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ABSTRACT OF THE DISSERTATION

Structure-Preserving Methods for Molecular Response Calculations

By

Samuel Bekoe

Doctor of Philosophy in Chemistry

University of California, Irvine, 2023

Professor Filipp Furche, Chair

Time-dependent density functional theory (TDDFT) is a powerful and efficient method for

calculating excitation energies and properties of electronic excited states. It has found wide

applications in various scientific fields due to its accuracy and computational efficiency. How-

ever, solving the TDDFT equations involves large eigenvalue and linear problems, which can

be computationally challenging. To address this, matrix-free iterative subspace algorithms

have been developed. The first half of the thesis demonstrates the use of density functional

theory (DFT) to elucidate the electronic structure of the first synthesis of Neodymium(II) en-

capsulated in a 2.2.2-cryptand ligand. The comparison between experimental results and the

calculated molecular structure, as well as the UV-Vis spectrum obtained through TDDFT,

provided strong evidence supporting the discovery of the traditional 4f 4 electron config-

uration. In the second part of this thesis, I introduce libkrylov, which is a versatile and

open-source Krylov subspace library designed for performing large-scale matrix computa-

tions on-the-fly. The main goals of libkrylov are to provide a versatile application program-

ming interface (API) design and a modular structure that allows seamless integration with

specialized matrix-vector evaluation “engines.” The library is designed to offer pluggable pre-

conditioning, orthonormalization, and tunable convergence control, making it highly flexible

and easily adaptable to various computational scenarios and requirements. By providing

these features, libkrylov enables users to customize and optimize their calculations, thereby

xiv



enhancing the efficiency and accuracy of large-scale matrix computations in computational

chemistry and other related fields. I extend libkrylov to Hamiltonian structured problems

often encountered in TDDFT. The implementation is based on preserving the full SO(1,

1) symmetry of the TDDFT response equations, which in the absence of magnetic fields

reduces to the use of split-complex numbers. In Krylov subspace methods, this preservation

is achieved by utilizing symmetry-adapted basis vectors that maintain the orthonormality

condition of the symplectic problem. The calculation of excitation energies for some test

molecules show improved convergence over the Olsen algorithm and the TURBOMOLE im-

plementation. The improved convergence highlights the importance of the correct algebraic

approach to the problem.
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Chapter 1

Introduction

Recent developments in the field of organometallic chemistry have expanded our understand-

ing of lanthanide and actinide series elements, particularly in relation to their variable oxi-

dation states. These advancements have created opportunities for potential applications in

various areas, including catalysis1,2, magnetism3–5, and energy production. These complexes

have witnessed significant advancements in synthetic techniques in recent years6–8. However,

due to their inherent instability, traditional spectroscopic methods struggle to characterize

them effectively.

Understanding the electronic structure of these complexes is crucial for unraveling their

unique properties and their implications in various chemical processes. Computational meth-

ods offer valuable insights into the properties and chemistry of these compounds. As part of

my studies, I have delved into the world of computational chemistry, leveraging these meth-

ods to gain a deeper understanding of the electronic structure and behavior of lanthanide

and actinide organometallic complexes.

Modeling the linear response properties of lanthanide and actinide complexes requires solving

large-scale eigenvalue and linear problems involving dense coefficient matrices, often reaching

1



dimensions of the order of N ≃ 107 or greater. Calculating the matrix elements is at least

quadratic in the dimension of the matrix, or even higher. This means that the computational

cost of direct linear algebra methods, such as direct matrix inversion or eigendecomposition,

would be cubic, resulting in a significant increase in computational complexity. As the size of

the matrix grows, the computational burden of these direct methods becomes prohibitively

large.9,10.

One of the key applications of linear response property calculations in this context is the com-

putation of excitation energies within the framework of time-dependent density functional

theory (TDDFT), which involves solving symplectic eigenvalue problems,

A B

B A


X Y

Y X

 =

1 0

0 −1


X Y

Y X


Ω 0

0 −Ω

 (1.1)

Running TDDFT calculations becomes prohibitively expensive with direct methods. Equa-

tion 1.1 also arise in time-dependent Hatree-Fock (TDHF)11, widely known as random phase

approximation.

To address this challenge, matrix-free iterative subspace algorithms, like the Krylov subspace

methods, have been developed. These methods avoid explicitly forming the entire matrix

and instead focus on computing matrix-vector products, which are more efficient for large

matrices. By using iterative techniques and constructing appropriate subspace vectors, these

methods reduce the computational complexity to linear or even less than linear, making them

more suitable for handling extremely large matrices. Starting from an initial vector space

V, the desired eigenvectors or solution vectors are expanded into a Krylov subspace12:

Km(A,V) = span{V,AV,A2V, ...,Am−1V}. (1.2)

where Km is the Krylov subspace of dimension m, A is a subspace operator and V is a

2



collection of subspace vectors. The subspace is constructed by iteratively applying the matrix

to the vectors in V. By doing so, the method avoids the need to explicitly form the entire

matrix, which would be computationally demanding and memory-intensive for large-scale

problems. Instead, it focuses on generating the relevant subspace that captures the essential

information needed to approximate the solutions efficiently. The general optimization of

the problem corresponds to minimizing a functional, F , of the problem with respect to the

solution vectors X;

δF [X]

δX
= 0 (1.3)

where the gradient of the functional represent the residual. Residuals above the conver-

gence threshold are preconditioned (using standard preconditioners) and used to extend the

subspace in the next iteration until convergence is reached.

Furche et al.13 illustrate the use and performance of nonorthonormal Krylov space (nKs)

algorithms to accelerate calculations of these molecular response properties for TDHF and

hybrid TDDFT similar to recursive Fock matrix build. This work is based on decreasing

residual norms to reduce the cost of the matrix-vector products by using nonorthonormal

basis of residual vectors to construct the Krylov space.

Almost all quantum chemistry codes contain at least one implementation of Krylov space

methods for computing excitation energies, molecular properties, and/or electron correlation

energies. However these are usually hard-coded, resulting in varying convergence behaviour

across implementation and poor portability. Additionally, the lack of well-separated matrix-

vector product (the most expensive step) steps can hinder computational efficiency.

During my PhD, I have focused on developing, implementing, testing and deploying libkrylov

- a robust and efficient open-source library of Krylov space methods suitable for extremely

large and dense problems. By creating this library, I aimed to provide a unified and reliable

3



framework for researchers and developers in the quantum chemistry community. As of part

of the libkrylov library I implemented an algorithm that preserve the inherent symmetry in

eq 1.1.

In Chapter 2 of my research, I have focused on investigating the accuracy of modeling elec-

tronic states using density functional theory (DFT). Through the application of DFT, I have

successfully determined the electronic structure of the first Neodymium(II) encapsulated in a

2.2.2-cryptand ligand. The comparison between the experimental results and the calculated

molecular structure, as well as the UV-Vis spectrum obtained through TDDFT, provided

strong evidence supporting my discovery of the traditional 4f 4 electron configuration.

Chapter 3 of my research presents the design and implementation of libkrylov. The main

objectives of libkrylov are to provide a flexible application programming interface (API)

design and a modular structure that allows integration with specialized matrix-vector eval-

uation ”engines.” The library offers various features, including pluggable preconditioning,

orthonormalization, and tunable convergence control. This allows users to choose different

preconditioners such as diagonal (conjugate gradient), Davidson, and Jacobi-Davidson, as

well as orthonormal and nonorthonormal (nKs) schemes. The functionality of libkrylov is

made accessible through FORTRAN and C APIs.

I focus on exploring structure-preserving methods in Chapter 4, inspired by the successful

work of Furche et al., which aimed to accelerate molecular response calculations using a

nonorthonormal Krylov subspace method. The objective was to develop and investigate

methods that preserve the underlying structure of the TDDFT response problem while im-

proving the efficiency of the calculations.

By leveraging the modular architecture of libkrylov, I sought to enhance the performance of

response calculations by incorporating structure-preserving techniques into the Krylov sub-

space framework. These methods aim to exploit the inherent properties and symmetries of
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the problem to reduce computational cost and enhance numerical stability. Through numer-

ical experiments and comparisons with existing approaches, I evaluated the effectiveness of

the proposed structure-preserving methods in terms of convergence rate, computational effi-

ciency, and accuracy. Current structure preserving methods like the Olsen14 and Kauczor15

algorithms require twice the computational cost compared to the conventional approach.

The method presented here is comparable to the conventional approach or even better.
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Chapter 2

Explorative DFT Calculations of

Neodymium and Samarium (II) in

Cyptand Complex

This chapter contains verbatim excerpts from Huh, D. N.; Ciccone, S. R.; Bekoe, S; Roy,

S.; Ziller, J. W.; Furche, F.; Evans, W. J. Synthesis of Ln(II)-in-Cryptand Complexes by

Chemical Reduction of Ln(III)-in-Cryptand Precursors: Isolation of a Nd(II)-in-Cryptand

Complex. Angew. Chem. Int. Ed., 2020, 59(37), 16141–16146. Copyright 1999-2023 John

Wiley & Sons, Inc.. This work was supported by the National Science Foundation (NSF)

under Grant OAC-1835909

Contributions: Ran electronic structure calculations and related analysis, presenting and dis-

cussing results with other authors. I also provided interpretation of the computational results

and contributed to manuscript and computational details section of supporting information.
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2.1 Introduction

Complexation of alkali and alkaline-earth metal ions using the 2.2.2-cryptand (crypt) ligand

was first reported in 1973.16,17 This crypt encapsulation chemistry was extended to lanthanide

ions in 1979.18 However, in the ensuing four decades, only seventeen crystallographically-

characterized Ln-in-crypt complexes have been reported in the literature.18–28 The majority

of these complexes involve lanthanides in the common +3 oxidation state and only recently

have Ln2+-in-crypt complexes been identified, but only for Ln=Sm, Eu, and Yb.22–27 These

crystallographically-characterized Ln2+-in-crypt complexes were all formed from Ln2+ pre-

cursors, as shown in the examples in Equation(1) and (2) of Figure 2.1, rather than by

reduction of Ln3+-in-crypt precursors.

Figure 2.1: Crytand encapsulation of Ln2+

It should be noted that lanthanide ions have been incorporated into encapsulating ligands

other than crypt and that the synthetic chemistry is more varied than that described above

specifically for 2.2.2-cryptand.29

Recently, crypt-encapsulated lanthanide complexes have become of interest because of the

discovery of a more extensive Ln2+ oxidation state chemistry than was previously thought

possible.30–38 Since previous electrochemical reports by Gansow39 and Allen22,27 suggest that
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crypt supports lower oxidation states, the crypt coordination environment could allow the

isolation of new classes of Ln2+ ions38 or even Ln+ compounds.

Ln-in-crypt complexes are of interest in reductive rare-earth chemistry for another reason.

The complexes of the new Ln2+ ions for La, Ce, Pr, Gd, Tb, Ho, Er, Lu, and Y were often

made by alkali metal reduction in the presence of crypt to sequester the alkali metal.34–38

However, since lanthanides can be encapsulated by crypt, and sometimes unexpectedly,

Equation 1,26 it is important to know the relevant Ln-in-crypt chemistry especially in the

presence of other alkali metals.

We were interested in exploring further the reduction chemistry of Ln-in-crypt complexes, but

unfortunately the complexes in Equation 2 are insoluble in the ethereal solvents commonly

used in the synthesis of reduced lanthanide compounds.34–38,40–55 The compounds dissolve

in dimethylformamide (DMF) to form DMF adducts,25 but this complicates the reduction

chemistry since alkali metal reducing agents can react with DMF.56 Thus, THF soluble

Ln-in-crypt complexes were sought.

2.2 Density Functional Calculation

Density functional theory (DFT) calculations using the TPSSh57 functional with Grimme’s

D3 dispersion correction58 were used to study the [Nd(crypt)]2+ complex contained in 1-Nd

and its Sm analogue, [Sm(crypt)]2+ in 1-Sm. Scalar relativistic effective core potentials

(ECPs)59 along with def2-TZVP60 basis sets were used for Nd and Sm, and polarized split-

valence def2-SV(P)61 basis sets were used for all other atoms. DFT quadrature grids of

size 4 were chosen.62 Solvent effects were accounted for using the continuum solvent model

COSMO63 with a dielectric constant of 7.5264 and a refractive index of 1.3 to model THF

solution. All structures were initially optimized starting from the X-ray structures without
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symmetry constraints and with geometry convergence thresholds of 10−4 a.u and energy

convergence of 10−8 a.u. Optimized structures were confirmed to be minima on the poten-

tial energy surface by vibrational analysis using finite differences of gradients. Point group

symmetry was inferred by re-optimization of the symmetrized structures with symmetry

constraints and comparison of the resulting total energy to the one obtained in C1. Larger

augmented def2-SVPD basis sets65 for ligands and def-TZVP basis sets for Nd and Sm were

used for time-dependent density functional theory (TDDFT) calculations of vertical excita-

tion energies and oscillator strengths. UV-Vis spectra were simulated using Gaussian line

profiles with a root mean-square width of 0.16 eV, and excitation energies were empirically

shifted by 0.2 eV to account for systematic errors inherent in the functional, basis sets, and

solvation model. Molecular orbitals and electronic transitions and states were analyzed with

VMD66 and Mulliken population analysis (MPA). Excitations between 400 and 600 nm are

largely f-d metal-metal transitions. All calculations were carried out with the TURBOMOLE

program suite, Version V-7.4.1.67

2.3 Results

[Sm(crypt)]2+

Structure optimization of [Sm(crypt)]2+ yielded a D3 symmetric minimum, which is a rela-

tively high symmetry for a 63-atom molecule. The structure is in qualitative agreement with

the one obtained from X-ray analysis, except for Sm-O and Sm-N distances that are shorter

by 10 and 20 pm, respectively, Table 2.1. This shortening of bond lengths may be due the

removal of the OTf-ligands in the computational model, as discussed for the Nd compound

below. Inspection of the molecular orbitals revealed a 7A2 ground state with predominant

f 6 character of the metal. As shown in the molecular orbital diagram in Figure 2.2, the D3-
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symmetric ligand field splitting is compatible with a stable, non-degenerate ground state.

Occupation of the 22 a2 orbital, which has mostly f 3
z character, is energetically unfavorable

due to repulsive interactions with the nitrogen lone pairs pointing along the threefold sym-

metry axis, Figure 2.3. The 24 a1 lowest unoccupied molecular orbital (LUMO) and the

degenerate 40 e LUMO+1 are three-lobe diffuse (Rydberg) orbitals mainly localized in the

xy plane as shown in Figure 2.3. The 40e orbital exhibits significant 5d character.

Complex Bond Bond length

[Sm(crypt)]2+
Sm-N 2.704
Sm-O 2.654

[Sm(crypt)(OTf)2]

Sm-N(crypt) 2.843
Sm-O1(crypt) 2.651
Sm-O2(crypt) 2.738
Sm-O3(crypt) 2.819
Sm-OTf 2.531

Table 2.1: Relevant metal-ligand distances from the structures optimized in D3 symmetry
for [Sm(crypt)]2+.

The computed excitation spectrum for [Sm(crypt)]2+ shows no bands in the lower-energy

visible part of the spectrum. In agreement with the experimental data, the first peak is

predicted around 500 nm. This relatively intense transition with an oscillator strength of

0.005 is mostly due to a 4f→5d excitation from the occupied 39 e into the unoccupied

40 e orbitals, compare Figures 2.3-2.5. Higher energy transitions involve excitations from

increasingly lower-lying 4f metal orbitals.
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Figure 2.2: Qualitative molecular orbital diagram for the 5A ground state of [Nd(crypt)]2+

and the 7A2 ground state of [Sm(crypt)]2+ showing the α spin frontier orbitals (not to scale).
Other unoccupied orbitals with Nd 4f character are higher in energy and are not displayed
here. The corresponding molecular orbital labels in C1 (Nd) and D3 (Sm) energy are included
on the left and right, respectively

Figure 2.3: Highest occupied molecular orbitals of [Sm(crypt)]2+ plotted with contour values
of ±0.03.
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Figure 2.4: Lowest virtual molecular orbitals of [Sm(crypt)]2+ plotted with contour values
of ±0.02.

Figure 2.5: Simulated UV-visible spectrum of [Sm(crypt)]2+ (dashed) with computed
TDDFT oscillator strengths shown as vertical lines. The experimental spectrum is shown
as a black solid trace for comparison. A Gaussian line broadening of 0.16 eV was applied
and the computed excitation energies were empirically blue-shifted by 0.2 eV. The computed
intensities were scaled by a factor 0.3 to ease comparison with the experimental spectrum.

[Nd(crypt)]2+

Structure optimization of [Nd(crypt)]2+ resulted in a D3-symmetric structure exhibiting a

small second-order Jahn-Teller distortion into C2 and an even smaller additional distortion
12



into C1 symmetry when solvation effects were included. Since the energy gain due to distor-

tion is only 3 kcal/mol, the electron configuration of [Nd(crypt)]2+ can still be qualitatively

understood starting in D3 symmetry, see Figure 2.2: Compared to the Sm complex, the 39

e orbitals remain unoccupied in [Nd(crypt)]2+, corresponding to a 5A2 ground state in D3

symmetry with an f 4 electronic configuration of the metal. Second-order Jahn-Teller mix-

ing of the now empty 39 e with the HOMO causes further distortion into a C1 symmetric

minimum corresponding to a 5A ground state term.

Similar to the Sm case, the optimized structure shows good agreement with the X-ray analy-

sis, except for the Nd-O and Nd-N distances, which are shorter by 8 and 16 pm respectively,

Table 2.2. To confirm that this shortening of metal-ligand bond lengths is caused by the

removal of OTf- ligands in the computational model, an additional geometry optimization

including the OTf− ions was performed starting from the X-ray structure. This led to a

minimum with Nd-O and Nd-N bond lengths within 10 pm of the crystal structure data

Table S10. The shortening of the Nd-O and Nd-N distances in [Nd(crypt)]2+ are consistent

with a decrease in coordination number of the complex.68 However, the OTf- ligands may

partially dissociate in solution, and the more symmetric [Nd(crypt)]2+ ion may be a better

model for the average solution structure. Moreover,charged ligands may give rise to charge-

transfer transitions with spuriously low energy in a TDDFT treatment69,70 contaminating

the simulated spectra. Explorative TDDFT calculations including the OTf- ligands indeed

showed much larger intensities in the visible region than experimentally observed.

Compared to the UV-visible spectrum of [Sm(crypt)]2+, the UV-visible spectrum of [Nd(crypt)]2+

shows transitions throughout the visible region, see Figure 2.8 and Table 2.4. The lower-

energy onset of the characteristic 4f→5d transitions is consistent with the higher energy of

occupied 4f orbitals in Nd vs. Sm. Moreover, the relatively intense 39 e→40 e transition is

absent in the Nd compound because 39 e is unoccupied. The broader, less structured spec-

trum of [Nd(crypt)]2+ is consistent with lower C1 symmetry compared to the D3-symmetric
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Complex Bond Bond length

[Nd(crypt)]2+
Nd-N 2.758
Nd-O1 2.669
Nd-O2 2.670

[Nd(crypt)(OTf)2]
Nd-N(crypt) 2.857
Nd-O1(crypt) 2.668
Nd-O2(crypt) 2.737
Nd-O3(crypt) 2.825
Nd-OTf 2.574

Table 2.2: Relevant metal-ligand distances from the structures optimized in C1 symmetry
for [Nd(crypt)]2+ and [Nd(crypt)(OTf)2].

Figure 2.6: Highest occupied molecular orbitals of [Nd(crypt)]2+ plotted with contour values
of ±0.03.
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Figure 2.7: Lowest virtual molecular orbitals of [Nd(crypt)]2+ plotted with contour values
of ±0.02.

Figure 2.8: Simulated UV-visible spectrum of [Nd(crypt)]2+ (dashed) with computed
TDDFT oscillator strengths shown as vertical lines. The experimental spectrum is shown
as a black solid trace for comparison. A Gaussian line broadening of 0.16 eV was applied
and the computed excitation energies were empirically blue-shifted by 0.2 eV. The computed
intensities were scaled by a factor 0.3 to ease comparison with the experimental spectrum.
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Sm compound.

In conclusion, the agreement between the experimental and the computed spectra, both

regarding intensities and positions and shape of the bands, corroborates the assignment of

f 6 and f 4 electronic ground state configurations for the 1-Sm and 1-Nd compounds.
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2.4 Supplementary Information

Term Symbol Wavelength (nm) Oscillator (len) Occupied Virtual % Weight Assignment

5 7E 507.5 0.005 39e 40e 27.5 4fxyz→(6py+5dxy)RB
40e 20.9 4fz(x2-y2)→(6py+5d(x2-y2))RB

40e 18.1 4fxyz→(6py+5d(x2-y2))RB

41e 10.3 4fxyz→(5dyz+5d(x2-y2))RB

41e 7.5 4fz(x2-y2)→(5dyz+5d(x2-y2))RB

40e 6.7 4fz(x2-y2)→(6py+5dxy)RB

7 7E 437.7 0.002 23a1 40e 54.4 4fx(x2-3y2)→(6py+5d(x2-y2))RB

41e 13.9 4fx(x2-3y2)→(5dyz+5d(x2-y2))RB

21a2 40e 7.1 4fy(3x2-y2)→(6py+5dxy)RB

8 7E 424.6 0.001 21a2 41e 59.8 4fy(3x2-y2)→(5dyz+5d(x2-y2))RB

40e 14.8 4fy(3x2-y2)→(6py+5dxy)RB

18 7E 333.7 0.003 38e 41e 47.0 4fyz2→(5dyz+5d(x2-y2))RB

40e 13.6 4fyz2→(6py+5dxy)RB

39e 42e 8.0 4fxyz→(some 5d)RB

Table 2.3: Summary of [Sm(crypt)]2+. The TPSSh functional along with def2-SVPD basis
set for ligand atoms were used. Oscillator strengths are reported in the length gauge. All
excitations obtained in this spectral range are alpha spin to alpha spin transitions. RB
stands for Rydberg orbitals.

17



Term Symbol Wavelength (nm) Oscillator (len) Occupied Virtual % Weight Assignment

13 5A 817.1 0.002 118a 122a 39.1 4fyz2→(6px+5dxy)RB

126a 17.6 4fx(x2-3y2)→(6px)RB

123a 6.4 4fx(x2-3y2)→(6py+5d(x2-y2))RB

17 5A 765.9 0.002 120a 121a 36.4 4fy(3x2-y2)→(6s)RB

119a 121a 15.2 4fx(x2-3y2)→(6s)RB

118a 123a 9.4 4fyz2→(6py+5d(x2-y2))RB

117a 122a 9.0 4fxz2→(6px+5dxy)RB

27 5A 586.8 0.002 117a 126a 12.7 4fxz2→(6px)RB
117a 122a 12.0 4fxz2→(6px+5dxy)RB
120a 126a 9.8 4fy(3x2-y2)→(6px)RB

118a 126a 6.7 4fyz2→(6px)RB

119a 126a 6.4 4fx(x2-3y2)→(6px)RB

45 5A 477.0 0.002 120a 129a 18.9 4fy(3x2-y2)→(5dyz+5dxz)RB

128a 16.8 4fy(3x2-y2)→(5dxy)RB

123a 14.1 4fy(3x2-y2)→(6py+5d(x2-y2))RB

149a 9.2 4fy(3x2-y2)→ligand

134a 6.8 4fy(3x2-y2)→(5dyz)RB

48 5A 462.6 0.003 118a 128a 22.3 4fyz2→(5dxy)RB

133a 10.7 4fyz2→(5dz2)RB

134a 7.2 4fyz2→(5dyz)RB

129a 6.0 4fyz2→(5dyz+5dxz)RB

70 5A 383.0 0.001 120a 147a 61.9 4fy(3x2-y2)→ligand

78 5A 373.3 0.001 118a 147a 57.5 4fyz2→ligand

113 5A 326.1 0.003 120a 145a 49.9 4fyz2→ligand

146a 21.3 4fyz2→ligand

149a 14.8 4fyz2→ligand

Table 2.4: Summary of [Nd(crypt)]2+. The TPSSh functional along with def2-SVPD basis
set for ligand atoms were used. Oscillator strengths are reported in the length gauge. All
excitations obtained in this spectral range are alpha spin to alpha spin transitions. RB
stands for Rydberg orbitals.
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Chapter 3

Libkrylov, a Modular Open-Source

Software Library for Extremely Large

On-the-Fly Matrix Computations

This chapter contains verbatim excerpts from Rappoport, D., Bekoe, S., Mohanam, L. N.,

Le, S., George, N., Shen, Z., Furche, F. Libkrylov: A modular open-source software library

for extremely large on-the-fly matrix computations. J. Comput. Chem. 2023, 44(11), 1105.

Copyright 1999-2023 John Wiley & Sons, Inc.. This work was supported by the National

Science Foundation (NSF) under Grant OAC-1835909 and The Molecular Sciences Software

Institute (MolSSI) under NSF grant CHE-2136142.

Contribution: I was involved in discussion and design of library interface. I implemented the

preconditioning objects. Additionally I contributed to implementing the global and linear

algebra utility functions in the library and testing library functions. I wrote user guide and

gitlab wiki.
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3.1 Introduction

Linear equations and eigenvalue problems with large dimensionality, on the order of > 106

degrees of freedom, and no special structure or sparsity arise in many scientific and en-

gineering applications, for example, quantum chemical and materials science simulations,

partial differential equation solvers, signal reconstruction, and machine learning applica-

tions.71–73 Density functional calculations of light-induced processes in organic and semicon-

ductor nanostructures have pushed the limit of quantum chemical studies to systems with

1000 or more atoms. Molecular and material property calculations in these systems amount

to solving eigenvalue problems of dimension one billion or larger.74,75 In many critical ap-

plications, the coefficient matrices are extremely large, dense, and full rank (due to strong

coupling/interaction), precluding the use of specialized techniques such as sparse solvers or

factorizations.

Matrix-free iterative methods eliminate the bottleneck of explicitly computing and storing

extremely large and dense coefficient matrices; instead, products of the coefficient matrix

with trial vectors are computed “on the fly”. These solvers are based on Krylov subspace

methods and solve the linear problems such as eigenvalue problems, linear equations, or

related problems involving the coefficient matrix A ∈ Rn×n or ∈ Cn×n on the sequence of

Krylov subspaces K(k) of increasing dimension qk, k = 1, 2, . . ..76–82 For many linear problems

the iteration converges after K iterations with qK ≪ n and is very economic in its CPU and

memory usage even in the case of very large matrices A. The key component of Krylov sub-

space algorithms is the matrix–vector multiplication “engine”, which is capable of efficiently

computing Av, given a vector v. These engines are highly application-dependent and often

exploit special intermediate representations and/or domain-specific physical properties.83–92

The importance of Krylov subspace methods for the development of efficient quantum chem-

ical implementations is hard to overstate. Implementations of these methods for molecu-
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lar property calculations, convergence acceleration of ground-state energy calculations, and

other computationally intensive tasks are part of nearly all molecular and solid-state elec-

tronic structure codes, many of which were included in a recent software overview.93 In

particular, the Davidson algorithm94–96 and its variants are behind some of the largest quan-

tum chemical simulations.97–99 Matrix-free methods are particularly attractive on massively

parallel computing architectures, where (re)computing matrix elements is preferable to the

storage and communication of the full coefficient matrix A.

While the theory and algorithms of Krylov subspace methods have a wealth of litera-

ture76–82,100,101, the corresponding matrix-free implementations are scattered over many soft-

ware packages and are often narrowly tailored to the solution of a specific problem.

The integration of the optimized matrix–vector multiplication “engines” with the Krylov

subspace algorithms and efficient data interchange are crucial to the efficiency of the overall

implementation. These requirements rule out general-purpose linear algebra environments

such as MATLAB102 and its open-source clone Octave103 due to the computational overhead

of repeated data transformations. The existing ecosystem of open-source libraries for itera-

tive linear algebra primarily targets problems with an explicit but sparse coefficient matrix

A and does not fit the needs of matrix-free linear algebra problems, for example those arising

in molecular property calculations, with regard to their functionality or their data interface.

The seminal ARPACK library104 lacks the implementation of the Davidson algorithm or its

variants and has not seen significant development in many years. The popular and efficient

BLOPEX library is limited to solving ordinary and generalized eigenvalue problems using

the LOBPCG algorithm.105,106 The SLEPc library is primarily designed for sparse matrix

computations but can also accept matrix–vector functions107,108 instead of explicit matri-

ces. The PETSc library also provides this functionality for solving large partial differential

equations.109
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The many custom implementations of Krylov subspace algorithms with essentially overlap-

ping functionalities resulted in considerable duplication of programming, debugging, and

testing effort. Moreover, each implementation is somewhat different in its functionality, con-

figuration options, and numerical thresholds. This results in difficulties in comparing and

reproducing results from different codes. Finally, in the absence of well-defined application

programming interfaces (APIs), even the existing open-source implementations cannot easily

interoperate.

A further complicating factor is that the speed of convergence of iterative methods depends

on specific properties of the coefficient matrix, in particular diagonal dominance and the dis-

tribution of its eigenvalues. Suitably chosen preconditioning techniques can thus drastically

improve convergence of Krylov subspace methods by taking advantage of these properties.

In addition, the non-orthonormal Krylov subspace (nKs) approach75 can exploit the decreas-

ing norms of the vectors added to Krylov subspaces as the iteration progresses to further

reduce the computational cost of evaluating matrix–vector products. A related “balancing”

approach for the Krylov subspace methods has been proposed.110 Because the performance

characteristics of Krylov subspace methods are structure-dependent, it is desirable to pro-

vide the user code with the flexibility to choose the preconditioning and orthonormalization

methods best suited for the specific numerical problem.

In this contribution, we describe libkrylov 111, an extensible software library for orthogonal

and non-orthogonal matrix-free Krylov subspace methods, which features flexible APIs and

enables pluggable preconditioning, orthonormalization, and tunable convergence control.

The key design objective of libkrylov is to balance the integration of the optimized matrix–

vector multiplication and the Krylov subspace algorithms with the simplicity and flexibility

of use.Libkrylov is designed as a framework, which inverts the control flow compared to

that of typical libraries. While library functions are designed to be called from a driver

procedure, the libkrylov solver function is responsible for executing the control flow, calling
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the user-provided matrix–vector product function in each iteration via a fixed API. This

approach ensures the necessary flexibility of the libkrylov components without compromising

the efficiency of the implementation, while the user code is only responsible for implementing

a matrix–vector multiplication function and can focus on domain-specific optimizations. The

libkrylov library is implemented in portable Fortran 2003/C99 and aims to be an off-the-

shelf library component for large-scale scientific and engineering applications. To this end,

libkrylov is designed with maximal modularity, structured Fortran and C interfaces, and

integration with platform-optimized BLAS112–114 and LAPACK115 linear algebra primitives

in mind. Libkrylov is distributed under the open source 3-clause BSD license.

The version 1.1.0 of libkrylov treats symmetric eigenvalue problems, linear equations, and

shifted linear equations. Diagonal (conjugate-gradient, CG) preconditioning, Davidson pre-

conditioner94–96, and Jacobi–Davidson preconditioning due to Sleijpen and van der Vorst116,117

can be selected for convergence acceleration. Both the most commonly used orthonormal

Krylov subspace algorithm and the computationally efficient nKs approach of Furche and

co-workers75 are available. Moreover, libkrylov supports blocked algorithms for simultane-

ous iteration of multiple equations with a shared coefficient matrix for linear problems with

block-diagonal structure. A posteriori error bounds and dynamic restart capability cover

the most common application scenarios.

This paper describes the design strategy of libkrylov and outlines its approach to solving

a wide range of matrix-free linear problems via a common function-based interface. The

structure of the paper is as follows. We first introduce the notation and give a brief overview

of Krylov subspace algorithms implemented in libkrylov. After that, we describe the design

and implementation of libkrylov. Finally, using an illustrative set of linear problems related

to molecular property calculations, we review the suite of preconditioning and orthonormal-

ization techniques available in libkrylov and give examples of their convergence.
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3.2 Krylov Subspace Methods

3.2.1 Background and Notation

In this section we establish our notation for Krylov subspace methods for eigenvalue prob-

lems, linear equations, and shifted linear equations for symmetric coefficient matrices A ∈

Rn×n or Hermitian matrices in Cn×n. Since many applications seek p ≥ 1 simultaneous

solutions involving the same coefficient matrix A, for example, the p lowest eigenvalues,

right-hand sides (RHS) and/or shifts, we present the Krylov subspace algorithms in their

blocked form and use matrix notation throughout. Table 3.1 gives an overview of the linear

problems treated here. X denotes the n× p matrix having solution vectors as columns. For

eigenvalue problems, X is the matrix of eigenvectors. The corresponding eigenvalues are

represented by the diagonal matrix Ω = diag(Ω1, . . . ,Ωp). The RHS of the (shifted) linear

equations are combined into the n×p matrix P. Shifted linear equations additionally contain

a matrix of diagonal shifts ω = diag(ω1, . . . , ωp). These equations can be considered as the

diagonal variant of the Sylvester equations.118

In Krylov subspace methods, the k-th iterates (k ≥ 1) are written as vectors in the Krylov

subspace K(k) of dimension qk,

X(k) = V(k)x(k), (3.1)

where V(k) is the matrix of basis vectors of K(k) and x(k) are the expansion coefficients. The

residual (error) vectors of the k-th iterates are collected in the matrix R(k), see Table 3.1 for

definitions. The k-th iterates are chosen according to the Ritz–Galerkin condition, that is,

the residual vectors are required to be orthogonal to the Krylov subspace K(k),

V(k)†R(k) = 0. (3.2)

24



Note that superscript † indicates the matrix transpose for real matrices and the Hermitian

conjugate in the complex case. In this case, X(k) are the Ritz vectors, and the corresponding

expansion coefficients x(k) follow from solving the projected linear problem on K(k), as shown

in Table 3.1. The nKs method75 uses a nonorthonormal subspace basis, in which case the

Gram (overlap) matrix of the subspace basis is given by

s(k) = V(k)†V(k) (3.3)

The Rayleigh matrix

a(k) = V(k)†AV(k) (3.4)

is the projection of the matrix A onto the Krylov subspace. In eigenvalue problems, the

diagonal matrix Ω(k) contains the k-th eigenvalue iterates. The projection of the RHS

matrix P of (shifted) linear equations is denoted as

p(k) = V(k)†P (3.5)

The columns of the residual matrix R(k) are used to construct the basis of the subsequent

Krylov subspace K(k+1) of dimension qk+1 = qk + p. The basic Krylov subspace iteration

in libkrylov (no preconditioner) adds the residuals to the Krylov subspace basis, similar to

Arnoldi iteration.119 However, most applications apply a suitably chosen invertible n × n

matrix preconditioning matrix K(k) to the residuals,

R̃(k) =
(
K(k)

)−1
R(k) , (3.6)

prior to expanding the Krylov subspace. Preconditioning techniques are crucial to the per-

formance of Krylov subspace methods for linear equations.76,81,120–123 In eigenvalue problems,
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Equation Projected Equation Residuals

Eigenvalue problem AX = ΩX a(k)x(k) = s(k)x(k)Ω(k) R(k) = AX(k) −X(k)Ω(k)

X†X = 1 x(k)†s(k)x(k) = 1

Linear equation AX = P a(k)x(k) = p(k) R(k) = AX(k) −P

Shifted linear equation AX−Xω = P a(k)x(k) − s(k)x(k)ω = p(k) R(k) = AX(k) −X(k)ω −P

Table 3.1: Linear problems solved by libkrylov, the corresponding projected equations on
Krylov subspace K(k), and definitions of the residual matrices. See text for definitions.

Davidson94,96 and Jacobi–Davidson (JD) preconditioning116,117 are widely used convergence

acceleration techniques.

3.2.2 Krylov Subspace Algorithm

Given the q1 × n matrix of starting vectors V(1) and matrix–vector multiplication function

f(V) = AV, the Krylov subspace algorithm takes the steps outlined in Fig. 3.1. Note that

matrix–vector products and other quantities involving the columns V(k) can be reused from

previous iterations so that f(V) is only evaluated for new vectors. The step denoted by (*)

is only needed for nonorthonormal subspace bases, see below. In the orthonormal case, the

modified Gram–Schmidt (MGS) method118 is applied in the step (‡). The projection (†) is

performed for (shifted) linear equations only.

3.2.3 Preconditioning

The convergence of the basic Krylov subspace iteration is often unsatisfactory for practical

calculations. The choice of the preconditioning matrix K can significantly affect the speed

of convergence.76–78,80,81,100,101 The diagonal approximation D = diag(A11, . . . , Ann) to the

coefficient matrix,

K
(k)
CG = D , (3.7)
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Choose q1 ≥ p starting vectors V(1)

for k = 1, 2, . . .
W(k) = f(V(k)) = AV(k)

s(k) = V(k)†V(k) (*)
a(k) = V(k)†W(k)

p(k) = V(k)†P (†)
Compute x(k) from projected equation (see Table 3.1)
X(k) = V(k)x(k)

Compute residuals R(k) (see Table 3.1)

if max1≤i≤p|R(k)
i | ≤ τ then quit

R̃(k) = K(k)−1R(k)

Orthogonalize R̃(k) against V(k) (‡)
V(k+1) = [V(k) R̃(k)]

end

Figure 3.1: Schematic Krylov subspace iteration algorithm including preconditioning and
orthonormalization. f(V(k)) is the matrix–vector product evaluation by the user-supplied
function. The step denoted by (*) is only used in nonorthonormal Krylov subspace algorithm.
The orthonormal case includes the vector orthonormalization step (‡). The projection (†) is
performed for (shifted) linear equations only. τ is the convergence threshold.

is often used in the preconditioned CG algorithm.76,77,81 For eigenvalue problems, the David-

son algorithm corresponds to choosing the preconditioner as

K
(k)
D = D−Ω(k) , (3.8)

where Ω(k) are the k-th eigenvalue iterates.94,96 For shifted linear equations, the equivalent

of the Davidson preconditioner includes the diagonal shifts ω instead of eigenvalues.

The JD algorithm ensures by projection that the preconditioned residuals are orthogonal to

the solution,116,117

K
(k)
JD = (1− Π(k))K

(k)
D (1− Π(k)) , (3.9)

where Π(k) is the projector onto the set of k-th iterates. By imposing orthogonality con-
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straints, the preconditioned residuals are computed as

R̃(k) =
(
K

(k)
D

)−1

R(k) − ε(k)
(
K

(k)
D

)−1

X(k) with ε(k) =
X(k)†

(
K

(k)
D

)−1

R(k)

X(k)†
(
K

(k)
D

)−1

X(k)

. (3.10)

In the case of p > 1, two variants of the JD preconditioner can be formulated. Each residual

vector can be preconditioned by projecting out only the corresponding solution (JD variant

1) or all solutions (JD variant 2).

3.2.4 Nonorthonormal Subspace Bases

The nKs method takes advantage of the fact that the residual norms R(k) usually decrease as

the approximate solutions X(k) converge to the true solution X. If the function f(V) = AV

can be made to execute more efficiently for small ∥V∥, for example, by prescreening the

matrix elements of A, then the cost of each iteration may be reduced by up to 80%75. In

order to preserve the decreasing residual norms, the orthonormalization step (‡) is omitted

in the nKs method, and instead the projected equations are solved in their generalized form

with a Gram matrix s(k) ̸= 1 (Table 3.1).

The projected equations are solved in two steps. First, the equation is scaled by the diagonal

d of s(k),

d = diag(s
(k)
11 , . . . , s

(k)
qkqk

) (3.11)

to reduce the condition number of s. Using the Cholesky decomposition of the scaled Gram

matrix

LL† = d−1/2s(k)d−1/2 (3.12)
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the following substitutions can be made

ã(k) = L−1d−1/2a(k)d−1/2(L−1)†,

x̃(k) = L†d1/2x(k),

p̃(k) = L−1d−1/2p(k).

(3.13)

The resulting linear problem can be then solved using standard methods. For more details,

see Ref.75.

If p > 1 equations are simultaneously iterated, the (preconditioned) residuals corresponding

to different solutions may become linearly dependent. To improve the condition of the Gram

matrix while maintaining the advantage of decreasing residual norms of the nKs approach,

we test a variant of the nKs approach. In this semiorthonormal variant, instead of the full

orthonormalization (‡) in Fig. 3.1, we limit ourselves to enforcing orthogonality between the

columns of R̃(k) using a singular-value decomposition (SVD),

u(k)†σ(k)v(k) =
(
K(k)

)−1
R(k) ,

R̃(k) = σ(k)v(k) .

(3.14)

For p = 1, the semiorthonormal variant is identical to the nKs method.75

Error Bounds and Convergence of the Algorithm

The norm of the residual matrix R(k) provides a strict upper bound for the error of the

approximate eigenvalues in the k-th iteration118,

|Ωi − Ω
(k)
i | ≤

√
2∥R(k)∥2 for 1 ≤ i ≤ qk , (3.15)
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where the 2-norm of the residual matrix is used. Because

∥R(k)∥2 ≤ ∥R(k)∥F ≤ p r(k)max with r(k)max = max1≤i≤p|R(k)
i | , (3.16)

the maximum residual norm yields a convenient convergence criterion, r
(k)
max ≤ τ , where τ is

the convergence threshold.

An alternative convergence measure for Krylov subspace algorithms monitors the change in

the corresponding Lagrangian functional F . The latter is a quadratic form whose stationary

points are the solutions of the linear problem.75 For eigenvalue problems, the Lagrangian

takes the form

F [X,Ω] =
〈
X†AX−Ω

(
X†X− 1

)〉
, (3.17)

where ⟨·⟩ denotes the trace operation. The minimum of F [X,Ω] over all n × p matrices

is given by the matrix containing the lowest p eigenvectors as columns. The Lagrangian

functional for (shifted) linear equations is given by

F [X] =
〈
X†AX− ω

(
X†X− 1

)
−X†P−P†X

〉
, (3.18)

in which linear equation is obtained by settings the shifts to zero, ω = 0. If all shifts are

smaller than lowest eigenvalue of A, the quadratic form is convex, and the stationary point

is a minimum.

In the case of a restart after k iterations, the Krylov subspace basis is replaced by the set of

the p solution iterates X(k). In (shifted) linear problems, the columns of X(k) must be first

orthonormalized before proceeding.
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3.3 Libkrylov Design and Implementation

The principal objective of libkrylov is serving as a flexible computational framework, which

supports a wide variety of matrix-free linear problems including eigenvalue problems, lin-

ear equations, and shifted linear equations via a simple, uniform API. The user should be

empowered to evaluate different preconditioning and orthonormalization techniques and ex-

periment with hybrid approaches as demanded by the application domain. Composability is

thus a central consideration. Since scientific software development is split between Fortran

and C/C++ ecosystems, libkrylov aims to be interoperable with both language families and

to provide for simple cross-platform build and installation procedures.

Function-based interface

Object-oriented core
Fortran 2003

Linear algebra primitives

Fortran programs C/C++ programs

BLAS LAPACK

Figure 3.2: Libkrylov architecture. Invocations are indicated by arrows, composition by
inclusion.

To make good on these promises, libkrylov uses a layered architecture, in which an object-

oriented core is wrapped in a function-based interface layer, which allows calling from both

Fortran and C/C++ (Fig. 3.2). The library is implemented in portable Fortran 2003 and

takes advantage of the runtime polymorphism capabilities afforded by this standard. How-

ever, in the design of libkrylov, composition is preferred over inheritance as it induces looser

coupling between components and allows for better composability. The simplified class di-

agram of libkrylov is shown in Fig. 3.3. The central component of libkrylov is the space t

abstract class, which represents a general Krylov subspace and provides an interface to the
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space_t

convergence_t

real_space_t

real_equation_t

real_orthonormalizer_t

real_preconditioner_t

complex_space_t

complex_equation_t

complex_orthonormalizer_t

complex_preconditioner_t

real_eigenvalue_equation_t

real_shifted_linear_equation_t

real_linear_equation_t

real_null_preconditioner_t

real_jd_preconditioner_t

real_cg_preconditioner_t

real_davidson_preconditioner_t

real_semi_orthonormalizer_t

real_nks_orthonormalizer_t

real_ortho_orthonormalizer_t

Figure 3.3: Simplified class diagram of libkrylov components. Abstract classes are shown
in gray, concrete classes in white. Inheritance relationships are indicated by arrows.

steps of the iterative algorithm of Fig. 3.1. The implementations of the Krylov subspace

algorithm for the real symmetric and complex Hermitian cases largely follow analogous

paths. It would thus be desirable to use generic programming techniques to abstract over

the underlying arithmetic. However, due to the lack of support for generic programming in

Fortran 2003, one has to emulate generic classes by polymorphic types such as real space t

and complex space t inheriting from space t. Such ad hoc polymorphism might seem an

unappealing alternative because it requires a significant amount of code duplication. But

polymorphic classes also offer several advantages as they make extensions to other cases

easy, for example for structured problems. For simplicity, we focus on the function of the

real space t class and its components in the following. However, the details apply analo-

gously to the complex case. The generalization of the libkrylov code to different floating-point

precisions (single, double, and potentially quadruple) is implemented using code preprocess-

ing, which is not part of the Fortran 2003 standard but is nevertheless almost universally
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supported by Fortran compilers.

The internal structure of the real space t class is designed to maximize the separation

of concerns between the equation type, orthonormalization, preconditioning, and conver-

gence control. Therefore, the real space t class contains polymorphic components for the

equation type, orthonormalizer, and preconditioner, see Fig. 3.3. The current implemen-

tation supports eigenvalue problems, linear equations, and shifted linear equations. The

orthonormal Krylov subspace method, the nKs method, and the semiorthonormal variant

are implemented via a common orthonormalizer interface. The preconditioning choices in-

clude the null preconditioner (no preconditioning, analogous to Arnoldi iteration), diagonal

preconditioning (CG preconditioner), Davidson and Jacobi–Davidson (JD) preconditioning

techniques.

This design of the real space t class allows the user to freely mix and match the components

of the Krylov subspace algorithm when constructing a new Krylov subspace object. Flexible

convergence control and transparent error handling enable experimentation to determine

the best setup depending on the properties of the specific problem. The convergence control

object tracks the norm of the residual matrix, the condition number of the overlap matrix

(for a nonorthonormal basis), and the Lagrangian of the linear problem over the course of

the iterative process. Different combinations of convergence and restart criteria can thus be

specified by configuration, while sensible default settings are provided by the library.

The requirement of interoperability with both Fortran and C/C++ code bases significantly

constrains the structure of the libkrylov interface. A simple function-based API was chosen

for user interaction from both Fortran and C/C++. All space t objects are created as global

module variables inside the libkrylov library and addressed using numerical indices. Data

exchange between user code and library code is done incrementally with separate function

calls, for example, for starting vectors, RHS, or diagonal shifts. This approach has the

advantage that new equation types can be added without breaking backwards compatibility.
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Examples of libkrylov calls from Fortran and C are shown in Figs. 3.4 and 3.5.

program use_krylov

integer :: err, ind

real :: v(4, 1), s(4, 1), res

err = krylov_initialize()

ind = krylov_add_space(’r’, ’s’, ’e’, 4, 1, 1)

v = reshape([1.0, 0.0, 0.0, 0.0], [4, 1])

err = krylov_set_real_space_vectors(ind, 4, 1, v)

err = krylov_solve_real_equation(ind, multiply)

if (err /= 0) stop 1

err = krylov_get_real_space_solutions(ind, 4, 1, s)

res = krylov_get_space_last_residual_norm(ind)

err = krylov_finalize()

contains

function multiply(n, m, v, p)

integer :: n, m

real :: v(n, m), p(n, m), m(4, 4)

mat = reshape([5.0, 4.0, 1.0, 1.0, 4.0, 5.0, 1.0, 1.0, &

1.0, 1.0, 4.0, 2.0, 1.0, 1.0, 2.0, 4.0], [4, 4])

p = matmul(mat, v)

multiply = 0

end function multiply

end program use_krylov

Figure 3.4: Example of calling libkrylov from Fortran. Program variables: n: dimension of
coefficient matrix, m: current subspace dimension, t: number of solutions, v(n, m): basis
vectors, p(n, m): matrix–vector products, s(n, t): solutions, res: residual norm, ind:
space index, err: error code. An explicit coefficient matrix mat is used for simplicity. In
real implementations, the matrix–vector products are formed “on the fly”.

The user interaction with libkrylov consists of only a few function calls. At minimum, the

library must be initialized by the (c)krylov initialize function, the problem type and

the relevant dimensions must be specified in the (c)krylov add space function call, and the

initial subspace basis must be passed to the (c)krylov set real space vectors function.

The type of arithmetic (real or complex), equation type, and matrix structure are specified by

character constants, in analogy to BLAS. In our example, ’r’ indicates real arithmetic, ’e’

means eigenvalue problem, and ’s’ stands for a symmetric coefficient matrix. The bulk of

the computation takes place within the (c)krylov solve real equation call. The matrix–

vector product function multiply is passed as the first argument. For the sake of simplicity,

the evaluation of matrix–vector products is simulated in Figs. 3.4 and 3.5 by multiplication

with an explicit coefficient matrix. In real-life applications, the corresponding matrix–vector
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#include "ckrylov.h"

int main() {

long err, ind;

double v[4] = {1.0, 0.0, 0.0, 0.0}, s[4], res;

err = ckrylov_initialize();

ind = ckrylov_add_space("r", 1, "s", 1, "e", 1, 4, 1, 1);

err = ckrylov_set_real_space_vectors(ind, 4, 1, v);

err = ckrylov_solve_real_equation(ind, multiply);

if (err != CKRYLOV_OK) exit(1);

err = ckrylov_get_real_space_solutions(ind, 1, s);

res = ckrylov_get_space_last_residual_norm(ind);

err = ckrylov_finalize();

exit(0);

}

int multiply(const long *n, const long *m, const double *v, double *p) {

double mat[] = {5.0, 4.0, 1.0, 1.0, 4.0, 5.0, 1.0, 1.0,

1.0, 1.0, 4.0, 2.0, 1.0, 1.0, 2.0, 4.0};

for (long i = 0; i < *n * *m; ++i) p[i] = 0.0

for (long i = 0; i < *m; ++i) {

for (long j = 0; i < *n; ++j) {

for (long k = 0; k < *n; ++k) {

p[k + *m * i] += mat[k + *n * j] * v[j + *n * i];

}

}

}

return CKRYLOV_OK;

}

Figure 3.5: Example of calling libkrylov from C. See Fig. 3.4 for variable definitions. Integer
constant CKRYLOV OK indicates successful exit.

product function is provided by the user and may be arbitrarily complex as long as it

adheres to the interface. The convergence or any error conditions of the iterative algorithm

are communicated to the user by the return value of the (c)krylov solve real equation

function call, with 0 indicating success. In that case, the solution vectors may be retrieved by

the (c)krylov get real space solutions. The convergence may be verified by checking

the residual norm of the last iteration ((c)krylov get space last residual norm). The

converged eigenvalues may be obtained by additional function calls, which are omitted for

brevity. After the interaction with libkrylov is completed, the allocated memory is freed

by the ((c)krylov finalize) function call. The complete libkrylov API documentation is

provided with the libkrylov code.111
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The current implementation keeps all program data in memory, which allows for the fastest

data access. However, this strategy becomes unfeasible for very large problems or in memory-

constrained environments. For these cases, a flexible data storage backend is planned for

future releases, which enables both in-memory and out-of-core algorithms with adaptive

blocking.

For ease of installation, distribution, and testing, libkrylov uses the CMake cross-platform

build system124. The library is released under the open-source 3-clause BSD license.

3.4 Numerical Tests

The computational cost and the speed of convergence of Krylov subspace algorithms may

strongly depend on the numerical properties of the coefficient matrix A and the details of

the iterative procedure, in particular, on the choice of the preconditioning and orthonor-

malization methods. The evaluation of matrix–vector products in each iteration is the most

computationally expensive step, scaling as O(n2) for general dense matrices, as long as the

number of iterations K ≪ n. A large literature is devoted to specialized matrix–vector

multiplication “engines”, which can achieve significant computational cost reductions per

iteration by implementing domain-specific intermediate representations, prescreening of ma-

trix elements of A, and other structure-dependent techniques.75,83–92,110 In this section, we

give selected examples of usage of libkrylov in calculations of molecular property calculations

by time-dependent Hartree–Fock (TDHF)11,125 and time-dependent density functional the-

ory (TDDFT) methods.126–130 For illustration purposes, we limit ourselves to calculations of

size n = 103..104, in which the properties of the coefficient matrix A can be computed in

advance and correlated with the performance characteristics of Krylov subspace algorithms.

We focus on the convergence behavior of the iterative algorithm as a function of the pre-

conditioning and orthonormalization techniques. We consider the structural characteristics
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contributing to the efficiency of the Davidson preconditioner and related methods. The effi-

ciency of iterative algorithms for solving the linear and eigenvalue equations of TDHF and

TDDFT is compared in Ref.15.

Within the Tamm–Dancoff approximation (TDA)131–133 to TDDFT and the configuration

interaction singles (CIS) method,134 which may be considered the equivalent approximation

to TDHF, electronic excitation energies and intensities are obtained from the solutions of a

real symmetric eigenvalue equation,

AXi = ΩiXi , (3.19)

where the coefficient matrix A is positive definite. In most cases, only the i = 1, ..., p lowest

eigenvalues are of interest. Static polarizabilities in TDHF and TDDFT are computed by

solving the real symmetric linear equation

(A+B) (X+Y)α = (P+Q)α , (3.20)

for the Cartesian components α = x, y, z. The RHS vectors (P+Q)α contains matrix

elements of the dipole moment operator.

Table 3.2 summarizes the structural characteristics of the coefficient matrices and the speed of

convergence of eigenvalue problems for selected medium-size inorganic and organic molecules

with TDDFT using the PBE exchange–correlation functional135 and the resolution-of-the-

identity (RI-J) approximation for the Coulomb interaction.87,136 The basis sets used in the

calculations were of split-valence quality (def2-SVP) and triple-zeta valence quality (def2-

TZVP),137 including diffuse augmentation (def2-SVPD).138 p = 1, 2, and 10 lowest eigenval-

ues were determined simultaneously. The residual norm convergence criterion was τ = 10−7.

The coefficient matrices and RHS vectors were generated by a modified version of the Tur-

bomole139 escf program.
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For each coefficient matrix A, selected numerical characteristics relevant to the convergence

and numerical stability of Krylov subspace algorithms are shown. Specifically, Table 3.2

includes the inverse 2-norm condition number κ−1
2 ,

κ2 = ∥A∥2∥A−1∥2 , (3.21)

which serves as a general measure of numerical stability in operations involving A. The ratio

ρp of the highest requested eigenvalue and the next-higher eigenvalue controls the convergence

of iterative algorithms for the p lowest eigenvalues in the absence of preconditioning,79,140

ρp = Ωp+1/Ωp . (3.22)

To illustrate the performance of preconditioners based on the diagonal approximation to A,

Table 3.2 shows the average eigenvalue shift of the p lowest eigenvalues δΩp of A (in a.u.),

which characterizes the the closeness of the spectra of A and its diagonal approximation D,

δΩp =
1

p

p∑
i=1

minn
j=1|Ωi − Ajj| . (3.23)

The average of the p lowest eigenvalues Ωp (in a.u.) is included in for comparison. Lastly,

Table 3.2 lists iteration counts K of the orthonormal Krylov subspace algorithm until con-

vergence (within maximum residual norm threshold τ = 10−7) using q0 = p starting vectors.

Results are given for the CG preconditioner, Davidson (D) preconditioner, and Jacobi–

Davidson preconditioner, variants 1 (JD1) and 2 (JD2). Without preconditioning, the Krylov

subspace algorithm does not convergence within 50 iterations and is thus of little use for the

eigenvalue problems considered here.

As Table 3.2 shows, the coefficient matrices are well-conditioned with κ−1
2 = 10−4..10−2,

even with relatively flexible and diffuse basis sets. The spectral radius of A increases slowly
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with basis set size, as excitations at the high end of the spectrum are progressively added

due to the greater flexibility of the basis set. At the same time, the low end of the spec-

trum is relatively dense, as shown by the eigenvalue ratios ρp close to 1. In some cases,

for example, S8 (p = 10) and C20 (p = 2), the p-th lowest eigenvalue is part of a generate

set due to point group symmetry, which results in the eigenvalue ratio ρp being exactly 1.

The small eigenvalue gap explains the slow convergence in the absence of preconditioning.

However, the preconditioning techniques based on the matrix diagonal lead to fast conver-

gence in all cases. Notably, the Davidson preconditioner and the JD1 and JD2 variants of

the Jacobi–Davidson preconditioner show nearly identical iteration counts and are superior

to the CG preconditioning. Fig. 3.6 illustrates the convergence of the maximum residual

norms in trans-thioindigo for p = 1, 2, and 10 lowest excitations. As expected from the

small eigenvalue gap, the unpreconditioned Krylov subspace algorithm, which is equivalent

to Arnoldi iteration, converges very slowly, managing to only reduce the maximum residual

norm by only about one order of magnitude after 50 iterations. Diagonal (CG) precondi-

tioning achieves convergence in 34 iterations for the lowest eigenvalue, 27 iterations for the

p = 2 lowest eigenvalues, and 23 iterations for p = 10 lowest eigenvalues. With the Davidson

and Jacobi–Davidson preconditioners, the algorithm converges in 23 iterations for the lowest

eigenvalue, 19 iterations for the p = 2 lowest eigenvalues, and 14 iterations for the p = 10

lowest eigenvalue. Alternatively, the convergence of the Krylov subspace algorithm can be

assessed using the corresponding Lagrangian functional F , as shown in Fig. 3.7. Once a

sufficiently large subspace is constructed, the Lagrangian converges very rapidly towards its

stationary value F0.

Fig. 3.8 compares the convergence of the orthonormal Krylov subspace algorithm with the

nKs and the semiorthonormal methods for the lowest excitations in trans-thioindigo. As

discussed in detail in Ref. 75, the nonorthonormal algorithms do not degrade the speed

of convergence but are helpful in reducing the computational effort per iteration, if the

matrix–vector product function can exploit the reduction in vector norms during the iterative
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Figure 3.6: Convergence of the maximum residual norms of the orthonormal Krylov subspace
algorithm for calculations of the p lowest electronic excitations of trans-thioindigo without
preconditioning (None) and with diagonal (conjugate gradient, CG), Davidson (D), and
Jacobi–Davidson preconditioner, variant 1 (JD1). (a) p = 1, (b) p = 2, (c) p = 10. q0 = p
basis vectors are used as starting subspace basis.

process. In our tests, the semiorthonormal variant has not shown an improvement over the

nKs method.

The dependence of the speed of convergence on the dimension of the starting subspace basis is

illustrated in Fig. 3.9 for calculations in trans-thioindigo using the Davidson preconditioner.

Larger starting subspace produce faster convergence due to greater overlap with the desired

eigenvectors. With smaller starting subspaces, monotonic convergence is often achieved

only after one or more “jumps”, during which the maximum residual norm is increasing.

However, the final subspace dimension qK at convergence is not strongly dependent on q0:

In the example of Fig. 3.9, the lowest eigenvalue is converged for qK = 23, 24, 21, 25, and 31

given starting subspace dimensions of q0 = 1, 2, 4, 8, 16, respectively. Similarly, in the case of

p = 2 lowest eigenvalues, the final subspace dimension is qK = 35, 32, 37, 39 for q0 = 2, 4, 8, 16,

respectively. For p = 10 lowest eigenvalues, the final subspace dimension is qK = 107, 104, 109

for q0 = 10, 12, and 16, respectively. The optimal choice of the starting subspace dimension

depends on the specifics of the matrix–vector product computation. If the computational

effort for simultaneously computing q matrix–vector products is proportional to q, one should

seek to minimize the final subspace dimension qK . In that case, q0 = p + 2..4 appears to
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Figure 3.7: Convergence of the Lagrangian functional F for the p lowest electronic ex-
citations of trans-thioindigo without preconditioning (None) and with diagonal (conjugate
gradient, CG), Davidson (D), and Jacobi–Davidson preconditioner, variant 1 (JD1). (a)
p = 1, (b) p = 2, (c) p = 10. F0 is the stationary value. q0 = p basis vectors are used as
starting subspace basis.
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Figure 3.8: Convergence of the maximum residual norms of the Krylov subspace algorithm
for the p lowest electronic excitations in trans-thioindigo with Davidson preconditioner us-
ing orthonormal algorithm (Ortho), nonorthonormal Krylov subspace method (nKs), and
semiorthonormal method (Semi). (a) p = 1, (b) p = 2, (c) p = 10. q0 = p basis vectors are
used as starting subspace basis.
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Figure 3.9: Convergence of the maximum residual norms of the orthonormal Krylov subspace
algorithm for the p lowest electronic excitations in trans-thioindigo with different starting
subspace basis dimensions q0 using Davidson preconditioner. (a) p = 1, q0 = 1, 2, 4, 8, 16,
(b) p = 2, q0 = 2, 4, 8, 16, (c) p = 10, q0 = 10, 12, 16.

give the best results for the systems considered in this work. If the computational effort

is approximately independent of q, as is the case in integral-direct TDDFT and TDHF

implementations,127,129,130 one prefers to minimize the number of iterations K and should

choose a somewhat larger starting subspace. In this work, the choice of q0 = p+ 6..8 yields

the smallest number of iterations. However, we should stress that the choice of the initial

subspace may be strongly system-dependent, and a preliminary study is advisable for picking

a suitable initial dimension. Testing different choices for the initial dimension can also help

detect potential “missing” eigenvectors in the presence of symmetries.

The good performance of the Davidson method and related algorithm is frequently linked to

the diagonal dominance of the coefficient matrix A.96,116 The matrix A is called diagonally

dominant if the following condition is satisfied:118,141

|Aii| ≥ r′i for all i = 1..n, where r′i =
∑
j ̸=i

|Aij| . (3.24)

The Gershgorin circle theorem relates the eigenvalues of A to the magnitude of the off-
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diagonal elements,

|Ωi − Ajj| ≤ r′j for some j = 1..n , (3.25)

that is each eigenvalue of A lies within a circle in the complex plane with the center at Ajj

and the radius r′j for some j. Crucially, the radius of the Gershgorin circle is determined

by the off-diagonal elements. The eigenvalues of diagonally dominant matrices must thus be

close to some diagonal elements. The converse statement, does not need to hold, however,

as we will see shortly.

If we apply the definition of diagonal dominance to the smallest diagonal element of the

matrix A for trans-thioindigo, we observe that this matrix is far from being diagonally

dominant in the sense of Eq. (3.24). For example, the smallest diagonal value of the matrix

A, is approximately 0.086 a.u., while the corresponding Gershgorin circle sweeps the sizeable

interval [−0.880, 1.052], indicating large off-diagonal elements by absolute value. While the

Gershgorin disks contain the eigenvalues of A, the corresponding bounds are too loose to

be useful. Similar observations can be made for the other coefficient matrices considered

here. However, Table 3.2 shows that despite not being diagonally dominant, the coefficient

matrices nevertheless show only relatively small deviations δΩp between the eigenvalues of

the coefficient matrix A and its diagonal values at the low end of the spectrum. With the

exception of C20, the eigenvalue shift δΩp is 20% or less of the average eigenvalue Ωp. The

small eigenvalue shift explains the superior performance of the Davidson method since the

preconditioning matrix K
(k)
D is near-singular and enhances the relevant eigenvector in a way

similar to inverse iteration.118

The performance of Krylov subspace algorithms depends significantly on the properties of the

coefficient matrixA. While the numerical tests discussed here are illustrative of the problems

encountered in molecular property calculations, in other cases the above conclusions need
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not hold. In this case, the user may well want to benchmark the preconditioners on their

specific problem. The modular structure of libkrylov makes this benchmarking straightfor-

ward. We note that in our numerical tests, the Jacobi–Davidson method does not offer an

improvement over the Davidson preconditioner. A similar observation has been previously

reported for nearly diagonal matrices.142 However, the Jacobi–Davidson preconditioner can

give better performance for matrices that are not nearly diagonal, especially if a more accu-

rate approximation to A than its diagonal D is chosen as the preconditioning matrix. For

these matrices, the comparison with the LOBPCG method105,106 is also instructive.

Compound Basis n p Coefficient matrix A Iteration count K

κ−1
2 ρp δΩp Ωp CG D JD1 JD2

Na8 SVP 3344 10 1.13 · 10−3 1.060 0.012 0.053 13 9 9 9
TZVP 9328 10 9.85 · 10−4 1.040 0.012 0.051 15 11 11 11

(H2O)6 SVP 3420 10 1.01 · 10−2 1.005 0.002 0.261 22 10 10 10
SVPD 6120 10 9.32 · 10−3 1.009 0.002 0.243 20 8 8 8
TZVP 6840 10 3.52 · 10−3 1.018 0.001 0.254 21 8 8 8

S8 SVP 5120 10 1.41 · 10−3 1.000 0.006 0.133 38 19 19 19
SVPD 9728 10 1.37 · 10−3 1.000 0.006 0.129 38 18 18 18
TZVP 14848 10 1.16 · 10−3 1.000 0.006 0.131 41 21 21 21

B10C2H12 SVP 7067 10 1.97 · 10−2 1.009 0.006 0.265 34 16 15 15
SVPD 11063 10 1.95 · 10−2 1.005 0.004 0.263 29 14 14 14
TZVP 15059 10 7.68 · 10−3 1.008 0.004 0.263 29 13 13 13

Ag6 SVP 7353 10 1.58 · 10−3 1.024 0.012 0.116 34 14 14 14
TZVP 10431 10 7.89 · 10−4 1.024 0.012 0.115 33 14 17 18

C20 SVP 13200 1 2.83 · 10−3 1.027 0.009 0.037 15 12 12 12
2 1.000 0.010 0.037 11 11 11 11
10 1.052 0.021 0.076 36 23 24 24
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Compound Basis n p Coefficient matrix A Iteration count K

κ−1
2 ρp δΩp Ωp CG D JD1 JD2

Coumarin SVP 5548 10 5.86 · 10−3 1.033 0.022 0.187 22 14 14 14
SVPD 8968 10 6.02 · 10−3 1.005 0.019 0.185 23 16 16 16
TZVP 12882 10 2.12 · 10−3 1.043 0.022 0.185 21 13 14 14

DMABN SVP 6435 10 8.65 · 10−3 1.003 0.012 0.206 24 13 13 13
SVPD 10179 10 5.41 · 10−3 1.042 0.011 0.162 25 14 14 14
TZVP 14118 10 3.14 · 10−3 1.020 0.012 0.199 25 14 14 14

YP SVP 7095 10 5.67 · 10−3 1.021 0.015 0.179 19 11 11 11
SVPD 11610 10 5.79 · 10−3 1.010 0.013 0.175 21 12 12 12

DPA SVP 8640 10 8.15 · 10−3 1.004 0.027 0.183 22 12 12 12
Anthracene SVP 9353 10 8.63 · 10−3 1.009 0.023 0.172 32 16 16 16

SVPD 14711 10 8.46 · 10−3 1.004 0.018 0.169 31 16 15 15
Luciferin SVP 16416 10 1.32 · 10−3 1.031 0.013 0.148 22 12 12 12
cis-Thioindigo SVP 19152 10 7.27 · 10−4 1.002 0.011 0.111 25 15 15 15
trans-Thioindigo SVP 19152 1 8.99 · 10−4 1.040 0.004 0.082 34 23 23 23

2 1.011 0.005 0.084 27 19 19 19
10 1.024 0.013 0.112 23 14 14 14

Crystal violet SVP 44200 10 5.31 · 10−3 1.045 0.023 0.123 22 15 14 14

Table 3.2: Characteristics of the coefficient matrix A (of size n, in a.u.) and iteration
counts K of orthonormal Krylov subspace algorithms for computing the p lowest electronic
excitations using TDDFT in the TDA approximation with diagonal (conjugate gradient,
CG), Davidson (D), and Jacobi–Davidson preconditioners, variants 1 (JD1) and 2 (JD2).
κ−1
2 is the inverse 2-norm condition number of A, δΩp is the average eigenvalue shift, and

ρp is the (p+1)/p eigenvalue ratio. The number of starting vectors was q0 = p, convergence
threshold was τ = 10−7. See text for details.
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3.5 Conclusions

Libkrylov strives to unify both battle-tested and more recent algorithmic developments in on-

the-fly matrix computations within an extensible framework that enables simple integration

with user codes and easy experimentation. The scientific software developer does not need

to reinvent the wheel and can focus on the domain-specific aspects of implementing an

efficient matrix–vector product function. The parameters of the Krylov subspace algorithm,

such as orthonormalization and preconditioning methods, can be then optimized for the

specific application. As an open-source library, the continuing development of libkrylov is

driven by the requirements of its users. Due to its modular structure and a flexible API,

implementations of Krylov subspace algorithms for different equation types, intermediate

representations, and preconditioners can be incorporated in an efficient and backwards-

compatible manner. More algorithms and implementations from the rich landscape of Krylov

subspace methods76–81,100,101 may be contributed to libkrylov in the future.

Several directions for further developments are currently envisioned. Structured problems

of the symplectic type75 arise in the computation of response properties and excitation

energies with TDHF11,125 and TDDFT methods.126–130 The extension to linear problems

involving real unsymmetric and complex non-Hermitian coefficient matrices is necessary for

implementations of coupled cluster (CC) response theory.143,144 An unsymmetric variant of

the Davidson preconditioner145 can be used in these cases. Finally, additional equation types,

for example, Sylvester equation and least-squares problems allow for expansions into other

problem domains.
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Chapter 4

Extending Libkrylov to Structured

Problems for Molecular Response

Calculations

This chapter is based on a manuscript under preparation. This work was supported by the

Molecular Sciences Software Institute (MolSSI) under NSF grant CHE-2136142.

4.1 Introduction

Time-dependent density functional theory (TDDFT) plays a crucial role in the calculation

of excitation energies, providing a powerful and versatile approach for studying electronic

excited states. TDDFT has become an invaluable tool in various fields of research, including

chemistry, physics, biology and materials science, due to its accuracy and computational

efficiency.

One of the primary applications of TDDFT is in the prediction and interpretation of optical
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absorption spectra. By solving the time-dependent Schrödinger equation within the frame-

work of DFT, TDDFT allows for the calculation of excitation energies and corresponding

transition probabilities. This enables researchers to understand and interpret experimental

absorption spectra, providing insights into the electronic structure and properties of mate-

rials.

TDDFT also allows for the investigation of excited-state properties such as oscillator strengths,

transition dipole moments, and excited-state geometries. These properties are crucial for

understanding phenomena such as fluorescence, phosphorescence, and photochemistry. By

accurately calculating these quantities, TDDFT provides a theoretical basis for interpret-

ing and predicting experimental observations, facilitating the design and optimization of

materials with desired electronic and optical properties.

The solutions to the TDDFT equations involve solving large eigenvalue and linear problems.

For larger problems, direct solutions are computationally prohibitive, and the coefficient

matrices may even exceed available storage capacity. To address this challenge, matrix-free

iterative subspace algorithms have become a standard practice. These methods only require

computation of matrix-vector products, eliminating the need for explicit matrix calculations

and storage. The origins of these methods can be traced back to Roos’83 integral direct

configuration interaction methods in 1983 and have gained popularity following Davidson’s

work in the 1970s94.

The efficiency of these matrix-free methods relies on exploiting the Hermiticity of the prob-

lem. However, the TDDFT eigenvalue problem is non-Hermitian, which poses challenges.

The Davidson method, which has been extended to non-Hermitian problems146, has not been

as successful in the context of TDDFT. Non-Hermitian problems can yield complex eigen-

values, which can impede convergence in iterative subspace algorithms due to the difficulty

of generating new trial vectors. The work by Olsen and coworkers14 has shown considerable

success by addressing the convergence challenges.
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Over the years, substantial advancements have been made both in the development of the

formal theory and algorithms for TDDFT.11,126,129,147 These algorithmic improvements have

led to a level of accuracy that is often satisfactory for practical applications in larger systems

that are otherwise prohibitive for traditional correlated ab initio methods.

Despite this progress, TDDFT is plagued by reference state instabilities within the adiabatic

approximation (AA).147–149 Even in more advance theories such as multi-configurational self-

consistent field (MCSCF) or coupled cluster theories150–153, instabilities remain ever present.

In multireference wavefunction methods such as complete active space self-consistent field

(CASSCF) instabilities can be avoided by including the corresponding excitations in the

active space154–156, but remain intractable for many applications due to their factorial scaling.

The accurate computation of response properties in time-dependent approximate many-

electron theories has been limited by widespread instabilities. In this study, we present the

application and effectiveness of structure-preserving Krylov subspace algorithms for calcu-

lating molecular response properties within the framework of TDDFT.

Our study represents the first known attempt at implementing an algorithm that preserves

the full SO(1, 1) symmetry of the problem. In the absence of magnetic fields, this sym-

metry reduces to the use of split-complex numbers. By adopting a structure-preserving

approach, we aim to address the limitations and instabilities observed in existing methods

for calculating response properties.

Preserving the structure of the linear response function is crucial for achieving efficient and

numerically stable solutions in iterative algorithms for large-scale response problems.14 In

the context of Krylov subspace methods, this preservation is achieved by selecting symmetry-

adapted basis vectors V(k) that maintain the symplectic orthonormality condition.

49



4.2 Time-Dependent Density Functional Theory

We provide a brief overview of the fundamental equations used in this context, focusing

on the necessary information to comprehend our approach to the problem, recognizing that

more comprehensive treatments can be found in the existing literature157–160. We adopt the

usual notation; indices i, j, . . . label occupied, a, b, . . . virtual, and p, q, . . . general molecular

orbitals (MOs). Molecular response properties within the TDDFT formalism are solutions

to the linear response function

(Λ− ω∆)|X,Y⟩ = −|P,Q⟩, (4.1)

where the 2× 2 superoperators Λ and Λ within the adiabatic approximation (AA) are

Λ =

A B

B A

 , ∆ =

1 0

0 −1

 . (4.2)

X and Y are conveniently collected as a vector on a Hilbert space

|X,Y⟩ =

X

Y

 (4.3)

of occupied and virtual MOs. The MOs are solutions of the static Kohn-Sham (KS) equations

with eigenvalues ϵpσ. P and Q contain the coupling between the perturbing field and the

molecular system.

A and B, often called orbital rotation Hessians are gathered as

(A+B)iaσjbσ′ = (ϵaσ − ϵiσ)δijδabδσσ′ + 2(iaσ|jbσ′) + 2fxc
iaσjbσ′

− cxδσσ′ [(jaσ|ibσ) + (abσ|ijσ)],
(4.4a)
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(A−B)iaσjbσ′ = (ϵaσ − ϵiσ)δijδabδσσ′ + cxδσσ′ [(jaσ|ibσ) + (abσ|ijσ)] (4.4b)

fxc
iaσjbσ′ is the matrix element of the exchange-correlation kernel and (pqσ|rsσ′) is the two

electron repulsion term. The right-hand side (RHS) |P,Q⟩ couples the molecular system

to the external perturbing field. The structure of eq 4.1 also emerges in time-dependent

Hatree-Fock (TDHF) and advanced theories.

4.2.1 Conventional Algorithms for Solving the Response Equa-

tions

Excitation energies are determined as the poles of the linear response function and are the

solutions of the symplectic eigenvalue problem

(Λ− ωn∆)|Xn,Yn⟩ = 0, (4.5)

The eigenvalue ωn is the transition frequency between the ground state |0⟩ and the n − th

excited state |n⟩ with corresponding eigenvector |Xn,Yn⟩ subject to the orthonormality

constraints

⟨Xn,Yn|∆|Xn,Yn⟩ = 1, (4.6)

Rearranging eq 4.5 gives

(Λ+ ωn∆)|Yn,Xn⟩ = 0, (4.7)
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suggesting a paired structure where −ωn is also an eigenvalue with corresponding eigenvector

|Yn,Xn⟩ normalized as

⟨Yn,Xn|∆|Yn,Xn⟩ = −1. (4.8)

Equations 4.5 and 4.7 are written in a more compact blocked matrix form as

A B

B A


X Y

Y X

−

1 0

0 −1


X Y

Y X


Ω 0

0 −Ω

 = 0, (4.9)

and the orthonormality conditions eq 4.6 and 4.8 as

X Y

Y X


T 1 0

0 −1


X Y

Y X

 =

1 0

0 −1

 . (4.10)

Olsen and coworkers introduced an extension of Davidson’s method to address symplectic

problem.14 In their approach, they preserve the symplectic structure throughout the iter-

ative process by including paired trial vectors in the subspace. Similarly, Kauczor et al.

also employed a method that involves using symmetric and antisymmetric trial vectors to

preserve the problem’s structure.15 This approach yields results similar to the approach pro-

posed by Olsen et al.. The two methods have not garnered much attention because of their

computational cost.

Following a suggestion by Casida in 1990, the response eigenproblem can be reformulated

into a block-diagonal form using a unitary transformation.86,126,129,161,


A+B 0

0 A−B

− ω

0 1

1 0



X+Y

X−Y

 = 0. (4.11)
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This transformation allows decoupling of the response equations, simplifying the problem

and facilitating the solution to a non-Hermitian problem

(A−B)(A+B)(X+Y) = Ω2(X+Y). (4.12)

If (A + B) and (A - B) are positive definite, a further transformation of eq 4.12 results in

a Hermitian problem,

(M− λ)T = 0 (4.13)

with the eigenpair λ, T, where

M = (A−B)1/2(A+B)(A−B)1/2 (4.14)

and the solutions to the original problem are recovered as

Ω =
√
λ,

(X+Y) =
1√
Ω
(A−B)1/2T,

(X−Y) =
√
Ω(A−B)−1/2T.

(4.15)

The above approach requires both (A + B) and (A - B) to be positive definite, restricting

the excitation spectrum to only positive reals. In the spin-restricted closed-shell formalism,

non-positive spectrum of (A + B) correspond to singlet and triplet instabilities, whereas

that of (A - B) indicate non-real instabilities.147,148
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4.3 Solving the Response Equations Using Split-complex

Numbers

4.3.1 The Split-Complex Numbers

The split-complex or hyperbolic number162, z ∈ S is an ordered pair of two real numbers x

and y in the standard basis {1, j}

z = x+ jy (4.16)

where j2 = 1 and the split-complex conjugate of z is z∗ = x − jy. In this form, the split-

complex numbers S ≡ R[j] is an extension of the real numbers to include the unipotent/split-

imaginary j in the same way the complex numbers C ≡ R[i] extend real numbers by including

the imaginary i. The arithmetic operations in split-complex numbers are similar to those in

complex numbers, with the addition and multiplication defined as follows:

(x1 + jy1) + (x2 + jy2) = (x1 + x2) + j(y1 + y2),

(x1 + jy1)(x2 + jy2) = (x1x2 + y1y2) + j(x1y2 + y1x2).

The conjugate product of the split-complex number

η(z) = z∗z = x2 − y2 (4.17)

does not induce a norm like in C.

More generally the conjugate product of two split-complex numbers z1 and z2 is given by

z∗1z2 = (x1 − jy1)(x2 + jy2) = (x1x2 − y1y2) + j(x1y2 − y1x2). (4.18)
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Figure 4.1: The split-complex hyperbolic plane.

The set of all split-complex numbers is a four-branched hyperbola of radius r, Fig 4.1,

satisfying

z = ±r(coshϕ+ jsinhϕ) = ±rejϕ (4.19)

when z lies in one of the S+ quadrants, or

z = ±r(sinhϕ+ jcoshϕ) = ±rjejϕ (4.20)

when z lies in one of the S− quadrants. ϕ ∈ R is the hyperbolic angle of rotation. Split-

complex numbers that lie on the asymptotic lines S0 are said to be neutral or isotropic.

The split-complex numbers algebra is isomorphic to the algebra of 2 × 2 real symmetric
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matrices just as complex numbers are isomorphic to 2× 2 real skew-symmetric matrices.

z = x+ jy 7−→

x y

y x

 (4.21)

Alternatively, the split-complex numbers can be represented in null or idempotent basis

{j+, j−} as

z = z+j+ + z−j− (4.22)

where the basis {j+, j−} is defined as

j+ =
1

2
(1 + j), j− =

1

2
(1− j)

and the components z+ and z− are

z+ = x+ y, z− = x− y

for x, y ∈ R. From the above definitions; j2+ = j+ and j2− = j−, hence the nomenclature

idempotent basis. Likewise the basis elements are said to be null or mutually annihilating,

i.e., j+j− = 0. The conjugate of z is z∗ = z−j+ + z+j−.

Special properties of this basis makes it suitable for calculation. Multiplication of two com-

plex numbers is component-wise in this basis

wz = (w+j+ + w−j−)(z+j+ + z−j−) = w+z+j+ + w−z−j−.
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and

η(w, z) = η(w)η(z).

A more interesting result is that z is isomorphic with real diagonal matrices in the null basis

z = z+j+ + z−j− 7−→

x+ y 0

0 x− y

 . (4.23)

From the isomorphism of eqs 4.23 it is apparent that the decomposition z = z+j+ + z−j− is

the spectral decomposition of z = x+ jy, eqs 4.21.

4.3.2 The 2D Problem

We consider a 2× 2 real symmetric eigenvalue problem (A,B, x, y, ω ∈ R),


A B

B A

− ω

1 0

0 −1



x

y

 = 0 (4.24)

subject to the normalization

x

y


T  x

−y

 = x2 − y2 = 1. (4.25)

This 2d real problem corresponds to a 1d split-complex problem

Cz = ξz∗ (4.26)
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by mapping B → jB and y → jy in the split-complex plane, where C = A + jB and

z = x+ jy are split-complex by definition. z satisfies the correct normalization constraints,

z∗z = 1.

C has the polar decomposition according to eq 4.19 and 4.20 where r =
√

|A2 −B2| and ϕ =

tanh−1(B/A) in the quadrants defined by the S+ or ϕ = tanh−1(A/B) in S−, respectively.

The solutions to eq 4.26 are uniquely determined by which quadrant C lies in the split-

complex plane; ξ = ±r when C lies in one of the S+ hyperbolic surfaces or C∗C > 0,

whereas ξ = ±jr for C∗C < 0. That is to say jz is also a solution to eq 4.26 with jξ,

C(jz) = (jξ)(jz)∗. (4.27)

In this sense, it is always possible to scale the z by j such that corresponding the ξ is either

purely real or purely split-imaginary.

4.3.3 Extending to Higher Dimension

We extend the 2 × 2 problem 4.24 to higher dimensions. For n × n matrices A, B, X, and

Y. We assume for the purposes of our derivations that these matrices are real-valued and

A and B be real symmetric matrices. Defining C = A + jB and Z = X + jY, the n × n

split-complex problem

CZ = Z∗Ξ, (4.28)

corresponds to the symplectic eigenvalue problem 4.9 where Ξ is n × n diagonal matrix

containing the split-complex eigenvalues of C. The solution to eq 4.28 is the eigenpair

{Ξ, Z} which corresponds to the solution of 4.5, {Ω, |X,Y⟩}. Scaling {Ξ, Z} by j results

in the solution {jΞ, jZ} which map to the solution of 4.7, {−Ω, |Y,X⟩}.
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Orthogonality Condition

For pseudo-eigenvectors z1 and z2 of C with corresponding pseudo-eigenvalues ξ1 and ξ2.

For η(ξ1) ̸= η(ξ2) and η(ξ1), η(ξ2) ̸= 0 it can be shown that

ξ1z
T
2 z1

∗ = ξ2z
T
1 z

∗
2 (4.29)

and hence

(η(ξ1)− η(ξ2))(z
T
1 z

∗
2) = 0. (4.30)

Since ξ1 and ξ2 are distinct, z1 and z2 must be orthogonal. Thus for all cases where ξ1 and

ξ2 are (a) both purely real, (b) both pure split-imaginary and (c) one purely real and the

other purely split-imaginary it is a necessary requirement that zT1 z
∗
2 = 0.

C has the spectral decomposition

C = Z∗ΞZ∗T , (4.31)

subject to the K-orthonormality constraints

ZTZ∗ = 1. (4.32)

We refer to eq 4.31 as the split-complex Takagi factorization because of its equivalence to

the symplectic Takagi factorization163 of the response eigenvalue equation 4.6 and 4.8,

A B

B A

 =

 X −Y

−Y X


Ω 0

0 Ω


 X −Y

−Y X


T

. (4.33)

The K-orthonormality constraints 4.32 is so called because it obeys the orthonormality con-
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straints 4.10. Multiplication by ∆ takes the place of split-complex conjugation.

4.4 Implementation

4.4.1 Iterative Subspace Method in Split-Complex Type

In this section, we present our implementation of the proposed method. Our implementation

aims to address the challenges and improve the efficiency of the computational procedures

involved in the calculations of molecular response properties. Building upon the concepts

and techniques discussed in the preceding section, we have developed a robust and efficient

algorithm based on the Krylov subspace method that allows for accurate determination of

the desired properties.

In this presentation, we adopt the blocked form of Krylov subspace algorithms and using

matrix notation for clarity and conciseness. This notation allows us to express the algorithms

in a unified manner and facilitates a better understanding of their underlying principles

and computational procedures. For consistency * denotes split-complex conjugation and †

denotes split-complex conjugate transposition. All matrices are of split-complex elements

unless stated otherwise.

4.4.2 New Algorithm for Response Eigenvalue Problem

Using the generic type support of libkrylov in Ch. 3, we have extended the library to the

split-complex type for the calculation of molecular response properties. Our implementation

is presented as follows:

Step 1. To compute p lowest eigenpairs of eq 4.28, we select K-orthonormal subspace basis
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V(k) of dimensions n×qk (qk ≥ p) where k = 1, 2, . . . is the iteration number. For convenience

the vectors are orthonormalized as

V(k)TV(k)∗ = 1. (4.34)

by modified Gram-Schmidt (MGS) orthogonalization. The iteration becomes unstable if the

K-orthonormality of 4.34 is not enforced explicitly, see Section 4.4.5 below.

Step 2. Compute and save the matrix-vector products, W(k)

W(k) = AV(k), (4.35)

Step 3. Compute the Rayleigh matrix

c(k) = V(k)TCV(k), (4.36)

which is the projection of C onto K(k).

Step 4. Solve for the eigenpair {Ξ(k), z(k)} of the projected problem

c(k)z(k) = z(k)∗Ξ(k), (4.37)

according to Section 4.4.3 below. Because qk ≪ n, the computational cost involved in the

Ritz-step (eq 4.37) can be kept as low as possible. The best approximation to the k -th

eigenvectors is given by

Z(k) = V(k)z(k), (4.38)

Step 5. Convergence of the i -th eigenpair, i = 1, . . . , p, is assessed by computing the residual
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matrix R

R(k) = CZ(k) − Z(k)∗Ξ(k). (4.39)

The residual vectors of i -th approximate eigenvectors Z(k) form the columns of R(k) and

will vanish when convergence is reached. The i -th eigenpairs are converged for the residual

vectors whose norms are below a pre-defined threshold.

Step 6. Expand the subspace with the columns of R(k) whose pseudo-norm are above the

convergence threshold, However, for faster converging Krylov subspace76,81,120–123 a suitable

chosen preconditioning matrix Π is applied to the residual

R̃(k) = Π(k)R(k), (4.40)

before adding to the subspace for the (k + 1)th iteration.

V(k+1) = [V(k) R̃(k)]. (4.41)

4.4.3 Solution to the Split-complex Eigenvalue Problem

In the absence of readily available linear algebra libraries for the split-complex numbers we

can resort to solving a real symmetric problem for 4.37 on the subspace.86,161

In the null basis, c has real components (a + b) and (a − b). To simplify the problem, we

can transform 4.37 to an eigendecomposition form

gz = zΥ, (4.42)

where g = c†c and Υ = Ξ†Ξ. This eigendecomposition has the structure of a non-Hermitian
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eigenvalue problem:

(a− b)(a+ b)(x+ y) = Υ(x+ y). (4.43)

We can further transform 4.43 to a Hermitian problem following the approach discussed in

Sec. 4.2.1 where it assumed that (a± b) is positive definite. This allows us to utilize opti-

mized LAPACK libraries, which are readily available for solving real symmetric eigenvalue

problems. We can leverage the efficiency and reliability of these libraries to compute the

eigenvalues and eigenvectors of the transformed problem, thereby obtaining the solutions to

the split-complex pseudo-eigenvalue problem.

It is worth noting that it is possible to relax the constraints on (a±b), which is beyond the

scope of this present work. Relaxing this constraint would require a proper definition for

the square root operator of split-complex numbers. Relaxation of this constraints provides

greater flexibility in solving the split-complex pseudo-eigenvalue problem and expands the

range of problems that can be effectively addressed using our method.

4.4.4 Preconditioning in the Split-Complex Type

A preconditioner is a mathematical technique used in iterative methods for solving linear

systems of equations or eigenvalue problems. Its purpose is to improve the convergence

properties and efficiency of the iterative algorithms by transforming the original problem

into an equivalent one that is easier to solve.76

The choice of a preconditioner depends on the specific problem at hand and the character-

istics of the system matrix. A good preconditioner should approximate the behavior of the

original matrix in a way that reduces its condition number and makes it easier to solve.

Common preconditioning techniques include diagonal scaling, incomplete factorization, and
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algebraic multigrid methods, among others.

In Krylov subspace methods the preconditioner is applied to the residual, resulting in a

preconditioned residual that represents the preconditioned system. A simple and sometimes

efficient way to improve convergence is the static diagonal preconditioner approach often

employed in the conjugate-gradient (CG) algorithm.76,77,81 Here we approximate the precon-

ditioner as

Π
(k)
CG = D. (4.44)

where D = diag(C11, . . . , Cnn).

In the context of eigenvalue problems, one of the most effective preconditioning techniques

is the shift-and-invert technique.79 This technique involves selecting a suitable shift value σ

(usually chosen as the k -th eigenvalue) and using it to shift and invert the original matrix

M. This results in a new matrix (M− σI)−1, with improved spectral separation leading to

faster convergence.

In our approach to the Davidson (D) algorithm in split-complex numbers, we select the

preconditioner, Π as

Π
(k)
D = D−Ξ(k), (4.45)

Ξ(k) is the kth eigenvalue. For purely real Ξ(k), Π(k) decomposes to 2n× 2n real symmetric

matrix

Π
(k)
D =

diag(A)−Ξ(k) diag(B)

diag(B) diag(A)−Ξ(k)

 , (4.46)

recovering the preconditioner in the Olsen algorithm when diag(B) = 0 and for purely split-
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imaginary Ξ(k)

Π
(k)
D =

 diag(A) diag(B)−Ξ(k)

diag(B)−Ξ(k) diag(A)

 . (4.47)

In the Olsen algorithm14, the preconditioner takes the form

diag(A)− Ω(k) 0

0 diag(A) + Ω(k)

.

To enforces additional orthogonality constraints, the Jacobi-Davidson (JD) preconditioner

is used

Π
(k)
JD = (1−P(i))Π

(k)
D (1−P(i)), (4.48)

ensuring that the preconditioned residuals are orthogonal to the solution.116,117 P(i) is the

projector onto the set of the i -th approximate solutions.

4.4.5 Iterated Orthogonalization

In a Euclidean inner product space, when starting with a set of linearly independent vectors

{v1, . . . , vk}, the process of orthogonalization leads to a set of orthogonal vectors {u1, . . . , uk}

that span the same subspace as {v1, . . . , vk}. Each vector ui is constructed to be orthogonal to

all previously computed vectors {u1, u2, ..., ui−1}. Moreover, these vectors can be normalized

to unit vectors.

However, in the split-complex plane, this is not the case due to the presence of an indefinite

inner product. When working with a set of linearly independent vectors {v1, . . . , vk} con-

sisting of split-complex elements, orthogonalization results in an orthogonal set of vectors

{u1, . . . , uk} that can span either the positive subspace (S+) or the negative subspace (S−),

or both. Vectors spanning both S+ and S− can introduce serious numerical instabilities
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during an iterative process.

In our approach, we address this issue by employing modified Gram-Schmidt (MGS) or-

thogonalization for the split-complex numbers in an iterative manner. We achieve this by

performing a 45◦ rotation (equivalent to scaling by the split-imaginary unit, j) of vectors

located outside the desired subspace after an initial MGS orthogonalization. These vectors,

while orthogonal to those within the desired subspace, are adjusted to ensure the generation

of vectors that exclusively span either S+ or S−.

While it is theoretically possible to generate neutral vectors (i.e., η(ui) = 0 where ui ̸= 0), we

have implemented robust techniques to avoid such cases. However, if such a situation does

arise, it could indicate nontrivial solution that requires further analysis and consideration.

Alternatively, scaling neutral vectors by 1√
2
(1±j) in the null basis rotates them by 45◦ in the

split-complex plane. This scaling operation allows us to handle these vectors appropriately

and continue the iterative process within the Krylov subspace algorithm.

4.4.6 Error Bounds and Convergence of the Algorithm

The norm of the residual matrix R(k) can be interpreted as an estimation of the error in the

solution and therefore provide an upper bound to the approximate eigenvalues in the k-th

iteration118,

|Ξi −Ξ
(k)
i | ≤

√
2∥R(k)∥Λ for 1 ≤ i ≤ qk , (4.49)

where the ∥.∥Λ refers to the norm, typically the Euclidean norm, induced by the inner-

product over Λ. It has also been argued that the Frobenius norm is a more stringent

convergence criterion since ∥R(k)∥F ≥ ∥R(k)∥2.75 However both the Euclidean and Frobenius

norms are somewhat artificial choices in regard to the TDDFT response equations. The

66



correct error bounds to the symplectic nature of the problem should then be

|Ξi −Ξ
(k)
i | ≤

√
2∥R(k)∥s for 1 ≤ i ≤ qk , (4.50)

where ∥R(k)∥s is defined as

∥R(k)∥s =
√

|η(R(k))|. (4.51)

This approach is more consistent according to the Bauer-Fike theorem79,164, since the asso-

ciated approximate eigenvector is K-orthonormal. This requirement is only valid under the

strong assumption that the basis remains in the S+ subspace.

By considering the functional,

Fs[Z,Ξ] = ⟨ZTCZ−Ξ(ZTZ∗ − 1)⟩ (4.52)

where the brackets ⟨.⟩ denote trace operation, we gain an alternative perspective on mea-

suring convergence.75 The stationary points of Fs correspond to the solutions of the linear

problem.

4.5 Numerical Tests

The efficiency of iterative algorithms are usually judged based on the number of iterations

and the convergence behaviour is significantly affected by the initial guess or starting point

of the iterative process. To ensure a fair comparison between our method and others, we use

the same initial conditions or starting points as in the other methods. This allows for a more

accurate assessment of their relative performance and convergence behavior. We compare

our work to methods aimed at preserving the structure of the TDDFT response equation in
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Figure 4.2: Molecular structures of: (a) Ala-Trp and (b) coumarin

4.5 as well as methods that implement the Hermitian problem of eq 4.12.

4.5.1 Convergence Properties of the New Algorithm

Table 4.1 presents the convergence behavior of our algorithm. It provides information about

the convergence of our method used to solve eq 4.5, indicating the number of iterations

and residual norms. This table allows for an assessment of the efficiency and effectiveness

of the algorithm in finding the eigenvalues of interest. The calculation were carried out

for the vertical excitation energies of Ala-Trp molecule at the CAM-B3LYP level of theory

using the def2-SV(P) basis set (the equivalence of 6-31G basis set used in Olsen and Kauczor

algorithms). Ground state structural optimization without symmetry constraints was carried

out with geometry convergence thresholds of 10−4 a.u and energy convergence of 10−8 a.u.

The coefficient matrix was generated by a modified version of the TURBOMOLE139 escf

program and p = 1, 2, and 10 lowest eigenvalues were determined simultaneously.

According to Table 4.1, the Olsen14 and Kauczor15 algorithms are essentially identical. This

similarity arises from the fact that both methods utilize paired and symmetrized trial vectors

that span the same subspace to preserve the structure of Λ and ∆. By preserving the

structure of the problem throughout the iterative process, these algorithms find solutions to
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This work TURBOMOLE Kauczor alg. Olsen alg.

structured unpaired paired symmetrized symmetrized

Iteration ∥R∥s ∥R∥2 ∥R∥2 ∥Rg +Ru∥2 ∥Rg +Ru∥2

1 0.06020(0.22474) 0.22375 0.11663 0.11663 0.11663
2 0.01274(0.06541) 0.05322 0.03819 0.03819 0.03819
3 0.01128(0.03428) 0.02718 0.02775 0.02775 0.02782
4 0.01352(0.00300) 0.01588 0.01723 0.01723 0.01725
5 0.00775(0.00124) 0.01066 0.02148 0.02148 0.02149
...

...
...

...
...

...

13 0.00069(0.00131) 0.00083
...

...
...

14 0.00033(0.00069) 0.00038
...

...
...

15 0.00017(0.00038) 0.00019
...

...
...

16 0.00009(0.00022) 0.00012
...

...
...

17 (0.00010) 0.00011
...

...
...

18 (0.00006) 0.00008 0.00146 0.00146 0.00144
19 0.00134 0.00134 0.00132
20 0.00068 0.00068 0.00068
21 0.00045 0.00045 0.00045
22 0.00030 0.00030 0.00030
23 0.00018 0.00018 0.00018
24 0.00008 0.00008 0.00008

Table 4.1: Residual Norms (to a threshold of 10−4) for calculating the p = 1 lowest root
of the TDDFT eigenvalue equation (See eq 4.5) using different iterative methods. ∥R∥s is
the pseudo-norm (see eq 4.51), ∥R∥2 refers to the Euclidean norm. Rg and Ru refer to the
symmetric and antisymmetric residuals, respectively. The numbers in parenthesis indicate
Euclidean residual norm.
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a projected problem of size 2qk × 2qk.

In contrast, our method achieves convergence in nearly half the iterations required by the

Olsen and Kauczor algorithms while still preserving the problem’s structure. As explained

in Section 4.3.3, our approach only needs to solve for half of the spectrum Λ in the split-

complex type. The other half of the spectrum can be obtained by scaling with j, eliminating

the need for solving a second equation or introducing additional paired vectors.

This efficiency in convergence is a significant advantage of our method. By reducing the

number of iterations required, we streamline the computational process while maintaining

the structure of the problem. This advancement allows for more efficient computations in

the split-complex type while maintaining similar accuracy.

In the Olsen and Kauczor methods, the orthonormalization of vectors is performed using the

Euclidean norm instead of the ∆ “metric” (we use metric here loosely since ∆ is strictly by

definition not a metric). However, this choice does not yield a suitable update to the subspace

in both algorithms. While it is often presented as an optimal choice for efficiency, we argue

that this perspective stems from a misunderstanding of the correct algebraic approach to

the problem.

While the use of the Euclidean norm may be seen as computationally efficient, it neglects the

essential algebraic properties of the problem. By considering the correct algebraic approach,

vis-à-vis the split-complex numbers which takes into account the ∆ “metric”, for orthonor-

malization, we can find suitable update to the subspace, leading to faster convergence.

We agree that the computational cost for the matrix-vector product in our method is equiv-

alent to that of the Olsen and Kauczor methods. All three algorithms require four matrix

times vector multiplications for each new expansion vector, involving the computation of

AX, AY, BX, and BY. However, the overall performance and efficiency of our algorithm

is better compared to the Olsen and Kauczor algorithms.
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In specialized methods that consider linear combinations of the A and B matrices, we only

need to compute (A−B)(X−Y) in the null basis. This advantage leads to a significant

improvement, resulting in nearly twice the efficiency compared to the algorithm proposed by

Olsen et al. This reduced computational cost is what makes the Hermitian approach more

attractive than structure preserving approaches.86,129

Based on the results of Table 4.1, it is apparent that our work does not provide a significant

improvement over the existing TURBOMOLE implementation. TURBOMOLE tackles the

n× n Hermitian problem described in eq 4.12, enabling it to solve for the positive spectrum

of Λ only. To obtain the paired spectrum, an expansion into a second subspace is necessary,

effectively doubling the computational cost of the TURBOMOLE implementation. In con-

trast, our implementation is capable of solving for the paired spectrum without incurring

this additional computational overhead. As a result, we achieve the desired outcome at a

lower cost compared to Hermitian approach.

4.5.2 Effect of Preconditioning

Preconditioning plays a crucial role in our algorithm, significantly enhancing its convergence

rate. In Section 4.4.4, we highlighted a key difference between our approach and the Olsen

algorithm regarding the treatment of the B matrix in the diagonal approximation of Λ.

The Olsen algorithm disregards the B matrix entirely in their diagonal approximation of

Λ, possibly due to convenience. The diagonal elements of the A matrix, contain orbital

energy differences which are readily accessible, making it a straightforward choice for ap-

proximation. On the other hand, constructing diag(B) would be computationally expensive

since it involves the two-electron integrals. However, by neglecting the B matrix in the di-

agonal approximation, the Olsen algorithm overlooks important information related to the

split-complex nature of the problem. This choice represents a deviation from the correct
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Figure 4.3: Convergence of the residual norm for the p = 1 lowest electronic excitation in
Ala-Trp using different diagonal approximation for the Davidson preconditioner. b-Davidson
uses diag(B), o-Davidson uses diag(A), t1-Davidson uses diag(A − B), t2-Davidson uses
diag(B − A), b-Davidson uses diag(A) and diag(B) as in eq 4.45.
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Figure 4.4: Convergence of the maximum residual norms for calculations of the p lowest
electronic excitations of Ala-Trp without preconditioning (None) and with diagonal (conju-
gate gradient, CG), Davidson (D), and Jacobi–Davidson preconditioner, variant (JD). (a)
p = 1, (b) p = 2, (c) p = 10. q0 = 2p basis vectors are used as starting subspace basis

algebraic approach to the problem.

In contrast, our algorithm incorporates the B matrix into the diagonal approximation. By

doing so, we capture the complete information contained in both A and B matrices, leading

to improved convergence properties. This choice aligns with the correct algebraic treatment

of the split nature of the problem. It will be worthwhile to make use of the full diag(C), Fig.

4.3, if diag(B) can be computed at a minimal cost in large-scale applications.

After establishing that incorporating both the A and B matrices for preconditioning leads to

faster convergence in the Davidson case, we proceeded to test the convergence of other widely

used diagonal preconditioners as shown in Fig. 4.4. These preconditioners are commonly

employed in iterative algorithms to improve convergence rates.

Figures 4.4 and 4.5 reveal an interesting finding: the diagonal (conjugate-gradient, CG)

preconditioner achieves similar or even better convergence compared to the conventional

Davidson and Jacobi-Davidson preconditioners. In the standard eigenvalue problem, it is

typically observed that the Davidson and Jacobi-Davidson preconditioners outperform di-

agonal preconditioning.165 This unexpected result, demonstrating the effectiveness of the

conjugate-gradient (CG) preconditioner in the context of the split-complex pseudo-eigenvalue
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Figure 4.5: Convergence of the Lagrangian functional for calculations of the p lowest elec-
tronic excitations of Ala-Trp without preconditioning (None) and with diagonal (conjugate
gradient, CG), Davidson (D), and Jacobi–Davidson preconditioning, variant (JD). (a) p = 1,
(b) p = 2, (c) p = 10. q0 = 2p basis vectors are used as starting subspace basis

problem, raises the possibility that our understanding of the other preconditioners may be

incorrect or incomplete.

The observed success of the CG preconditioner suggests that it is particularly well-suited for

addressing the challenges and characteristics specific to the split-complex pseudo-eigenvalue

problem. It may exploit certain properties or structures inherent to the problem that make

it more effective compared to other preconditioning techniques.

It is possible that different preconditioners have varying levels of effectiveness depending on

the specific problem at hand. The success of the CG preconditioner in this particular context

highlights the importance of exploring and tailoring preconditioning techniques to suit the

characteristics and requirements of the problem being addressed.

Further investigation and analysis may be necessary to better understand the reasons behind

the unexpected results and to refine our understanding of the various preconditioners. This

knowledge can then be applied to optimize and select appropriate preconditioning strategies

for different problem domains, ensuring more accurate and efficient computations.
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Symmetry def2-SV(P) def2-SVP def2-TZVP def2-SVPD Expt.166

1 A′ 4.34 4.33 4.27 4.30 4.00
1 A′′ 4.54 4.53 4.58 4.60 4.35
2 A′ 4.87 4.86 4.77 4.78 4.52
3 A′ 5.73 5.72 5.59 5.60 5.64
4 A′ 6.12 6.11 6.00 5.99

Table 4.2: Basis set comparison for the lowest lying singlet states (in eV) of Coumarin at
the PBE0 level of theory.

4.5.3 Convergence at Different Levels of Theory

To assess the performance of our algorithm at various levels of theory, we selected coumarin

as a test molecule. We conducted geometry optimizations of coumarin without symme-

try constraints using different levels of theory and basis sets. Subsequently, we inferred

the Cs point group symmetry by performing a re-optimization. Functional and basis set

benchmarks have been extensively studied and reported in the literature. Therefore, in our

analysis, we focused specifically on evaluating the robustness of our implementation rather

than reiterating the existing benchmarks.

The basis sets used in this study include the def2-SV(P), SVP, TZVP, SVPD, and TZVPD.

We compare the basis set convergence of our implementation at the PBE0 level of theory in

Table 4.2. We have also repeated the calculation using the def2-SVP basis set for different

theoretical methods in Table 4.3.

In our implementation, the final converged excitation energies of coumarin in Tables 4.2 and

4.3 typically agree to within 10−6 eV with the results computed using the TURBOMOLE

program. The small discrepancies in the excitation energies are primarily attributed to

numerical errors that arise during the generation of coefficient matrices and the use of slightly

different physical constants in the two codes. The convergence achieved within the split-

complex Krylov subspace algorithm and the preservation of the underlying structure of the
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Symmetry PBE0 B3LYP CAM-B3LYP TPSSh TPSS M06-2X TDHF Expt.

1 A′ 4.33 4.23 4.53 4.15 3.76 4.58 5.01 4.00
1 A′′ 4.53 4.38 4.90 4.15 3.97 4.93 5.62 4.35
2 A′ 4.86 4.74 5.11 4.66 4.47 5.20 6.08 4.52
3 A′ 5.72 5.57 6.10 5.46 5.08 6.14 6.71 5.64
4 A′ 6.11 5.94 6.39 5.69 5.20 6.47 7.18
2 A′′ 6.24 6.05 6.70 5.78 5.46 6.68 7.89

Table 4.3: Lowest lying singlet states (in eV) of Coumarin at various density functional
levels of theory/TDHF using the def2-SVP basis set.

TDDFT response equations contribute to the accuracy of the calculated excitation energies.

4.6 Conclusion

We successfully implemented an efficient algorithm that computes excitation energies using

Time-Dependent Density Functional Theory (TDDFT) within the adiabatic approximation.

Our algorithm achieves a significant accuracy compared to similar approaches, at a fraction

of the computational cost. These results highlight the efficiency and effectiveness of our

approach in handling large-scale problems encountered in computational chemistry, providing

valuable insights into electronic excited states and properties.

This algorithm exhibits better convergence properties compared to the approach presented

by Olsen et al. and the work by Kauczor et al., but it requires only half the computational

cost. Moreover, we have demonstrated that our algorithm has similar convergence properties

with the Hermitian approach of TURBOMOLE in terms of computational cost for the cases

studied. These findings highlight the potential of our algorithm in efficiently and accurately

solving the relevant equations in TDDFT/TDHF calculations.

Implementing an algorithm that can rigorously handle cases where either (A+B) or (A−B)
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is indefinite, as discussed in Sec. 4.4.3, would be a logical next step. Such a method would

offer significant benefits in addressing instabilities in a physically meaningful way. Addition-

ally, a more rigorous development of the Davidson preconditioner specifically tailored for the

split-complex pseudo-eigenvalue problem would offer significant benefits. The implementa-

tion presented in this Chapter will be made available in Version 2.0.0 of the open-source

libkrylov library.111
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Chapter 5

5.1 Conclusion and Outlook

The thesis presents an approach to solving the TDDFT response equations using the split-

complex algorithm. The applicability of the split-complex approach for studying molecular

response properties within the TDDFT framework is evaluated through testing with different

systems. The successful application of the method to the tested systems instills confidence in

its ability to accurately compute TDDFT response properties. It demonstrates that the split-

complex algorithm can be a viable tool for studying the electronic structure and properties

of molecular systems within the TDDFT framework.

Due to the nature of split-complex numbers, not being a field, concepts such multiplicative

inverse or inner product space are not straightforward. One of the significant shortcomings of

the method discussed in the thesis is the lack of such concept for the square root operation of

split-complex numbers. This hampers the potential of the method to address the instabilities

that arise in response calculations.

Addressing this limitation could involve exploring alternative numerical techniques, special-

ized algorithms, or approximations to handle the square root operation in a way that is

compatible with the properties of split-complex numbers.
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The limitations arising from the lack of readily available standard linear algebra libraries

tailored for the split-complex type are less crucial. Standard linear algebra libraries, such

as BLAS (Basic Linear Algebra Subprograms) and LAPACK (Linear Algebra Package), are

widely used and optimized for efficient matrix operations. However, these libraries do not

have built-in support for the split-complex type, which hinders the seamless integration of

the method with existing linear algebra routines.

By leveraging standard linear algebra libraries specifically designed for the split-complex

type, researchers would be able to benefit from optimized implementations and take advan-

tage of parallel computing techniques, ultimately improving the computational efficiency of

the method and enabling its wider application to larger systems.

Overall, the thesis contributes a new approach to solving the TDDFT response equations,

showcasing its strengths and limitations through a few case studies. It provides valuable

insights into the applicability of the split-complex algorithm for studying molecular response

properties, while also highlighting the challenges that may arise with our approach.
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[136] Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. Auxiliary basis sets to
approximate Coulomb Potentials (erratum, 1995, 242, 283). Chem. Phys. Lett. 1995,
242, 652–660.

[137] Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and
quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys.
Chem. Chem. Phys. 2005, 7, 3297–3305.

[138] Rappoport, D.; Furche, F. Property-optimized Gaussian basis sets for molecular re-
sponse calculations. J. Chem. Phys. 2010, 133, 134105.

[139] Balasubramani, S. G. et al. TURBOMOLE: Modular program suite for ab initio
quantum-chemical and condensed-matter simulations. J. Chem. Phys. 2020, 152,
184107.

[140] Parlett, B. N. The Symmetric Eigenvalue Problem; SIAM: Philadelphia, 1998.

[141] Horn, R. A.; Johnson, C. R. Matrix Analysis, 2nd ed.; Cambridge University Press:
Cambridge, 2012.

[142] Notay, Y. Is Jacobi–Davidson Faster than Davidson? SIAM J. Matrix Anal. Appl.
2004, 26, 522–543.

[143] Sekino, H.; Bartlett, R. J. A linear response, coupled-cluster theory for excitation
energy. Int. J. Quantum Chem. 1984, 26, 255–265.

[144] Koch, H.; Jørgensen, P. Coupled cluster response functions. J. Chem. Phys. 1990, 93,
3333–3344.

[145] Hirao, K.; Nakatsuji, H. A generalization of the Davidson’s method to large nonsym-
metric eigenvalue problems. J. Comput. Phys. 1982, 45, 246–254.

[146] Flament, J. P.; Gervais, H. P. Equations-of-motion method: Calculation of the k lowest
or highest solutions. International Journal of Quantum Chemistry 1979, 16, 1347–
1356.

[147] Bauernschmitt, R.; Ahlrichs, R. Stability analysis for solutions of the closed shell
Kohn–Sham equation. J. Chem. Phys. 1996, 104, 9047–9052.
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Appendix A

Split-Complex Type

A.1 Introduction

Due to the lack of a native type support for split-complex numbers in compiled languages, we

had to develop our own implementation. Split-complex numbers consist of two real numbers,

typically denoted as (x, y) like the traditional complex numbers, where the imaginary part

is defined as the product of the split-imaginary unit j and the second real number.

To handle split-complex numbers, we created a custom data structure or class that en-

capsulates the two real components and provides operations for arithmetic and algebraic

manipulations. This allows us to perform computations involving split-complex numbers in

our code, even though the language itself does not natively support this data type.

By implementing our own split-complex number type, we can effectively work with these

numbers and apply them in the context of our algorithms and calculations.
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module split_complex

type :: scomplex

real(kind) :: re, im

end type scomplex

interface assignment( )

module procedure :: scomplex_assign

end interface assignment( )

interface operator( )

module procedure :: scomplex_arithmetic

end interface operator( )

end module split_complex

Figure A.1: Split-complex derived type in FORTRAN

A.2 Efficient Operations

Addition and subtraction operations in the split-complex type are straight forward. Consider

multiplication of a split-complex number (x, y) by another split-complex number or real

number r.

A.2.1 Standard basis operations

Multiplication of a split-complex number by a real number

z = (x, y) ∗ r

z%re = x ∗ r

z%im = y ∗ r
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Multiplication of two split-complex numbers

z = (x, y) ∗ (u, v)

z%re = (x ∗ u) + (y ∗ v)

z%im = (x ∗ v) + (y ∗ u)

Division of a split-complex number by a real number

z = (x, y)/r

z%re = x/r

z%im = y/r

Division of a real number by a split-complex number

z =
r

(x, y)

z =
r ∗ (x,−y)

(x, y)(x,−y)

z%re =
r ∗ x

(x+ y)(x− y)
= 0.5 ∗ ( r

x+ j
+

r

x− y
)

z%im = − r ∗ y
(x+ y)(x− y)

= 0.5 ∗ ( r

x+ y
− r

x− y
)

Division of a split-complex number by a split-complex number

z =
x, y

u, vj

z =
(x, y)(u,−v)

(u, v)(u,−v)

z%re =
x ∗ u− y ∗ v
(u+ v)(u− v)

= 0.5 ∗ (x+ y

u+ v
+

x− y

u− v
)

z%im =
x ∗ v − y ∗ u
(u+ v)(u− v)

= 0.5 ∗ (x+ y

u+ v
− x− y

u− v
)
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A.2.2 Null basis Operation

Multiplication of a split-complex number by a real number

z = (p, q) ∗ r

z%re = p ∗ r

z%im = q ∗ r.

Multiplication of two split-complex numbers

z = (p, q) ∗ (r, s)

z%re = p ∗ r

z%im = q ∗ s.

Division of a split-complex number by a real number

z = (p, q)/r

z%re = p/r

z%im = q/r.

Division of a real number by a split-complex number

z =
r

(p, q)

z =
r(q, p)

(p, q)(q, p)

z%re =
r ∗ q
pq

z%im =
r ∗ p
pq

.
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Division of a split-complex number by a split-complex number

z =
(p, q)

(s, t)

z =
(p+ q)(t+ s)

(s+ t)(t+ s)

z%re =
p ∗ t
s ∗ t

z%im =
q ∗ s
s ∗ t

.

A.3 Matrix Computation of Split-Complex Elements

In the absence of BLAS (Basic Linear Algebra Subprograms) routines specifically designed for

split-complex numbers, we have adapted the existing BLAS interface to work with this data

type. BLAS provides a standard interface for performing common linear algebra operations,

such as matrix-vector multiplication, dot products, and matrix factorizations.

To adapt the BLAS routines for split-complex numbers, we modified the implementations

to handle the split-complex data structure and perform the required arithmetic operations

accordingly. This allows us to leverage the efficiency and optimized implementations of the

BLAS routines while working with split-complex numbers.

By adapting the BLAS routines, we can benefit from their high performance and scalability,

making our computations involving split-complex numbers more efficient and convenient.

This approach enables us to seamlessly integrate split-complex computations into our code-

base and leverage the power of BLAS for numerical linear algebra operations.

In our implementation, we have adapted the following BLAS routines for our work with

split-complex numbers:
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• scomplex_nrm2 calculates the pseudo-norm of a split-complex vector. It takes a

split-complex vector x and returns the difference of the squares of the real and split-

imaginary parts of the vector elements. The result represents the magnitude or length

of the vector.

• scomplex_dot: This routine calculates the dot product of two split-complex vectors.

It takes two split-complex vectors as input and returns their dot product.

• scomplex_axpy: This routine performs the operation y = alpha * x + y, where

alpha is a scalar and x and y are split-complex vectors. It computes the scaled sum

of two split-complex vectors and stores the result in the y vector.

• scomplex_scal is used to scale a split-complex vector by a scalar factor. It takes

a scalar value alpha, a split-complex vector x, and modifies x by multiplying each

element of x by alpha. This routine is particularly useful for scaling split-complex

vectors efficiently.

• scomplex_gemv: This routine performs the matrix-vector multiplication

y = alpha * A * x + beta * y, where alpha and beta are scalars, A is a split-

complex matrix, x is a split-complex vector, and y is the resulting split-complex vector.

It computes the product of a split-complex matrix and a split-complex vector and adds

it to another split-complex vector.

• scomplex_gemm: This routine performs the matrix-matrix multiplication

C = alpha * A * B + beta * C, where alpha and beta are scalars, A and B are split-

complex matrices, and C is the resulting split-complex matrix. It computes the product

of two split-complex matrices and adds it to another split-complex matrix.

These adapted BLAS routines allow us to perform essential operations involving split-

complex numbers efficiently. They enable us to handle matrix-vector and matrix-matrix
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multiplications, dot products, and vector additions with split-complex numbers in a straight-

forward and optimized manner, enhancing the performance of our algorithms and computa-

tions.
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