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Mingyao Shen
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Abstract—Crash consistency using persistent memory pro-
gramming libraries requires programmers to use complex trans-
actions and manual annotations. In contrast, the failure-atomic
msync() (FAMS) interface is much simpler as it transparently
tracks updates and guarantees that modified data is atomically
durable on a call to the failure-atomic variant of msync (). How-
ever, FAMS suffers from several drawbacks, like the overhead of
msync() and the write amplification from page-level dirty data
tracking.

To address these drawbacks while preserving the advantages
of FAMS, we propose Snapshot, an efficient userspace implemen-
tation of FAMS. Snapshot uses compiler-based annotation to
transparently track updates in userspace and syncs them with
the backing persistent memory copy on a call to msync(). By
keeping a copy of application data in DRAM, Snapshot improves
access latency. Moreover, with automatic tracking and syncing
changes only on a call to msync(), Snapshot provides crash-
consistency guarantees, unlike the POSIX msync() system call.

For a KV-Store backed by Intel Optane running the YCSB
benchmark, Snapshot achieves at least 1.2x speedup over PMDK
while significantly outperforming non-crash-consistent msync().
On an emulated CXL memory semantic SSD, Snapshot outper-
forms PMDK by up to 10.9x on all but one YCSB workload,
where PMDK is 1.2x faster than Snapshot. Further, Kyoto
Cabinet commits perform up to 8.0x faster with Snapshot than
its built-in, msync() -based crash-consistency mechanism.

I. INTRODUCTION

Recent memory technologies like CXL-based memory se-
mantic SSDs [1], NV-DIMMs [2], Intel Optane DC-PMM,
and embedded non-volatile memories [3] have enabled byte-
level, non-volatile storage devices. However, achieving crash
consistency on these memory technologies often requires
complex programming interfaces. Programmers must atomically
update persistent data using failure-atomic transactions and
carefully annotated LOAD and STORE operations, significantly
increasing programming complexity [4].

The msync() system call offers a simpler interface for
durability. The programmer maps a file from the persistent
media into the virtual memory and calls msync() to make
any changes durable.

The msync() interface, however, makes no crash-
consistency guarantees. The OS is free to evict dirty pages
from the page cache before the application calls msync().
A common workaround to this problem is to implement a
write-ahead-log [5]-[7] (WAL) which allows recovery from
an inconsistent state after a failure. However, crash consistency
with WAL requires an application to call multiple msync() s
to ensure the data is always recoverable after a crash.

Park et al. [8] overcome this limitation by enabling failure-
atomicity for the msync () system call. Their implementation,
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FAMS (failure atomic msync()), holds off updates to the
backing media until the application calls msync () and then
leverages filesystem journaling to apply them atomically. FAMS
is implemented within the kernel and relies on the OS to track
dirty data in the page cache.

OS-based implementation, however, suffers from several
limitations. These limitations are:

(a) Write-amplification on msync(): The OS tracks dirty
data at page granularity, requiring a full page writeback even
for a single-byte update, wasting memory bandwidth on byte-
addressable persistent devices. Using 2 MiB huge pages to
reduce TLB pressure exacerbates this problem.

(b) Dirty page tracking overhead: FAMS relies on the
page table to track dirty pages, thus every msync() requires
an expensive page table scan to find dirty pages to write to
the backing media. Moreover, since the OS is responsible
for maintaining TLB coherency, the kernel must perform a
TLB flush after clearing the access and dirty bits [9], adding
significant overhead to every msync () call.

(c) Context switch overheads: Implementing crash consis-
tency in the kernel (e.g., FAMS) adds context switch overhead
to every msync () call, compounding the already high over-
head of tracking dirty pages in current implementations.

In this paper, we address the shortcomings of FAMS with
Snapshot, a drop-in, userspace implementation of failure atomic
msync(). Snapshot transparently logs updates to memory-
mapped files using compiler-generated instrumentation, imple-
menting fast, fine-grained crash consistency. Snapshot tracks
all updates in userspace and does not require switching to the
kernel to update the backing media.

Snapshot works by logging STOREs transparently and makes
updates durable on the next call to msync (). During runtime,
the instrumentation checks whether the store is to a persistent
file and logs the data in an undo log.

Snapshot’s ability to automatically track modified data
allows applications to be crash-consistent without significant
programmer effort. For example, Snapshot’s automatic logging
enables crash consistency for volatile data structures, like
shared-memory allocators, with low-performance overhead.

Snapshot makes the following key contributions:

(a) Low overhead dirty data tracking for msync().
Snapshot provides fast, userspace-based dirty data tracking
and avoids write-amplification of the traditional msync() .

(b) Accelerating applications on byte-addressable stor-
age devices. Snapshot enables porting of existing msync () -
based crash consistent applications to persistent, byte-
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addressable storage devices with little effort (e.g., disabling
WAL-based logging) and achieves significant speedup.

(c) Implementation space exploration for fast writeback.
We study the latency characteristics of NT-stores and clwbs
and use the results to tune Snapshot’s implementation and
achieve better performance. These results are general and can
help accelerate other crash-consistent applications.

We compared Snapshot against PMDK and conventional
msync() (as FAMS is not open-sourced) using Optane
DC-PMM and emulated memory semantic SSDs (DRAM
backed by flash media over CXL [1]). For b-tree insert and
delete workloads running on Intel Optane DC-PMM, Snapshot
performs as well as PMDK and outperforms it on the read
workload by 4.1x. Moreover, Snapshot outperforms non-crash-
consistent msync () based implementation by 2.8 x with 4 KiB
page size and 463.8x with 2 MiB page size for inserts. For
KV-Store, Snapshot outperforms PMDK by up to 2.2 on Intel
Optane and up to 10.9%x on emulated memory semantic SSD.
Finally, Snapshot performs as fast as and up to 8.0x faster than
Kyoto Cabinet’s custom crash-consistency implementation.

II. BACKGROUND AND MOTIVATION

To understand how the msync () -based programming in-
terface can work on persistent devices, the following section
presents a brief survey of byte-addressable storage devices.
This is followed by a discussion on the msync()-based
crash-consistency interface. Finally, we discuss an existing
implementation of crash-consistent msync (), FAMS, and its
limitations.

A. Byte-addressable Storage Devices

Recent advances in memory technology and device archi-
tecture have enabled a host of storage devices that support
byte-level persistence. These devices communicate with the
host using interfaces like CXL.mem [11], DDR-T [12], or DDR-
4 [2], rely on flash, 3D-XPoint, or DRAM as their backing
media, and have varying access characteristics, as shown in
Table 1.

These devices share a few common characteristics: (1) they
offer byte-level access to persistent data, (2) they require special
instructions (e.g., cache-line flush) to ensure persistence, and (3)
they are generally slower than DRAM. Later, in Section III, we
will explain how Snapshot takes advantage of these properties
of emerging memories to implement a fast, userspace-based
msync().

pool = pmemobj_create(..) 1 mem = mmap(...) mem = mmap(..)
void append(u64 *arr,
u64 val) {
TX_BEGIN {
TX_ADD(arr[arr_sz]);
TX_ADD(arr_sz);

void append(u64 *arr,

u64 val) {
wal = write_ahead_log();
wal->add(&arr[arr_sz]);
wal->add(&arr_sz);

void append(u64 *arr,
u64 val) {
arr[arr_sz++] = val;

msync(mem, pool_size,
MS_SYNC) ;

arrlarr_sz++] = val; wal->msync(); )
FETXCEND; (c) Failure atomic msync
arr[arr->size++] = val;
(a) PMDK .
msync(mem, pool_size, [l Logging
MS_SYNC) ; @ Update

}

(b) msync [ Persist operation

Fig. 2: Comparison of PM programming techniques using an append ()
function that appends a new entry at the end of a persistent array.

B. Filesystem-based Durability and msync

The POSIX msync () system call guarantees persistency
but provides no atomicity. Part of the dirty data can reach the
storage before the application calls msync().

To achieve atomicity, applications often use a write-ahead-
log (WAL) [7], [13] to write the modified data to a log and
then change the memory location in place. Applications (e.g.,
Kyoto Cabinet [7]) issue two msync () every time they need to
atomically update a mapped file, one to persist the write-ahead-
log and the second to persist the application updates. Once the
data is updated and durable with msync (), the application
can drop the log.

Although applications using msync() based crash-
consistency model directly run off of DRAM (when memory-
mapped), they suffer from the overhead of context switches,
page table scanning (for finding dirty pages), and TLB
shootdowns (to clear access/dirty bit for the page table). This
overhead is negligible compared to the access latency of disks
and SSDs, but when running on NVM or memory semantic
SSDs, the overhead of performing an msync() dominates
the application’s runtime. Figure 1 shows the % of runtime
spent on the msync() call, the context switch overhead for
the msync () call, and the TLB shootdown overhead across
the YCSB workloads for PMDK’s KV-Store, modified to use
msync (). For 2 MiB pages, msync()’s overhead is up to
100% of the execution runtime.

With DAX-mapped files, although application LOADs and
STORESs are directly to the storage media (e.g., Optane) and
filtered through caches, the msync () system call still provides
no atomic durability guarantee. On msync() on a DAX-
mapped file, the kernel simply flushes the cachelines of all
dirty pages to the persistent device.

Programmers can use a userspace transactional interface (e.g.,
PMDK) to avoid performance bottlenecks of the msync () sys-
tem call. While this helps with the software overhead, PMDK
requires programmers to carefully annotate variables, wrap
operations in transactions, and use non-standard pointers. These
additional requirements make crash-consistent programming
with PMDK hard [14] and error-prone [4].

C. Programming with FAMS

FAMS fixes shortcomings of the POSIX msync() and
simplifies crash consistency with a failure-atomic msync()
interface. FAMS lets the programmer call msync() to guaran-
tee that the updates since the last call to msync() are made
atomically durable. Despite FAMS’s simpler programming



model, its kernel-based implementation suffers from perfor-
mance overheads.

Figure 2 compares PMDK, traditional msync () -based
WAL [7], [13], and FAMS using an append () method for an
array. Unlike PMDK or msync (), failure atomic msync()
does not require the programmer to manually log updates either
using an undo-log or a write-ahead log.

In the FAMS variant (Figure 2c), the application maps a file
into its address space (Line 1). Next, the application updates
the mapped data using LOADs and STOREs (Line 5) and,
finally, calls msync () when the data is in a consistent state
(Lines 7-8). FAMS ensures that the backing file always reflects
the most recent successful msync () call, which contains a
consistent state of application data from which the application
may recover.

FAMS implements failure-atomicity for a file by disabling
writebacks from the page cache. When an application calls
msync() on a memory-mapped file, FAMS uses the JBD2
layer of Ext4 to journal both metadata and data for the file.
In contrast, PMDK and WAL-based crash consistency require
programmers to annotate updated memory locations manually.
Lines 6-7, Figure 2a for PMDK, and Lines 5-9, Figure 2b for
WAL-based crash consistency.

Despite FAMS’s simpler programming interface, applications
still suffer from kernel-based durability’s performance overhead
(e.g., context switch overhead, page table scanning, etc.).

III. OVERVIEW

Snapshot overcomes FAMS’s limitations by providing a
drop-in, userspace implementation of failure atomic msync(),
resulting in a significant performance improvement for crash-
consistent applications. To provide low overhead durability,
Snapshot introduces a compiler-based mechanism to track dirty
data in userspace. Snapshot records these updates in an undo log
that is transparent to the programmer. On msync (), Snapshot
updates the persistent storage locations recorded in the log. In
case of a failure, Snapshot can use the log to roll back any
partially durable data.

Since Snapshot is implemented in userspace, it avoids
the overhead of switching to the kernel and managing TLB
coherency. Using Snapshot, the application synchronously
modifies only data on the DRAM, speeding up the execution.
At the same time, Snapshot maintains a persistent copy on the
backing media and automatically propagates all changes to the
persistent copy on an msync ().

As Snapshot is built on the msync () interface, programmers
can port any conventional application written for msync () -
based crash consistency with minimal effort to benefit from
automatic dirty-data tracking while significantly improving
runtime performance. Snapshot’s userspace implementation
enables legacy disk-based applications to take advantage of
faster access times and direct-access (DAX) storage without
requiring extensive application rewrites.

IV. IMPLEMENTATION

Snapshot is implemented as a combination of its compiler
pass and a runtime library, 1ibsnapshot. Snapshot’s com-

piler instruments every store instruction that can write to the
heap using a call to an undo-log function. The runtime li-
brary, 1ibsnapshot, provides runtime support for Snapshot:
implementing the logging function and Snapshot’s msync ().

Next, we will discuss how the programming interface and
logging for Snapshot are implemented, followed by the various
optimizations possible in Snapshot to improve its performance.

A. Logging, Instrumentation, and msync()

Snapshot tracks updates to persistent data by instrumenting

each STORE in the target application with a call to the logging
function (instrumentation). During runtime, the instrumentation
takes the STORE’s address as its argument, checks if the STORE
is to a persistent memory file, and logs the destination memory
location to an undo log.
Logging and Recovery. Snapshot’s undo log lives on
persistent media to enable recovery from crashes during an
msync () call. When an application calls msync (), Snapshot
reads the addresses from the undo log entries and copies all
modified locations from DRAM to the backing media. The call
to msync() only returns when all the modified locations are
durable. If the system crashes while copying the persistent data,
on restart, Snapshot uses its undo-log to undo any changes
that might have partially persisted.

While Snapshot maintains per-thread logs, calls to msync ()

persist data from all threads that have modified data in the
memory range. Snapshot maintains a thread-local log to
keep track of modified locations and their original values.
Snapshot provides limited crash-consistency guarantees for
multithreading, similar to PM transactional libraries like PMDK.
E.g., PMDK prohibits programmers from modifying shared
data from two threads in a single transaction. Similarly, in
Snapshot, the program should not modify a shared location
from two threads between two consecutive msync () s.
Log Format. Logs in Snapshot are per-thread and store
only the minimal amount of information needed to undo an
interrupted msync (). Logs hold their current state, that is,
whether it holds a valid value. The log also maintains a tail
that points to the next free log entry and the size of the log for
use during recovery. Each log entry in the log is of variable
length. The log entry consists of the address, its size in bytes,
and the original value at the address.

While Snapshot tracks all store operations to the memory-
mapped region, POSIX calls such as memcpy(), and
memmove () are not instrumented as they are part of the OS-
provided libraries. To solve this, 1ibsnapshot wraps the
calls to memcpy (), memmove (), and memset () to log them
directly and then calls the corresponding OS-provided function.
While Snapshot catches some of these functions, applications
relying on other functions, e.g., strtok (), would need to
recompile standard libraries (glibc, muslc, etc.) with Snapshot
to be crash-consistent.

Logging Design Choices.  Despite implementing undo-
logging, Snapshot only needs two fences per msync() to be
crash-consistent, as it does not need to wait for the undo-logs to
persist before modifying the DRAM copy. This contrasts with



PMDK (which also implements undo-logging), where every log
operation needs a corresponding fence to ensure the location
is logged before modifying it in place. Redo logging persistent
memory libraries eliminate this limitation and only need two
fences per transaction. Redo logging, however, requires the
programmer to interpose both the loads and stores to redirect
them to the log during a transaction, resulting in higher runtime
overhead. Snapshot, on the other hand, only interposes store
instructions which always write only to the DRAM and avoids
any redirection.

B. Optimizing Snapshot

Snapshot includes a range of optimizations to maximize
its performance. In particular, it must address challenges
related to the cost of range tracking and reducing the required
instrumentation.

1) Low-cost Range Tracking: Since Snapshot’s compiler
has limited information about the destination of a STORE, on
every call, the instrumentation checks if the logging request
is to a memory-mapped persistent file. Snapshot simplifies
this check by reserving virtual address ranges for DRAM
(DRAM range) and the backing memory (persistent range)
when the application starts. Reserving ranges on application
start makes checks for write operations a simple range check.
In our implementation, we reserve 1 TiB of virtual address
space for both ranges to map all persistent-device-backed files.
This range is configurable and is limited only by the kernel’s
memory layout. Further, copying a location from DRAM to
the backing media now only needs a simple arithmetic, i.e.,
copy from offset in the DRAM range to the same offset in the
persistent range.

2) Fewer  Instrumentations: Instrumenting  stores
indiscriminately results in wuseless calls for stores
that cannot write to persistent locations (e.g., stack addresses).
Snapshot reduces this overhead by tracking all stack allocations
in a function at the LLVM IR level during compilation. Next,
Snapshot instruments only those stores that may not alias
with any stack-allocated addresses, resulting in a limited
number of useless instrumentation.

C. Optimizing Backing Memory Accesses

Flush and fence instructions needed to ensure crash con-
sistency add significant runtime overhead. To understand
and reduce this overhead, we study the relative latency of
write+clwb vs. NT-Store instructions and find that non-
temporal stores, particularly those which align with the bus’s
transfer size, result in considerable performance improvement
over the clwb instruction.

While we perform the experiments on Intel Optane DC-
PMM, we expect the results and methodology to be similar on
other storage devices as they have similar memory hierarchies
(volatile caches backed by byte-addressable storage devices).

Figure 3 shows the latency improvement from using NT-
Stores to update PM data vs. using writes followed by clwbs.
The heatmap measures the latency of the operation while
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Drain interval (# of writes)
Fig. 3: Speedup of NT-stores over c1wb instructions for PM writes. NT-stores

always outperform write+clwb.

varying both the write size, that is, the amount of data written,
and the frequency of the fence operation (sfence).

From Figure 3 we observe that NT-Stores consistently
outperform store+clwb. Moreover, the performance gap
between clwbs and NT-Stores increases as the fence interval
increases. In contrast, when the write size is increased, the
performance only increases until the write size matches the
DDR-T transaction size (256 B). Since the CXL protocol uses
64B packet size for v1-2 and 256B for CXL v3, we expect to
see maximas for those sizes for CXL-based persistent devices.

Based on this observation, Snapshot always uses NT-Store
instructions to copy modified cachelines from the DRAM
copy to the persistent copy on a call to msync().

Reducing Backing Memory Accesses To find modified
locations to write to the persistent copy from the DRAM
copy, Snapshot iterates over its undo log. As this log is stored
on the backing memory, it can be slow to access. This is a
result of the log design where each log entry is of variable
length, thus, accesses to sequential log entries result in variable
strides and poor cache performance. As a result, Snapshot has
to spend time traversing the entries. To reduce read traffic
to the backing memory and mitigate this additional overhead,
Snapshot keeps an additional, in-DRAM list of the updated
addresses and their sizes, thus avoiding accessing the backing
memory.

While it is possible to split the log to separate log entry’s
data into a different list, log entries would then require more
instructions to flush them, adding overhead to the critical path.
D. Memory Allocator

While Snapshot provides a failure atomic msync(),
applications need to allocate and manage memory in
a memory-mapped file. Shared memory allocators, like
boost.interprocess provide an easy way to manage
memory in a memory mapped file by providing malloc()
and free()-like APIL These operations, while enable memory
management, are not crash consistent.

However, Snapshot’s ability to automatically log all updates
to the persistent memory, enables applications to use volatile
shared memory allocators for allocating memory in a crash-
consistent manner.

To demonstrate Snapshot’s utility, we use Snapshot to enable
boost.interprocess [15] to function as a persistent
memory allocator. boost . interprocess allocates objects
from a memory-mapped file, provides API to access the root
object as a pointer, and allocate/free objects while Snapshot
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Fig. 4: Snapshot’s working. Instrumented binary calls 1ibsnapshot.so’s
logging function for every store. Changes are atomically durable on msync().
tracks updates and makes changes atomically durable on an
msync().

Decoupling Memory Allocator and Logging Unlike tradi-
tional PM programming libraries that couple memory allocators
and logging techniques, Snapshot permits any combination of
a logging technique and a memory allocator. For example,
PMDK’s allocator only supports redo logging. Restricting the
programmer to the specific characteristics of their implementa-
tion. On the other hand, Snapshot provides programmer the
ability to independently choose the memory allocator and
logging technique, suiting the specific needs of the workload.

E. Putting it all Together

To see how snapshot works in practice, consider an array
append () function that takes a value and inserts it into
the next available slot in the array. Figure 4 shows the
implementation of this function along with the memory and log
states as the program executes. In the example, the instrumented
program automatically undo-logs the updated location (i.e.,
call to 1logRange). For illustration purposes, we only show
updates to the array element, not the array size.

When the program starts executing @), the instrumentation
calls the logging function with the address of updated locations
(sarr[arr->sz] and &arr->sz), and update sizes. The
function logs the address by creating a new entry in the thread-
local undo log.

Next, @ the program continues and updates memory
locations. Since the program only directly interacts with the
DRAM, the value in the DRAM is updated, but the value in
the backing memory (e.g., PM) is unchanged. Finally, @ the
application calls msync () to update the backing memory. On
this call, Snapshot iterates over the log to find all locations
that have been updated and uses them to copy updates from
DRAM to PM. After updating PM with the values from DRAM,
Snapshot drops the log by marking it as invalid. Once msync ()
returns, any failure would reflect the persistent state of the
most recent msync() .

FE. Correctness Check

We test our compiler pass and resulting binary to ensure
correctness and crash consistency. We test for crash consistency
bugs by injecting a crash into the program before it commits

a transaction when Snapshot has copied all the changes to the
backing store but has not invalidated the log. On a restart,
Snapshot should recover and let the application continue
its normal execution. This is only possible if the compiler
pass correctly annotates all the store instructions and the
logging function logs them. We ran these tests for multiple
configurations and inputs and found that the compiler pass and
the runtime recovered the application each time.

V. RESULTS

To understand Snapshot’s performance, instrumentation
overhead, and the impact of various optimizations, we evaluate
several microbenchmarks, persistent memory applications,
including Kyoto Cabinet, and crash-consistency solutions.
Further, to get an estimate of Snapshot’s performance on future
hardware, we evaluate Snapshot against PMDK on a CXL-
based emulated memory-semantic SSD.

A. Configuration

Table II lists the six different configurations we use to
compare the performance of Snapshot. With PMDK, the
workloads are implemented using its software transactional
memory implementation. The Snapshot-NV and Snapshot
implementations are similar, with the difference in how they
track dirty data in DRAM. The Snapshot-NV implementation
uses the undo log to flush the dirty data on a call to
msync (). In comparison, the Snapshot implementation uses a
separate, volatile list to flush the dirty data (Section IV-C). All
implementations of Snapshot otherwise have this optimization
enabled. Table III lists the configuration used for all experiments
in the results section.

B. Failure Atomic msync() Implementations

Three implementations of failure atomic msync() are
possible candidates for comparison with Snapshot. The original
implementation, FAMS, is by Park et al. [8]. The other
implementations, famus_snap [16] and AdvFS’s implemen-
tation [17] use reflinks and file cloning, respectively to create
shallow copies of the backing file on msync().

FAMS by Park et al. [8] is not open-sourced. We use
POSIX msync () with data journalling enabled to approximate
its performance. FAMS works by reconfiguring the Ext4’s
data journal to not write back to the backing media until the
application calls msync (). Since FAMS uses data journalling
to implement failure atomicity, their implementation performs
similarly to msync() on Ext4 mounted with the option
data=journal, as shown by Park et al. [8].

Implementation of failure atomic msync() by Verma et
al. on AdvFS [17] is not open-sourced, however, Kelly’s
famus_snap [16] is open-sourced and can be evaluated.
famus_snap uses reflinks to create a snapshot of the memory-
mapped file on a call to msync().

famus_snap, however, is much slower than the POSIX
msync() due to slow underlying ioctl (FICLONE) calls.
In our evaluation, we found that famus_snap is between
4.57x to 338.57 x slower than msync () for the first and 500th
calls, respectively.



TABLE II: Evaluated configurations.

TABLE III: System configuration

.. Dirty data Crash | Working CPU 2 x Intel 6230, 40 HW threads,
Config Description tracki e
racking ¢ y DRAM 192 GiB (DDR4)
PMDK Intel’s PMDK-based implementation. Programmer (byte) v PM 100 serics. 128%12 = 1.5 TiB
Snapshot-NV Snapshot, tracking using undo-log. Auto., (byte) v DRAM Optane AppDirect Mode
Snapshot Snapshot, tracking using a volatile list (Section IV-C). Auto., (byte) v DRAM 0S & Kernel |Ubuntu 20.04.3 & Linux 6.0.0
msync() 4 KiB Page cache mapped, 4 KiB pages. Auto., OS (4KiB) X DRAM Build system |LLVM/Clang 13.0.1
msync() 2 MiB Page cache mapped, 2 MiB pages. Auto., OS (2MiB) X DRAM Block Device
. Intel Opt: D DC P4800X
msync() data journal | Page cache, ext4 (data=journal), 4 KiB Pages Auto., OS (4 KiB) X DRAM (for emulation) ntel Optane S8 C P4800
Socket 0 ! Socket 1 Mapped page 10
T / Unmapped page 0 8 —#— Snapshot
Byte addressable U S oakTo oo 10 | Block o 6 —&— msync (4 KiB)
intertace /l\r:(’c Celilely Serogv’| Qs [Device 5 4 —— msync (2 MiB)
i'| DRAM cache f (SSD) % 2
Application 1 | (Shared Memory) n Emulated SSD = 0
o
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Fig. 5: Emulated memory-semantic SSD architecture. Threads

ES® Snapshot
Z Logging call: range check only
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Since famus_snap is orders of magnitude slower than
msync (), we do not evaluate it further.

C. Evaluating Snapshot on CXL-based Memory Semantic SSDs

CXL-attached memory semantic SSDs [1] are CXL-based
devices with a large DRAM cache backed by a block device.
These devices appear as memory devices to the host processor
and support byte-addressable accesses.

To understand how Snapshot would perform on CXL-
attached memory semantic SSDs, we created a NUMA-based
evaluation platform. In our emulation, we implement the
DRAM cache using shared memory and service cache miss
from a real SSD in userspace using SPDK [18]. The target
application and the emulated SSD are pinned to different
sockets to emulate a CXL link (similar to Maruf et al. [19]).
Figure 5 shows the architecture of our emulated memory
semantic SSD.

In our implementation, the shared memory used to emulate
the DRAM cache has only a limited number of pages (128 MiB)
mapped. On access to an unmapped page by the application,
the emulated SSD finds a cold page to evict using Intel PEBS
and reads and maps the data from the SSD.

Our implementation has a 14.3us random access latency at a
91.8% DRAM cache miss rate and a 2.4us latency at a 16.3%
DRAM cache miss rate. While these latencies might be high
compared to Intel Optane DC-PMM, they represent a slower,
byte-addressable media and are close to low-latency flash, e.g.,
Samsung Z-NAND [20].

D. Microbenchmarks

Next, we use microbenchmarks to study how Snapshot’s
store instrumentation affects performance and if Snapshot’s
implementation limits its scalability in multithreading.
Instrumentation Overhead. To understand the instrumen-
tation overhead of Snapshot, we run it with and without
instrumentation and logging enabled. Figure 6 shows the

Fig. 7: Scaling of Snapshot and msync() with increasing thread count.

runtime performance of different variants of Snapshot running
the YCSB workload. The “Logging call: no-op” variant returns
from the logging call without performing any checks or logging.
The “Logging call: range check only” measures the execution
where the logging call only performs the range check but does
not log any data. Finally, the “No instrumentation” variant is
compiled without Snapshot’s compiler pass and thus has no
function call overhead. Among these, only Snapshot logs the
modifications and is crash-consistent. In all other variants, a
call to msync() is a no-op.

The results show that even with the compiler’s limited
information about a store instruction, the overhead from the
instrumentation is negligible since stores are relatively few
compared to other instructions.

Store Instrumentation Statistics. Across the workloads,
Snapshot instrumented 10.8% store instructions on average. Out
of all the store instructions, Snapshot skipped 84.6% because
they were stack locations, and 4.54% because they were aliased
to stack locations. In case a location is not a stack location,
or aliased to one, Snapshot errs on the side of caution and
instruments it. During runtime, the instrumentation checks the
store’s destination to ensure it is to a persistent location.
Multithreaded Scaling. To understand the impact of
multithreading on performance, we scale the number of
threads and measure the total runtime for a microbenchmark.
Figure 7 shows that Snapshot scales similar to msync()
with an increasing number of threads while maintaining a
lower overhead overall. Each thread in this microbenchmark
operates on an independent memory region and mimics a small
transactional update by writing to random memory locations
and calling msync (). The threads call 500k msync()s in
total, with each msync() flushing modification from two
random writes to their memory region.

E. Persistent Memory Applications and Data-Structures

We evaluate several applications to show that Snapshot
consistently outperforms PMDK across various workloads and
POSIX msync() on write-heavy workloads when running on
Intel Optane DC-PMM. Workloads include a linked list and a
b-tree implementation from Intel’s PMDK, PMDK’s KV-Store
using the YCSB workload, and Kyoto Cabinet.

Linked List  Figure 8a shows the performance of a linked list
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Fig. 9: KV-store speedup over PMDK with YCSB workload. Higher is better.

data structure implemented using PMDK, traditional msync ()
with 4 KiB and 2 MiB page size, msync() with data journal,
and Snapshot. Insert inserts a new node to the tail of the list,
Delete removes a node from the head, and Traverse visits
every node and sums up the values. PMDK and Snapshot are

crash-consistent, while the msync () implementations are not.

Each operation is repeated 1 million times.

Since Snapshot runs the application entirely on DRAM and
performs userspace synchronization with the backing media
on a call to msync(), it significantly outperforms PMDK
on Traverse workload while being competitive in Insert and
Delete. On every call to msync (), the traditional filesystem
implementation needs to perform an expensive context switch
and TLB shootdown, slowing it considerably compared to
PMDK and Snapshot.

B-Tree We compare Snapshot against PMDK using a b-tree
data structure of order 8 with 8-byte keys and values on Intel
Optane DC-PMM. We use three workloads: (1) Insert workload
generates 1 million random 8-byte keys and values. (2) Read
workload traverses the tree in depth-first order. Finally, (3) the
delete workload deletes all the keys in the insertion order.

Figure 8b shows that Snapshot performs similarly to PMDK
for the insert and delete workloads while outperforming all
msync() implementations by at least 2.8x. For the read
workload, Snapshot and msync () achieve significant speedup
(4.1x) over PMDK.

KV-Store Next, we compare the performance of Snapshot on
Optane DC-PMM using a key-value store implemented using
a hash table where each bucket is a vector. For evaluation, we
use the YCSB workloads A-F and an additional write-only
workload, G. Each workload performs 5 million operations on
a database with 5 million key-value pairs each.

Figure 9 shows the performance of the KV-store against
PMDK using different Snapshot configurations described in
Table II. For Snapshot, we present the results using volatile and
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non-volatile lists for finding modified cachelines on msync ().
Overall, Snapshot shows between 1.2x and 2.2x performance
improvement over PMDK.

Against msync (), Snapshot shows a significant perfor-

mance improvement, especially when compared to msync ()
with data journal enabled. Snapshot does this while providing
an automatic crash-consistency guarantee. Moreover, several
Snapshot optimizations, including using a separate volatile list
for tracking dirty data in the memory (Section IV-C) provide
considerable improvement to Snapshot’s performance.
Kyoto Cabinet Figure 10 shows the performance compari-
son between Kyoto Cabinet’s built-in WAL+msync () based
crash-consistency mechanism to Snapshot with a varying num-
ber of updates per transaction. Overall, Snapshot outperforms
Kyoto’s transaction implementation between 1.4x and 8.0x.

For crash consistency, Kyoto Cabinet combines WAL and
msync (). For the Snapshot version, we disable Kyoto Cabi-
net’s WAL implementation. This version, when compiled with
Snapshot’s compiler, is automatically crash-consistent.

F. Memory Semantic SSDs

We evaluate Linked list, B-tree, and KV-Store on our
emulated memory semantic SSD and observe that Snapshot
significantly outperforms PMDK for linked list and b-tree
(Figure 11). For linked list, Snapshot outperforms PMDK by
1.7x,3.2x, and 171.0x for insert, delete, and read, respectively.
For b-tree, Snapshot outperforms PMDK by 3.4x, 4.1x, and
364.5x for insert, delete, and read workloads, respectively.

For the KV-Store benchmark, Snapshot outperforms PMDK
by up to 10.9x for all but the ‘E’ workload, where PMDK
is 1.23x faster. As our emulation is software-based, it does
not support the msync() system call, so we did not evaluate
Kyoto Cabinet.

G. Programming effort

Implementing Snapshot did not require any changes to
boost.interprocess as any changes to the memory
allocator’s state are automatically persisted with the msync ()
call by the workloads. For Kyoto Cabinet, we changed 11
lines of code, including disabling its built-in crash-consistency



mechanism. Thus, demonstrating the utility of Snapshot’s
simple programming interface for achieving crash consistency.

VI. RELATED WORK

Many prior works have proposed techniques to simplify the
persistent memory programming model. Romulus [21] uses a
twin-copy design, storing both copies on PM for fast persistence.
Romulus uses a redo log to synchronize the active copy with
the backing copy on a transaction commit. Pisces [22] is a
similar PM transaction implementation that uses dual version
concurrency control (DVCC), where one of the versions is the
application data on persistent memory, and the other is the
redo log. Pisces improves performance by using a three-stage
commit protocol where the stages where the data is durable,
visible, and propagated are decoupled.

Libnvmmio [23] provides an msync () -based interface, but
it does so by intercepting filesystem IO calls, e.g., read () and
write (). Thus, unlike Snapshot, Libnvmmio does not support
the memory mapped file interface. Similarly, DudeTM [24]
while uses memory mapped interface and stages working copy
in the DRAM, requires the programmer to use PMDK-like
transactional interface, increasing programming effort.

Automated solution like compiler passe to simplify the
programming effort includes Atlas [25] which adds crash-
consistency to existing lock-based programs by using the out-
ermost lock/unlock operations. Synchronization Free Regions
(SFR) [26] extends this idea and provides failure-atomicity
between every synchronization primitive and system call.

Similarly, some works use language support to automatically
add persistence to applications written for volatile memory.
Breeze [27] uses compiler instrumentation for logging updates
to PM but requires the programming to explicitly wrap code re-
gions in transactions and annotate PM objects. NVTraverse [28]
and Mirror [29] convert lock-free data structures persistent
using programmer annotation and providing special compare
and swap operations.

Memory allocators are important in achieving crash-
consistency. To resume after a crash, persistent memory
allocators need to save their metadata state along with the
allocated data. Several works in the past have proposed
PM allocators. Romulus [21] supports porting any sequential
memory allocator designed for volatile memory allocation to
PM by wrapping all the persistent types in a special class
that interposes store accesses. This is similar to Snapshot’s
compiler-based instrumentation, but in contrast to Romulus,
Snapshot requires no programmer effort to use a volatile
memory allocator for PM.

LRMalloc [30] is a PM allocator that persists only infor-
mation that is needed to reconstruct the allocator state after a
crash. Metall Allocator [31] provides a coarse crash-consistency
mechanism by using the underlying DAX filesystem’s copy-on-
write mechanism. However, Metall only guarantees persistency
when the Metall allocator’s destructor is called, making it
impractical for applications that need higher frequency persis-
tency (e.g., databases). Kelly et al. [32] present a persistent
memory allocator (PMA) to provide a persistent heap for

conventional volatile programs and create a persistent variant
of gawk, pm—gawk [33].

VII. CONCLUSION

Snapshot provides a userspace implementation of failure
atomic msync () (FAMS) that overcomes its performance lim-
itation. This advantage is especially apparent against msync ()
with huge pages enabled. Snapshot’s sub-page granularity
dirty data tracking based crash-consistency out-performs both
per-page tracking of msync () and manual annotation-based
transactions of PMDK across several workloads. Further,
Snapshot guarantees that the persistent memory state of the
application is only updated on a call to msync().

Further, we study the latency difference between the different
ways to write to persistent memory, NT-Stores vs. cacheline
writebacks for uncached data.

Finally, Snapshot alleviates limitations of FAMS, enabling
applications to take advantage of faster, byte-addressable
storage devices. Moreover, Snapshot, unlike FAMS, completely
avoids any system calls for crash consistency or manual
annotation and transactional semantics required by PMDK.
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