(in terms of packets), user behavior (in terms of domains visited). Fig. 4.5 shows the distribution

of features and domains for the top 12 apps with most features in our in-house dataset. There is a

positive correlation between the number of features and visited domains for each app. This is not

surprising since the number of visited domains will increase the total features. Webview apps, i.e.,

Facebook and Chrome, have the most features, as expected.

In contrast, non-Webview apps have fewer features due to their limited number of contacted do-

mains. In this chapter, we assume that the datasets contain all possible visited domains and the

feature set is fixed. To do so, we extract the union of HTTP keys from all users and we assume this

62

Figure 4.5: Number of features and domains for the top 12 apps with most features from our
in-house dataset. The number of features correlates with number of visited domains.

global feature space is known to the server and all users in advance when they are initializing their

corresponding models.

Dealing with Heterogeneity. Dealing with system and data heterogeneity across different users,

and the related notion of personalization, are open problems in FL [76]. FedProx [84] adds a

proximal term to restrict the local model’s weights to be closer to the global model. The Continual

Learning (CL) literature can tackle convergence in non-IID settings primarily for streaming data,

using methods such as: 1) Generative Replay/Memory Rehearsal [102, 26, 27], not applicable to

FL due to the need of data sharing; and 2) regularization-based methods [118, 142, 143] adapted

to address differences between CL and FL (such as: sequential vs. parallel tasks, one-pass of data

vs. multiple passes, etc.). These works aim to achieve better generalization and tackle catastrophic

forgetting [77] in non-convex settings mainly by identifying parameters that are most informative

for each task and penalizing the changes to these when a new task is being learned. In this work,

we chose linear kernel SVM, which has a convex loss function, and we show empirically that it

reaches convergence within tens of communication rounds in various settings (IID and non-IID

data); Sec. 4.4.4. The CL methods could further speed up convergence, but they would also add

computation and communication cost, i.e., tripling the size of the model parameters exchanged

[118], or the need of a proxy dataset on the server [142].

63

Pipeline Options

Dataset: NoMoAds AntShield
In-house Chrome
Facebook

Users: Real users
Even split Uneven split
with k users with k users

Classifier
General Per AppGranularity:

Models: Federated SVM Local SVM
Centralized SVM
/baselines

Tasks: PII exposure Ad request Domain

Table 4.3: Parameters of the Evaluation Setup.

4.4 FedPacket Evaluation

General Setup. For each scenario evaluated in this section, we describe the evaluation setup,

rationale and results in terms of classification accuracy, communication and computation cost.

Table 4.3 lists the possible options for evaluation based on our pipeline defined in Section ??. We

compare the Federated model to Local and Centralized models where the test data comes either

from a user or is the union of test data from all users.

We train only general and per-app models, but no per-domain model (it would be impractical to

train a model for each domain since there are too many). We split the available data into 80% train

and 20% test data and compute F1 score on the positive class (i.e., Ad request or PII exposure is

detected). Before training, we balance our dataset via down-sampling the majority class (non-PII,

non-Ad) so that it contains an even amount of positive and negative examples to avoid training with

a bias towards the most frequent class. We chose down-sampling over oversampling the minority

class, as we did not want many users having the same (over-sampled) datapoints from the minority

classes which can boost the classification performance. For each of the following experiments we

train and test five times each model (unless mentioned otherwise) to obtain an average F1 score.

Creating synthetic users. The NoMoAds and AntShield datasets do not come from real users,

since they were produced manually or automatically via Monkey [18] scripts. We create k synthetic

64

users by partitioning the available data via two different approaches: a random split into equal

amounts of data (even split) and a random split of data with random sizes of sampled data so

that each user contains a different amount of packets (uneven split). The synthetic users have

Independent and Identically Distributed (IID) data since they are sampled/created from the same

overall distribution. The type of split (even or uneven) controls how homogeneous/balanced the

users are in terms of total amount of data. This is different from the real users who are non-IID and

unbalanced, as their local data are not sampled from the same distribution and they also differ in

terms of data size. We test both methods and show their results, since the advantage of FL is that

it can handle various distributions of data across participating users. For both synthetic and real

users, we apply the train and test split per user to train Local, Centralized or Federated classifiers.

Moreover, we show in Sec. 4.4.4, that training on a subset of users can provide good classifiers for

all users.

4.4.1 Scenario 1: Centralized Models

Setup 1. In this experiment, we use the following setup from Table 4.3: Dataset: NoMoAds.

Users: None. Classifier Granularity: General. Models: Centralized SVM (linear and non-linear

kernel, SGD) and baselines (DT, RF). Tasks: PII exposure and Ad request. The goal is to validate

our choice of Federated model (SVM with SGD) and feature space (HTTP Keys and file request)

in the rest of the chapter.

Results 1a: HTTP Keys vs. Recon Words features. In Table 4.4, we compare various Centralized

models on 4 different feature spaces: HTTP Keys (3,000 features), HTTP Keys with file request,

Recon Words (6,580 features), All Words (12,195 features). HTTP Keys with file request uses

a smaller feature space (3,001) but achieves an F1 score above 0.94 and 0.85 for PII and Ads,

respectively. Adding the file request feature includes more packets which results in a classification

loss of approximately 8% (Ads) and 3% (PII). The drop in performance is slightly larger for Ad

65

Feature Space (# Features) HTTP Keys (3000) HTTP Keys + file request (3001) Recon Words (6,580) All Words (12,195)
Task Ads PII Ads PII Ads PII Ads PII

Centralized Classifier F1 score F1 score F1 score F1 score F1 score F1 score F1 score F1 score

Decision Tree (DT) 0.936 0.98 0.854 0.95 0.98 0.984 0.979 0.983
Random Forest (RF) 0.938 0.981 0.861 0.949 0.982 0.986 0.979 0.987

SVM with SGD 0.929 0.975 0.838 0.944 0.971 0.981 0.975 0.979
SVM linear kernel 0.933 0.979 0.857 0.952 0.984 0.984 0.981 0.984

SVM rbf kernel 0.706 0.762 0.625 0.744 0.785 0.756 0.761 0.719

Table 4.4: Results 1a and 1b. The performance of various ML models on the NoMoAds dataset for
the two tasks: Ads and PII prediction. The reported F1 score is averaged, after training and testing
each model 5 times. We show that SVM with SGD performs as well as DT and RF. We increase
the feature space (packet information used) from left to right. HTTP Keys results in significant
reduction in the number of features, while achieving high F1 score for PII (0.94) and for Ads
prediction (0.85).

20 3000 6580 12195
of features

0.88

0.90

0.92

0.94

0.96

0.98

F-
1

sc
or

e

More Privacy Less Privacy

Ads
PII

Figure 4.6: Feature explosion and privacy vs. utility for top 20 important HTTP Keys (from Fig.
4.8), HTTP Keys (3,000), Recon Words (6,580), All Words (12,195) depicting Table 4.4.

prediction, since our feature space does not include information from domains that is important for

this task as shown in [124]. Prior work [115, 121, 120, 124] uses domain information in addition

to other potentially sensitive features, and achieves higher F1 score. There is always a trade-off

between privacy and utility, however, our defined feature space and the distributed framework are

good steps towards private packet classification, without sacrificing classification performance.

Fig. 4.6 depicts Table 4.4: we reduce features from All words (12,195) to Recon words (6,580)

and HTTP keys (3,000), and finally to the 20 most important HTTP features (from Fig. 4.8) and

evaluate the F1 score. F1 score decreases but remains above 0.9 for HTTP keys, considering

66

2000 4000 6000 8000 10000
features

0.6

0.7

0.8

0.9

F-
1

sc
or

e
Hostname

HTTP keys
URL host + path

URL host +
 path + keys

task
Ads
PII

Figure 4.7: Utility vs. privacy and feature explosion when using features from different parts of
the URI compared to HTTP Keys feature space.

the 50% reduction from Recon words to HTTP keys, which excludes sensitive information from

packets, i.e., values to sensitive identifiers or URI domain and path. This balance of privacy vs.

utility trade-off applies to both tasks.

Figure 4.8: Top 10 negative and positive coefficients and the corresponding features obtained from
Centralized SVM with HTTP Keys for PII.

Privacy-utility tradeoff. We show in Fig. 4.7 how the F1 score is affected when we use different

parts of the URI as features; 1) URI domain only (or hostname), 2) URL host and URI path and

3) full URL including keys but not values. For comparison, we add a datapoint that corresponds to

the performance with HTTP Keys. The results show that features extracted only from hostnames

67

0.0 0.2 0.4 0.6 0.8 1.0
regularization term alpha

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

F1
 s

co
re

task
PII
Ads

Figure 4.9: Regularization term α and its effect on F1 score for Centralized SVM with SGD for
both tasks.

are not sufficient to achieve a high F1 score. Adding more information from the URI results in

better F1 score, but is also more vulnerable to privacy attacks that can infer sensitive information

about user’s train data, such as values to identifiers3 or user’s browsing history; see Section 4.5.

In contrast, the HTTP Keys feature space achieves high F1 score while using limited sensitive

information from users. In addition to privacy risks, using more features results in models with a

large number of parameters, which in turn increases the training time and the model size.

Results 1b: SVM with SGD performs similarly to Decision Trees. Table 4.4 compares SVM

with SGD to state-of-the-art baseline models, such as Decision Tree (DT) and Random Forest (RF)

(used in prior work [121, 115, 124]) on the NoMoAds dataset. For all feature spaces (i) the linear

SVM and SVM with SGD perform similarly to DT and RF; and (ii) SVM with a non-linear kernel

(rbf) seems to not generalize well and it is likely to overfit. Thus, we select SVM with SGD as the

basis of our FL framework.

Results 1c: SVM Parameter Tuning. After the comparison of different kernels for SVM in

Table 4.4, we tuned further the SVM with SGD via Grid Search and Randomized Parameter Op-

timization. Grid Search exhaustively picks each parameter value within a provided range [10−5, 1]

3An example of sensitive identifiers is shown in Fig. 4.8 i.e., trace id, adid (advertiser id), and lat-long. The latter
corresponds to precise location and it is embedded in custom HTTP headers indicating even higher privacy risk.

68

and evaluates its F1 score with 5-fold cross validation on hold-out data. Randomized Parameter

Optimization is similar but it samples 30 values randomly with a Log Uniform distribution from

[10−4, 1]. We used both methods to tune the regularization term α as shown in Fig. 4.9. For the rest

of the experiments, we chose α = 0.0001 which maximizes the F1 score for both prediction tasks.

Regarding the learning rate η, we use the “optimal” η as defined by L. Bottou [41, 40] throughout

this chapter unless mentioned otherwise. We discuss how η affects convergence in the federated

setting in Sec. 4.4.4 and Fig. 4.15 and show that our chosen η speeds up convergence. We would

like to note that after choosing the best model parameters, we apply the same set of parameters to

all user models following the original FL work [93], as the question of personalization in FL [84]

is still an open problem and out-of-scope in this work.

4.4.2 Scenario 2: NoMoAds for PII, Ad Request

Setup 2a. We use the following setup from Table 4.3. Dataset: NoMoAds.Users: Even and Un-

even split across 5 synthetic users; Classifier Granularity: General. Models: Federated SVM vs.

Centralized SVM. Tasks: PII exposure and Ad request. We set local epochs to E = 5, batch size

to B = 10 and we use all users by setting the fraction C = 1.0, as we use only 5 synthetic users

due to the limited size of the dataset.

Results 2a: Federated vs. Centralized vs. Local. Table 4.5 shows the F1 score, where the Fe-

derated model performs as well as the Centralized model and significantly outperforms the Local

models. In particular, Federated training performs similarly to its centralized version trained on

the union of all users’ data. Moreover, the F1 score of the Federated model on each user’s test data

is slightly higher than their Local models, especially for the uneven split. For uneven split, the

average number of rounds (R) required to reach the target F1 score = 0.96 for the Ads prediction

is 8.8, while for PII prediction 1 round was sufficient. For even split, to reach the same F1 score,

2.6 rounds were required for Ad prediction and 2.2 rounds for PII prediction.

69

Uneven split Even split
F1 score F1 score

Trained on Tested on Ads PII Ads PII

Federated user 0 test 0.83 0.96 0.84 0.95
Federated user 1 test 0.92 0.96 0.81 0.95
Federated user 2 test 0.86 0.95 0.84 0.95
Federated user 3 test 0.63 0.97 0.88 0.92
Federated user 4 test 0.85 0.96 0.86 0.96
Federated all test data 0.84 0.96 0.85 0.95

Local user 0 user 0 test 0.82 0.95 0.78 0.9
Local user 1 user 1 test 0.89 0.94 0.8 0.92
Local user 2 user 2 test 0.8 0.9 0.79 0.93
Local user 3 user 3 test 0.64 0.82 0.83 0.9
Local user 4 user 4 test 0.77 0.87 0.81 0.91
Centralized all test data 0.85 0.96 0.84 0.94

Table 4.5: Results 2a. Federated performs as well as Centralized and outperforms Local models.
We show the F1 score for each user, when testing on their hold-out test set and on the union of all
users test data.

Setup 2b. This is similar to Setup 2a with 20 synthetic users instead of 5. For B =∞, we use all

available local data as a single minibatch, similarly to [93]. We require all models to reach a target

F1 score on test set (0.85 for Ads, 0.95 for PII predictions), chosen to match their Centralized

F1 score as shown in Table 4.4.

Results 2b: Impact of Federated parameters. Table 4.6 shows how the average number of

rounds (R), until the models reach a target F1 score, depends on the fraction of participating

clients (C), a different batch size (B) and local epochs (E). A general trend is that increasing C,

decreases R significantly and the gap between min and max decreases. Moreover, increasing B

decreases R, as small B leads to faster convergence. These observations apply to both uneven

and even splits and to both prediction tasks. In contrast, increasing E and pushing computation

to users increases R, except for the case when C = 1.0. The reason for this is that our model is

simple and more local epochs lead to overfitting. In the context of packet classification, R is much

lower than observed in prior work [93] which used more complex models.

Results 2c: Training Time. Fig. 4.10 depicts the average training time (from 5 runs) of the

70

——- Uneven split ——- —— Even split ——
C B =∞ B = 10 B =∞ B = 10

Task: Ads with target F1 score = 0.85, E = 1

0.05 36.6 [24, 58] 22.4 [11, 29] 25 [19, 30] 33.4 [25, 43]
0.1 15 [10, 20] 15.2 [9, 24] 14 [11, 23] 23 [13, 34]
0.2 10 [8, 13] 6.8 [5, 10] 8.6 [7, 14] 11 [6, 17]
0.5 2.6 [2, 4] 3 [2, 4] 4.4 [3, 6] 8 [6, 11]
1.0 1.6 [1, 2] 2.4 [1, 4] 2.6 [2, 4] 4.8 [4, 6]

Task: Ads with target F1 score = 0.85, E = 5

0.05 43.6 [40, 48] 49 [27, 75] 34.8 [27, 53] 48.8 [43, 63]
0.1 21.2 [13, 28] 20.8 [17, 26] 22.6 [19, 27] 22.4 [18, 27]
0.2 12 [8, 15] 10 [7, 11] 9.2 [8, 12] 10.6 [10, 12]
0.5 3.4 [2, 6] 4.2 [3, 5] 3.8 [3, 5] 5.6 [3, 11]
1.0 1 [1, 1] 1.2 [1, 2] 2.8 [2, 6] 3.4 [2, 7]

Task: PII with target F1 score = 0.95, E = 1

0.05 30 [19, 37] 28.8 [21, 40] 27.8 [21, 33] 27.8 [23, 31]
0.1 14.2 [9, 18] 15.6 [12, 18] 16.4 [13, 19] 16.8 [16, 18]
0.2 7.4 [4, 9] 7.4 [5, 12] 7.4 [6, 9] 7.2 [6, 10]
0.5 3.6 [3, 5] 3.6 [3, 5] 3.6 [3, 4] 3.4 [3, 4]
1.0 1.8 [1, 2] 2 [2, 2] 2.8 [2, 3] 2.6 [2, 3]

Task: PII with target F1 score = 0.95, E = 5

0.05 39.6 [32, 44] 48.4 [35, 58] 34.6 [31, 40] 39.2 [31, 44]
0.1 21.6 [16, 37] 20.2 [14, 27] 16.2 [14, 17] 20.2 [18, 22]
0.2 9.4 [7, 14] 10.4 [8, 16] 7.8 [7, 8] 9.2 [7, 11]
0.5 3.2 [2, 5] 3.6 [3, 5] 3 [3, 3] 3.2 [3, 4]]
1.0 1 [1, 1] 1.2 [1, 2] 1.2 [1, 2] 1 [1, 1]

Table 4.6: Results 2b. Impact of Federated parameters for NoMoAds data with 20 synthetic users.
All models are trained until they reach a target F1 score (selected to match Centralized per task).
We vary the parameters C, B, E and we report the rounds R) until the target F1 score is reached:
average and [min, max] are reported over 5 runs.

baseline centralized models with NoMoAds data for both prediction tasks in comparison to Fede-

rated SVM with 20 even synthetic users.4 To measure the time for the Federated models, we set

the same target F1 score as before (0.95 for PII and 0.85 for Ads) and we report the total training

time from all rounds required until the convergence with E=1, B=10, C=1.0. We define the Fede-

rated training time as: tfed = max(tlocal) + taggr and thus, it depends on the worst case local train

4Time was measured on a machine with Intel(R) Xeon(R) CPU E5-2623 v3 @ 3.00GHz and 62GB RAM. The
reported train times are on models with default parameters as selected in scikit-learn [103], except for Random Forest
(RF) which we limit to 25 estimators instead of the default 100 estimators.

71

0 10 20 30 40 50
avg train time (seconds)

DT

SVM SGD

RF

Fed SVM

Ad
PII

Figure 4.10: Results 2c. Comparison of average (from 5 runs) training time for Centralized mod-
els with NoMoAds data using HTTP Keys and Federated SVM with 20 synthetic users for both
prediction tasks.

time. The aggregation time on the server side, taggr, is negligible as it takes only 40 microseconds.

Overall, the SVM with SGD is comparable to DT and RF and the Federated SVM is comparable to

the centralized models; PII task requires 3 rounds (each round taking approximately 145 seconds),

while for the Ads task one round was sufficient resulting in faster training.

0 200 400 600
avg train time (seconds)

DT

SVM SGD

RF

SVM linear

SVM rbf

Fed SVM

Ad
PII

Figure 4.11: Comparison of average training time for all Centralized models from Table 4.4 with
NoMoAds data using HTTP Keys and Federated SVM with 20 synthetic users for both prediction
tasks.

72

Trained on Tested on Uneven split Even split
F1 score F1 score

Federated user 0 test 0.91 0.93
Federated user 1 test 0.94 0.95
Federated user 2 test 0.95 0.94
Federated user 3 test 0.95 0.91
Federated user 4 test 0.93 0.93
Federated all test data 0.93 0.93

Local user 0 user 0 test 0.92 0.89
Local user 1 user 1 test 0.91 0.91
Local user 2 user 2 test 0.93 0.92
Local user 3 user 3 test 0.87 0.87
Local user 4 user 4 test 0.85 0.89
Centralized all test data 0.94 0.94

Table 4.7: Results 3a. AntShield dataset for predicting PII exposures, for 5 synthetic users created
with uneven and even split of data. The F1 score is averaged from 5 runs for C = 1.0, B =
10, E = 5.

4.4.3 Scenario 3: AntShield for PII Prediction

Setup 3a. We use the following setup from Table 4.3. Dataset: AntShield. Users: Even vs. Un-

even split with 5 synthetic users. Classifier Granularity: General. Models: Federated SVM vs.

Centralized SVM, Tasks: PII exposure. We set B = 10, E = 5, C = 1.0, similarly to Setup 2.

Results 3a. Table 4.7 shows the results. For even split of data, the Federated model has an F1-

score of 0.94 when it is tested on the union of user test sets, while the corresponding Centralized

model has an F1 score = 0.96, achieved within 5.8 rounds on average. For the uneven split of data

among users, the Federated model achieves the same F1 score = 0.94, but slightly slower (in 6.6

rounds). We observe that some users achieve lower F1 score on their corresponding Local models,

which is expected as these users have much less data and especially positive examples, because of

the skewness of data in the uneven split. In summary, we show that even with a different dataset,

our FedPacket approach still performs well when compared to its Centralized model for both types

of splits, with a small difference in communication rounds to achieve the same F1 score.

73

Setup 3b. We use the same setup as Setup 3a but with 100 users instead of 10. The goal is

to evaluate convergence with more users who have few train data points (most of the users have

20-30 datapoints and only 3 users have more than 500 datapoints).

Results 3b. Fig. 4.12 shows the convergence in terms of F1 score across the rounds for AntShield

with 100 users with uneven split. We observe that even if most users have few datapoints, the

Federated model reaches the Centralized F1 score within less than 10 rounds. We also evaluated

the average F1 score (from 5 runs) when we test the Federated model on each user’s test data

and the lowest F1 score for a user was 0.70 and only 20% of them had 0.90 or lower F1 score.

To conclude, we showed that even if most users have few local data points, the Federated model

will not overfit due to lack of training data. Moreover, we show the regularization effect of the

Federated Averaging algorithm when varying the C parameter of participating users within each

round. When C = 0.5 there is a regularization effect similar to dropout in DNNs, since only the

parameters from half the clients are being averaged in each round which results in slightly more

stable (less variance and higher) F1 score after round 10.

0 10 20 30 40 50
rounds

0.70

0.75

0.80

0.85

0.90

0.95

f1
 o

n
te

st

centralized=0.94

C=1.0
C=0.5

Figure 4.12: Results 3b. Convergence of AntShield with 100 synthetic users with uneven spit
when B = 10, E = 1, and varied C.

74

Figure 4.13: Distribution of packets for Facebook and Chrome.

4.4.4 Scenario 4: In-house Datasets for PII Prediction

Setup 4. We use the following setup from Table 4.3: Dataset: In-house Chrome, Facebook. Users:

10 real users. Classifier Granularity: Per App. Models: Federated SVM vs. Centralized SVM.

Tasks: PII exposure. The goal is to evaluate our FedPacket framework (1) on real user activity

(instead of systematic tests of apps) and (2) over a longer time period (7 months instead of five/ten

minutes). Fig. 4.13 shows the distribution of Chrome and Facebook packets (including labels)

present across the 10 real users in our in-house dataset.

Results 4a. We evaluate the classification performance of Centralized and Federated models for

Chrome and Facebook, with C = 0.5, B = 10 and E = 5. Chrome’s Federated model achieves

0.84 F1 score compared to its Centralized version with F1 score = 0.92. Facebook’s Federated

model maintains similar F1 score (0.94) compared to its Centralized version (0.95).

Results 4b. In Table 4.8, we evaluate the impact of batch size (B) and local epochs (E) on the

average rounds (R) required to reach a target F1 score for Chrome and Facebook. We observe that

increasing B increases slightly R to achieve the target F1 score, while increasing the E parameter

increases R significantly. The reason is that we use a simple model and most likely the model

overfits with large E. The FL paper [93] showed the opposite effect: increasing E decreases R;

however, they train more complex models (DNNs) that do not overfit for thoseE values. Moreover,

75

E B R: avg [min, max]

Facebook Chrome

1 10 16 [6, 31] 7 [4, 10]
1 20 20.2 [12, 41] 6.4 [5, 11]
1 40 15.6 [8, 27] 5 [4, 7]]
1 ∞ 9 [6, 14] 6.2 [4, 11]
5 10 33.2 [5, 113] 82 [14, 200]
5 20 37.6 [20, 46] 27 [3, 61]
5 40 39.6 [8, 97] 25.6 [8, 55]
5 ∞ 26 [3, 47] 23.2 [6, 56]
10 10 53.8 [4, 190] 756.2 [531, 800]
10 20 71.6 [12, 200] -
10 ∞ 72.8 [21, 146] 283.2 [126, 800]

Table 4.8: Results 4b. We report the average [min, max] R communication rounds required to
reach a target F1 score (0.94 for Facebook, 0.84 for Chrome). We vary the batch size (B) and local
epochs (E) to evaluate their impact onR, with C = 0.5. If the target F1 score is not reached within
800 rounds over 5 runs, we assume that it does not converge.

we observe that B does not significantly affect the number of rounds. In contrast, E plays an

important role in the model’s convergence, which is explored next.

Results 4c: Convergence of Federated models. Fig. 4.14 shows the performance of Federated

SVM for Facebook and Chrome when we vary the local epochs, E, with C = 0.5 and B = 10.

We train each model with an E value five times and report the average and standard deviation (in

shadowed color). The main difference between the two apps is that the F1 score of the Federated

model is closer to the Centralized one for Facebook, however, its standard deviation is much larger

than Chrome’s. In addition, E = 1 for Chrome can reach a better F1 score (0.89) than in the

previous experiments, because of the lower E value. We observe that the Federated model is more

sensitive to the E parameter, which leads to overfitting for SVM.

Results 4d: Learning Rate vs. Convergence. Throughout this chapter we used the “optimal”

learning rate from scikit-learn [103] which is defined as η(t) = 1
a(t0+t)

where t is the time step

and t0 is determined on a heuristic proposed by L. Bottou [41, 40] as t0 = 1
η0∗a where a is the

regularization term. Fig. 4.15 shows the impact of the η on the Federated model’s convergence

76

0 50 100 150 200
rounds

0.4

0.6

0.8

1.0

f1
 o

n
te

st

centralized=0.95

E=1
E=10

(a) Facebook classifier; rounds vs. local epochs E.

0 50 100 150 200
rounds

0.0

0.2

0.4

0.6

0.8

f1
 o

n
te

st

centralized=0.92

E=1
E=10

(b) Chrome classifier; rounds vs. local epochs E.

Figure 4.14: Results 4c. Convergence of F1 score over R rounds for Chrome, with C = 0.5, B =
10 and varied E. Models are trained 5 times, and shaded regions represent standard deviation from
average F1 score. The Centralized model (dashed line) reaches F1 score 0.92.

for Facebook data with C = 0.5, B = 10, E = 1 similarly to Fig. 4.14a. We observe that only the

smaller learning rate (η=0.01) requires more rounds to converge. Our chosen η reaches the target

F1 score within 20 rounds and is comparable to η >= 0.1 and the “adaptive” η which is defined

as: η = η0 if the training loss keeps decreasing, otherwise η = η
5
.

Discussion of Convergence. Understanding the effect of heterogeneity in terms of resources and

data and how it affects convergence, especially in non-convex settings like DNNs, is currently

an active research area within the FL literature [118, 133, 76, 85, 84]. Our model has a linear

77

0 10 20 30 40 50 60 70 80
rounds

0.2

0.4

0.6

0.8

1.0

f1
 o

n
te

st

centralized=0.95

eta=0.01
eta=0.1
eta=0.5
eta=adaptive
eta=optimal

Figure 4.15: Results 4d. Convergence of F1 score overR rounds for Facebook with C = 0.5, B =
10, E = 1 and learning rate η varied.

kernel and the loss function is convex which guarantees convergence for both IID and non-IID data

following the original FL paper [93]’s empirical conclusions which stated that for convex problems

with E→ ∞ the global minimum will be always reached regardless of the model’s initialization.

However, the original FL paper [93] did not provide a mathematical analysis of convergence. The

authors in [85] assumed strongly convex and smooth `2-norm regularized linear regression model

and proved a convergence rate of O(1
T

) where T is the number of SGD updates during local training

and data is non-IID. They also proved that a decaying η is necessary to guarantee convergence in

case of non-IID data. Otherwise, they showed that a fixed η will converge to a solution at least

Ω(η) away from the optimal. The reason is that constant learning rates combined with E > 1

generate biased local updates, and a decaying η can gradually tackle this bias. In our work, the

Federated SVM is linear, `2-norm regularized and strongly convex but it is not smooth and we

chose decaying η as discussed above. Overall, our experiments showed convergence consistent

with the findings in [93] and [85].5

Results 4e: Benefit of Crowdsourcing. We ask the question: how many users need to collaborate

5We show throughout this work that the Federated model reaches convergence within tens of rounds for both IID
and non-IID settings. Additional regularization-based methods [118, 142, 143, 84] can be considered in order to speed
up further the convergence and are deferred to future work.

78

2 4 6 8 10
train on k users

0.0

0.2

0.4

0.6

0.8

1.0

m
ax

 a
vg

. F
1

sc
or

e

app:
Facebook
Chrome
test set:
test on k users
test on all users

Figure 4.16: Results 4e. Benefit of crowdsourcing with k users for Chrome and Facebook. The
average F1 score is shown for all users’ test data (thin line) and for test data of k users (bold line).

to train a global model in order to get most of the predictive power? Fig. 4.16 shows that a

few users participating in the training phase during FL can be beneficial for all users. We show

the maximum average F1 score obtained from 5 runs, as a function of the number of users (k)

participating in training. The F1 score is evaluated both on all user’s test data and on the test data

of k users who participated in the training. We sort the users by increasing amount of training data:

for k = 1, one user with the fewest data points participates in training, for k = 2, in addition to

the previous user, another user with more data is used during training. Adding more users in the

training phase is beneficial to increase the F1 score for both apps. However, some users do not

help and slightly worsen the F1 score, as their data might confuse the classifier. For Facebook, at

least 3 users are needed to obtain a decent F1 score, while Chrome reaches the same F1 score with

only 2 users. The F1 score on the test data of k users is much higher than on the union of all users’

test data, as the models only fit to the data of the participating users. The lack of generalization

is one of the reasons that Webview apps are a challenging special case in the packet classification

problem. However, both Chrome and Facebook train Federated models generalize well with F1-

score > 0.80, if enough users with useful (diverse) data participate in training, as the data of each

user is generated by different usage of the apps. This shows the necessity of a crowdsourced model

which is beneficial to all users, instead of training locally (F1 score with k=1 starts at 0).

79

model: Centralized Federated Local Local
tested on: each user’s data each user’s data each user’s data all test data

user 1 0.92 0.92 0.92 0.3
user 2 1.0 0.95 1.0 0.67
user 3 0.89 0.84 0.88 0.62
user 5 0.72 0.55 0.77 0.33
user 7 0.98 0.99 0.99 0.86
user 9 1.0 0.9 1.0 0.3

user 10 1.0 0.99 0.97 0.26

Table 4.9: For Results 4e, we compare the F1 score of Centralized vs. Federated vs. Local models,
tested on each user’s test data vs. test data from all users (merged). The Local model is better for
some users than the Centralized and Federated models. However, when these Local models are
tested on the test data from all users, the F1 score drops significantly. This is because these models
do not generalize well for other users. (Note: We only show users who have some positive labels
and omit the rest (users 4, 6, 8) whose F1 score is always 0.)

Table 4.9 reports more details for Results 4e. The Centralized and Federated models achieved

similar F1 score when tested on each user’s test data. The F1 score of Local models might be

higher for some users (e.g., user 5) than the Federated or Centralized models when tested on that

user’s data. However, when the Local models are tested on the data from all users, we observe a

significant drop in performance: e.g., the F1 score of user 1’s Local model reaches 0.92 on their

own test data, but it decreases to 0.3 on all test data. This is due to Local models overfitting on

each user’s data and not generalizing well across all users. This is even more pronounced for IID

data, as described below.

Using Setup 3b with 100 synthetic users and uneven IID split of data from Sec. 4.4.3, we expand

“Results 4e”, “Benefit of Crowdsourcing”, and consider 100 synthetic users instead of 10 real non-

IID users to compares the performance of Federated to Centralized and Local models. The goal is

to further demonstrate the benefit of moving away from locally trained models, to crowdsourced

models, especially Federated (which essentially performs as well as a Centralized model).

Fig. 4.17 shows the results for this scenario. We compare the F1 score on each user’s test data for

crowdsourced models: Centralized (their training data was shared with a server) and Federated

(only model parameters were shared), and their corresponding Local models (they shared nothing).

80

0 20 40 60 80 100
user

0.5

0.6

0.7

0.8

0.9

1.0

A
vg

 F
1

on
 te

st

models
Centralized
Federated
Local

(a) Raw values of F1 score of Federated, Cen-
tralized and Local models when tested on each
user’s test data.

0.2 0.0 0.2 0.4
F1 score diff

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Fed-Centr
Fed-Local

(b) Empirical cumulative distribution function
(CDF) of the differences of F1 scores for (Fede-
rated − Local) vs. (Federated − Centralized).

Figure 4.17: Comparison of Local vs. Federated vs. Centralized models when tested on each of the
100 uneven synthetic users with AntShield data. Federated F1 score is comparable to Centralized
and both perform better (positive difference in F1) than the corresponding Local models. All users
benefit from the crowdsourced models due to IID nature of the data, but at a different degree: the
increase in F1 can be up to 0.4, with 80% of the users up to 0.2.

Fig. 4.17(a) shows the F1 score achieved from Federated, Centralized and locally trained models

for each of the 100 users when tested on each user’s test data. Fig. 4.17(b) shows the empirical

CDF of the difference between the F1 score of Federated and Centralized models and between the

Federated and Local models. We make two observations by looking at Fig. 4.17(b). First, the

Federated achieves similar F1 score to the Centralized model for 90% of the users, except for a

few users, that Centralized performs slightly better. Second, the Federated model performs better

than the corresponding Local models: for 80% of users the Federated F1 score reaches an increase

up to 0.2, compared to the Local model, and for some users it is almost 0.4, which is significant.

In summary, all users benefit from the use of crowdsourcing, i.e., there are positive differences in

F1 score for (Federated-Local), but at different degrees.

81

4.4.5 Scenario 5: Client Selection and Convergence

In all previous experiments, the clients were selected randomly in each FL round as in the original

FL paper [93]. Here, we explore how different client selection strategies affect convergence when

the local data of each client is non-IID (Setup 5a) vs. IID (Setup 5b). We explore a second client

selection strategy, which we refer to as “data size”: clients are selected with probability based on

their training data size as in [85], such as P = datak
total

, where total is the amount of all training

data summed from all users and datak is the training data of user k. We would like to note that in

the aggregation step in Algorithm 1, the updates are weighted based on the training data of each

client, giving more importance to the updates of clients with most data. So, with the “data size”

client selection strategy those users are “boosted” even further, which can lead to overfitting. For

this reason, we added a third client selection strategy, which we refer to as “inverse data size”, and

chooses clients to participate in each round with probability inversely proportional to the size of

their training data, thus assigning higher probability to clients with few data.

Setup 5a. We use the following setup from Table 4.3: Dataset: In-house Facebook. Users: 10 real

users. Classifier Granularity: Per App. Models: Federated SVM. Tasks: PII exposure. The goal

is to evaluate the convergence of the Federated model when different client selection strategies are

in place for non-IID users.

Results 5a: Non-IID clients. We extracted the probabilities of each user being selected in a round

based on their training data size. User 7 has a 50% chance of being selected in a round since their

data had the most PII positive packets according to Fig. 4.13 and thus, with data balancing they

have the most training data compared to the rest of the users. The rest of the users had probability

of being selected less than 0.1. Fig. 4.18 shows the convergence for three different client selection

strategies in case of non-IID data. With random sampling the F1 score is more stable across rounds

however it starts with lower value. In contrast, the “data size” strategy starts with F1 score of 0.90

since the user with the most data participates in almost all rounds and only the rest of the users vary.

82

0 50 100 150 200
rounds

0.4

0.5

0.6

0.7

0.8

0.9

1.0

f1
 o

n
te

st

centralized=0.95

client sampling=data size
client sampling=random
client sampling=inverse data size

Figure 4.18: Results 5a. Convergence of F1 score over R rounds vs. various client selection
strategies for Facebook (non-IID) data with C = 0.5, B = 10, E = 1.

0 5 10 15 20 25 30
rounds

0.800

0.825

0.850

0.875

0.900

0.925

0.950

f1
 o

n
te

st

client sampling=data size
client sampling=random
client sampling=inverse data size

Figure 4.19: Results 5b. Convergence of F1 score over R rounds vs. various client selection
strategies with NoMoAds 20 synthetic (non-IID) users when predicting PII with C = 0.5, B = 10,
E = 1.

Moreover, “data size” reaches a slightly lower F1 score as the Federated model seems to slightly

overfit to user 7’s data. Overall, the difference between the two strategies is not significant; the

model’s F1 score is still above 0.90. However, “inverse data size” is significantly lower with high

variance in the first 50 rounds. After the 50th round, it exceeds the F1 score of the other two

strategies and shows low variance. Thus, even if clients with few data points are selected for their

updates, after a certain number of rounds the model still converges due to the regularization effect

83

similar to dropout in DNNs, as C = 0.5 requires half of the clients to send their model updates.

Setup 5b. We use a similar setup to Setup 5a, but with NoMoAds 20 uneven synthetic users.

Classifier Granularity: General. Models: Federated SVM. Tasks: PII exposure, Ad request. The

goal is to evaluate the convergence of the Federated model when different client selection strategies

are in place for IID clients.

Results 5b: IID clients. Fig. 4.19 shows the convergence of the Federated model for various

client selection strategies when the clients are IID. We observe similar effects to the non-IID case,

except that the “inverse data size” strategy does not have as significant impact. Thus, in the case

of IID synthetic clients, the convergence is not affected by the client selection strategy and random

client selection seems to perform well. We omit the comparison between the two prediction tasks

and even, uneven splits due to space limit since the observations were identical.

4.4.6 Scenario 6: Interpreting SVM vs. DT

Setup Scenario 6. We use the following setup from Table 4.3: Dataset: NoMoAds. Users: None.

Classifier Granularity: General. Models: Centralized SVM vs. DT. Tasks: PII exposure. Prior

work chose DT over other models partially because of their interpretability. In our context, these

models learn similar separation of our datasets, which we demonstrate by (1) observing the most

important coefficients in SVM, (2) by knowledge transfer from SVM to DT. The goal here is to

compare SVM to DT in terms of their interpretability.

Results Scenario 6. Fig. 4.20 shows the ten most important negative and positive coefficients and

their corresponding features for our Centralized SVM. In order to distinguish important features,

we use the model’s coefficients, where the positive ones correspond to the features whose presence

leads to positive labels and the negative coefficients correspond to features responsible for predict-

ing label 0 (e.g., No PII detected). This is not a one-to-one mapping of important features between

SVM and DT due to their internal representation of features. However, we observe certain keys

84

Figure 4.20: Top 10 negative and positive coefficients and the corresponding features obtained
from Centralized SVM.

that are responsible for PII exposures such as “gaid”, that also appear in the corresponding DT.

(a) Decision Tree (DT) trained on its own.

(b) First train SVM, then transfer knowledge to DT.

Figure 4.21: Interpretability of DT vs. SVM in Setup 5.

Fig. 4.21(b) shows the DT after knowledge transfer from SVM. To perform knowledge transfer

85

from SVM to DT, we first split the data into 40% for training SVM, another 40% for training a DT,

which is labeled with predictions from the aforementioned SVM. The remaining 20% of the data

is used for testing. This is one way to leverage the interpretability of DTs via knowledge transfer

from SVM. In Fig. 4.21(a), we show a DT which was trained with NoMoAds for PII prediction,

while in Fig. 4.21(b), we show the DT after knowledge transfer from SVM. We observe that both

DTs, at least at the top levels, have similar important features and thus, capture similar patterns.

The original DT and SVM reached F1 score = 0.95 and the after knowledge transfer DT reached

F1 score = 0.94 on the same test data. This is only a minor F1 score loss during knowledge transfer.

The most notable difference between the trees in Fig. 4.21 is the lack of a large branch that only

predicts label 0, which is the result of how the original tree unsuccessfully attempts to separate

data. However, the DT after the knowledge transfer is oblivious to this error, since the SVM most

likely suffers from the same issue as the original DT. Such errors propagating from the SVM make

the DT after the knowledge transfer smaller (269 vs. 141 nodes) than the original DT. Please refer

to the appendix of the extended version of this work [31] for full pictures of the above DTs.

4.5 FedPacket: Privacy Considerations

The FL framework clearly raises the privacy bar in mobile packet classification, by allowing de-

vices to collaboratively train a classifier, without uploading their raw packet traces or training data

to a server.6 However, federated learning, and more generally distributed learning, has its own

inherent vulnerabilities to inference attacks based on observed updates [96, 98, 147, 64, 138]. In

this section, we consider two inference attacks specifically designed against packet classification.

These attacks are application-specific in the context of HTTP data, as opposed to generic e.g.,

adversarial attacks against federated image classification.

6Crowdsourcing training data from users to the server is the current practice in mobile data analytics, including mo-
bile packet classification. However, it can directly expose personal and device identifiers, location and other sensitive
information stored on the device, as well as enable inference of other sensitive information about user behavior.

86

4.5.1 Inference Attacks

Threat model. We assume an honest-but-curious server. It is honest because it receives updates

from all users, it computes and sends back to them the updated model parameters, correctly and

without any modification. It is curious because it wants to infer sensitive information about a tar-

get user. In each FL round, the server observes the gradient updates, analyzes and stores them

for future use. Since no additional privacy mechanism, such as Differential Privacy [53] or Se-

cure Aggregation [38] is assumed, at this point, the server knows the exact updates sent by each

user and can target users individually to infer sensitive information from their updates. In Threat

Setup 6a, the server aims to recover the features of a target user via observing and storing their

non-zero gradients in each FL round. In Threat Setup 6b, we assume that the server has already

reconstructed successfully all local training data of the target user and further attempts to infer

additional information related to the target’s browsing history.

Threat Setup 6a: Feature Recovery. We use the following setup from Table 4.3: Dataset: In--

house Facebook. Users: User 7. Classifier Granularity: Per App. Models: Federated SVM.

Tasks: PII exposure. The goal is to evaluate how the FL parameters affect the success rate of the

attack in terms of % of features recovered.

Results 6a: Feature Recovery. The server observes the gradient updates from users participating

in each FL round. In every round, the adversary stores the current gradients in order to subtract

them in the next round. Recall that the server receives the updated model weights from each user,

which are obtained locally via w ← w − η
B

∑
i∈Bk

yi ·xi as already mentioned in Algorithm 1.

Fig. 4.22 shows the percentage of recovered features in each round during FL when we vary the

FL parameters: batch size B, local epochs E, percentage of clients C in each round and learning

rate η. Fig. 4.23 shows how the model’s convergence is affected with selected parameters from the

privacy attack.

One of the parameters that affects the success of the attack the most is the fraction C of participat-

87

0 5 10 15 20 25 30
rounds

90.00%

92.00%

94.00%

96.00%

%
 fe

at
 re

co
ve

re
d

C
0.1
0.2
0.5
1.0

(a) % features recovered vs. C (% clients selected in a round) with B =∞, E = 1.

0 5 10 15 20 25 30
rounds

90.00%

92.50%

95.00%

97.50%

100.00%

%
 fe

at
 re

co
ve

re
d

eta
0.001
0.005
0.01

(b) % features recovered vs. learning rate η with B =∞, E = 1.

0 5 10 15 20 25 30
rounds

85.00%

87.50%

90.00%

92.50%

95.00%

97.50%

%
 fe

at
 re

co
ve

re
d

B
10
20
40

(c) % features recovered vs. batch size B with E = 1, η = 0.01.

0 5 10 15 20 25 30
rounds

90.00%

92.00%

94.00%

96.00%

%
 fe

at
 re

co
ve

re
d

E
1
5
10

(d) % features recovered vs. local epochs E with B =∞, η = 0.01.

Figure 4.22: Evaluating the success of our privacy attack in terms of features recovered (%) when
we vary the FL parameters.

ing clients, as shown in Fig. 4.22a, since the target user might not participate in every round due

to random selection of clients in each round. Fig. 4.23a shows that selecting C = 1.0 speeds up

88

0 5 10 15 20 25 30
rounds

0.00

0.20

0.40

0.60

0.80

f1
 o

n
te

st

C
0.1
0.2
0.5
1.0

(a) F1 score vs. C (% clients selected in a round) with B =∞, E = 1.

0 5 10 15 20 25 30
rounds

0.75

0.80

0.85

0.90

f1
 o

n
te

st

eta
0.001
0.005
0.01

(b) F1 score vs. learning rate η with B =∞, E = 1.

0 5 10 15 20 25 30
rounds

0.75

0.80

0.85

0.90

f1
 o

n
te

st

B
10
20
40

(c) F1 score vs. batch size B with E = 1, η = 0.01.

0 5 10 15 20 25 30
rounds

0.75

0.80

0.85

0.90

0.95

f1
 o

n
te

st

E
1
5
10

(d) F1 score vs. local epochs E with B =∞, η = 0.01.

Figure 4.23: Convergence in terms of F1 score for selected FL parameters corresponding to privacy
attack.

the convergence in addition to speeding up the privacy attack, since the target user is participating

in every round. However, if the server can control the percentage of clients or can select the target

user regardless of the C parameter, then the attack can be successful in fewer rounds.

89

Another parameter that affects significantly the feature recovery rate is the learning rate η. Fig.

4.22b indicates that a smaller learning rate can recover 100% of user features within few rounds.

However, η affects the performance of the global model and convergence; smaller η slows down

convergence, as shown in Fig. 4.15. We demonstrate this privacy-utility trade-off in Figures 4.22b

and 4.23b: smaller learning rate will speed up the privacy attack but will impact negatively the

model’s convergence. For instance, setting η to 0.001 speeds up feature recovery, but the F1 score

of the federated model drops from 0.93 (with η = 0.01) to 0.87. From the attacker’s point of

view, the server must choose a learning rate to balance the trade-off between the feature recovery

rate and the global model’s F1 score. From privacy-preserving point of view, larger η accelerates

the convergence and slows down the feature recovery. Due to this trade-off, we chose η = 0.01

and evaluate the B and E parameters. Fig. 4.22c shows how the batch size affects our privacy

attack. Smaller batch size seems to result in faster feature recovery, although the difference is not

very significant. Similarly, the convergence of the model is not affected significantly by the B

parameter, as shown in Fig. 4.23c. Finally, Fig. 4.22d indicates that smaller local epochs E results

in better feature recovery, as increasing local epochs introduces a notion of aggregation before the

server receives the model updates from the client. However, Fig. 4.23d shows that with E = 1 the

model converges slower and the best trade-off is achieved when E = 5 in terms of attack success

and convergence.

Overall, we showed that more than 90% of features can be recovered within tens of rounds if the

server controls the client selection and asks the target user for their updates, when the learning rate

is reasonably small regardless of the B and E parameters. The next question we ask in Setup 6b is

what additional sensitive information can be inferred from these recovered features.

Threat Setup 6b: Predicting visited domains. We use the following setup from Table 4.3:

Dataset: In-house Facebook. Users: User 7. Classifier Granularity: Per App. Models: Cen-

tralized SVM. Tasks: Domain.

The goal is to show that additional sensitive information can be inferred from a successful attack

90

on features. Specifically, we assume that the privacy attack from Setup 6a (attack to FL updates)

was successful and the server was able to recover all features of a target user, which is an upper

bound in practice. The question is then: can the server also infer the user’s browsing history, i.e.,

the domains the user visited, based on all the HTTP keys? How well can the attacker predict the

visited domains based on the Recon features, that contain more sensitive information than HTTP

keys? Browsing history is only one, but important, example of sensitive information that can be

inferred from HTTP data.

Results 6b: Predicting visited domains. In this experiment, we assume the attacker has already

recovered all features of the target user. If sensitive features are included in the feature space, as

in All Words or Recon Words, i.e., values to sensitive keys, then the attacker will able to recover

those within few rounds as we showed in the previous experiment. Although HTTP Keys do not

have explicit information from about the URL path or domain, it is possible that such sensitive

information can be inferred from HTTP Keys. Here, we ask the following question: how well can

we predict visited domains based on HTTP Keys? As a baseline for comparison, we also predict

domains from Recon Words features, which actually contain parts of the URL path. For a fair

comparison, we are testing the performance on the intersection of common domains on the test

data for both Recon Words and HTTP Keys experiments: there were 105 such common domains.

We train a Centralized SVM model with HTTP Keys (2,411) vs. Recon Words (5,120) feature

space.

To provide a summary of all 105 domains,7 we report the macro average F1 score, i.e., the non-

weighted average of all per-domain F1 scores. With HTTP Keys, the macro average F1 score was

0.55 and approximately 48.57% of domains reached F1 score > 0.80. In contrast, Recon Words

achieved 0.60 macro average F1 score and 62.86% of the test domains reached F1 score > 0.80.

Recon Words increase the performance of domain predictions and thus the attacker can infer better

such sensitive information from user data. This was expected since Recon Words contain more

7The results for all 105 common domains, are presented in Fig. 4.24 and a zoomed-in version with top 30 (in
alphabetical order) domains in Fig. 4.25.

91

HTTP Keys Recon Words

ad/tracking domains (ATS) 39 (76.5%) 38 (57.6%)

non-tracking domains (non-ATS) 12 (23.5%) 28 (42.4%)

total domains 51 (100%) 66 (100%)

Table 4.10: Summary of domains that reached F1 score above 0.80 when using two different
feature spaces: HTTP Keys and Recon Words. Recon Words resulted in more domains that were
predicted successfully and many of those domains were non-advertising/tracking resulting in a
higher privacy risk.

information from the packet and especially the URL field. However, it was previously unknown

how well an attacker can infer domains and this is the first work that quantifies such leakage.

Next, we further distinguish domains that provide advertising and tracking services (a.k.a. ATS)

from the rest of the predicted domains. We consider the non-ATS domains to be more sensitive as

they represent the user’s browsing history in Webview apps like Facebook. We used the Mother-

Of-all AdBlockers (MOaD) [12] filter list and the module AdblockRules from AdblockPlus [2]

to label ATS domains. Figures 4.24 and 4.25 show the results for all domains and for the top

30 (sorted alphabetically) domains respectively. Some examples of non-ATS domains are the

following: europa.eu, facebook.net, vox.com, while some ATS domains: doubleclick.net, google-

analytics.com, openx.net. Table 4.10 shows how many non-ATS domains were predicted well,

i.e., achieving F1 score above 0.80, based on Recon Words compared to HTTP Keys. In particular,

Recon Words predict more domains (66) successfully than HTTP Keys (51). Recon Words result

in prediction of 42.4% non-ATS domains compared to 23.5% with HTTP Keys, thus increasing the

risk of sensitive information revealed to the attacker (server).

4.5.2 Mitigation via Aggregation

There are two families of defense mechanisms that are usually applied on top of federated learning:

differential privacy [53] (and other types of noise, including federated GANs [29]) and Secure

92

5m
in

.c
om

ad
nx

s.
co

m
ad

ob
ed

tm
.c

om
ad

ro
ll.

co
m

ad
sr

vr
.o

rg
ad

ve
rti

si
ng

.c
om

ai
rp

r.c
om

al
go

vi
d.

co
m

am
az

on
-a

ds
ys

te
m

.c
om

an
gs

rv
r.c

om
an

i-v
ie

w
.c

om
an

iv
ie

w
.c

om
at

w
ol

a.
co

m
ba

se
ba

nn
er

.c
om

bi
ds

w
itc

h.
ne

t
bl

ue
ka

i.c
om

bt
rll

.c
om

ca
sa

le
m

ed
ia

.c
om

ce
ltr

a.
co

m
ch

ar
tb

ea
t.n

et
cr

ea
tiv

e-
se

rv
in

g.
co

m
cr

et
al

iv
e.

gr
cr

ss
px

l.c
om

cr
w

dc
nt

rl.
ne

t
de

m
de

x.
ne

t
di

sq
us

.c
om

do
ub

le
cl

ic
k.

ne
t

dp
cl

k.
co

m
en

si
gh

te
n.

co
m

eu
ro

pa
.e

u
ex

el
at

or
.c

om
ey

eo
ta

.n
et

ey
ev

ie
w

ad
s.

co
m

fa
ce

bo
ok

.n
et

fa
st

ly
.n

et
fw

m
rm

.n
et

go
og

le
-a

na
ly

tic
s.

co
m

go
og

le
.c

om
go

og
le

ad
se

rv
ic

es
.c

om
go

og
le

ap
is

.c
om

go
og

le
sy

nd
ic

at
io

n.
co

m
gr

av
ity

.c
om

gs
ta

tic
.c

om
hy

st
er

ia
.g

r
ifl

sc
ie

nc
e.

co
m

ip
re

di
ct

iv
e.

co
m

jiv
ox

.c
om

ka
th

im
er

in
i.g

r
kr

xd
.n

et
le

an
in

.o
rg

lin
ke

di
n.

co
m

liv
ef

yr
e.

co
m

lk
qd

.n
et

m
at

ht
ag

.c
om

m
ed

ia
m

at
te

rs
.o

rg
m

oa
ta

ds
.c

om
m

oo
ki

e1
.c

om
m

xp
tin

t.n
et

ne
xa

c.
co

m
oo

ya
la

.c
om

op
en

x.
ne

t
pa

vl
os

el
ef

th
er

ia
di

s.
co

m
po

st
re

le
as

e.
co

m
pr

fc
t.c

o
ps

ta
tic

.g
r

pu
bg

ea
rs

.c
om

pu
bm

at
ic

.c
om

qu
an

ts
er

ve
.c

om
re

al
-ti

m
e-

w
ith

-b
ill

-m
ah

er
-b

lo
g.

co
m

re
so

n8
.c

om
re

vs
ci

.n
et

rfi
hu

b.
co

m
rh

yt
hm

xc
ha

ng
e.

co
m

ru
bi

co
np

ro
je

ct
.c

om
ru

nd
sp

.c
om

sa
lo

n.
co

m
sc

or
ec

ar
dr

es
ea

rc
h.

co
m

se
gm

en
t.i

o
se

rv
ed

by
op

en
x.

co
m

se
rv

in
g-

sy
s.

co
m

sh
ar

ed
co

un
t.c

om
sh

ar
et

hi
s.

co
m

si
m

pl
i.f

i
si

te
sc

ou
t.c

om
sk

im
re

so
ur

ce
s.

co
m

sp
ot

xc
ha

ng
e.

co
m

sq
ua

re
sp

ac
e.

co
m

ta
bo

ol
a.

co
m

ta
pa

d.
co

m
te

ad
s.

tv
te

ch
no

ra
tim

ed
ia

.c
om

tid
al

tv
.c

om
to

da
y.

co
m

tru
st

e.
co

m
tu

be
m

og
ul

.c
om

tu
rn

.c
om

tv
1.

eu
tw

itt
er

.c
om

vo
x-

cd
n.

co
m

vo
x.

co
m

vo
xm

ed
ia

.c
om

w
55

c.
ne

t
w

p.
co

m
ya

ho
o.

co
m

yl
db

t.c
om

domain

0.00

0.25

0.50

0.75

1.00
f1

_s
co

re

ad/tracking
other

(a) Per-domain F1 score with HTTP Keys

5m
in

.c
om

ad
nx

s.
co

m
ad

ob
ed

tm
.c

om
ad

ro
ll.

co
m

ad
sr

vr
.o

rg
ad

ve
rti

si
ng

.c
om

ai
rp

r.c
om

al
go

vi
d.

co
m

am
az

on
-a

ds
ys

te
m

.c
om

an
gs

rv
r.c

om
an

i-v
ie

w
.c

om
an

iv
ie

w
.c

om
at

w
ol

a.
co

m
ba

se
ba

nn
er

.c
om

bi
ds

w
itc

h.
ne

t
bl

ue
ka

i.c
om

bt
rll

.c
om

ca
sa

le
m

ed
ia

.c
om

ce
ltr

a.
co

m
ch

ar
tb

ea
t.n

et
cr

ea
tiv

e-
se

rv
in

g.
co

m
cr

et
al

iv
e.

gr
cr

ss
px

l.c
om

cr
w

dc
nt

rl.
ne

t
de

m
de

x.
ne

t
di

sq
us

.c
om

do
ub

le
cl

ic
k.

ne
t

dp
cl

k.
co

m
en

si
gh

te
n.

co
m

eu
ro

pa
.e

u
ex

el
at

or
.c

om
ey

eo
ta

.n
et

ey
ev

ie
w

ad
s.

co
m

fa
ce

bo
ok

.n
et

fa
st

ly
.n

et
fw

m
rm

.n
et

go
og

le
-a

na
ly

tic
s.

co
m

go
og

le
.c

om
go

og
le

ad
se

rv
ic

es
.c

om
go

og
le

ap
is

.c
om

go
og

le
sy

nd
ic

at
io

n.
co

m
gr

av
ity

.c
om

gs
ta

tic
.c

om
hy

st
er

ia
.g

r
ifl

sc
ie

nc
e.

co
m

ip
re

di
ct

iv
e.

co
m

jiv
ox

.c
om

ka
th

im
er

in
i.g

r
kr

xd
.n

et
le

an
in

.o
rg

lin
ke

di
n.

co
m

liv
ef

yr
e.

co
m

lk
qd

.n
et

m
at

ht
ag

.c
om

m
ed

ia
m

at
te

rs
.o

rg
m

oa
ta

ds
.c

om
m

oo
ki

e1
.c

om
m

xp
tin

t.n
et

ne
xa

c.
co

m
oo

ya
la

.c
om

op
en

x.
ne

t
pa

vl
os

el
ef

th
er

ia
di

s.
co

m
po

st
re

le
as

e.
co

m
pr

fc
t.c

o
ps

ta
tic

.g
r

pu
bg

ea
rs

.c
om

pu
bm

at
ic

.c
om

qu
an

ts
er

ve
.c

om
re

al
-ti

m
e-

w
ith

-b
ill

-m
ah

er
-b

lo
g.

co
m

re
so

n8
.c

om
re

vs
ci

.n
et

rfi
hu

b.
co

m
rh

yt
hm

xc
ha

ng
e.

co
m

ru
bi

co
np

ro
je

ct
.c

om
ru

nd
sp

.c
om

sa
lo

n.
co

m
sc

or
ec

ar
dr

es
ea

rc
h.

co
m

se
gm

en
t.i

o
se

rv
ed

by
op

en
x.

co
m

se
rv

in
g-

sy
s.

co
m

sh
ar

ed
co

un
t.c

om
sh

ar
et

hi
s.

co
m

si
m

pl
i.f

i
si

te
sc

ou
t.c

om
sk

im
re

so
ur

ce
s.

co
m

sp
ot

xc
ha

ng
e.

co
m

sq
ua

re
sp

ac
e.

co
m

ta
bo

ol
a.

co
m

ta
pa

d.
co

m
te

ad
s.

tv
te

ch
no

ra
tim

ed
ia

.c
om

tid
al

tv
.c

om
to

da
y.

co
m

tru
st

e.
co

m
tu

be
m

og
ul

.c
om

tu
rn

.c
om

tv
1.

eu
tw

itt
er

.c
om

vo
x-

cd
n.

co
m

vo
x.

co
m

vo
xm

ed
ia

.c
om

w
55

c.
ne

t
w

p.
co

m
ya

ho
o.

co
m

yl
db

t.c
om

domain

0.00

0.25

0.50

0.75

1.00

f1
_s

co
re

ad/tracking
other

(b) Per-domain F1 score with Recon Words

Figure 4.24: Comparison of per-domain prediction with SVM and two feature spaces: Recon-
Words and HTTP Keys for all 105 domains. “Advertising and Tracking” (ATS domains), marked
with “o”, are usually contacted by third party libraries used by mobile apps, and are thus less
sensitive. “Other” (non-ATS) domains, marked with “x”, reflect the domains the user actually
intended to visit and are more sensitive.

Aggregation (SA) [38]. Recall that in both attack scenarios described above, the honest-but-curious

server had access to the updates from the target user, which it used to infer features (in 6a) and

visited domains (in 6b) for that target user. To defend against the particular attacks for our problem,

SA seems naturally suited to hide which updates come from which user.

SA [38] was proposed early as a defense mechanism added on top of FL. It is a multi-party com-

putation (MPC) mechanism that enables clients to submit their updates to the server, but the server

sees only the aggregate of the updates needed for learning. A user’s gradient is aggregated with a

set of k−1 other gradients, from (k = CK̇) users sending updates within the FL round, and cannot

be traced back to the individual user. Intuitively, the more clients participate in a round (larger k),

the better the protection in the k-anonymity sense. However, the value of k also affects the MPC,

93

5m
in.

co
m

ad
nx

s.c
om

ad
ob

ed
tm

.co
m

ad
rol

l.c
om

ad
srv

r.o
rg

ad
ve

rtis
ing

.co
m

air
pr.

co
m

alg
ov

id.
co

m

am
az

on
-ad

sy
ste

m.co
m

an
gs

rvr
.co

m

an
i-v

iew
.co

m

an
ivi

ew
.co

m

atw
ola

.co
m

ba
se

ba
nn

er.
co

m

bid
sw

itc
h.n

et

blu
ek

ai.
co

m

btr
ll.c

om

ca
sa

lem
ed

ia.
co

m

ce
ltra

.co
m

ch
art

be
at.

ne
t

cre
ati

ve
-se

rvi
ng

.co
m

cre
tal

ive
.gr

crs
sp

xl.
co

m

crw
dc

ntr
l.n

et

de
mde

x.n
et

dis
qu

s.c
om

do
ub

lec
lic

k.n
et

dp
clk

.co
m

en
sig

hte
n.c

om

eu
rop

a.e
u

domain

0.0

0.5

1.0

F1
 s

co
re

ad/tracking
other

(a) Per-domain F1 score with HTTP Keys

5m
in.

co
m

ad
nx

s.c
om

ad
ob

ed
tm

.co
m

ad
rol

l.c
om

ad
srv

r.o
rg

ad
ve

rtis
ing

.co
m

air
pr.

co
m

alg
ov

id.
co

m

am
az

on
-ad

sy
ste

m.co
m

an
gs

rvr
.co

m

an
i-v

iew
.co

m

an
ivi

ew
.co

m

atw
ola

.co
m

ba
se

ba
nn

er.
co

m

bid
sw

itc
h.n

et

blu
ek

ai.
co

m

btr
ll.c

om

ca
sa

lem
ed

ia.
co

m

ce
ltra

.co
m

ch
art

be
at.

ne
t

cre
ati

ve
-se

rvi
ng

.co
m

cre
tal

ive
.gr

crs
sp

xl.
co

m

crw
dc

ntr
l.n

et

de
mde

x.n
et

dis
qu

s.c
om

do
ub

lec
lic

k.n
et

dp
clk

.co
m

en
sig

hte
n.c

om

eu
rop

a.e
u

domain

0.0

0.5

1.0

F1
 s

co
re

ad/tracking
other

(b) Per-domain F1 score with Recon Words

Figure 4.25: Zoomed-in version of per-domain prediction with SVM and two feature spaces: Re-
con Words and HTTP Keys.

the communication and computation cost of FL and the convergence. We show that even a small

k (e.g., k ≥ 3) provides good enough protection (i.e., reduces the number of inferred features to

65%) even for the strongest hypothetical adversary.

Threat Setup 6c, with Secure Aggregation (SA). We assume that SA is used and the serve can

only observe the aggregate of the gradients of k users participating in each FL round. For k = 1,

this is the Attack Scenario 6a discussed before, where the server could see the updates of the

target user. For k > 1, the server observes the aggregate non-zero gradients from a set of k users,

including but not limited to the target. It can keep track of different sets and features seen in the

previous and current rounds, in order to infer the features of the target. To that end, there are many

94

possible inference algorithms the server could implement.

We implemented a heuristic that carefully picks the sets of k users to pull updates from, in every

round. It maintains counts of users that participated in sets that had non-zero gradient for a certain

feature (in a matrix I(user, feature)). We outline the main idea of the algorithm 3.

I Consider all subsets of k users, including the target user. For each k-subset, pull the secure

aggregate of the gradients, identify the features with non-zero gradient. Update the matrix I

based on the following rules: (i) if a feature appears in a round but did not appear in previous

rounds, conclude that users that participated in earlier rounds do not have it and update the

count for users in k-subset, (ii) if a feature appears in previous and the current round, update

the count for users in the k-subset, (iii) if a feature appeared in previous rounds and not in

the current round, the current users do not have it.

II Exclude the target user, consider (k − 1)-subsets of other users and repeat Phase I for those

subsets. If a feature does not appear in Phase II but appeared in Phase I, we are sure that the

target user has it. If a feature appears in Phase II but not Phase I, we are sure that the target

user does not have it.

The algorithm eventually infers which features are present or absent in the target user, some de-

terministically (0 or 1), others with varying degrees of confidence (a number between 0 and 1),

reflecting the fraction of rounds that a user participated when the feature appeared. Finally, we fo-

cus on the target user, and apply a confidence threshold: features with confidence above or below

that threshold are declared as present or absent, respectively.

Results 6c. Fig. 4.26 evaluates the success of the inference algorithm in Threat Setup 6c, in a

way that is consistent with the evaluation of Threat Setup 6a (k = 1): we report the percentage

of features recovered for the target user (user 7) at various confidence thresholds. As expected,

the attack is less successful when more users participate in a round (larger k), thus anonymizing

95

2 4 6 8
k users

0.7

0.8

0.9

1.0

%
 fe

at
ur

es
 re

co
ve

re
d

confidence thres.
0.5
0.6
0.8
1.0

Figure 4.26: Evaluating Attack Algorithm 3, with secure aggregation on. We report the percent of
the target user’s recovered features, for varying k (participating users in a round) and confidence
thresholds.

the inferred features within a group of k users. With confidence threshold 1, we observe a sharp

decrease for k ≥ 3 leading to 65% recovered features. The decrease is less sharp and offers less

protection for k ≤ 5 when confidence threshold < 0.8, which shows a trade-off between % of

features recovered vs. confidence of attributing those features to the target user. Overall, the server

recovers correctly with high confidence only 65% of the features if at least 3 users participate in

the FL rounds.

Fig. 4.27 shows the accuracy of the privacy attack with Secure Aggregation on. Moreover, we

show more statistics about the participating users from in-house Facebook dataset regarding their

feature (HTTP Keys) size (Fig. 4.28) and their pairwise similarity based on common features

(HTTP Keys) (Fig. 4.29). Finally, we show in Fig. 4.31 the results when other users are targeted.

Summary of privacy protections. First, we showed that using HTTP Keys instead of Recon-

Words as feature space is more privacy-preserving: we use only keys and not values or packet

fields that contain sensitive identifiers and other information. Second, the FL framework prevents

uploading raw training data from devices to the server. Third, the inference of features and other

sensitive data from observed updates is an inherent vulnerability to all distributed learning. Al-

though HTTP Keys reduce the success of a domain classifier or leakage of features themselves,

96

2 4 6 8
k users

0.75

0.80

0.85

0.90

0.95

1.00

ac
cu

ra
cy

confidence
0.4
0.5
0.6
0.8
1.0

Figure 4.27: Evaluating Attack Algorithm 6c, with secure aggregation on. We report the accuracy
(TP+TN

T+P
), for varying k (participating users in a round) and confidence threshold.

0 500
1000

1500
2000

unique features

user_1
user_2
user_3
user_4
user_5
user_6
user_7
user_8
user_9

user_10

us
er

Figure 4.28: Per user unique HTTP Keys features for in-house Facebook dataset.

there are still privacy risks involved with unprotected gradients in FL. We evaluated and quantified

the leakage of features and browsing history specifically for HTTP packets of a target user. We

also showed that Secure Aggregation (a well-known form of MPC) can significantly help remedy

this problem: even a small number of participating users per round (k ≥ 3) can reduce the number

of features deterministically inferred to 65%.

97

us
er

_1

us
er

_2

us
er

_3

us
er

_4

us
er

_5

us
er

_6

us
er

_7

us
er

_8

us
er

_9

us
er

_1
0

user_1
user_2
user_3
user_4
user_5
user_6
user_7
user_8
user_9

user_10

0.2

0.4

0.6

0.8

1.0

co

m
m

on
 fe

at
ur

es

Figure 4.29: Pairwise user similarity based on Jaccard similarity of common features for in-house
Facebook dataset.

2 4 6 8
k users

0.96

0.97

0.98

0.99

1.00

ac
cu

ra
cy

confidence
1.0

(a) Target is User 1.

2 4 6 8
k users

0.9850

0.9875

0.9900

0.9925

0.9950

0.9975

1.0000

ac
cu

ra
cy

confidence
1.0

(b) Target is User 4.

2 4 6 8
k users

0.96

0.97

0.98

0.99

1.00

ac
cu

ra
cy

confidence
1.0

(c) Target is User 6.

2 4 6 8
k users

0.970

0.975

0.980

0.985

0.990

0.995

1.000

ac
cu

ra
cy

confidence
1.0

(d) Target is User 8.

Figure 4.30: Accuracy of recovered features for different target users from Facebook dataset with
maximum confidence. The fewer the unique features a user has (user 4 has the fewest), the better
the worst case accuracy is for features recovered with maximum confidence.

98

2 4 6 8
k users

0.2

0.4

0.6

0.8

1.0

%
 fe

at
 re

co
ve

re
d

confidence
1.0

(a) Target is User 1.

2 4 6 8
k users

0.2

0.4

0.6

0.8

1.0

%
 fe

at
 re

co
ve

re
d

confidence
1.0

(b) Target is User 4.

2 4 6 8
k users

0.2

0.4

0.6

0.8

1.0

%
 fe

at
 re

co
ve

re
d

confidence
1.0

(c) Target is User 6.

2 4 6 8
k users

0.2

0.4

0.6

0.8

1.0

%
 fe

at
 re

co
ve

re
d

confidence
1.0

(d) Target is User 8.

Figure 4.31: Percent of recovered features for different target users from Facebook dataset with
maximum confidence.

4.6 Summary

This chapter proposes FedPacket, a framework for federated mobile packet classification, and

evaluates its effectiveness and efficiency, using three real-world datasets and two different tasks

(namely PII exposure and Ad request). First, we propose a reduced feature space (HTTP Keys),

which limits the sensitive information shared by users. Then, we show that SVM with SGD per-

forms similarly to decision trees used by state-of-the-art [115, 121, 120, 124], in terms of F1 score

as well as interpretability. We also show that Federated achieves a significantly higher F1 score

than Local and is comparable to Centralized models, and it does so within a few communication

rounds and with minimal computation per user, which is important in the mobile environment. Fi-

nally, we demonstrate an attack by an honest-but-curious server that can infer features and brows-

99

2 4 6 8
k users

0.6

0.7

0.8

0.9

1.0

co
si

ne

(a) Target is User 1.

2 4 6 8
k users

0.4

0.5

0.6

0.7

0.8

0.9

1.0

co
si

ne

(b) Target is User 4.

2 4 6 8
k users

0.6

0.7

0.8

0.9

1.0

co
si

ne

(c) Target is User 6.

2 4 6 8
k users

0.5

0.6

0.7

0.8

0.9

1.0

co
si

ne

(d) Target is User 8.

Figure 4.32: Cosine similarity of true and recovered features for different target users from Face-
book dataset. The larger the k the worse the cosine similarity is due to decreasing confidence levels
which increases the distance between true and recovered features.

ing history, and demonstrate that simple existing add-on mechanisms can provide significant levels

of protection.

Future Work. One can consider additional privacy protections on top of our FedPacket frame-

work, beyond secure aggregation, e.g., differential privacy (DP) [94, 65, 36], selecting a subset of

gradient updates, compression of gradients or federated GANS [29]. Another promising direction

for addressing both feature space explosion and privacy attacks is to train packet or URL embed-

dings specifically for this problem. Finally, our framework can be applied to tasks beyond PII/Ad

prediction (e.g., to detect tracking [123] or fingerprinting [148]), and beyond mobile devices (e.g.,

for network traffic generated by different IoT devices).

100

Algorithm 3: Attack with Secure Aggregation in place
1 Given a target user t, K total number of clients, k number of clients who participate in a round, n

feature size, encoded value certain value that represents a feature is present with certainty:
2 Initialize: feature array[K][n]=-1, Sfeat ← (set of features seen so far)

3 Phase 1:
4 Stuples ← (set of all user k-tuples with t being the first user in each tuple)
5 for each k-tuple p ∈ Stuples do
6 Scur ←(union of features of users in p)
7 if Sfeat is empty then
8 for each u in p do
9 for each feature f ∈ Scur do

10 feature array[u][f] +=1
11 else
12 Snew ← Scur − Sfeat
13 for each feature f ∈ Snew do
14 feature array[p[0]][f] = 0
15 if len(p)==2 then
16 feature array[p[1]][f] = encoded value certain
17 else
18 for each u in p[1:] do
19 feature array[u][f] +=1
20 Scommon ← Scur ∩ Sfeat
21 for each feature f ∈ Scommon do
22 for each u in p do
23 feature array[u][f] +=1
24 Sprev ← Sfeat − Scur
25 for each feature f ∈ Sprev do
26 for each u in p do
27 feature array[u][f] = 0
28 for each u in all users do
29 if feature array[u][f] ≥ 1 && feature array[u][f]!=encoded value certain then
30 feature array[u][f] +=1
31 Sfeat.update(Scur)

32 Phase 2:
33 Sfeat2 ← (set of features seen in Phase 2)
34 for u in set(K-t) do
35 Stuples2 ← (set of user k-tuples (without the target t) with u being the first user in each

tuple)
36 for each k-tuple p ∈ Stuples2 do
37 repeat phase 1 with u as target
38 Sfeat2.update(Scur)

39 After Phase 2:
40 for f in Sfeat - Sfeat2 do
41 feature array[t][f] = encoded value certain
42 for f in Sfeat2 - Sfeat do
43 feature array[t][f] = 0
44 for u in range(K) do
45 for f in feature array[u] do
46 if feature array[u][f] != 0 feature array[u][f] != encoded value certain then
47 feature array[u][f] = feature array[u][f]/rounds user u seen

101

Chapter 5

Federated Signal Maps and Location

Leakage

5.1 Overview

Mobile crowdsourcing is widely used to collect data from a large number of devices, which are

useful on their own and/or used to train models for properties of interest. This data is often used

to train models for a number of properties of interest, such as cellular/WiFi coverage, sentiment,

occupancy, temperature, COVID analytics etc. Within this broader class of spatio-temporal models

trained by mobile crowdsourced data [43], we focus on the representative and important case of

cellular signal maps, described next.

Cellular operators rely on key performance indicators (a.k.a. KPIs) to understand the performance

and coverage of their network, in their effort to provide the best user experience. These KPIs

include wireless signal strength measurements (e.g., LTE reference signal received power, a.k.a.

RSRP, which is going to be the focus of this chapter), other performance metrics (e.g., coverage,

throughput, delay) as well as information associated with the measurement (e.g., location, time,

102

frequency band, device type etc.).

Cellular signal strength maps consist of KPIs in several locations. Traditionally, cellular operators

collected such measurements by hiring dedicated vans (a.k.a. wardriving [141]) with special equip-

ment, to drive through, measure and map the performance in a particular area of interest. However,

in recent years they increasingly outsource the collection of signal maps to third parties [24].

Mobile analytics companies (e.g., OpenSignal [100], Tutela [129]) crowdsource measurements di-

rectly from end-user devices, via standalone mobile apps, or measurement SDKs integrated into

popular partnering apps, typically games, utilities or streaming apps. The upcoming dense deploy-

ment of small cells for 5G and smart city/IoT at metropolitan scales will only increase the need for

accurate and comprehensive signal maps [62, 72]. Because signal strength measurements are ex-

pensive to obtain, they may not be available for all locations, times and other parameters of interest,

thus the need for signal map prediction based on limited available spatio-temporal measurements.

Signal map prediction is an active research area and includes: propagation models [144, 44], data-

driven approaches [59, 46, 70], combinations thereof [104], and increasingly sophisticated machine

learning models for RSRP [108, 55, 24, 79] and throughput [134, 145]. However, all of these

prediction techniques are consider a centralized setting: mobile devices upload their measurements

to a server, which then trains a global model to predict cellular performance (typically RSRP)

based on location (and potentially time and other features). Clearly, this introduces privacy risks

for the participating users: sharing location data alone can reveal the user’s home and work and

other frequently visited locations, as well as occasional visits to places that reveal their medical

conditions, political beliefs and and other sensitive information [19].

Fig. 5.1 depicts an example of UCI Campus LTE Dataset which was introduced in Chapter 2. We

see the locations where measurements of signal strength (RSRP) were collected by two (out of

seven) different volunteers as they move around the campus. The measurements are then uploaded

to a server, which can then create a signal map for the campus. In particular, the server can

then merge the datasets from different users and store them; and/or may train a global model for

103

predicting signal strength based on location and other features. However, this utility comes at the

expense of privacy: as evident in Fig. 5.1, frequently visited locations may reveal user’s home,

work, other important locations, as well as their mobility pattern. In this particular example, the

trajectories of the two users are also sufficiently different from each other, and can be used to

distinguish between them, even if pseudo-ids are used by the users.

In this chapter, we make the following contributions: (1) we formulate the signal strength predic-

tion problem within an online federated learning framework and (2) we consider, for the first time,

location privacy attacks launched by an honest-but-curious server.

(1) W.r.t. the prediction problem itself: we consider the simplest and cleanest version that lies

at the core of this problem: we train a DNN model to predict signal strength (RSRP) based

on GPS location (latitude, longitude), while local training data arrive in an online fashion.

The problem lends itself naturally to federated learning: training data are collected by the

mobile devices, which want to collaborate without uploading sensitive location information.

Federated learning enables mobiles to do exactly that by exchanging model parameters with

the server but keeping their training data from the server [93]. The problem further lends

itself to online federated learning because the training data are collected over time as the

users move around, thus in an online fashion [42, 82].

(2) W.r.t. the location privacy attacks: Since gradient updates (explicitly sent in FedSGD or

can be computed from model updates in FedAvg) are sent from users to the server in ev-

ery round, federated learning lends itself naturally to inference attacks from gradients. We

adapt the Deep-Leakage-from-Gradients (DLG) attack [147, 64], originally developed (and

exclusively used so far) to reconstruct training images [147, 64] and text used for DNN clas-

sifiers [147]. A key observation, that we confirm both empirically and analytically, is that an

honest-but-curious server who observes gradient updates from individual target users, can

reconstruct the average location of points in a single batch. This is different from state-

of-the-art gradients-based attacks where the attacker aimed to reconstruct N images from a

104

(a) RSRP measurements of one user.

(b) RSRP measurements of another user.

(c) RSRP measurements from all users.

Figure 5.1: Locations where signal strength (RSRP) measurements are collected by different mo-
bile users on the UCI Campus LTE Dataset. Users have different trajectories; see Fig. a) and
b). Fig. c) shows the measurements from all users merged, which motivates crowdsourcing-based
training for signal maps.

gradient obtained on N images. Over multiple rounds of federated learning, this allows the

reconstruction of the target(s)’ mobility pattern at a coarse granularity of a batch. We show

that averaging of gradients inherent in FedAvg [93] provides a moderate level of protection

105

against DLG, while simultaneously improving utility; to that end, we systematically evaluate

the effect of multiple federate learning parameters E,B,R, η on the convergence and suc-

cess of the attack. We also propose a Diverse Batch algorithm that mobile devices can apply

locally to curate their batches, so as to further protect their location privacy, without hurting

utility, and while enabling data minimization. Finally, we show that the effect of multiple

users participating in federated learning, w.r.t. the success of the DLG attack, depends on

the similarity of trajectories of those users.

Throughout this chapter, we use two real-world datasets including: a small but dense UCI Campus

LTE Dataset [25]; and a larger but sparser London metropolitan-area signal maps publicly available

from the Radiocells Dataset [16]. Both datasets have been introduced in Chapter 2. It is also worth

noting that we purposely do not consider additional privacy-preserving defense techniques such as

Differential Privacy (DP) or Secure Aggregation (SA), in order to show that these (often expensive)

mechanisms are not necessary in this context.

5.2 DLG Attack to Infer Location

Signal Maps. There has been significant interest in signal map prediction techniques based on a

limited number of spatio-temporal cellular measurements. These include propagation models [144,

44] as well as data-driven approaches [59, 46, 70] and combinations thereof [104]. Increasingly

sophisticated machine learning models are being developed to capture various spatial, temporal

and other characteristics of signal strength [108, 55, 24] and throughput [134, 145]. Prior work

has focused exclusively on minimizing the mean squared error (MSE) in predictions of raw signal

strength itself [24], but the problem has been considered so far only in a centralized, not federated,

way. In this work, we aim to train machine learning models to predict the signal strength of a user’s

device based on GPS locations via federated learning [93]. To the best of our knowledge, no prior

work considered signal maps prediction in addition to the case of streaming (online) data in FL

106

and the corresponding privacy leakage via DLG attacks.

FL & Location Privacy. Numerous works have evaluated privacy in location (or trajectory)

datasets, e.g., [73, 51, 105, 52], where the utility of the dataset lies in the location itself. In contrast

and as pointed out in [43], the utility in mobile crowdsourcing does not lie in the location itself,

but in the measurement associated with that location. In our application scenario, the measure-

ment is the signal strength measurement, while location is only a feature in a prediction model for

signal strength. In this work we focus on location privacy in crowdsourcing systems, similarly to

[43, 105] but we consider the federated learning as a one of the defenses and evaluate the privacy

leakage in different FL setups showing that the aggregation mechanisms of FL provide enough

protection without the need of additional add-ons like DP. Moreover, we consider the case of on-

line data. Few works [80] considered the case of online location data, although not in distributed

way and with a significant different goal: next location prediction. In terms of online FL, there are

few works [47, 90, 50] and none of them considered privacy leakage in such setup, but instead they

focused on improving convergence in the FedAvg algorithm and tackle the bottleneck of stragglers

due to device heterogeneity.

Data reconstruction based on gradients. It has been shown that exchanging gradients [147, 146]

in FedSGD or model parameters [64] in FedAvg with an honest-but-curious server can enable

reconstruction of the local training data. Such attacks have been demonstrated in the past in other

contexts. First, deep leakage from gradients, (DLG) [147], reconstructed training data (images

and text) and their corresponding labels, from observing a single gradient during training of DNN

image classifiers, without the need for additional models (e.g., GANS [71]) or side information.

The DLG attacker observes a single gradient, which is the case in FedSGD but in not FedAvg;

it performs local training on at least one pass of local data before sending model updates to the

server, and reconstructs either a single or several datapoints, from a single or a batch of initial

dummy points, respectively. The idea of the DLG attacks is to minimize the distance of the gradient

observed and the gradient of some randomly initialized data (which we call reconstructed data) and

107

based on this optimization step, update the reconstructed data. Second, the improved leakage from

gradients (iDLG) [146] optimized the reconstruction of the target label, thus further improving

the convergence speed of the attack although it is only applicable to classification. The closest

to our work is inverting gradients in federated learning [64] that modified the DLG attack to

use a cosine-based distance instead of the Euclidean. Their goal was not to perform gradient

matching finding for data reconstruction, but to find datapoints that lead to a similar change in

model prediction. They also evaluated for the first time DLG against FedAvg and the impact of

averaged gradients due to local epochs on the attack. Overall, prior work on DLG attacks in FL

has focused exclusively, so far, on image or text data.

This Work in Perspective. To the best of our knowledge, no prior work considered signal maps

prediction in addition to the case of streaming (non-static) data in FL and the corresponding lo-

cation leakage via DLG attacks. We adapt the DLG attack [64] with the goal to reconstruct the

average location of a data batch based on gradients of model parameters in FL, where each data

batch is obtained via a time interval. We assume there are no add-ons like Differential Privacy

(DP) or Secure Aggregation (SA), and we consider instead the vanilla FL. This is realistic since

both DP and SA are expensive to implement so there is economic incentive for companies to use

vanilla FL [93]. Moreover, the first DLG attack paper [147] discussed potential defenses including

tuning training parameters such as mini-batch size. Thus, we investigate this approach here; af-

ter extensive evaluation of various FL parameters, we show how the averaging of gradients in FL

provides some natural protection against location leakage via DLG attacks. Finally, we propose a

clustering algorithm to limit further the effectiveness of the attack without hurting utility.

5.3 Problem Setup

Signal Maps Prediction. In this work, we are interested in training a DNN model to predict

signal strength in LTE; the Reference Signal Received Power (RSRP) from location features. In

108

particular, we denote the DNN service model as yi = F (xi, w), which predicts RSRP value yi

based on the input feature vector xi = [xi,1, xi,2]
T , where i denotes the i-th datapoint in each input

vector x, which includes (longitude, latitude) coordinates. To evaluate the performance of the

model we follow prior work and choose the Root Mean Squared Error (RMSE) as our utility metric.

In order to maximize utility, we tune the DNN architecture (how deep, how wide, activations,

learning rate) and hyperparameters via Hyperband tuner [81]. We conduct tuning for each cell

tower, since each model is per cell tower. In practice, before FL starts, the server and the clients

need to agree to a common model and in this case the server will perform tuning with a public

dataset for the corresponding cell tower. This is realistic, since the operator will indeed have

access to smaller datasets per cell tower which are collected either directly by the operator or via

users who are willing to share their data directly with the server. In the results section, we use a

DNN with two hidden layers with 224 and 640 units and ReLU and sigmoid activation functions,

respectively. We also add a dropout layer after each hidden layer with 5% of units being dropped

randomly to prevent overfitting.

The Online FL Framework. Federated learning [93], as already discussed in Chapter 2, allows

users to keep their actual location and associated signal strength measurements on the device and

only exchange model parameter updates with the server, while still collaborating to train a global

model. All users and the server agree on the global model to train (in our problem we consider

DNNs that predict signal strength based on location), and they operate in rounds to train it. FL

has the following parameters: R number of FL rounds, B local mini-batch size (B=inf means the

whole dataset is treated as a single batch), E number of local epochs, C fraction of users that

participate in an FL round. These parameters control the client computation and communication

between the server and clients. In every round t (out of total R), the server initializes the global

parameters and asks for a local update from available users. During the local update, the user trains

a local model on a single or multiple mini-batches, depending on the mini-batch size B, performs

one or multiple passes on the data depending on the local epochs E, and eventually sends its new

model parameters to the server. The server averages them with updates from other users, updates

109

Figure 5.2: Example for 1-day rounds (∆t = day) in online FL that results intoR total rounds. The
client/target k collects Dk

t data batch (light blue) in each t round, which is used for local training
to obtain the updated weights wkt and share them with the server. The Dk

t is split into a list Bk
t

depending on the mini-batch size B. The server launches a DLG attack in each t round and aims
to reconstruct those average locations (dark blue) across rounds.

the global parameters and initiates another round, until convergence.

In contrast to standard FL that was presented in Chapter 2, we consider here specifically the case

of online batch FL, where the local data per user is not static, but it becomes available over time

as the user moves around. We denote Dk
t , as the local data batch of a client k in round t, which

can be partitioned further into mini-batches of size B (which will be referred as Bk
t). We would

like to note that the granularity of the time interval corresponds to the number of FL rounds R, due

to online data. We summarize the main parameters in Table 5.1. In every round t, only the newly

acquired data Dk
t of a client k is used used for local training and the data from previous rounds

(e.g., Dk
t−1) is discarded. An example is pictured in Fig. 5.2 for 1-day rounds; each day shows

a user’s trajectory. An overview of the algorithm is shown in Algorithm 4, which is also called

Federated Averaging (FedAvg). A similar scheme, Federated SGD (FedSGD), has a significant

difference from FedAvg: each device performs a single gradient descent step on their local data.

FedSGD and FedAvg are equivalent when E = 1, B = ∞, C = 1. The server also launches a

Deep Leakage from Gradients (DLG) attack in each round t for a target client, as described below,

110

Parameter Description

x Input features with lat, lon coordinates
y Prediction label for RSRP
` MSE loss for RSRP prediction
η Learning rate
t FL round based on time interval, up to R in total

∆t Interval to split data into rounds of granularity t
wt Global model weights at round t
wkt Local model weights at round t from client k
Dk
t Data batch of client k in round t
B Mini-batch size; if B =∞ then one mini-batch
Bk
t List of mini-batches for a client k at round t
E Number of local epochs in FedAvg
D Cosine loss in DLG

∇wtargett Gradient of target’s model weights at round t
xDLG Final reconstructed location via DLG
x̄t Average/centroid location of data Dk

t

ḡ Average gradient obtained on a mini-batch
ε DBSCAN parameter that controls total clusters

Table 5.1: Summary of main parameters.

aiming to reconstruct the average or centroid location (i.e., the dark blue locations in Fig. 5.2).

Threat Model. We assume an honest-but-curious server who w.l.o.g. wants to infer the locations

of a particular target user, or all users for that matter. Different notions of location can be in-

ferred, e.g., the trajectory at different spatio-temporal granularities, important locations, presence

in points-of-interest. We purposely assume no MPC or DP add-ons, i.e., the server sees the model

updates coming from each individual user in every round. This is the strongest possible honest-

but-curious adversary in FL: it stores updates per user and compare across successive rounds t,

which allows to also calculate the gradient of model parameters from a target user, as shown in

Algorithm 4, in order to launch a DLG attack. This is another key difference from the standard FL

algorithm presented in Chapter 2.

DLG Attack. Algorithm 5 shows the details of the DLG attack, which is incorporated in the

FedAvg algorithm 4 where the server targets a specific user and launches the attack for each round

111

Algorithm 4: Online FedAvg with DLG Attack.
1 Given K clients (indexed by k); B local mini-batch size; E number of local epochs; R number of

global rounds based on interval; C fraction of clients; nkt is the training data size of Dk
t of client k

at round t; nt is the total data size from all users at round t and η is learning rate; target is the
client that the server aims to reconstruct their local data.

2 Server executes:
3 Initialize w0

4 for each round t = 1,2, ... R do
5 m← max(C ·K, 1)
6 St ← (random set of m clients)
7 for each client k ∈ St in parallel do
8 wkt+1 ← ClientUpdate(k,wt, t, B)
9 if k==target then

10 ∇wtargett+1 ← wkt+1 − wkt
11 DLG(F (x;wkt+1), wt+1, ∇wtargett)

12 wt+1 ←
∑K

k=1
nk
t
nt
wkt+1

13

14 ClientUpdate(k,w, t, B):
15 Bk

t ← (split of local data batch Dk
t at round t into mini-batches of size B)

16 for each local epoch i from 1 to E do
17 for mini-batch b ∈ Bk

t do
18 w ← w − η∇`(w; b)

19 return w to server

Figure 5.3: DLG attack based on the gradient obtained on a batch of ground truth locations (light
blue) that reconstructs their average/centroid. The DLG attack starts with a randomly initialized
location (yellow) and it gets closer to the centroid with more iterations (darker color indicated pro-
gression in iterations) by minimizing the cosine distance of the observed gradient and the gradient
obtained on the current reconstructed point. The distance between the final reconstructed (dark
purple) and the centroid (dark blue) is 20 meters.

112

Algorithm 5: DLG Attack on Latest Batch of Data.
1 Input: F (x;wt): DNN model at round t; wt: model weights,∇wt:model gradients, after target

trains on a data batch of size B at round t, learning rate η for DLG optimizer; m: max DLG
iterations; a: regularization term for cosine DLG loss.

2 Output: reconstructed training data (x, y) at round t
3 Initialize x′0 ← N (0,1), y′0 ← ȳ // mean RSRP
4 for i← 0,1, ... m do
5 ∇w′i ← ∂`(F (x′i, wt), y

′
i)/∂wt

6 Di ← 1− ∇w ·∇w′
i

‖∇w‖‖∇w′
i‖

+ α // cosine loss

7 x′i+1 ← x′i − η∇x′iDi, y
′
i+1 ← y′i − η∇y′iDi

8 return xDLG ← x′m+1

t the target client participates. An example is shown in Fig. 5.3, the ground truth data (light

blue) contains visited locations of a user during a week that corresponds to a Dk
t . The DLG

attack is an iterative algorithm which works as follows: 1) choose a target user and initialize a

dummy location x′0 randomly (in yellow), 2) obtain the gradient with respect to dummy location,

∇W ′
i , which we call dummy gradient, 3) update the dummy location towards the direction that

minimizes of the cosine-based loss between the two gradients, similarly to [64], of the dummy

gradient and the true gradient that was given as input. After m = 400 iterations, the reconstructed

location is only 20 meters away from the average/centroid location. Since we consider online FL,

the attacker aims reconstruct a single location in each round t that is close to the ground truth

average of the batch Dk
t . Due to the online nature of data and location characteristics, there is no

need to reconstruct all N locations, since the average location still reveals user’s whereabouts. The

attacker reconstructs both the location (lat, lon) and the target RSRP value, as we cannot use the

analytical reconstruction of the label that was proposed in [146] since we focus on a regression

problem instead of classification. We cannot assume the label is known by the server, since the

attacker does not have access to this information and in fact, the signal strength values can actually

reveal user’s location. We evaluate different initializations for the location, but for the prediction

label (RSRP) we initialize with the mean RSRP from the training data. This is realistic, as the

attacker can have access to this information via public data or by collecting some measurements

around each cell tower with its own devices. For each DLG attack we set the maximum number

113

of iterations to 400,000, and add an early stopping condition: if the reconstructed location does

not differ for 10 subsequent rounds, then we assume the attack has converged and return that

reconstructed location.

5.3.1 DLG Convergence to the Average Location

We already showed in practice that the DLG attack on a gradient based on a batch of locations,

Bk
t , of a user k at round t converges near the average of Bk

t . How close is the final reconstructed

location to the average? This can be shown by the following theorem. Assume that the service

model is a biased fully-connected neural network with L layers defined as yi = f(xi), which

predicts RSRP value yi based on the input feature vector xi = [xi,1, ..., xi,M]T , where xi and yi

represents the i-th feature vector and the corresponding RSRP value respectively, and M is the

total number of features in each input vector (in this work M = 2). Then, the l-th layer of the

service model can be represented as follows:

yli = σ(wlxli + bl),

where xli and yli is the input and output of l-th layer given the model input xi.

THEOREM 5.1. 1 Suppose that a data mini-batch of size B {(xi, yi)}i=Bi=1 is used to update the

service model yi = f(xi) during a gradient descent step. Then, the distance between each recon-

structed feature by DLG attacker and the mean value of this feature in the data batch B can be

bounded by the following equation:

|xDLG,j − x̄i,j| ≤
1

2B

i=B∑
i=1

(
(
gi
ḡ
− 1)2 + (xi,j − x̄i,j)2

)
.

where xDLG,j is the j-th reconstructed feature, x̄i,j = 1
B

∑i=Bk
t

i=1 xi,j , ḡ = 1
B

∑i=B
i=1 gi, gi =

1This theorem was first observed empirically by the author, and then proved analytically by her collaborator, Jiang
Zhang.

114

∂L(f(xi),yi)

∂b1k
, and b1k is any one of the k-th feature in b1 satisfying b1k 6= 0.

We will be using the bound in Theorem 5.1 throughout the evaluation of this work, see Results

section, and we defer to the appendix for the full proof in [33]. The bound holds on all B values

but when B increases the bound becomes tighter.

5.3.2 Assessing the Success of the Attack

When applied to each batch of local data Bk
t of a user k at round t, the DLG attacker essentially

infers one location xDLG per batch Bk
t . As the user moves around over time t, the user essentially

infer a coarse (averaged) version of the trajectory of the user. Fig. 5.3.2(a) depicts that effect. In

order to assess the success of the attack, we need metrics that capture how similar or dissimilar are

the inferred locations from the real ones, but also how accurate the attack is.

Attack Divergence. The reconstructed locations will not always converge to the mean, as con-

vergence depends on the location variance, initialization, whether the parameters of the DLG op-

timizer are tuned properly and the existence of averaging mechanisms that make the attack more

challenging. We evaluate how expensive and accurate is the DLG attack in terms of average exe-

cution time and average DLG iterations per reconstructed location. Another aspect that measures

the convergence of the attack is to count how many attacks have diverged, aka they are outside

the attacker’s defined geographical area. We refer to these locations as “diverged” and we discard

them before obtaining the privacy, utility metrics.

Earth Movers Distance (EMD) [39, 60]. EMD takes into account the spatial correlations and

returns the minimum cost/effort required to convert one probability distribution to another, which

makes it a good privacy metric for our problem. A classic interpretation of EMD is that it treats

the two probability distributions as two different ways to pile up an amount of dirt (earth) over a

region D and thus, the EMD is the minimum cost required to turn one pile into the other. The cost is

115

(a) Reconstructed locations by the DLG attack, considering one
attack per 1-hour batch and FedSGD. EMD=5.3

(b) One randomly generated location per hour (489 locations in
total). EMD = 21.33 for 5 realizations (or 0.47 if normalized by
the maximum distance: approx. 2km diagonal).

Figure 5.4: We consider a target user and its real locations on campus, 489 in total, depicted in light
blue. The over-sampled area on the right corresponds to home location of that user. The other area
on the left, corresponds to his work on campus. We see that a DLG attacker processing updates
from 1h intervals can successfully reconstruct the important locations of the user: the difference
between the distribution of real and the inferred locations is EMD=5.2. To put that in context, if
one would randomly guess the same number of locations, the EMD would be 21.33.

defined by the amount of dirt moved times the ground distance by which it was moved. The sliced

version is based on Monte Carlo approximations based on N number of projections. It is more

computationally efficient than the exact EMD calculation and it is suitable for 2d distributions. It

116

is defined as follows: SWD2(µ, v) = E[W 2
2 (θ#µ, θ#v)]

1
2 , where θ#µ stands for the pushwards

of the projection Rd ∈ X 7→ 〈θ,X〉.

EMD has been used in prior location privacy works, and specifically as a measure for t-closeness

[83] and l-diversity [91], but not as a metric of location leakage. Another work [61] used EMD as

their cost function, not for privacy but for determining if two sets of GPS locations were generated

by the same individual. We use Euclidean distance as our distance function when calculating

EMD on GPS coordinates that were converted to UTM. When calculating the EMD metric, we

bound all reconstructed locations to a geographical area defined by the min, max longitude and

latitude values from our dataset and convert them to UTM so that the distance being calculated

is in meters. In case some reconstructed locations are outside these boundaries we simply discard

them when computing the privacy metrics but we report the fraction of diverged locations/attacks in

each scenario. In practice, the attacker will relaunch the DLG attack with a different initialization

hoping it will lead to a converged reconstructed location.

Our main privacy metric is EMD; low EMD values correspond to more privacy risk, and EMD=0

indicates the two distributions are identical (maximum privacy risk). To make the EMD metric

more intuitive in terms of privacy, we assume the attacker samples locations at random and uni-

formly, that is, he randomly guesses locations in the defined geographical area. Next, we calculate

the EMD between these random locations and the ground truth locations. We call this baseline

EMD random and we perform this procedure five times in order to report the average EMD. An

example is shown in Fig. 5.4b and the corresponding EMD random is 21.33. This is how much

privacy we can gain when the attacker randomly guesses. In contrast, launching the DLG attack

with 1-hour rounds results to EMD=5.3, which indicates more privacy leakage. Since the interval

is very fine in this case, the reconstructed locations reveal part of the user’s trajectory.

Visualization. Visualizing the reconstructed locations on top of the true user locations. This metric

more intuitive and shows directly the privacy leakage in each scenario.

117

Distance from the Centroid. We report this metric to show how accurate the DLG attack is in each

scenario. That is, how far away (in meters) is the corresponding reconstructed location in round

t from the average locations of Bk
t that the attacker was aiming to reconstruct via the observed

gradient. We also refer to this metric as: ||xDLG − x̄t||, where x̄t is the centroid of the Bk
t and

xDLG is the reconstructed location at round t.

Jensen-Shannon Distance (JSD). We also considered the JSD, for each pair of reconstructed and

ground truth heatmaps after normalizing and flatting each matrix to obtain the probability vectors

P and Q. Although this is a well known metric for comparing distributions, it does not consider the

ground distance but only the probability mass, unlike EMD.

5.4 Datasets

UCI Campus LTE dataset [25]. This dataset was introduced in Chapter 2 and we analyze it and

use it as follows here. The distribution of the number of measurements for the top three cell towers

with the most measurements is shown in Fig. 5.5a. Each dataset is preprocessed by removing the

mean of each feature and scaling for unit variance. A 70-30 random split was chosen to create

a training and test set. The pseudo-IDs were also used as proxies for user splits under federated

learning. We also split the data into batches based on time intervals on varying granularities: 30

minutes, 1-3 hours or 1 week. Fig. 5.5c and Fig. 5.5b shows the resulting batches per user for

the x204 and x355 cell towers respectively. For coarser granularities we obtain fewer batches but

they contain significantly more datapoints, e.g., for cell x204 and user 0, the average batch size for

1-week batches is 3492, for 1-day is 817, for 3-hour is 205 and for 1-hour batches is 79 datapoints.

We would like to remind the reader that the granularity of the time interval corresponds to the

number of FL rounds R (or global updates), when we train in online manner for every new “batch”

of data that the user acquires based on the interval. For instance, for 1-week interval, the total

FL rounds are 11 since there are 11 batches in total where each batch contains 1 week worth of

118

(a) Per user data size for the top 3 cell tow-
ers.

(b) Total batches per user: x355 cell.

(c) Total batches per user: x204 cell. (d) Total datapoints per batch per interval:
204 cell, user 0.

Figure 5.5: Distribution statistics for Campus dataset and the top 3 cell towers.The data is split
into batches based on time granularity; the finer the granularity the more batches (and more FL
rounds/updates in Online Federated Learning) are obtained but each batch has few datapoints in
contrast to coarser granularities which result to few but large batches/updates.

datapoints.

Radiocells [16]. We introduced this dataset in Chapter 2 and here we use it to evaluate the case of

multiple users participating in FedAvg. The UCI Campus LTE Dataset, although it contains pseudo

user ids, it has limited number of users. It does not contain user ids, but it does contain multiple

upload files where each upload file corresponds to a single device. We focus on data from 2017

and the area of London, UK which had the most measurements and approx. 3500 upload files.

Since each upload file is limited in terms of number of measurements and/or time duration, we

merge multiple upload files into a single user by considering the distance of start and end locations

among multiple upload files. For instance, if the start locations do not differ more than a threshold

119

T between two upload files and their end locations do not differ more than T, then we merge the

two upload files and assume they belong to the same device/user. The motivation behind this is

that the user starts logging their data from the same place (their home/work) and end logging at

the same location (home/work). By adjusting T to 1 mile, we obtain 933 pseudo users, where the

potential users have several weeks worth of data, so we choose per-week intervals. We also filter

out the data to get only LTE measurements and we remove measurements with RSRP outside the

range [-140, -44] dBm, as well as we replace collisions in the label (same location, timestamp

but different RSRP value) with the average RSRP value. Fig. 5.6 shows the violin plot for per

batch datapoints for each user for 1-week intervals in the selected cell tower x455 with the most

measurements. For all potential target users, the average number of measurements per batch/round

is around 10. The corresponding average in the Campus data was more than 1,000 measurements

for user 0 and 380 measurements for user 1 when considering 1-week intervals for top cell x204.

Figure 5.6: Total datapoints in each batch per user for 1-week intervals in Radiocells.

5.5 Results

In this section, we use the UCI Campus LTE Dataset and the Radiocells Dataset to evaluate the

performance of online federated learning under privacy attacks

120

(a)

(b)

Figure 5.7: Tuning learning rates. We use the 1-week rounds to tune η for both B=inf and B=20
and show how utility (RMSE) and privacy (EMD) is affected. We choose η = 0.001 as our default
learning rate (unless stated otherwise) and η = 10−5 for B=20, since both minimize RMSE and
EMD.

Learning rate η. The first parameter we need to tune is the learning rate η since SGD is sen-

sitive to this parameter and utility is affected significantly. We performed a grid search with

η = 10−6, 10−5, 10−4, 10−3, 0.001, 0.1 for two scenarios: FedSGD and FedAvg with E=1, B=20.

To minimize RMSE, we choose η = 0.001 as our default learning rate. In case of minibatches,

we observe a lower η = 10−5 can slightly lower RMSE. In the following experiments, we either

consider the default η = 0.001 or we lower η = 10−5 in case of minibatches in order to minimize

the RMSE and then measure the privacy leakage.

121

(a) 1-week rounds: EMD=7.6 (0.17), avg random EMD=22.72 (0.5).

(b) 24-hour rounds: EMD=6.4 (0.14), avg random EMD=22 (0.49).

Figure 5.8: The corresponding recovered locations in the case of strongest attack with eta=0.001
for various time granularity of FL rounds. The light blue square points are the ground truth points
and the circle points are the reconstructed points for each round; the darker color represents the
later rounds. RMSE is 4.93, 4.91, 5.16 for 1w, 24h, 1h respectively. Reconstruction with 1-
hour rounds (Fig.5.4a) reveals user trajectories. The coarser rounds (24-h, 1-week) still reveal the
frequent locations of the target, e.g., their home/work locations.

5.5.1 Location Leakage with FedSGD

Strongest Attack. We consider here the case of FedSGD, which introduces minimal averaging

of gradients due to B = ∞, E=1. That is, in each FL round the target user performs a single

SGD step on their local data and sends the local model parameters to the server. We present here

the strongest attack for various time granularities of rounds with η = 0.001. Fig. 5.8 shows

the corresponding true locations and the reconstructed locations via DLG for 1-week and 1-day

intervals. We observe that the finer the interval, e.g., 1-hour as shown in Fig. 5.4a, of the rounds

122

(a) Multiple initialization points for FedSGD and 1 FL round.

(b) Cosine loss of DLG attack per round.

(c) Distance of each randomly initialized location to the average location.

Figure 5.9: FedSGD for one Round. DLG converges (visually and it terms of cosine loss) to the
average location regardless of the initialization point, or how far it was initialized from the average.

the better the reconstruction of the true locations (visually but also in terms of EMD), although the

utility (RMSE) is not affected significantly. However, the most visited locations are reconstructed

even with coarser rounds (1-week, 24-hour) which correspond to home/work locations of the target

user. In the subsequent experiments, we consider one user that participates in FL unless stated

otherwise.

123

Figure 5.10: Strongest Attack and two different initializations: i) mean of the batch with Gaus-
sian noise, ii) Campus center and then optimized initialization where the next batch is initialized
with the previously reconstructed location. The finer the round granularity, the more leakage. Both
are strong attacks regardless of the initialization (all reconstructed points converge) and result in
similar behavior in terms of EMD.

Impact of DLG Initialization. We evaluate the impact of different initializations on the conver-

gence of the attack. We split the training data into grids of 350 meters and use the center of each

grid as a potential DLG initialization point. As example, we obtained data from week 7 which

will be used for local training in each round. In Fig. 5.9a there is exactly one FL round for each

different initialization, that is the global model weights are initialized to the same random weights

before local training and thus, we do not have any mechanism of gradient averaging. We observe

that for all initializations the attack converges to the average location of the local data, regardless

of the distance between the initialization point and the ground truth average of the data.

Optimized DLG Initialization. In practice the attacker can leverage the reconstructed location

from a previous round and use it as the initialization point for the next attack in the next round.

The reason is that in our setup there is continuity of user location patterns, especially in the finer

intervals. We show in Fig. 5.10 the impact of the two initializations on the EMD metric when

evaluating the strongest attack for different granularities of rounds. We consider here two options:

i) the best initialization is when the attacker initializes with the mean of the batch with Gaussian

noise added, and ii) fixed point and then “optimized” initialization where the subsequent recon-

124

structed points are initialized with the previous reconstructed points. We observe that although

the second initialization results to higher EMD for all intervals, the privacy leakage is still high.

Both initialization do not result in any reconstructed locations outside the attacker’s boundaries,

and thus, we have no diverged points. In case there were such diverged points, the “optimized”

initialization would not help since the initialization would be probably outside the defined bound-

aries/area so a random initialization would be better. For the subsequent experiment, we use the

mean with added random noise as the default initialization for faster execution of the experiments.

However, in practice, the attacker can start with a selected location within the defined boundaries

and then use the “optimized” initialization in the subsequent rounds while also checking the cosine

loss is not large in order to detect divergence.

Impact of Number of FL Rounds. On the other hand, Fig. 5.11a shows the case where the

local data is the same and the same initializations are evaluated but the global model is updated

in each round and in the next round the client starts local training with the updated global model.

Clearly, the norm of the flattened per-layer weight matrices approaches zero after round 9 and at

this point the DLG attack starts diverging; the reconstructed point is farther away from the mean

of the data. In the worst case, the reconstructed point is 1km away from the mean location of

the batch. This significantly lowers the attack effectiveness. Thus, even in FedSGD without any

add-ons, there is some protection against the DLG attack due to multiple FL rounds and the global

model converging. In the next subsection, we consider the DLG attack with Online FedAvg and

evaluate how its parameters affect the attack’s success due to additional averaging of gradients

before the attacker receives them.

5.5.2 Location Leakage with FedAvg

In this section, we evaluate various FedAvg parameters in terms of utility (RMSE) and privacy

metrics (EMD) between the true and reconstructed (via DLG) location distributions. We show that

125

(a) FedSGD and multiple FL rounds, where the global model is updated.

(b) Cosine loss of DLG attack per round.

(c) Distance between reconstructed point and centroid in meters.

(d) Norm of gradient of flattened per-layer weight matrices between
two consecutive rounds.

Figure 5.11: FedSGD vs. Multiple Rounds. The gradients are converging to zero with more
FL rounds, which results to higher cosine loss and the reconstructed points are farther away from
the centroid/average location. Here, the attacker also tries the same random initialization as in the
single round case.

126

(a) EMD vs. minibatch size B. (b) RMSE vs. minibatch size B.

(c) DLG divergence. (d) DLG avg execution time.

Figure 5.12: Impact of minibatch size B. Reducing minibatch size B introduces more averaging
of the gradients which increases EMD (and privacy) and makes the attack more expensive due to
divergence. B=∞ corresponds to FedSGD (minimum averaging) which leads to reduced privacy
but also to higher RMSE for the lower η. Here we use 1-week rounds. The default η seems to
be less sensitive to B in terms of RMSE. for B=1000, the user performs one SGD step with all
available local data in each round.

FedAvg decreases the attack effectiveness due to multiple local SGD steps and the reconstructed

locations are less accurate.

Impact of Minibatches. Fig. 5.12 shows the utility vs. privacy metrics when the users split their

data into minibatches to perform multiple SGD steps where each FL round has 1-week worth of

data. When B=1, there are as many SGD steps as the number of local datapoints for a user. This

introduces maximum averaging of gradients and thus, privacy is maximum and the attack is more

expensive (in terms of execution time and DLG iterations) due to higher divergence. Smaller B

127

(a) Privacy (high EMD) vs. Utility (low RMSE).

(b) More epochs increase divergence. (c) More epochs increase DLG time.

Figure 5.13: Impact of local epochs E on 1-week rounds. We set B = 20 with default eta and
η =1e-5 (optimized for mini-batches). Introducing more local epochs increases the EMD and
thus, increase privacy, while utility is preserved. Increasing epochs also makes the attack more
expensive in terms of time and less accurate (more divergence).

values are beneficial to utility especially to the lower η, but for the default η = 0.001 the RMSE

is more robust. In terms of convergence of the DLG attacks, we show in Fig. 5.12c the fraction

of reconstructed points that converged outside the attacker’s defined boundaries. As the minibatch

size B decreases, the fraction of diverged points increases due to increased SGD steps which makes

the attack more expensive and less accurate. We choose B = 20 and the lower η =1e-05 in order

to get some privacy protection (EMD slightly increases) and to maximize utility.

Impact of Local Epochs E. Another parameter of FedAvg is the number of epochs E during local

training which corresponds to the number of local passes on the dataset and thus affects the number

128

of SGD steps. In this case, we set the mini-batch size to 20, based on the previous experiment and

evaluate the impact of local epochs for two learning rates η. Fig 5.13 shows how increasing the

E increases the EMD and divergence in the attack thus, this additional averaging in the gradients

protects privacy. On the other hand, additional passes on the local data do not seem to affect the

RMSE significantly. We choose E = 5 on top of B = 20 in order to get even more privacy

protection and better utility. However, we notice that even with these parameters the oversampled

locations of the user can still be revealed, as shown in Fig. 5.14b. Therefore, the question is

can we do better than this? We describe our algorithm for data selection next which has a data

minimization effect and maintains utility.

Cumulative Online FL. So far, we considered online FL where the user train locally on the data

that becomes available in the current round and discarding the local data from previous rounds.

We also consider the other extreme, where the previously seen data are not discarded but they

are re-used in addition to the newly acquired batch of data in each round. We call this scheme:

cumulative online FL. Fig. 5.14 shows the reconstructed points in the case of the strongest attack,

with averaging (B=20, E=5) and with cumulative online FL, which increases EMD to 19.2 without

negatively affecting the RMSE. Although, this approach favors privacy, the oversampled location

is still reconstructed (which corresponds to home/work location of the target) and also it requires

the user to storage all their data which increases storage requirements and local training time.

Moreover, if the user keeps re-using the older data during local training, the RMSE might decrease

if the older data corresponds to older mobility patterns of the user. In this dataset, there are only

11 weeks so the user patterns are very similar from week to week. For the above reasons, we

proposed our Diverse Batch algorithm, which achieves a similar RMSE and higher privacy due to

higher EMD values , while using only a small subset of the data in each round without requiring

storage of older data.

129

(a) B=inf, E=1: EMD=7.6 (0.17), RMSE=4.93. (b) B=20, E=5: EMD=9.7 (0.215), RMSE=4.83.

(c) Cumulative online FL with B=20, E=5:
EMD=19.2 (0.425), RMSE=4.85.

Figure 5.14: 1-week rounds, no averaging (B=inf, E=1) vs. B=20, E=5 vs. cumulative online FL. Without
any averaging, even for coarser intervals the attacker can reconstruct accurately target’s most frequent loca-
tions which correspond to home/work locations. Adding averaging results to more divergence (90%) and the
converged locations are farther from the true locations. Cumulative online FL has increased EMD, although
it still recovers the oversampled location (home/office) in the first round, but it also requires storage of all
local data from all rounds which increases local training time.

5.5.3 Diverse Batch Algorithm for High Location Variance

So far we evaluated the impact of the magnitude of gradients on the DLG accuracy in terms of

reconstruction of the average location in a batch of local data, which corresponds to the first term

in Theorem 1. However, Theorem 1 is also bounded by the variance of the batch. We propose

Algorithm 6 for controlling the variance of the both coordinates in a batch in order to provide more

protection against DLG attacks. We evaluate our approach in practice with real-world data. Fig.

130

Algorithm 6: Diverse Batch algorithm for high location variance.
1 Input: x training data samples; eps: max distance between samples in a cluster; min samples:

min samples in a cluster, min B: minimum number of batches to create
2 Output: list of batches with high variance
3 clustered data← DBSCAN(x, eps, min samples)
4 centermost points← get centermost(clustered data)
5 batch list = [[centermost points]]
6 clustered data.remove(centermost points)
7 while —batch list— < min B do
8 centermost points← get centermost(clustered data)
9 batch list.append([centermost points])

10 clustered data.remove(centermost points)
11 end
12 return batch list

Figure 5.15: Average standard deviation (in meters) per batch for each coordinate and how it
increases based on the eps parameter of DBSCAN which controls the maximum distance between
points in a cluster. This motivate us to use the Algorithm 6 for creating batches with high variance.
Here 1-week intervals were utilized.

5.15 shows the standard deviation for each coordinate and how it increases when we increase the

eps (ε), which is in km, and also controls the number of clusters in the Algorithm 6. Thus, higher

eps corresponds to fewer clusters obtained which also increases the location variance of the batch.

We propose Diverse Batch algorithm as shown in Algorithm 6 to create diverse batches that have

high location variance via DBSCAN which also uses significantly fewer training datapoints and,

thus, has a data minimization effect. In case of online FL, the algorithm is launched once for

each FL round and the while loop is skipped. In particular, for each round, the user launches the

algorithm on their corresponding local data and clusters their data based on the eps (ε) parameter,

131

which corresponds to the maximum distance between points in a cluster. The higher the eps is, the

fewer the clusters via DBSCAN and thus fewer datapoints are chosen and put in a batch. After

obtaining the cluster, the center-most point from each cluster is put into the batch. Then, either a

single SGD step is performed on the resulting batch or the current batch of data is split further into

mini-batches and/or multiple passes on the batched data are performed due to local epochs. The

algorithm can be applied multiple times within a round, or in standard offline FL, in which case

the desired number of batches (min B) must be defined and the selected center-most points will

be removed before the algorithm is repeated on the remaining data. We evaluate the algorithm in

terms of privacy and utility with the aforementioned metrics and compare it to scenarios without

manipulated batches and to a random baseline that randomly selects the same number of points

from the available data in a round as Algorithm 6 would have selected.

We would like to note that Algorithm 6 is used in the case of online learning: for each FL round

the user will perform clustering of their local data and then will put the centermost points from

each cluster into a single batch. Next, the constructed batches are either used as is, or they are

split further into mini-batches. We demonstrate it for 1-week intervals, where for each round we

obtain the batches and perform local training on them or we split them into mini-batches of 20 and

perform 5 local epochs before the user sends their updates to the server. We tuned the learning rate

via a grid search similarly to the non-manipulated batches and the best η was 0.001.

Table 5.2 presents the results. We observe that increasing eps decreases the number of training

points results to smaller batches on average, due to fewer clusters and thus, fewer datapoints are

selected from the available data in each round. We observe an increase in RMSE when we have no

averaging, but with B=20, E=5 the RMSE is not affected based on the eps value. On the other hand,

EMD is increasing for larger eps values in both cases, but with averaging the resulting EMD is

higher overall, while the percentage of diverged reconstructed locations increases which makes the

attack more expensive and less accurate, since the avg distance of the reconstructed locations from

the corresponding centroid of the batches also increases. As a baseline, we report the RMSE and

132

eps avg. B % chosen RMSE EMD/B=20,E=5 % diverged avg dist Rnd RMSE/EMD

0.0001 239 6.84 5.24/4.876 9.61(0.21)/10.59(0.24) 18/82 139/265 4.82/7.5(0.17)
0.001 180 5.2 5.34/4.86 9.72(0.21)/10.84(0.24) 18/90 134/245 4.83/7.85(0.17)
0.005 98 2.8 5.78/4.83 10.72(0.24)/14.15(0.31) 9/57 170/290 4.82/7.9(0.18)
0.05 16 0.45 8.78/4.93 14.524(0.32)/15.23(0.34) 13/64 331/345 4.96/7.6(0.17)

Table 5.2: Batch manipulation with 1-week rounds via Algorithm 6: the DBSCAN algorithm is
run in each round to obtain clusters and add the center-most points to a batch. We set η = 0.001,
dropout=0.05. Default values correspond to B=inf, E=1. The second values in RMSE, EMD,
% diverged, correspond to B=20, E=5. As a baseline, we choose randomly the same amount of
datapoints chosen by DBSCAN per batch with E=5, B=20. Although RMSE is not impacted, the
EMD is approx. half with the random method since the variance of the batches is not affected.
Another baseline is to use all the data in each round with B=20, E=5 which results to RMSE=6.26,
EMD=10.73 (0.24) with 72% divergence. We also report the average distance of the converged
reconstructed locations.

EMD of randomly selected points in each round, after getting the number of clusters via DBSCAN

in order to sample the same amount of datapoints for a fair comparison. We set B = 20, E = 5 in

order to compare our algorithm with averaging. We observe that in this baseline, the EMD remains

low regardless of the eps value, since there is the variance of each batch is not controlled.

Comparison of Methods. We summarize and visualize the DLG attack effectiveness in Fig. 5.16,

for 1-week intervals and show how EMD increases with FedAvg with added mini-batches of size

20 and 5 local epochs, from the strongest attack with FedSGD. Next, we compare to non-online

FL which results to EMD that is almost equivalent to the random EMD baseline, but still the

oversampled user’s location is still reconstructed. Next, we compare our Diverse Batch algorithm in

Fig. 5.18 with no averaging, with averaging and the random baseline. Our approach with averaging

reaches EMD comparable to random EMD, while RMSE remains low. It is also noticeable that the

reconstructed locations are not revealing the oversampled user’s location but instead the locations

are more spread. For comparison, the random baseline still reveals the oversampled user’s location

which most likely corresponds to one of the most important locations of the user (home/work, etc.).

Finally, we summarize the privacy vs. utility plots in Fig. 5.17 along with the additional metrics.

First, we summarize here the EMD values, starting from the strongest attack (7.5), mini-batches,

local epochs, and until our approach (15). Second, we show the fraction of diverged reconstructed

133

(a) B=inf, E=1: EMD=14.52 (0.32) and RMSE=8.78.

(b) B=20, E=5: EMD=15.23 (0.34) and RMSE=4.93.

(c) random baseline, B=20, E=5: EMD=7.6 (0.17) and RMSE=4.96.

Figure 5.16: Batch Manipulation. User’s locations (light blue), chosen points (dark blue) with Diverse
Batch algorithm with eps=0.05 km, and the final reconstructed points (circles). Only the converged re-
constructed points are shown here. The baseline randomly samples from each round the same amount of
locations as the chosen locations with DBSCAN but the high variance in the batch is not controlled which
results to lower EMD. Unlike FedAvg, the oversampled location is not revealed with our algorithm which
makes it a stronger defense.

134

(a) EMD. (b) Diverged Attacks.

(c) Distance from centroid. (d) Avg DLG iterations.

Figure 5.17: Comparison for 1-week rounds. We start with strongest attack (FedSGD) without
averaging (B=inf, E=1), then add minibatches B = 20, then add local epochs E = 5. Finally, we
add the manipulated batches with averaging which increase EMD but RMSE is not significantly
higher. Our method increases privacy but maintains utility while only less than 1% of the data.

locations to indicate how expensive is the DLG attack in each scenario. In the strongest attack,

there is almost no divergence, while with our approach the divergence increases to more than 60%,

which makes the DLG attack more expensive since the attacker needs to relaunch the attack with

other initializations. Fourth, we also report the avg distance between the reconstructed location

and the mean location of its corresponding ground truth data, as additional privacy metric which

is intuitive. With the strongest attack this is less than 30 meters, while with the discussed defenses

this increases to more than 350 meters.

Fig. 5.18a how the selected learning rate minimizes RMSE in case of Diverse Batch algorithm. Fig

5.18b shows the results for a lower learning rate, which increases RMSE but the privacy patterns

are similar to the tuned η.

135

(a) RMSE vs. various η. (b) RMSE vs. EMD for various eps when η = 10−5.

Figure 5.18: Diverse Batch algorithm with various η. For lower eta, the EMD behaves similarly
but RMSE is higher. We choose η = 0.001.

5.5.4 Multiple Users in FL

Next, we evaluate the scenario where the attacker still targets a specific user as before, but there is

at least one other user who participates in FedAvg by uploading their model updates in a round. We

use the London 2017 Radiocells Dataset which was described above, as it contains significantly

more users than the UCI Campus LTE Dataset. To simplify the scenario and evaluate the impact of

the other user updating the global model, we assume in each FL round either the target participates

or the other user(s) and they do so interchangeably.

We choose the cell x455 that contains the most measurements (169K) from 39 weeks and it has

900 users (merged into a single user 0) and 5 potential target users (user 1-5). Next, we obtain

the user similarity on their EMD values when comparing to the visited locations of the target user,

which is shown in Fig. 5.19a. The lighter the color the most different are the users due to a higher

EMD value between them.

First, we show in Fig. 5.20 the strongest attack for user 3, and then adding more averaging via

B=10 and E=5 the EMD increases from 21 to 22.2 while the RMSE slightly drops. Then, we

add all users from the orange trajectory (which includes more than 900 upload files), which we

consider as user 0 who participates in FL and updates the global model after locally training on the

corresponding data. In this scheme, the test RMSE is obtained on the test set from all participating

136

(a) User similarity via EMD; the darker the color
the more similar they are (low EMD values).

(b) Potential target users zoomed-in. We target user 3 (green).

(c) All users.

Figure 5.19: Radiocells users for cell x455. User 0 contains multiple users across all London region, while
users 1, 2, 3, 4, 5 are possible target users.

137

(a) B=∞, E=1: EMD=13.47 (0.20), RMSE=6.1. (b) B=10, E=5: EMD=21.03 (0.31), RMSE=5.4.

(c) multi-user B=∞, E=1: EMD=22.24 (0.33),
RMSE=5.77.

(d) multi-user B=10, E=5: EMD=22.515 (0.33),
RMSE=5.41.

Figure 5.20: Radiocells LTE x455 with target user 3 for 1-week rounds with η = 0.001. The
RMSE is evaluated on global test set when multiple users. The avg random EMD is 34 (0.5).

users, while in the single user scenario, the RMSE was obtained on the target’s test data. Adding

the user 0, increases the EMD and reduces the RMSE which increases privacy and utility. Adding

mini-batches and local epochs when user 0 participates in FL, has a slight effect on EMD compared

to B=inf, E=1. We summarize these results in Table 5.3 and report the divergence of the DLG

attack. Next, we add one of the other potential target users, one at a time, to evaluate the effect of

similar/dissimilar users participating in FedAvg and updating the global model with their updates.

We observe that when the most dissimilar user (user 5) participates along with target user 3, then

the EMD is low and there is more privacy leakage than when more similar users (user 1, 2, 4)

participate. This is due to different gradients in the case of dissimilar users which slows down

convergence and the attack can reconstruct more accurately the local data of the target user.

138

Scheme User(s) RMSE EMD % diverged

FedSGD user 3 6.1 17.08 65
FedAvg user 3 5.43 24.13 91

FedAvg, ε = 0.005 user 3 5.42 25.2 97
FedAvg, ε = 0.01 user 3 5.44 26.9 97

FedAvg user 3, 0 5.43 22.51 90
FedAvg user 3, 1 5.47 29.16 95
FedAvg user 3, 2 5.43 26.15 95
FedAvg user 3, 4 5.47 29.30 95
FedAvg user 3, 5 5.42 23.02 92

FedAvg, ε = 0.01 user 3, 5 5.43 30.9 95

Table 5.3: Single vs. Multi-user for Radiocells Dataset for target 3. η = 0.001 results are averaged
from multiple runs. FedAvg corresponds to E = 5, B = 10. When ε (in meters) is reported,
Diverse Batch algorithm was applied on the target’s local data.

We add our Diverse Batch algorithm on top of FedAvg for the target user (user 3). For ε = 0.005

meters, one of out three runs resulted to 100% divergence and the EMD could not be obtained.

We average the divergence across multiple rounds and report the average, while for EMD we only

report the average from the runs that did not result to 100% divergence. Increasing ε to 0.01 meters,

results to two of of three runs with 100% divergence and the run that had some converged points

had EMD=26.9 and RMSE=5.44. Finally, we evaluate the multi-users case, where only the target

uses the Diverse Batch algorithm on their local data. We observe that this scheme improves further

privacy protection, even in the case of dissimilar users.

5.6 Summary

In this work, we demonstrated, for the first time, the location leakage in federated learning based

on gradients and on real-world signal strength maps data when the attacker is an honest-but-curious

server. First, we quantify the leakage in practical scenarios and specifically in the case of online

FedAvg without any privacy add-ons like Differential Privacy, where the local/private data is not

static but instead the local data are streaming data based on time. In contrast to the standard image

139

classification attacks, we showed that location leakage is limited due to the averaging mechanisms

of FL which correspond to increased SGD steps due to mini-batches, local epochs. Next, we

propose an algorithm for data selection in order to create batches that increase the location variance

which in turn increases privacy without hurting utility although a small fraction of data is used for

local training in each FL round. Finally, we evaluate the impact of multiple users who participate

in FedAvg on a larger and real-world dataset.

Future Work. We considered signal maps as one application of DLG attacks on FL, however

the same methodology can be extended to any learning task that requires crowdsourced (online)

spatial data for training. Some interesting directions for future work are the following: (i) after the

reconstruction of datapoints, how to use them to infer further information about the users? One

could infer clusters of important places [73], i.e., home, friend’s houses, hospital, etc., ii) if secure

aggregation is in-place, then identify the user based on reconstructed data similarly to “Unique in

the Crowd” [51], (ii) how does personalization in FL affect DLG attacks? For instance, there are

works [84] that modify the user gradients in order to not diverge from the global model updates

but they have not been evaluated in terms of privacy vs. utility trade-off.

140

Chapter 6

Conclusion

In this thesis, we considered mobile data privacy risks, through tracking and inference, and we

developed privacy enhancing mechanisms. First, we conducted a user study to assess how users

perceive privacy risk in explicit mobile tracking via apps when real privacy exposures based on

Personally Identifiable Information (PII) is shown from 400 apps in Android. The users seemed

to be confused about how apps are sharing their information with third parties but after our short

tutorial on mobile data privacy they became more aware and showed appetite for privacy control.

Next, we proposed federated learning on two mobile data applications: i) mobile packet classifica-

tion in order to control/prevent explicit tracking on mobile by detecting PII exposure or Ad request

in outgoing packets; and ii) signal maps prediction that trains regression model with location fea-

tures in order to predict signal strength in LTE. In both applications, the data stays on the device

and devices train collaboratively a global model via federated learning which raises the privacy bar

compared to centralized training.

In the first FL application, we proposed FedPacket and evaluated its performance it terms of pre-

diction performance, communication, computation in various scenarios. We showed it can achieve

good classification performance and comparable to centralized state-of-the-art. However, FL can

141

still reveal information about the local data via the exchanged gradients of model parameters. We

demonstrated for the first time a privacy attack on HTTP features and showed two inference attacks

and how they are affected by various FL parameters.

In the second FL application, the federated signal maps, we demonstrated privacy attack based on

gradients when the data is not static but becomes available over time as the user moves around

and the data are collected. We showed that averaging of gradients due to FL parameters provides

natural protection against such attacks and we proposed a clustering based algorithm for data se-

lection/minimization to further protect privacy without hurting utility.

In this thesis, we investigated specific issues related to mobile data privacy, with focus on federated

learning. More generally, we are already in the all time high mobile usage era and privacy of mobile

data is increasingly important over time. To provide more transparency and control to the user, a

synergy of technical, such as federated learning and privacy-preserving approaches, and policy

solutions are intrinsic going forward. After all, privacy is a human right.

142

Bibliography

[1] Adaway. https://adaway.org/hosts.txt.

[2] Adblock browser. https://adblockbrowser.org.

[3] Amazon mechanical turk. https://www.mturk.com.

[4] AntShield Dataset. https://athinagroup.eng.uci.edu/projects/
antmonitor/antshield-dataset/.

[5] App annie. https://www.appannie.com.

[6] Best Practices for Unique Identifiers. https://developer.android.com/
training/articles/user-data-ids.

[7] California consumer privacy act (ccpa). https://oag.ca.gov/privacy/ccpa.

[8] EasyList. https://easylist.to/.

[9] EU General Data Protection Regulation (GDPR). https://eugdpr.org.

[10] Google play. https://play.google.com/store?hl=en.

[11] hphosts. https://hosts-file.net/ad_servers.txt.

[12] Mother of all adblockers. http://adblock.mahakala.is.

[13] NoMoAds Dataset. https://athinagroup.eng.uci.edu/projects/
nomoads/data/.

[14] PhoneLab, University at Buffalo. https://www.phone-lab.org/.

[15] Pretrained word2vec. https://code.google.com/archive/p/word2vec/.

[16] Radiocells Dataset. https://radiocells.org. Accessed: 2021-10-20.

[17] Speed guide: Ports database. http://www.speedguide.net/ports.php.

[18] Ui/application exerciser monkey. https://developer.android.com/studio/
test/monkey.

143

https://adaway.org/hosts.txt
https://adblockbrowser.org
https://www.mturk.com
https://athinagroup.eng.uci.edu/projects/antmonitor/antshield-dataset/
https://athinagroup.eng.uci.edu/projects/antmonitor/antshield-dataset/
https://www.appannie.com
https://developer.android.com/training/articles/user-data-ids
https://developer.android.com/training/articles/user-data-ids
https://oag.ca.gov/privacy/ccpa
https://easylist.to/
https://eugdpr.org
https://play.google.com/store?hl=en
https://hosts-file.net/ad_servers.txt
http://adblock.mahakala.is
https://athinagroup.eng.uci.edu/projects/nomoads/data/
https://athinagroup.eng.uci.edu/projects/nomoads/data/
https://www.phone-lab.org/
https://code.google.com/archive/p/word2vec/
https://radiocells.org
http://www.speedguide.net/ports.php
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey

[19] Your Apps Know Where You Were Last Night, and They’re Not Keeping It Secret. https:
//nyti.ms/3a5VCbp. Accessed: 2021-10-20.

[20] Permanent Message Header Field Names. http://www.iana.org/assignments/
message-headers/message-headers.xhtml#perm-headers, 2019.

[21] M. Abadi, U. Erlingsson, I. Goodfellow, H. B. McMahan, I. Mironov, N. Papernot, K. Tal-
war, and L. Zhang. On the protection of private information in machine learning systems:
Two recent approches. In 2017 IEEE 30th Computer Security Foundations Symposium
(CSF), pages 1–6, Aug 2017.

[22] E. Alimpertis. Mobile Coverage Maps Prediction. PhD thesis, UC Irvine, 2020.

[23] E. Alimpertis and A. Markopoulou. A system for crowdsourcing passive mobile network
measurements. submitted to NSDI Posters, February 2017.

[24] E. Alimpertis, A. Markopoulou, C. Butts, and K. Psounis. City-wide signal strength maps:
Prediction with random forests. In The World Wide Web Conference, pages 2536–2542,
2019.

[25] E. Alimpertis, A. Markopoulou, and U. Irvine. A system for crowdsourcing passive mobile
network measurements. 14th USENIX NSDI, 17, 2017.

[26] R. Aljundi, E. Belilovsky, T. Tuytelaars, L. Charlin, M. Caccia, M. Lin, and L. Page-Caccia.
Online continual learning with maximal interfered retrieval. In Advances in Neural Infor-
mation Processing Systems, pages 11849–11860, 2019.

[27] R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio. Gradient based sample selection for online
continual learning. In Advances in Neural Information Processing Systems, pages 11816–
11825, 2019.

[28] H. Almuhimedi, F. Schaub, N. Sadeh, I. Adjerid, A. Acquisti, J. Gluck, L. F. Cranor, and
Y. Agarwal. Your location has been shared 5,398 times!: A field study on mobile app
privacy nudging. In Proceedings of the 33rd annual ACM conference on human factors in
computing systems, pages 787–796. ACM, 2015.

[29] S. Augenstein, H. B. McMahan, D. Ramage, S. Ramaswamy, P. Kairouz, M. Chen, R. Math-
ews, et al. Generative models for effective ml on private, decentralized datasets. arXiv
preprint arXiv:1911.06679, 2019.

[30] E. Bakopoulou, A. Shuba, and A. Markopoulou. Exposures exposed: a measurement and
user study to assess mobile data privacy in context. arXiv preprint arXiv:2008.08973, 2020.

[31] E. Bakopoulou, B. Tillman, and A. Markopoulou. A federated learning approach for mobile
packet classification. arXiv preprint arXiv:1907.13113, 2019.

[32] E. Bakopoulou, B. Tillman, and A. Markopoulou. Fedpacket: A federated learning approach
to mobile packet classification. IEEE Transactions on Mobile Computing, 2021.

144

https://nyti.ms/3a5VCbp
https://nyti.ms/3a5VCbp
http://www.iana.org/assignments/message-headers/message-headers.xhtml#perm-headers
http://www.iana.org/assignments/message-headers/message-headers.xhtml#perm-headers

[33] E. Bakopoulou, J. Zhang, J. Ley, K. Psounis, and A. Markopoulou. Location leakage in
federated signal maps. in preparation, 2021.

[34] M. Bastian, S. Heymann, M. Jacomy, et al. Gephi: an open source software for exploring
and manipulating networks. Icwsm, 8, 2009.

[35] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo. Analyzing federated learning through
an adversarial lens. arXiv preprint arXiv:1811.12470, 2018.

[36] A. Bhowmick, J. Duchi, J. Freudiger, G. Kapoor, and R. Rogers. Protection against
reconstruction and its applications in private federated learning. arXiv preprint
arXiv:1812.00984, 2018.

[37] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon,
J. Konecny, S. Mazzocchi, H. B. McMahan, et al. Towards federated learning at scale:
System design. arXiv preprint arXiv:1902.01046, 2019.

[38] K. Bonawitz, V. Ivanov, B. Kreuter, and A. Marcedone. Practical Secure Aggregation for
Privacy Preserving Machine Learning. Eprint.Iacr.Org.

[39] N. Bonneel, J. Rabin, G. Peyré, and H. Pfister. Sliced and radon wasserstein barycenters of
measures. Journal of Mathematical Imaging and Vision, 51(1):22–45, 2015.

[40] L. Bottou. Stochastic gradient descent (v.2). https://leon.bottou.org/
projects/sgd.

[41] L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In J. C. Platt, D. Koller,
Y. Singer, and S. T. Roweis, editors, Advances in Neural Information Processing Systems
20, pages 161–168. Curran Associates, Inc., 2008.

[42] L. Bottou and Y. LeCun. Large scale online learning. Advances in neural information
processing systems, 16:217–224, 2004.

[43] S. Boukoros, M. Humbert, S. Katzenbeisser, and C. Troncoso. On (the lack of) location pri-
vacy in crowdsourcing applications. In 28th {USENIX} Security Symposium ({USENIX}
Security 19), pages 1859–1876, 2019.

[44] Y. J. Bultitude and T. Rautiainen. IST-4-027756 WINNER II D1. 1.2 V1. 2 WINNER II
Channel Models. Technical report, 2007.

[45] S. Caldas, J. Konecný, H. B. McMahan, and A. Talwalkar. Expanding the reach of federated
learning by reducing client resource requirements. CoRR, abs/1812.07210, 2018.

[46] A. Chakraborty, M. S. Rahman, H. Gupta, and S. R. Das. Specsense: Crowdsensing for
efficient querying of spectrum occupancy. In Proc. of the IEEE INFOCOM ’17.

[47] Y. Chen, Y. Ning, M. Slawski, and H. Rangwala. Asynchronous online federated learning for
edge devices with non-iid data. In 2020 IEEE International Conference on Big Data (Big
Data), pages 15–24. IEEE, 2020.

145

https://leon.bottou.org/projects/sgd
https://leon.bottou.org/projects/sgd

[48] S. Chitkara, N. Gothoskar, S. Harish, J. I. Hong, and Y. Agarwal. Does this app really
need my location? context-aware privacy management for smartphones. Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 1(3):42, 2017.

[49] A. Continella, Y. Fratantonio, M. Lindorfer, A. Puccetti, A. Zand, C. Kruegel, and G. Vigna.
Obfuscation-resilient privacy leak detection for mobile apps through differential analysis.
2017.

[50] G. Damaskinos, R. Guerraoui, A.-M. Kermarrec, V. Nitu, R. Patra, and F. Taı̈ani. Fleet: On-
line federated learning via staleness awareness and performance prediction. In Proceedings
of the 21st International Middleware Conference, pages 163–177, 2020.

[51] Y.-A. De Montjoye, C. A. Hidalgo, M. Verleysen, and V. D. Blondel. Unique in the crowd:
The privacy bounds of human mobility. Scientific reports, 3:1376, 2013.

[52] M. Diao, Y. Zhu, J. Ferreira, and C. Ratti. Inferring individual daily activities from mobile
phone traces: A boston example. Environment and Planning B: Planning and Design, 43,
09 2015.

[53] C. Dwork. Differential privacy. Encyclopedia of Cryptography and Security, pages 338–
340, 2011.

[54] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. Pios: Detecting privacy leaks in ios applica-
tions. In NDSS, 2011.

[55] R. Enami, D. Rajan, and J. Camp. RAIK: Regional analysis with geodata and crowdsourcing
to infer key performance indicators. In Proc. of the IEEE WCNC, Apr. 2018.

[56] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. N. Sheth. Taintdroid:
an information-flow tracking system for realtime privacy monitoring on smartphones. ACM
TOCS, 2014.

[57] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth. Taintdroid: an information-flow tracking system for realtime privacy monitor-
ing on smartphones. ACM Transactions on Computer Systems (TOCS), 32(2):5, 2014.

[58] H. Falaki, D. Lymberopoulos, R. Mahajan, S. Kandula, and D. Estrin. A First Look at Traffic
on Smartphones. In Proc. of the 10th ACM SIGCOMM Conf. on Internet Measurement,
Melbourne, Australia, Nov. 2010.

[59] M. R. Fida, A. Lutu, M. K. Marina, and O. Alay. ZipWeave: Towards efficient and reliable
measurement based mobile coverage maps. In Proc. of the IEEE INFOCOM ’17, May 2017.

[60] R. Flamary, N. Courty, A. Gramfort, M. Z. Alaya, A. Boisbunon, S. Chambon, L. Chapel,
A. Corenflos, K. Fatras, N. Fournier, L. Gautheron, N. T. Gayraud, H. Janati, A. Rakotoma-
monjy, I. Redko, A. Rolet, A. Schutz, V. Seguy, D. J. Sutherland, R. Tavenard, A. Tong, and
T. Vayer. Pot: Python optimal transport. Journal of Machine Learning Research, 22(78):1–
8, 2021.

146

[61] C. Galbraith, P. Smyth, and H. S. Stern. Statistical methods for the forensic analysis of
geolocated event data. Forensic Science International: Digital Investigation, 33:301009,
2020.

[62] J. Garcia-Reinoso et al. The 5g eve multi-site experimental architecture and experimentation
workflow. In IEEE 2nd 5G World Forum, pages 335–340, Sep. 2019.

[63] K. Garimella, O. Kostakis, and M. Mathioudakis. Ad-blocking: A study on performance,
privacy and counter-measures. In Proceedings of the 2017 ACM on Web Science Confer-
ence, pages 259–262. ACM, 2017.

[64] J. Geiping, H. Bauermeister, H. Dröge, and M. Moeller. Inverting gradients - how easy
is it to break privacy in federated learning? In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 16937–16947. Curran Associates, Inc., 2020.

[65] R. C. Geyer, T. Klein, and M. Nabi. Differentially private federated learning: A client level
perspective. CoRR, abs/1712.07557, 2017.

[66] C. Gibler, J. Crussell, J. Erickson, and H. Chen. Androidleaks: Automatically detecting
potential privacy leaks in android applications on a large scale. In Proc. of the Intl. Conf.
on Trust and Trustworthy Computing, 2012.

[67] D. Gugelmann, M. Happe, B. Ager, and V. Lenders. An automated approach for complement-
ing ad blockers’ blacklists. Proceedings on Privacy Enhancing Technologies, 2015(2):282–
298, 2015.

[68] N. Guha, A. Talwlkar, and V. Smith. One-shot federated learning. arXiv preprint
arXiv:1902.11175, 2019.

[69] A. Hard, K. Rao, R. Mathews, F. Beaufays, S. Augenstein, H. Eichner, C. Kiddon, and D. Ra-
mage. Federated learning for mobile keyboard prediction. arXiv preprint arXiv:1811.03604,
2018.

[70] S. He and K. G. Shin. Steering crowdsourced signal map construction via bayesian com-
pressive sensing. In Proc. of the IEEE INFOCOM ’18, pages 1016–1024, Apr. 2018.

[71] B. Hitaj, G. Ateniese, and F. Perez-Cruz. Deep models under the gan: information leakage
from collaborative deep learning. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, pages 603–618. ACM, 2017.

[72] A. Imran, A. Zoha, and A. Abu-Dayya. Challenges in 5G: How to empower SON with big
data for enabling 5G. IEEE network, 28(6):27–33, 2014.

[73] S. Isaacman, R. Becker, R. Cáceres, S. Kobourov, M. Martonosi, J. Rowland, and A. Var-
shavsky. Identifying important places in people’s lives from cellular network data. In Inter-
national Conference on Pervasive Computing, pages 133–151. Springer, 2011.

147

[74] Q. Ismail, T. Ahmed, K. Caine, A. Kapadia, and M. Reiter. To Permit or Not to Permit,
That is the Usability Question: Crowdsourcing Mobile Apps’ Privacy Permission Settings.
Proceedings on Privacy Enhancing Technologies, 4(4):118–136, 2017.

[75] Z. Jorgensen, J. Chen, C. S. Gates, N. Li, R. W. Proctor, and T. Yu. Dimensions of Risk
in Mobile Applications. Proceedings of the 5th ACM Conference on Data and Application
Security and Privacy - CODASPY ’15, pages 49–60, 2015.

[76] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz,
Z. Charles, G. Cormode, R. Cummings, et al. Advances and open problems in federated
learning. arXiv preprint arXiv:1912.04977, 2019.

[77] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. Overcoming catastrophic forgetting in
neural networks. Proceedings of the national academy of sciences, 114(13):3521–3526,
2017.

[78] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon. Federated
Learning: Strategies for Improving Communication Efficiency. pages 1–10, 2016.

[79] E. Krijestorac, S. S. Hanna, and D. Cabric. Spatial signal strength prediction using 3d maps
and deep learning. ICC 2021 - IEEE International Conference on Communications, pages
1–6, 2021.

[80] A. K. Laha and S. Putatunda. Real time location prediction with taxi-gps data streams.
Transportation Research Part C: Emerging Technologies, 92:298–322, 2018.

[81] L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A novel
bandit-based approach to hyperparameter optimization. Journal of Machine Learning Re-
search, 18(185):1–52, 2018.

[82] M. Li, T. Zhang, Y. Chen, and A. J. Smola. Efficient mini-batch training for stochastic opti-
mization. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 661–670, 2014.

[83] N. Li, T. Li, and S. Venkatasubramanian. t-closeness: Privacy beyond k-anonymity and l-
diversity. In 2007 IEEE 23rd International Conference on Data Engineering, pages 106–115,
2007.

[84] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith. Federated optimization
in heterogeneous networks. Proceedings of Machine Learning and Systems, 2:429–450,
2020.

[85] X. Li, K. Huang, W. Yang, S. Wang, and Z. Zhang. On the convergence of fedavg on non-iid
data. arXiv preprint arXiv:1907.02189, 2019.

[86] Y. Li, F. Chen, T. J.-J. Li, Y. Guo, G. Huang, M. Fredrikson, Y. Agarwal, and J. I. Hong.
Privacystreams: Enabling transparency in personal data processing for mobile apps. Proc.
ACM Interact. Mob. Wearable Ubiquitous Technol., 1(3):76:1–76:26, Sept. 2017.

148

[87] J. Lin, N. Sadeh, S. Amini, J. Lindqvist, J. I. Hong, and J. Zhang. Expectation and pur-
pose: Undestanding Users’ Mental Models of Mobile App Privacy through Crowdsourcing.
Proceedings of the 2012 ACM Conference on Ubiquitous Computing - UbiComp ’12, page
501, 2012.

[88] B. Liu, M. S. Andersen, F. Schaub, H. Almuhimedi, S. A. Zhang, N. Sadeh, Y. Agarwal,
A. Acquisti, M. Schaarup Andersen, F. Schaub, H. Almuhimedi, S. A. Zhang, N. Sadeh,
Y. Agarwal, and A. Acquisti. Follow My Recommendations: A Personalized Privacy As-
sistant for Mobile App Permissions. Twelfth Symposium on Usable Privacy and Security
(SOUPS 2016), (Soups):27–41, 2016.

[89] B. Liu, B. Liu, H. Jin, and R. Govindan. Efficient Privilege De-Escalation for Ad Libraries in
Mobile Apps. In Proceedings of the 13th annual international conference on mobile systems,
applications, and services, pages 89–103. ACM, 2015.

[90] Y. Liu, A. Huang, Y. Luo, H. Huang, Y. Liu, Y. Chen, L. Feng, T. Chen, H. Yu, and Q. Yang.
Fedvision: An online visual object detection platform powered by federated learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 13172–
13179, 2020.

[91] M. Ma. Enhancing privacy using location semantics in location based services. In 2018
IEEE 3rd International Conference on Big Data Analysis (ICBDA), pages 368–373, 2018.

[92] W. Mason and S. Suri. Conducting Behavioral Research on Amazon’ s Mechanical Turk.
Behavior Research Methods, 5(5):1–23, 2010.

[93] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics (AISTATS), 2017.

[94] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang. Learning differentially private
language models without losing accuracy. arXiv:1710.06963, 2017.

[95] A. Mehrotra, S. R. Müller, G. M. Harari, S. D. Gosling, C. Mascolo, M. Musolesi, and P. J.
Rentfrow. Understanding the Role of Places and Activities on Mobile Phone Interaction and
Usage Patterns. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 1(3):1–22, 2017.

[96] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov. Exploiting unintended feature leakage
in collaborative learning. IEEE, 2019.

[97] Y. Nan, Z. Yang, X. Wang, Y. Zhang, D. Zhu, and M. Yang. Finding Clues for Your Secrets:
Semantics-Driven, Learning-Based Privacy Discovery in Mobile Apps. 2018.

[98] M. Nasr, R. Shokri, and A. Houmansadr. Comprehensive privacy analysis of deep learning:
Stand-alone and federated learning under passive and active white-box inference attacks.
arXiv preprint arXiv:1812.00910, 2018.

149

[99] T. Nishio and R. Yonetani. Client selection for federated learning with heterogeneous re-
sources in mobile edge. ICC 2019 - 2019 IEEE International Conference on Communica-
tions (ICC), May 2019.

[100] Open Signal Inc. Mobile Analytics and Insights, June 2011.

[101] E. Pan, J. Ren, M. Lindorfer, C. Wilson, and D. Choffnes. Panoptispy: Characterizing
audio and video exfiltration from android applications. Proceedings on Privacy Enhancing
Technologies, 2018(4):33–50, 2018.

[102] G. I. Parisi and V. Lomonaco. Online continual learning on sequences. In Recent Trends
in Learning From Data, pages 197–221. Springer, 2020.

[103] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[104] C. Phillips, M. Ton, D. Sicker, and D. Grunwald. Practical radio environment mapping with
geostatistics. Proc. of the IEEE DYSPAN ’12, pages 422–433, Oct. 2012.

[105] A. Pyrgelis, C. Troncoso, and E. D. Cristofaro. Knock knock, who’s there? membership
inference on aggregate location data. In 25th Network and Distributed System Security
Symposium (NDSS), 2018.

[106] A. Rao, A. M. Kakhki, A. Razaghpanah, A. Tang, S. Wang, J. Sherry, P. Gill, A. Krishna-
murthy, A. Legout, A. Mislove, and D. Choffnes. Using the Middle to Meddle with Mobile.
Technical report, Northeastern University, Dec. 2013.

[107] A. Rao, F. Schaub, N. Sadeh, A. Acquisti, and R. Kang. Expecting the Unexpected: Under-
standing Mismatched Privacy Expectations Online. the Proceedings of the Twelfth Sympo-
sium on Usable Privacy and Security (SOUPS 2016), (Soups):77–96, 2016.

[108] A. Ray, S. Deb, and P. Monogioudis. Localization of lte measurement records with missing
information. In Proc. of the IEEE INFOCOM ’16, Apr. 2016.

[109] A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez, S. Sundaresan, M. Allman,
C. Kreibich, and P. Gill. Apps, trackers, privacy, and regulators: A global study of the
mobile tracking ecosystem. 2018.

[110] A. Razaghpanah, R. Nithyanand, N. Vallina-Rodriguez, S. Sundaresan, M. Allman,
C. Kreibich, and P. Gill. Apps, trackers, privacy, and regulators: A global study of the
mobile tracking ecosystem. 2018.

[111] A. Razaghpanah, N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich, P. Gill, M. Allman, and
V. Paxson. Haystack: A multi-purpose mobile vantage point in user space. 2015.

[112] A. Razaghpanah, N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich, P. Gill, M. Allman, and
V. Paxson. Haystack: In Situ Mobile Traffic Analysis in User Space. arXiv:1510.01419, Oct.
2015.

150

[113] J. Ren, M. Lindorfer, D. J. Dubois, A. Rao, D. Choffnes, and N. Vallina-Rodriguez. Bug
Fixes, Improvements, ... and Privacy Leaks A Longitudinal Study of PII Leaks Across An-
droid App Versions. (February), 2018.

[114] J. Ren, M. Lindorfer, D. J. Dubois, A. Rao, D. Choffnes, and N. Vallina-Rodriguez. Bug
fixes, improvements,... and privacy leaks. 2018.

[115] J. Ren, A. Rao, M. Lindorfer, A. Legout, and D. Choffnes. Recon: Revealing and controlling
pii leaks in mobile network traffic. In Proceedings of the 14th Annual International Con-
ference on Mobile Systems, Applications, and Services, MobiSys ’16, pages 361–374, New
York, NY, USA, 2016. ACM.

[116] M. S. Riazi, B. D. Rouhani, and F. Koushanfar. Deep learning on private data. IEEE
Security and Privacy Magazine, 2018.

[117] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: primal estimated sub-
gradient solver for svm. Mathematical Programming, 127(1):3–30, Mar 2011.

[118] N. Shoham, T. Avidor, A. Keren, N. Israel, D. Benditkis, L. Mor-Yosef, and I. Zeitak. Over-
coming forgetting in federated learning on non-iid data. arXiv preprint arXiv:1910.07796,
2019.

[119] R. Shokri and V. Shmatikov. Privacy-preserving deep learning. In Proceedings of the 22Nd
ACM SIGSAC Conference on Computer and Communications Security, CCS ’15, pages
1310–1321, New York, NY, USA, 2015. ACM.

[120] A. Shuba, E. Bakopoulou, and A. Markopoulou. Privacy Leak Classification on Mobile
Devices. In 2018 IEEE 19th International Workshop on Signal Processing Advances in
Wireless Communications (SPAWC). IEEE, 2018.

[121] A. Shuba, E. Bakopoulou, M. A. Mehrabadi, H. Le, D. Choffnes, and A. Markopoulou.
Antshield: On-device detection of personal information exposure. arXiv preprint
arXiv:1803.01261, 2018.

[122] A. Shuba, A. Le, E. Alimpertis, M. Gjoka, and A. Markopoulou. Antmonitor: System and
applications. arXiv preprint arXiv:1611.04268, 2016.

[123] A. Shuba and A. Markopoulou. ?NoMoATS: Towards Automatic Detection of Mobile Track-
ing? Proceedings on Privacy Enhancing Technologies, 2020(4), 2020.

[124] A. Shuba, A. Markopoulou, and Z. Shafiq. NoMoAds: Effective and Efficient Cross-App
Mobile Ad-Blocking. Proceedings on Privacy Enhancing Technologies, 2018(4), 2018.

[125] Y. Song and U. Hengartner. PrivacyGuard: A VPN-based Platform to Detect Information
Leakage on Android Devices. In Proc. of the 5th Annual ACM CCS Workshop on Security
and Privacy in Smartphones and Mobile Devices, Oct. 2015.

[126] G. Srivastava, S. Chitkara, K. Ku, S. K. Sahoo, M. Fredrikson, J. I. Hong, and Y. Agarwal.
Privacyproxy: Leveraging crowdsourcing and in situ traffic analysis to detect and mitigate
information leakage. CoRR, abs/1708.06384, 2017.

151

[127] L. Tian, S. Li, J. Ahn, D. Chu, R. Han, Q. Lv, and S. Mishra. Understanding user behavior
at scale in a mobile video chat application. Proceedings of the 2013 ACM international
joint conference on Pervasive and ubiquitous computing - UbiComp ’13, page 647, 2013.

[128] S. Truex, N. Baracaldo, A. Anwar, T. Steinke, H. Ludwig, and R. Zhang. A hybrid approach
to privacy-preserving federated learning. arXiv preprint arXiv:1812.03224, 2018.

[129] Tutela Technologies. Manage your Mobile Experience. http://
tutelatechnologies.com/index.html.

[130] N. Vallina-Rodriguez, A. Auçinas, M. Almeida, Y. Grunenberger, K. Papagiannaki, and
J. Crowcroft. RILAnalyzer: A Comprehensive 3G Monitor on Your Phone. In Proc. of
IMC, Barcelona, Spain, Oct. 2013.

[131] N. Vallina-Rodriguez, S. Sundaresan, A. Razaghpanah, R. Nithyanand, M. Allman,
C. Kreibich, and P. Gill. Tracking the trackers: Towards understanding the mobile ad-
vertising and tracking ecosystem. arXiv preprint arXiv:1609.07190, 2016.

[132] M. Van Kleek, I. Liccardi, R. Binns, J. Zhao, D. J. Weitzner, and N. Shadbolt. Better the
devil you know: Exposing the data sharing practices of smartphone apps. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems, pages 5208–5220.
ACM, 2017.

[133] C. Wang, Y. Yang, and P. Zhou. Towards efficient scheduling of federated mobile devices
under computational and statistical heterogeneity. IEEE Transactions on Parallel and Dis-
tributed Systems, 32(2):394–410, 2020.

[134] J. Wang, J. Tang, Z. Xu, Y. Wang, G. Xue, X. Zhang, and D. Yang. Spatiotemporal modeling
and prediction in cellular networks: A big data enabled deep learning approach. In IEEE
INFOCOM ’17, pages 1–9, May 2017.

[135] N. Wang, B. Zhang, B. Liu, and H. Jin. Investigating Effects of Control and Ads Awareness
on Android Users’ Privacy Behaviors and Perceptions. In Proceedings of the 17th Inter-
national Conference on Human-Computer Interaction with Mobile Devices and Services,
pages 373–382. ACM, 2015.

[136] Y. Wang and D. Chu. EarlyBird : Mobile Prefetching of Social Network Feeds via Con-
tent Preference Mining and Usage Pattern Analysis Categories and Subject Descriptors.
MobiHoc, pages 67–76, 2015.

[137] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi. Beyond inferring class
representatives: User-level privacy leakage from federated learning. arXiv preprint
arXiv:1812.00535, 2018.

[138] W. Wei, L. Liu, M. Loper, K.-H. Chow, M. E. Gursoy, S. Truex, and Y. Wu. A framework for
evaluating gradient leakage attacks in federated learning. arXiv preprint arXiv:2004.10397,
2020.

152

http://tutelatechnologies.com/index.html
http://tutelatechnologies.com/index.html

[139] X. Wei, L. Gomez, I. Neamtiu, and M. Faloutsos. ProfileDroid: Multi-Layer Profiling of
Android Applications. In Proc. of the 18th ACM annual int. conf. on Mobile computing and
networking, Istanbul, Turkey, Aug. 2012.

[140] Q. Xu, J. Erman, A. Gerber, Z. Mao, J. Pang, and S. Venkataraman. Identifying diverse
usage behaviors of smartphone apps. In Proceedings of the 2011 ACM SIGCOMM Confer-
ence on Internet Measurement Conference, IMC ’11, pages 329–344, New York, NY, USA,
2011. ACM.

[141] J. Yang, A. Varshavsky, H. Liu, Y. Chen, and M. Gruteser. Accuracy characterization of cell
tower localization. In Proc. of the ACM UbiComp ’10, pages 223–226, 2010.

[142] X. Yao and L. Sun. Continual local training for better initialization of federated models. In
2020 IEEE International Conference on Image Processing (ICIP), pages 1736–1740. IEEE,
2020.

[143] J. Yoon, W. Jeong, G. Lee, E. Yang, and S. J. Hwang. Federated continual learning with
adaptive parameter communication. arXiv preprint arXiv:2003.03196, 2020.

[144] Z. Yun and M. F. Iskander. Ray tracing for radio propagation modeling: Principles and
applications. IEEE Access, 3:1089–1100, 2015.

[145] C. Zhang and P. Patras. Long-term mobile traffic forecasting using deep spatio-temporal
neural networks. In Proc. of the 18th ACM MobiHoc, Mobihoc ’18, pages 231–240. ACM,
2018.

[146] B. Zhao, K. R. Mopuri, and H. Bilen. idlg: Improved deep leakage from gradients. arXiv
preprint arXiv:2001.02610, 2020.

[147] L. Zhu, Z. Liu, and S. Han. Deep leakage from gradients. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Associates, Inc., 2019.

[148] S. Zimmeck, J. S. Li, H. Kim, S. M. Bellovin, and T. Jebara. A privacy analysis of cross-
device tracking. In 26th {USENIX} Security Symposium ({USENIX} Security 17), pages
1391–1408, 2017.

153

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Motivation
	Contributions
	Exposures Exposed: A Measurement and User Study to Assess Mobile Data Privacy in Context
	FedPacket: Federated Packet Classification
	Federated Signal Maps and Location Leakage

	Thesis Outline

	Related Work & Background
	Mobile Tracking & Packet Classification
	Mobile Packet Collection via AntMonitor/AntShield
	User Studies on Mobile Data Privacy
	Packet Classification

	Federated Learning
	Data reconstruction based on gradients
	Datasets

	Exposures Exposed: A Measurement and User Study to Assess Mobile Data Privacy in Context
	Overview
	PII Exposures Found in the Datasets
	User Study: Mobile Data Privacy in Context
	User Study Design
	User Study Results

	Summary

	FedPacket: A Federated Learning Approach to Mobile Packet Classification
	Overview
	Methodology
	Problem Setup
	HTTP Features
	Model Selection: Federated SVM

	Datasets Description
	FedPacket Evaluation
	Scenario 1: Centralized Models
	Scenario 2: NoMoAds for PII, Ad Request
	Scenario 3: AntShield for PII Prediction
	Scenario 4: In-house Datasets for PII Prediction
	Scenario 5: Client Selection and Convergence
	Scenario 6: Interpreting SVM vs. DT

	FedPacket: Privacy Considerations
	Inference Attacks
	 Mitigation via Aggregation

	Summary

	Federated Signal Maps and Location Leakage
	Overview
	DLG Attack to Infer Location
	Problem Setup
	DLG Convergence to the Average Location
	Assessing the Success of the Attack

	Datasets
	Results
	Location Leakage with FedSGD
	Location Leakage with FedAvg
	Diverse Batch Algorithm for High Location Variance
	Multiple Users in FL

	Summary

	Conclusion
	Bibliography

