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Abstract

Up to 30% of patients with obsessive-compulsive disorder (OCD) exhibit an inadequate response 

to serotonin reuptake inhibitors (SRIs). To date, genetic predictors of OCD treatment response 

have not been systematically investigated using genome-wide association study (GWAS). To 

identify specific genetic variations potentially influencing SRI response, we conducted a GWAS 

study in 804 OCD patients with information on SRI response. SRI response was classified as 
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“response” (n = 514) or “non-response” (n = 290), based on self-report. We used the more 

powerful Quasi-Likelihood Score Test (the MQLS test) to conduct a genome-wide association test 

correcting for relatedness, and then used an adjusted logistic model to evaluate the effect size of 

the variants in probands. The top SNP was rs17162912 (P = 1.76×10−8) which is near the DISP1 
gene on 1q41-q42, a microdeletion region implicated in neurological development. The other six 

SNPs showing suggestive evidence of association (P <10−5) were rs9303380, rs12437601, 

rs16988159, rs7676822, rs1911877, and rs723815. Among them, two SNPs in strong linkage 

disequilibrium, rs7676822 and rs1911877, located near the PCDH10 gene, gave p-values of 

2.86×10−6 and 8.41×10−6, respectively. The other 35 variations with signals of potential 

significance (P <10−4) involve multiple genes expressed in the brain, including GRIN2B, 
PCDH10, and GPC6. Our enrichment analysis indicated suggestive roles of genes in the 

glutamatergic neurotransmission system (FDR = 0.0097) and the serotonergic system (FDR = 

0.0213). While the results presented may provide new insights into genetic mechanisms 

underlying treatment response in OCD, studies with larger sample sizes and detailed information 

on drug dosage and treatment duration are needed.

Keywords

Obsessive-Compulsive Disorder; Serotonin Reuptake Inhibitors; Genome Wide Association Study; 
Pharmacogenetics

INTRODUCTION

Approximately 1-3% of the US population suffers from obsessive-compulsive disorder 

(OCD), a neuropsychiatric disorder characterized by recurrent obsessions and/or 

compulsions that cause marked distress and impairment.1 OCD often aggregates in families, 

and results from segregation analysis and twin studies support significant genetic influence.2 

A genome-wide linkage study identified several OCD susceptibility loci (i.e., 3q, 7p, 1q, 15q 

and 6q).3 Variants in several genes have been associated with OCD, including SLC1A14, 

SLC6A45, 6, and GRIN2B7-9. Prior to the advent of the GWAS platform, association studies 

targeted a set of candidate genes that were inconsistently reported to be associated with 

OCD.10 More recently, two genome-wide association studies have identified PTPRD, 

DLGAP1, CDH10, and GRIK2 as potential OCD susceptible loci.11, 12

Individuals affected with OCD are typically treated with a combination of exposure response 

prevention (ERP) and medications; serotonin reuptake inhibitors (SRIs) are the first-line 

pharmacotherapy option for the treatment of OCD. However, up to 30% of patients treated 

with these medications show poor or no response to standard treatment; and some patients 

cannot tolerate adverse effects of medications.13 The literature on genetic predictors of SRI 

treatment response in OCD is sparse.14-16 Therefore, elucidation of genetic variants 

influencing treatment response is needed.

SRIs inhibit the reuptake of the neurotransmitter serotonin by presynaptic cells, thereby 

increasing extracellular levels of serotonin in the synaptic cleft and allowing serotonin to 

more easily bind to the postsynaptic receptor.6, 17 More than 60 proteins are known to play a 

role in the serotonin signaling pathway. Among these, the serotonin transporter gene 

Qin et al. Page 3

Mol Psychiatry. Author manuscript; available in PMC 2016 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



SLC6A4 may impact SRI response.6 In addition, genetic variants in several other genes (i.e., 

CYP2D6, SLC1A1, SLC6A4, HTR1B receptor, 5-HT2A receptor, and BDNF) have been 

reported to influence SRI response in OCD.16 However, many of these studies were 

hampered by small sample sizes and a limited number of known genetic variations in 

candidate genes. Additionally, analytical approaches vary widely among different studies, 

which may have led to inconsistent results. In 2012, Tansey et al. reported results from the 

first genome wide association study (GWAS) of SRI response in major depression.18 

However, to our knowledge, no GWAS study of medication response in OCD has been 

reported. Therefore, an important unexplored research question is whether genetic variations 

influence SRI treatment response in OCD.

To address this question, we performed a whole genome association analysis on response to 

SRIs in 804 OCD cases, using a novel, more powerful Quasi-Likelihood Score Test to 

correct for the relatedness. Here we report our findings of genome-wide association analysis 

of therapeutic response of OCD as well as the results of enrichment analysis of nervous 

system pathways.

MATERIALS AND METHODS

Subject recruitment and data collection

The sample for the current analysis was recruited as part of the OCD Collaborative Genetics 

Association Study (OCGAS). Detailed methods for OCD diagnosis and sample description 

have been previously described.19, 20 In brief, the evaluation of OCD and drug response was 

conducted by PhD-level clinical psychologists using a semi-structured diagnostic instrument 

(SCID), and included the Yale -Brown Obsessive Compulsive Scale (YBOCS) OCD 

symptom checklist and YBOCS OCD severity scale.21 Final DSM-IV (The Diagnostic and 

Statistical Manual of Mental Disorders, Fourth Edition) OCD diagnosis was assigned by 

consensus of clinicians at each study site and reviewed at Johns Hopkins University.

The individuals in the current study had participated in one of two multisite, collaborative 

family/genetic studies of OCD, which have been described in detail elsewhere. In brief, the 

OCD Collaborative Genetics Study (OCGS) (2001-2006), targeted recruitment on families 

with OCD-affected sibling pairs, and extended these when possible through affected first- 

and second-degree relatives.19 The OCD Collaborative Genetic Association Study (OCGAS) 

(2007-2012) targeted recruitment on trios (i.e., an affected proband and both parents), but 

also included pedigrees with a proband and unaffected sibling, as well as families with 

multiple-affected members.12 Participants were recruited into the studies from outpatient 

and inpatient clinics, referrals from clinicians in the community, web sites, media 

advertisements, self-help groups, and annual conventions of the International Obsessive 

Compulsive Foundation.

As part of the treatment history section of the clinical interview, examiners asked 

participants about their duration of medication use, maximum dosage, and response to each 

of several SRI medications (if received), including clomipramine, citalopram, escitalopram, 

fluoxetine, fluvoxamine, paroxetine, sertraline, venlafaxine, and duloxetine. Examiners also 

asked about response to other medications and behavioral therapy.
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Treatment response was initially assessed using a five-point scale of “no response”, “could 

not tolerate”, “minimal”, “moderate improvement”, and “total remission”. For the current 

analyses, we dichotomized treatment response into “response” (“moderate improvement” or 

“total remission”) and “non-response” (“no response” or “minimal response”) categories; 

those reporting “couldn't tolerate” and those with missing data on drug response were 

excluded from the analyses. For those patients who were treated with multiple SRI 

medications, response was based on the medication to which the best response was reported.

Blood samples were collected from affected probands, their parents, and their affected 

relatives. DNA samples were extracted using the Qiagen DNA extraction Kit and stored at 

−80°C for further genotyping. The current analyses included 804 OCD cases who were 

participants of the OCGAS GWAS. The study was approved by the institutional review 

board at each participating institution.

Genotyping and quality control

Genotyping was conducted with the Illumina HumanOmniExpress-12v1 (San Diego, CA, 

USA), in which genotyping was attempted for 730,525 SNPs. Quality control was 

performed in PLINK to remove poorly genotyped SNPs and individuals. Details of the 

quality control on the original data have been previously described.12 To detail, technically 

failed SNPs were removed. Individuals with sex discrepancy were either removed or 

updated. The relationship information was corrected and individuals with excess of 

genotyping errors were removed. Outliers were removed based on a multidimensional 

scaling (MDS) analysis. We included all OCD patients from the initial quality controlled 

dataset for subsequent study. Further quality re-assurance and filtering were conducted, 

including SNPs with Hardy-Weinberg equilibrium (HWE) test p-value <10−6 were excluded; 

SNPs with genotyped rate <98% or with minor allele frequency (MAF) <0.05 were 

excluded; SNPs violating Mendelian errors were treated as missing. After genotyping 

quality control, 53 individuals who could not tolerate the medications were removed, along 

with 741 individuals that did not have any information on drug effect. The affected 

individuals with informative drug response data were subjected to an association test. 

Finally, a total of 804 individuals (including 514 responders and 290 non-responders) were 

subjected to statistical analysis.

Statistical methods and integrated analysis using bioinformatics resource

We used the more powerful Quasi-Likelihood Score test, termed MQLS test22, to conduct 

association tests correcting for the relatedness coefficients (based on identity-by-descent, 

IBD). A sex- and age-adjusted logistic model was used for the evaluation of effect size in 

probands using the PLINK software.23 Since the association test could underestimate true 

signals of association with SRI response due to limited statistical power, all variations with 

MQLS test p-values <10−4 with relatively large effect-size (odds ratios ≥1.50 for the risk 

allele) were reported. All statistical procedures were conducted using in-house R scripts on a 

GentOS based Cluster computer.

SNP annotation was conducted using a web-based software SNP-NEXUS24 (http://

www.snp-nexus.org) based on dbSNP135/hg19. Cross references to other GWAS association 
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studies were explored using the NHGRI GWAS Catalogue.25 Neurobiological evidence was 

examined in peer-reviewed publications in the PubMed database. LD plots were completed 

using the LocusZoom software based on 1000 genome CEU population data (hg19/1000 

Genomes Mar 2012 EUR).26

Imputation around one SNP of interest was conducted using the Impute2 software (URL: 

https://mathgen.stats.ox.ac.uk/impute/impute_v2.html) using 1000 Genomes Phase 1 as 

reference panel (Jun 2011 version). After the imputation, data quality control (QC) was 

performed to exclude imputed SNPs with genotyping rate <0.95, or significantly deviate 

from HWE test (p-value <10−6), or minor allele frequency (MAF) <0.01. Genotypes 

detected with Mendelian error were set to missing. After QC, MQLS test was performed 

using the same options described above.

Power calculation was conducted using the GPC software27 (URL: http://

pngu.mgh.harvard.edu/~purcell/gpc/cc2.html) to indicate the power of the association test 

given our sample size. We performed a pathway analysis using all SNPs passing QC 

checkup. Functional enrichment analysis was conducted in ten nervous system pathways 

defined by the KEGG (Kyoto Encyclopedia of Genes and Genomes) databases using DAVID 

Bioinformatics Resource v6.7 (URL: http://david.abcc.ncifcrf.gov/).28 A total of 8,182 genes 

in both our dataset and pathway databases were used as the reference background list. Gene-

level p-values were calculated by summarizing the SNP-level statistics using MAGENTA 

software (version 2.4)29, corrected for total number of SNPs in the gene, gene size, as well 

as the LD patterns in the genes (URL: http://www.broadinstitute.org/mpg/magenta/). A gene 

was classified as “significant” if its p-value is less than 0.001. Each pathway is then tested 

for whether it contains more “significant” genes than expected by chance using a modified 

Fisher exact test.

RESULTS

The demographic and clinical characteristics of the samples are summarized in Table 1. 

After data quality control, 597,847 SNPs (81.8% of the total SNPs attempted in the array) 

were successfully genotyped. A total of 804 individuals with informative drug effect data 

(514 responders and 290 non-responders) had a set of high quality genotyped data with a 

call rate of 99.9%. Figure 1a shows a Q-Q plot. Of the 42 SNPs identified with a p-value 

<10−4, one SNP met the genome-wide significance level (P = 1.76 ×10−8) for SRI treatment 

response; six SNPs showed suggestive evidence of association at the level of P <10−5; and 

35 SNPs showed signals of association at the level of P<10−4 (Figure 1b and Table 2).

The top-ranked SNP, rs17162912, is located in proximity (within a distance of ~13kb) to the 

Dispatched 1 gene (DISP1) (P = 1.76×10−8; OR = 0.39 [95%CI 0.26-0.58]) (Table 2 and 

Figure 2a left panel). Since there were no nearby markers with complete LD with 

rs17162912, we imputed genotypes in the left and right regions flanking rs17162912 (up to 

250 kb) and carried out the association test. The results indicated that SNPs with strong LD 

with rs17162912 also presented suggestive association signals (Figure 2a right panel). We 

explored the integrated ENCODE regulation databases and found that rs17162912 is close to 

a peak (approximately 13kb) of the H3K27AC protein binding score, suggesting that this 

Qin et al. Page 6

Mol Psychiatry. Author manuscript; available in PMC 2016 September 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://https://mathgen.stats.ox.ac.uk/impute/impute_v2.html
http://pngu.mgh.harvard.edu/~purcell/gpc/cc2.html
http://pngu.mgh.harvard.edu/~purcell/gpc/cc2.html
http://david.abcc.ncifcrf.gov/
http://www.broadinstitute.org/mpg/magenta/


region encompasses the promoter of DISP1. DISP1 encodes a twelve trans-membrane 

domain protein that is required for long-range sonic hedgehog (Shh) secretion and 

transporting, which is important for the establishment of cell-cell contact and crucial for 

spinal cord development.30

Among the suggestive signals, rs7676822 and rs1911877 located near the PCDH10 gene 

(distance = 1,818kb and 1,772kb respectively) showed p-values of 2.86 ×10−6 (OR = 0.65 

[95%CI 0.51-0.83]), and 8.41×10−6 (OR = 0.66 [95%CI 0.52–0.84]), respectively (Figure 

2b). Due to the LD relationship between rs7676822 and rs1911877, these two SNPs should 

be counted as one hit. It is worth mentioning that PCDH10 belongs to a protocadherin gene 

family consisting of the largest subgroup of the cadherin superfamily and mediates cell-cell 

adhesion and intracellular signaling. Most PCDHs (Protocadherins) are predominantly 

expressed in the central nervous system and have been suggested play pivotal roles in the 

formation and maintenance of synaptic functions.31

In order to comprehensively evaluate the role of some known pathways in the nervous 

system, we performed an enrichment analysis to test whether there are any genes 

significantly enriched in neuron signaling pathways. The results indicated that the 

glutamatergic neurotransmission pathway and the serotonergic neurotransmission pathway 

displayed more than two-fold enrichment. The glutamatergic signaling pathway had the 

highest enrichment score (Enrichment score = 3.38) and the best false discovery rate (FDR) 

(FDR = 0.0097), and the serotonergic neurotransmission pathway gave the second best 

enrichment score (Enrichment score = 2.39, FDR = 0.0213) (Table 3 and Supplementary 

Figure S1).

In the glutamatergic signaling pathway, there was a SNP rs7972211 near GRIN2B (N-

methyl-D-aspartate receptor subunit 2B), a pivotal component of the glutamatergic 

neurotransmission system, showing a signal of association with SRI response, with P = 

2.71×10−5 (OR = 0.65 [95%CI 0.49-0.87]) (Table 2). In addition to GRIN2B, GPC6 
(Glypican 6), another gene of the glutamatergic neurotransmission system, has three SNPs 

(rs17253738, rs9516369, rs3891616) exhibiting association signals, with P = 2.13×10−5 (OR 

= 0.59 [95%CI 0.43-0.82]); P = 4.38×10−5 (OR = 0.61 [95%CI 0.44-0.84]), and P = 

8.39×10−5 (OR = 0.63 [95%CI 0.46-0.87]), respectively (Table 2 and Figure 2c). Due to the 

tight LD among these three SNPs, they serve as one hit. GPC6 promotes the glutamate 

receptor clustering and receptivity and induces the formation of postsynaptic signaling in the 

central nervous system (CNS) synapses. Depletion of GPC6 significantly reduces its 

function to induce postsynaptic activity.32 It was also interesting to observe that DLGAP1 
and DLGAP2 support the enrichment (Supplementary Figure S1a). Of note, DLGAP1 has 

been recently suggested as an OCD susceptibility gene.11

In the serotonergic neurotransmission system, two within-LD (R2 = 0.6) variants (rs722665 

and rs2423366) in the PLCB1 gene showed association at P = 8.47×10−5 (OR = 1.61 

[95%CI 1.25-2.08]) and P = 0.0001, respectively. In addition, the protein kinase PKC 
harbors a SNP, rs11158347, showing association with P = 5.18×10−5 (OR = 1.83 [95%CI 

1.39-2.41]) (Table 2 and Figure 2d). Furthermore, several well-established genes including 

HTR2A and SLC6A4 appeared to support the enrichment (Supplementary Figure S1b).
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DISCUSSION

In this study, we tested the association between genetic variations and treatment response in 

OCD. To date, this is the largest study on treatment response of OCD. While replication is 

warranted, this study represents an important step towards the comprehension of how 

genetic variants may contribute to the drug response in OCD treatment. The GWAS top SNP 

hit identified in this study is rs17162912 located near DISP1. In addition, our enrichment 

analysis indicated the roles of genes in the glutamatergic neurotransmission system (FDR = 

0.0097) and the serotonergic system (FDR = 0.0213).

DISP1 is located in the 1q41-q42 locus which harbors a microdeletion related to a syndrome 

characterized by significant mental retardation, behavior problems, seizures, and 

characteristic dysmorphic features.33 While rs17162912 is not within the gene regulators, it 

was found in close proximity of a promoter of the DISP1 gene in ENCODE databases.

In addition to DISP1, another gene involved in cell-cell contact is PCDH10, an autism-

spectrum disorders (ASD) related gene34, provided suggestive level of association with SRI 

response. GWAS studies have shown that several PCDH genes are associated with 

neuropsychiatric disorders, including autism, bipolar disease and schizophrenia.35 In our 

published OCD GWAS study12, cadherin 10, type 2 (CDH10) was also reported as the 

second strongest association signal for OCD susceptibility. Collectively, these findings 

suggest that the cell-cell contact molecules might be involved in SRI response in OCD 

patients. However, due to the lack of adequate biological evidence in OCD to support this 

data-driven notion, future investigations are warranted.

Among the genes in the glutamatergic neurotransmission system, GRIN2B, an the NMDA 

(N-methyl-D-aspartate) glutamate receptor, emerged as one of the genes relevant to OCD 

and SRI response with some nominally significant SNPs. At least three previous genetic 

studies reported a significant association between a variant in GRIN2B and OCD.7-9 

Volumetric magnetic resonance imaging suggested that genetic variations in GRIN2B are 

associated with regional volumetric brain abnormalities in OCD.36 Preliminary results also 

suggest that GRIN2B variations interact with variations in SLC1A137, the susceptibility 

gene consistently replicated in OCD. However, our GWAs analysis did not provide strong 

evidence for any single variant association in the glutamatergic and serotonergic 

neurotransmission systems contributing to SRI response.

On the other hand, our enrichment analysis indicated that multiple genes in the 

glutamatergic and serotonergic neurotransmission system might jointly contribute to the 

outcome of SRI treatment in OCD (Table 3 and Supplementary Figure S1). More genes 

nominated occurred in the glutamatergic pathways than the ones in the serotonergic 

pathways. These genes are indicated in Supplementary Figures S1. However, we recognize 

that our study is under powered to identify all neuropathogenic SNPs for enrichment.

Despite obtaining one genome-wide significant hit and two suggestive pathway enrichment 

scores, several potential limitations of this study should be acknowledged. First, drug 

response was based on retrospective self-report. Second, given the rarity of large OCD 

samples with drug response information, the analysis was based on the limited sample size 
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available. Third, there was lack of detailed information on the dosage and duration of SRI 

medications, as well as receipt of behavioral therapy. Future studies, which measure 

treatment received in greater detail, and which evaluate response using reliable measures of 

symptom reduction within the first few months of treatment initiation, are needed to support 

a firm relationship between genetic variants and pathways and the SRI treatment effect in 

OCD.

On the other hand, several strengths of the current study should be noted. First, the rigorous 

semi-structured clinical examination and diagnostic best-estimation procedures support 

phenotypic reliability. Secondly, given the clinical, and assumed genetic heterogeneity of 

OCD, the OCGAS sample attempted to increased homogeneity by targeting recruitment on 

OCD-affected individuals with early age at onset. The fact that up to 30% OCD patients 

show minimal clinical improvement may reflect the biological heterogeneity of OCD 

phenotypes. Thus, consideration of the subgroups of OCD patients defined by drug response 

might provide a relatively more homogeneous population for clarification of the 

pathogenesis.38 Finally, it is worth noting that study participants came from two studies, one 

of which was a family-based linkage study while the other was a trios-based association 

study. Although relatedness might confound association tests and odds ratio estimation, the 

MQLS test developed by Thornton and McPeek offers a better way to conduct a robust 

association test that corrects for the relatedness coefficients within pedigrees, using a kinship 

matrix (identity-by-descent, IBD) calculated from genotype data.22

Further research is warranted to replicate the current findings on genetic variations related to 

SRI response in OCD-affected individuals. We anticipate that next-generation sequencing 

(NGS) methods, which facilitate the analysis of multiple genes including the effects of both 

common and rare variants39, will provide further understanding of the mechanisms of OCD 

treatment response, and lead to more effective treatments for OCD.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Genome-wide association study of genetic variations and treatment response. (a) Q-Q plot 

for the association test of genetic variations. (b) Manhattan plot for the association test of 

genetic variations and SRI response. MQLS test was performed to test the association of 

variants associated with drug response. A red line indicates genome-wide significance 

(5×10−8); a blue line indicates the level of suggestive evidence for association (1×10−5).
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Figure 2. 
Regional association plot with LD illustrated for significant SNPs. (a) SNAP plot of 

rs17162912 for the association test (left) and for the association test after the imputed SNPs 

were included (right). (b) SNAP plot of rs7676822, rs17253738 (c) and rs722665 (d).
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Table 1

Characteristics of OCD participants

Group Subgroup Count (N = 804) Frequency

Sex

Male 312 0.39

Female 492 0.61

Age
a

7-9 19 0.02

10-19 189 0.23

20-29 170 0.21

30-39 173 0.22

40-49 159 0.20

50-78 94 0.12

Age at onset of OC symptoms

5-9 518 0.64

10-19 237 0.30

20-44 118 0.06

SRI response
b

“No response” 290 0.36

“Response” 514 0.64

a
Age unknown for 5 participants.

b
“Couldn't tolerate” and “Unknown” were excluded from data analysis.
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Table 2

Top loci associated with treatment response in OCD patients

SNP Chr. Position A1/A2
a

Resp.
b

Non-Resp.
b

P
c

OR(95%CI)
d Region Nearest Gene (distance/bp)

rs17162912 1 222974926 C/T 0.06 0.15 1.76×10−8 0.39(0.26-0.58) intergenic DISP1(13505)

rs9303380 17 54117492 A/G 0.03 0.07 1.03×10−6 0.37(0.21-0.64) intergenic ANKFN1(113344)

rs12437601 15 98687330 C/T 0.09 0.03 1.66×10−6 4.07(2.16-7.66) intergenic ARRDC4(170262)

rs16988159 21 32727653 C/T 0.3 0.42 2.48×10−6 0.57(0.45-0.73) intronic TIAM1

rs7676822 4 132252355 G/T 0.28 0.39 2.86×10−6 0.65(0.51-0.83) intergenic PCDH10(1818115)

rs723815 6 52519203 A/C 0.2 0.11 3.50×10−6 2.06(1.46-2.9) intergenic LOC730101(9996)

rs1911877 4 132298239 C/T 0.3 0.4 8.41×10−6 0.66(0.52-0.84) intergenic PCDH10(1772231)

rs8081611 17 4813365 C/T 0.12 0.05 1.40×10−5 2.59(1.6-4.19) intergenic CHRNE(6996)

rs7972963 12 66646199 T/G 0.08 0.14 1.50×10−5 0.54(0.37-0.78) UTR3 IRAK3

rs17253738 13 94874089 A/G 0.14 0.21 2.13×10−5 0.59(0.43-0.82) intronic GPC6

rs2706652 11 12289058 A/G 0.42 0.33 2.30×10−5 1.5(1.18-1.92) intergenic MICAL2(3727)

rs7972211 12 14269986 G/A 0.16 0.23 2.71×10−5 0.65(0.49-0.87) intergenic GRIN2B(136964)

rs318982 11 131415267 T/C 0.21 0.29 2.82×10−5 0.65(0.5-0.86) intronic NTM

rs6918918 6 52515078 T/C 0.22 0.13 3.17×10−5 1.94(1.4-2.68) intergenic LOC730101(14121)

rs11022029 11 11806317 C/T 0.13 0.2 3.18×10−5 0.65(0.48-0.87) intergenic USP47(56653)

rs881499 7 30976064 C/T 0.25 0.36 3.58×10−5 0.55(0.42-0.72) intergenic AQP1(10933)

rs905690 3 68725295 T/C 0.35 0.26 3.79×10−5 1.56(1.2-2.02) intergenic FAM19A4(55620)

rs12561532 13 52108978 G/A 0.06 0.12 3.81×10−5 0.48(0.32-0.72) intergenic MIR4703(17747)

rs9516369 13 94868584 G/A 0.14 0.21 4.38×10−5 0.61(0.44-0.84) intronic GPC6

rs7214776 17 4811615 C/T 0.12 0.06 4.39×10−5 2.4(1.51-3.83) intergenic CHRNE(5246)

rs9365319 6 162114707 T/C 0.13 0.21 4.49×10−5 0.57(0.42-0.77) intronic PARK2

rs7004833 8 11840011 G/A 0.05 0.1 4.53×10−5 0.47(0.3-0.75) intronic DEFB135

rs4768165 12 40025034 A/G 0.25 0.34 4.79×10−5 0.66(0.51-0.85) intronic C12orf40

rs6005451 22 27852183 C/T 0.09 0.16 4.85×10−5 0.53(0.37-0.75) intergenic MN1(292082)

rs10894396 11 131326035 A/G 0.41 0.29 4.91×10−5 1.72(1.34-2.22) intronic NTM

rs2293223 2 103035468 T/C 0.15 0.24 4.92×10−5 0.6(0.44-0.8) intronic IL18RAP

rs1403552 2 103088777 A/G 0.15 0.24 5.00×10−5 0.59(0.44-0.79) upstream SLC9A4

rs11158347 14 61930678 A/G 0.33 0.21 5.18×10−5 1.83(1.39-2.41) intronic PRKCH

rs7706447 5 116513164 C/A 0.04 0.1 5.83×10−5 0.36(0.23-0.59) intergenic LOC728342(238044)

rs11611119 12 40166257 C/T 0.35 0.26 5.83×10−5 1.59(1.22-2.07) intronic SLC2A13

rs4596498 6 139540103 A/G 0.24 0.16 6.36×10−5 1.73(1.26-2.36) intergenic TXLNB(21096)

rs7565966 2 179742232 C/T 0.45 0.33 6.69×10−5 1.63(1.28-2.08) intronic CCDC141

rs12974044 19 42368629 G/A 0.37 0.27 7.07×10−5 1.56(1.2-2.02) intronic RPS19

rs139531 22 41676176 G/A 0.3 0.2 7.07×10−5 1.69(1.28-2.24) intronic RANGAP1

rs1471659 3 126812577 G/A 0.11 0.17 7.74×10−5 0.61(0.43-0.85) intergenic PLXNA1(56342)

rs4933958 10 85821027 C/T 0.29 0.21 8.04×10−5 1.56(1.18-2.05) intergenic GHITM(78158)

rs10013818 4 44293409 T/C 0.26 0.18 8.34×10−5 1.6(1.19-2.15) intronic KCTD8
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SNP Chr. Position A1/A2
a

Resp.
b

Non-Resp.
b

P
c

OR(95%CI)
d Region Nearest Gene (distance/bp)

rs3891616 13 94866849 C/A 0.14 0.2 8.39×10−5 0.63(0.46-0.87) intronic GPC6

rs722665 20 8508604 C/T 0.4 0.29 8.47×10−5 1.61(1.25-2.08) intronic PLCB1

rs2295394 14 93412743 T/C 0.04 0.08 8.55×10−5 0.48(0.29-0.79) NA NA

rs351098 4 132409029 T/C 0.22 0.3 8.77×10−5 0.67(0.51-0.86) intergenic PCDH10(1661441)

rs12532545 7 141875267 A/C 0.17 0.25 9.21×10−5 0.63(0.48-0.84) intronic LOC100124692

Abbreviations: Chr, chromosome number; A1/A2 OR, odds ration; CI confidence interval; MQLS, a more powerful quasi-likelihood score test.

a
A1/A2, in which “A1” is minor allele, “A2” is major allele.

b
Resp., minor allele frequence (MAF) for the patients response to SSRIs; Non-Resp., MAF for the patients non-response to SSRIs.

c
MQLS_Robust p-value, cut-off p-value threshold was set 1×10−4 for the risk allele.

d
Logistic regression model was performed on probands, adjusted by sex, age. Cut-off threshold was set at OR ≥1.5 for the risk allele.
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Table 3

Enrichment analysis results in ten neurologically-relevant pathways

Pathways examined Genes Enriched Enrichment Score P-value FDR

Glutamatergic signaling 14 3.38 0.0009 0.0097

Serotonergic signaling 11 2.39 0.0047 0.0213

Long-term potentiation 6 1.55 0.0058 0.0213

Neurotrophin signaling pathway 8 1.54 0.0120 0.0330

Long-term depression 4 1.04 0.0280 0.0512

GABAergic signaling 7 1.12 0.0340 0.0512

Dopaminergic synapse 7 1.02 0.0346 0.0511

Retrograde endocannabinoid signaling 6 0.88 0.0372 0.0512

Cholinergic signaling 4 0.67 0.5720 0.6292

Synaptic vesicle cycle 3 0.34 0.9280 0.9281
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