
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Queue-Sharing Multiple Access

Permalink
https://escholarship.org/uc/item/96f8d2hz

Authors
Garcia-Luna-Aceves, J.J.
Cirimelli-Low, Dylan

Publication Date
2020

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/96f8d2hz
https://escholarship.org
http://www.cdlib.org/

Queue-Sharing Multiple Access
J.J. Garcia-Luna-Aceves

Computer Science and Engineering Department

University of California, Santa Cruz

Santa Cruz, CA, USA

jj@soe.ucsc.edu

Dylan Cirimelli-Low

Computer Science and Engineering Department

University of California, Santa Cruz

Santa Cruz, CA, USA

dcirimel@ucsc.edu

ABSTRACT
Queue-Sharing Multiple Access (QSMA) is introduced and analyzed.

The new channel-access method consists of establishing and main-

taining a distributed transmission queue among nodes sharing a

common channel and results in a sequence of queue cycles, with

each cycle having one or multiple queue turns with collision-free

transmissions from nodes that have joined the transmission queue,

followed by a joining period for the current cycle. Nodes can take

advantage of carrier sensing to improve the efficiency with which

nodes join and use the shared transmission queue. The through-

put of ALOHA with priority ACK’s, CSMA with priority ACK’s,

CSMA/CD with priority ACK’s, TDMA with a fixed schedule, and

QSMA with and without carrier sensing is compared analytically

and by simulation in ns-3. The results show that QSMA is more

efficient than TDMA with the simplicity of CSMA or ALOHA.

CCS CONCEPTS
• Networks→ Network protocols; Link-layer protocols; Net-
work performance modeling.

KEYWORDS
channel access; MAC protocols; ALOHA; CSMA; TDMA

ACM Reference Format:
J.J. Garcia-Luna-Aceves and Dylan Cirimelli-Low. 2020. Queue-Sharing

Multiple Access. In 23rd International ACM Conference on Modeling, Analysis
and Simulation of Wireless and Mobile Systems (MSWiM ’20), November
16–20, 2020, Alicante, Spain. ACM, New York, NY, USA, 10 pages. https:

//doi.org/10.1145/3416010.3423230

1 INTRODUCTION
The introduction of the ALOHA channel by Abramson [1] started

a revolution on packet switching over wireless multiple-access

channels. Its performance was improved dramatically by the intro-

duction of carrier sensing in CSMA (carrier-sense multiple access)

[20], and a plethora of channel-access protocols have been devel-

oped over the years that improve channel efficiency in different

ways. Section 2 provides a summary of prior work on medium-

access control (MAC) protocols for wireless networks [5, 15, 19],

which can be characterized as contention-based and contention-free.

The advantage of contention-based approaches is their simplicity;

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

MSWiM ’20, November 16–20, 2020, Alicante, Spain
© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8117-8/20/11.

https://doi.org/10.1145/3416010.3423230

however, they cannot eliminate multiple-access interference (MAI)

entirely or ensure maximum channel-access delays. The advantage

of contention-free approaches is that they render high efficiency

and delay guarantees; however, they are much more complex than

contention-based schemes, and typically rely on time slotting of

the channel, which requires clock synchronization among nodes.

The contribution of this paper is introducing a new channel-

access method that is simple and attains high efficiency with maxi-

mum channel-access delay guarantees. We call this method Queue-
Sharing Multiple Access, or QSMA.

Using the distributed queue method of QSMA transforms CSMA

or ALOHA into de facto TDMA (time-division multiple access) with

dynamic schedules, but without the need for time slotting at the

physical layer, the definition of transmission frames with a fixed

number of time slots, the use of pre-defined schedules, or the use

of complex signaling to make reservations.

Section 3 describes how QSMA operates. A node with packets

to send must first join a transmission queue. Once a node is in the

queue it is able to transmit its data packets every time its turn in the

queue comes upwithout anyMAI. Channel access occurs in terms of

queue cycles, with each cycle consisting of a queue period with one

or multiple collision-free queue turns and a request period. Nodes

try to join the transmission queue by sending short request packets

during request periods. Each request packet and the header of a

data packet states the size of the shared queue, the position of the

sending node in the queue, a bit indicating the end of transmissions

by the transmitting node, and the identifier of the last node that

joined the queue. Nodes can use carrier sensing to improve the

efficiency with which nodes join the shared transmission queue. A

number of MAC protocols have been based on similar notions of

distributed transmission queues [10, 21, 31]. QSMA improves over

all of them by eliminating the need for a time-slotted channel or

signaling between specific sender-receiver pairs.

Section 4 uses a simple analytical model to compute the through-

put of QSMA with and without carrier sensing, and the average

delay incurred in reaching a target queue size.

Section 5 uses the results from the analytical model and discrete-

event simulations in ns-3 [22] to compare the performance of QSMA,

TDMA with fixed schedules, ALOHA with priority ACK’s, CSMA

with priority ACK’s, and CSMA/CD (collision detection) with pri-

ority ACK’s. The results show the enormous benefits of QSMA

compared to all the other MAC protocols, and the ability of QSMA

to quickly attain collision-free channel access schedules that avoid

idle transmission turns. Just like carrier-sensing improves the max-

imum channel-access efficiency from less than 20% in ALOHA to

more than 70% in CSMA in fully-connected networks depending

on propagation delays, a distributed queue renders more than 90%

channel efficiency with the added benefit of stable channel access

https://doi.org/10.1145/3416010.3423230
https://doi.org/10.1145/3416010.3423230
https://doi.org/10.1145/3416010.3423230

resulting from collision-free schedules and avoidance of idle trans-

mission turns. The simulation code for QSMA, CSMA and ALOHA

is publicly available from GitHub [7], which allows the reader to re-

produce the results discussed in this paper, study QSMA in different

scenarios, and improve on the basic design of QSMA.

Section 6 presents our conclusions and summarizes a number of

directions for future work.

2 RELATEDWORK
Carrier sensing has been used since the introduction of CSMA in

most contention-based channel-access protocols. Over the years,

carrier sensing has been combined with other techniques like

collision-avoidance signaling, collision resolution [6, 8], collision

detection [5, 10, 12] and other physical-layer mechanisms like cod-

ing and time slotting to improve the efficiency of channel access.

Today, carrier sensing is an integral part of many channel-access

protocol standards (e.g., WiFi and WiMAX). However, the perfor-

mance of these protocols degrades at high loads and the proto-

cols cannot provide channel-access guarantees. The most efficient

contention-based MAC protocol is CSMA/CD, but requires full-

duplex operation.

Most of the contention-free MAC protocols proposed to date

require the use of transmission frames consisting of a fixed number

of time slots, or at least assume the use of a time-slotted channel

[5, 25]. The approaches proposed in this context include distributed

elections of time slots [2, 3, 24], and the reservation of time slots

based on voting or signaling similar to collision-avoidance hand-

shakes [26–28, 30, 32]. A few approaches eliminate the need of

fixed-length transmission frames by using lexicographic ordering

of the identifiers of transmitting nodes, geographical or virtual coor-

dinates related to the connectivity of nodes (e.g., [11]), or a common

tree of periodic schedules of variable periods that are powers of

two [18]. All these approaches require time slotting supported at

the physical layer, and some even require a central authority to

orchestrate the selection of schedules.

In addition to the added complexity incurred by requiring a

time-slotted channel in prior schedule-based MAC protocols, MAC

protocols based on time slots result in channel-access schedules that

are independent of traffic demands. As a result, channel utilization

may be low when too many nodes are silent during the time slots

they were assigned, or transmit data packets that are much shorter

than the duration of time slots.

The prior work that is the most relevant to the design of QSMA

consists of viewing the state of the channel-access requests as a

distributed queue or a transmission group shared among all nodes

accessing the channel.

The Distributed Queue Random Access Protocol (DQRAP) [31]

is arguably the first example of this approach, and its design was

inspired by the Distributed Queue Dual Bus (DQDB) protocol (IEEE

802.6) [4] and collision-resolution schemes (e.g., [4, 6]). DQRAP

assumes that the channel is time slotted and that each time slot

consists of a data slots and multiple control mini-slots used for

resolving collisions of requests to join the queue. The control mini-

slots are used for collision resolution of requests to be added to the

distributed data queue and the data mini-slots are used to transmit

data packets without interference. Several variants of DQRAP have

been reported over the years for applications ranging from satellite

networks to the Internet of Things; however, they require the use

of time slots and mini-slots (e.g., see [9]).

Group Allocation Multiple Access (GAMA) [21] was the first

distributed-queue approach to eliminate the use of time slot-

ting. It organizes channel access into a contention period and a

group-transmission period, and uses a collision avoidance hand-

shake in the contention period to add new members to the group-

transmission period. CARMA-NTS [10] integrated collision avoid-

ance and resolution in the contention periods of GAMA, which

results in each contention period having additions to the group-

transmission period. Sync-less Impromptu Time-Divided Access

(SITA) [17] used a collision-avoidance handshake similar to the one

used in GAMA, but works on the basis of reservations of bandwidth

by each node in the form of periodic transmissions by that node.

Each node maintains its own version of the state of the queue. The

limitation of prior methods based on distributed queues is that

they rely on either: (a) time slotting and transmission frames that

require clock synchronization; or (b) explicit signaling between

specific transmitter-receiver pairs, which requires senders to know

whether specific intended receivers are present before the trans-

mission queue can be built.

3 QSMA
QSMA enables channel access in a way that no prior channel-access

protocol has been able to provide before, namely: (a) maintain-

ing much of the simplicity of ALOHA and CSMA with priority

ACK’s; (b) attaining collision-free transmissions and maximum

channel-access delay guarantees; (c) eliminating clock synchroniza-

tion, transmission frames consisting of a fixed number of time slots,

or signaling to specific nodes before they become part of the trans-

mission queue; and (d) avoiding empty transmission turns within

schedules.

3.1 Transmission Strategy
Just as a node in ALOHA or CSMA with priority ACKs [29] must

wait for an ACK to be heard after a successful packet, a node in

QSMA must give priority to nodes that have joined the shared

transmission queue successfully before trying to join the queue.

As a result, channel sharing becomes a sequence of queue cycles.
Each queue cycle consists of a queue period that contains one

or more queue turns, with each queue turn giving a collision-

free transmission opportunity to a node that has joined the queue,

followed by a request period during which nodes contend to join

the queue by transmitting queue-join requests.

Each data packet sent during a queue turn includes the following

SPAN components in its header: The size of the queue (𝑆), the

position (𝑃) of the node in the queue, an acknowledgment (𝐴) stating
the identifier of the last node that joined the queue, and a data-
ending bit (𝑁) set to indicate the last transmission by the node in

its queue turn. A request to join the queue is simply a short packet

consisting of the same four SPAN elements we have stated.

The information in the SPAN elements allows nodes to establish

and maintain a distributed transmission queue by: (a) tracking the

current queue position that should be transmitting, (b) determining

when a new cycle must start, (c) deciding when attempts to join

the transmission queue are successful, and (d) eliminating empty

turns when nodes decide to leave the transmission queue.

3.2 Queue-Bootstrapping Strategy
Figure 1 illustrates the approach used to bootstrap the shared trans-

mission queue in QSMA. To start the queue, nodes transmit join

requests as in ALOHA or CSMA, depending on whether or not

carrier sensing is used. As the figure shows, while the queue size is

0, all nodes transmit requests stating 𝑆 = 𝑃 = 1, 𝑁 = 0, and their

own identifiers for the acknowledgment field 𝐴.

Figure 1: Bootstrapping the transmission queue

To prevent nodes from sending requests that collide persistently

after their first transmissions, each node retransmits its request

after a random time as long as the queue size is 0. If no carrier

sensing is used, such a random time should be longer than the

largest packet length allowed.

As Figure 1 indicates, the first successful request from any given

node (node 𝑎 in the example) stating 𝑆 = 1 makes all other nodes

adopt the successful node as the head of the queue. Accordingly,

all other nodes state 𝑆 = 𝑃 = 2, 𝑁 = 0, and the identifier of the

head of the queue as 𝐴 in their requests. Nodes other than the head

of the queue transmit their own requests in between consecutive

requests from the head of the queue. The head of he queue does

not know that it was successful until a join request succeeds from

a node 𝑏 stating 𝑆 = 𝑃 = 2, 𝑁 = 0, and 𝐴 equal to its own identifier.

Accordingly, the head of the queue persists sending its join requests

at random times until it hears an acknowledgment from the second

node to join the queue through a successful request transmission.

The head of the queue (node 𝑎 in the example) learns that the queue

is established from the request it receives from the second node

to join the queue (node 𝑏 in the example). As soon as the queue

includes two nodes, all nodes know which node is the head of

the queue and nodes start transmitting data packets and request

packets according to the queue-joining and management strategies

described next.

3.3 Queue-Joining and Departure Strategy
Just like the transmission policy in CSMA may adopt different

persistence strategies [20], such as non-persistent or 1-persistent

strategies, different queue-joining strategies can be implemented in

QSMA. A queue-joining strategy determines how many request

turns are allowed during the request period of a queue cycle, and

how those nodes waiting to join the queue are allowed to persist

with the transmission of their requests during the request period

of a queue cycle.

In this paper we assume a very simple queue-joining strategy.

The request period of a cycle is limited to a single request turn, and

nodes waiting to join the queue are allowed to transmit their join

requests (i.e., persist) if they become ready to send their requests

during the persistence interval of the cycle, and are forced to try to

join after a random back-off time. To further simplify the strategy,

the persistence interval is defined to be the last 𝛿 seconds of the

queue period of a cycle, where 𝛿 is a constant and equals an average

packet time. Accordingly, at most one node can be added to the

transmission queue at the end of any queue cycle.

A packet sent during a queue turn can last at most onemaximum
channel access time (MCAT), so that no node can monopolize the

channel. Hence, a queue turn lasts at most the receive-to-transmit

turn-around time needed for the owner of a queue turn to start trans-

mitting, an MCAT, and the maximum propagation delay needed for

the transmission to start reaching all nodes. An empty queue turn 𝑞

lasts only long enough for all nodes to detect that no transmission

is taking place before the node occupying queue turn 𝑞 + 1 being

allowed to transmit. This time must be longer than a receive-to-

transmit turn-around time needed for the owner of a queue turn to

start transmitting, the maximum propagation delay needed for a

transmission reach all nodes, and the time needed to detect carrier

by the next node in the queue.

A request turn with a single request or multiple overlapping

requests lasts a receive-to-transmit turn-around time needed for

nodes sending their requests to start transmitting, the duration of a

request packet, and the maximum propagation delay needed for the

transmission to start reaching all nodes. Similarly, an empty request

turn lasts only a receive-to-transmit turn-around time needed for

any node sending a request to start transmitting, the maximum

propagation delay needed for any transmission to start reaching

all nodes, and the time needed to detect carrier by the node that

occupies the first queue turn.

Figure 2 illustrates the queue-joining strategy in QSMA. Only

those requests that occur during the persistence interval of cycle 𝑘

are allowed to take place during the request turn of the cycle. All

other requests to join the queue are scheduled for transmission at

random times in the future.

Figure 2: Queue-joining strategy in QSMA

Nodes leave the shared transmission queue according to a queue-

departure strategy. In most practical networks, a node joining the

transmission queue would simply remain in the queue while active

and use its turns to transmit data or control packets as needed. The

strategy assumed in this paper consists of having nodes that join

the transmission queue stay in the queue, until the queue size is

one more turn than a target size𝑚. After that, the node that has

spent the most time in the queue leaves the queue during a given

cycle with some probability.

3.4 Queue-Sharing Strategy
A node maintains several local variables to implement channel

access: the queue size 𝑞, the current transmission turn 𝑐 in the

queue, the local transmission turn 𝑙 occupied by the node, the

entry turn 𝑒 proposed by the node when it attempts to join the

transmission queue , and the identifier 𝑎 of the last node that joined

the queue.

Stating the SPAN components in each packet transmitted makes

QSMA more robust in the presence of physical-layer effects like

fading, and could also enable the use of such energy-saving steps as

allowing nodes that are not in the queue to not monitor the channel.

The 𝐷 bit allows nodes to avoid having idle turns resulting from

nodes choosing to leave the queue.

Figure 3 shows the statemachine describing howQSMAmanages

the transmission queue assuming carrier sensing. The state machine

assumes that a nodemonitors the channel independently of whether

or not the node has joined the transmission queue. Furthermore,

all nodes experience the same channel conditions and no channel

capture effects occur. Accordingly, a packet transmitted without

MAI is either decoded correctly by all the nodes or by none of them,

and no packet subject to MAI is decoded by any node.

Figure 3: QSMA state machine

QSMA has four states: IDLE, JOIN, BACKOFF, and QUEUE. In

addition to the reception of packets, a node reacts to other types

of input events when it transitions to or remains in one of those

states, and events are indicated in bold font. Each state transition

specifies: (a) the event that causes the transition and the resulting

update to the state of node, if any; and (b) the transmission by the

node if there is any.

A packet received or transmitted by a node states the queue size

𝑆 , the turn of the transmitting node 𝑃 , the identifier 𝐴 of the node

that occupies the last queue turn, and the data-ending bit 𝑁 . It is

denoted byD(𝑆 , 𝑃 ,𝐴,𝑁). A request to join the transmission queue is

simply a packet with no payload. The occurrence of carrier detect by

the node is denoted by C. The event that a node in the transmission

queue is ready to exit the transmission queue is denoted by E. The
event that a node that is not in the transmission queue needs to

join the queue is denoted by L.
A node is initialized to start in the IDLE state with the values

𝑞 = 0, 𝑙 = 0, 𝑐 = 0, 𝑒 = 0, 𝑃 = 0, and 𝑎 set to an invalid identifier.

A node remains in the IDLE state as long as it has no need to join

the transmission queue and simply monitors the activity in the

channel.

A node transitions to the JOIN or BACKOFF state depending on

input events. A node is in the JOIN state when it is attempting to

join the transmission queue. A node is in the BACKOFF state if it

must wait to attempt to join the queue. A node is in the QUEUE

state if it succeeded joining the transmission queue. A node that

joins the transmission queue can transmit only at the beginning of

its queue turn and before it can exit the transmission queue it must

transmit a packet with the 𝑁 bit set to 1.

According to the persistence strategy assumed in this paper, if

a node is ready to join the transmission queue during the last 𝛿

seconds of the queue period of the current queue cycle, the node is

allowed to persist with its request and sets 𝑃 = 1, and sets 𝑃 = 0

otherwise.

The steps taken by a node as a result of receiving a packet in

the IDLE state, the BACKOFF state, or the QUEUE state is denoted

by M in Figure 3. These steps consist of updating the size of the

queue 𝑞, the value of the current turn 𝑐 , and the value of the ACK

flag 𝑎.

IDLE state: A node in the IDLE state that receives a packet

carries out the set of steps denoted byM. If a node receives a packet

with the 𝑁 bit set, the node eliminates from the transmission queue

the turn that just took place by reducing the size of the queue by

one turn and by not incrementing the value of the current turn. If

the 𝐷 bit is not set the value of the queue size is unchanged and the

current turn is incremented. This is shown in Figure 3 by using

the value of the 𝑁 bit as an integer.

A node in the IDLE state that needs to join the transmission

queue transitions to the BACKOFF state if the queue is empty and

the node detects carrier or the queue is not empty and the node is

not allowed to persist with its join request (𝑃 = 0). In that case, the

node computes a random time 𝑅 for its queue backoff (𝑄𝐵).

On the other hand, a node in the IDLE state that needs to join

the queue transitions to the JOIN state if either the queue is empty

and the node detects no carrier, or the queue is not empty and the

node is allowed to persist with its join request (𝑃 = 1). The join

request states: 𝑆 = 𝑞 + 1 to indicate an additional turn, 𝑃 = 𝑞 + 1 to

request the last turn, 𝐴 = self (its own identifier), and 𝑁 = 0. The

node remembers the value of the requested transmission turn by

setting 𝑒 = 𝑞 + 1 and resets its local turn 𝑙 to 0.

JOIN state: A node in the JOIN state waits for a packet to ac-

knowledge its join request. The node transitions to the BACKOFF

state if either the queue is empty and no packet is received within

a join timeout (𝐽𝑇) interval, or a packet is received that does not

state the identifier of the node in the acknowledgment (𝐴). In this

case the node computes a random time 𝑅 as a queue-join backoff

after updating its local variables as needed.

A node transitions to the QUEUE state if it receives a packet

that acknowledges its request by having 𝐴 as the identifier of the

node, and updates the queue size 𝑞, and the current turn 𝑐 in the

same way as it does while in the IDLE state. In addition, it sets is

local turn 𝑙 to the turn value 𝑒 it proposed in its attempt to join the

queue.

BACKOFF state: A node in the BACKOFF state waits until its

𝑄𝐵 expires and processes packets and idle periods while in the

BACKOFF state. The node processes packets carrying out the set

of steps denoted by M or advances the current queue turn after

detecting no carrier for a period of time (queue-turn timeout or

𝑄𝑇) that is long enough for nodes to determine that the queue turn

is empty. The node transitions to the JOIN state if its queue-join

backoff expires and it is allowed to persist with its request (𝑃 = 1).

In that case, the node updates the current queue turn to equal 𝑞 + 1

and sends a join request D(𝑞 + 1, 𝑞 + 1, 𝑎, 0). The node rejoins the
BACKOFF state if its queue-join backoff expires and it is not allowed

to persist with its request (𝑃 = 0).

QUEUE state: A node in the QUEUE state remains in that state

until it receives a local signal to exit the transmission queue, which

is denoted by event E in Figure 3. While the current queue turn

does not correspond to its own queue turn (i.e., 𝑙 ≠ 𝑐 ≤ 𝑞), the node

simply processes packets carrying out the set of steps denoted by

M, or advances the current queue turn after detecting no carrier for

𝑄𝑇 . A node transmits a packet with 𝑆 = 𝑞, 𝑃 = 𝑙 , 𝐴 = 𝑎, and 𝑁 = 0

if it remains in the transmission queue, and transmits a packet with

𝑁 = 1 to exit the transmission queue. In the latter case the node

transitions to the IDLE state after reducing the queue size, updating

teh curent queue turn, and reseting its position in the queue to 0.

4 PERFORMANCE ANALYSIS OF QSMA
We adopt the traffic model first introduced by Abramson [1] to

analyze ALOHA, which has been used subsequently for the analysis

of CSMA and most other channel-access protocols. In this model,

a large number of nodes send requests to join the transmission

queue with an aggregate mean rate of 𝜆 packets per unit time

and constitute a Poisson source in the aggregate. A node backs off

for a random time in a way that transmissions for new arrivals

and backlogged arrivals can be assumed to be independent of one

another, and the system operates in steady state with no possibility

of collapse. Processing delays are negligible, the physical layer

introduces no errors, and any packet propagates to all nodes with

the same propagation delay 𝜏 . Hence, transmissions that overlap in

time are the only source of errors.

All data packets are of equal length 𝛿 and a request packets are of

length 𝛾 . A fixed turn-around time 𝜔 is assumed for nodes to start

transmitting or receiving, and the time needed to detect carrier by

any given node is 𝜉 . If carrier sensing is used, the time needed for

a node to decide that a queue turn or a request turn is empty is

simply 𝜉 (i.e., 𝑄𝑇 = 𝐽𝑇 = 0). Without carrier sensing, 𝑄𝑇 equals

the length of a data packet and 𝐽𝑇 equals the length of a request

packet. The length of the persistence interval of a cycle consists

of the last 𝛿 seconds of its queue period. We assume that nodes

that join the transmission queue stay in the queue waiting for the

queue size to reach a target value𝑚. Once the queue size is𝑚 + 1,

nodes follow a first-in, first-out (FIFO) discipline in which the node

that has spent the most time in the queue leaves the queue during

a given cycle with probability 𝑞.

4.1 Throughput of QSMA
Given that QSMA establishes transmission cycles consisting of

queue turns followed by a request turn, its throughput can be stated

as a function of the average size of the transmission queue 𝑄 and

the length of each queue turn and request turn.

Theorem 4.1. The throughput of QSMA with carrier sensing is

𝑆𝐶𝑆 =
𝛿𝜇𝑄

[𝜔 + 𝜏 + 𝜉 + (𝛿 − 𝜉)𝜇]𝑄 + 𝜔 + 𝜏 + 𝛾 − (𝛾 − 𝜉)𝑒−𝜆𝛿
(1)

where 𝜇 is the probability that a node transmits a packet during its
queue turn and 𝑄 is the average size of the transmission queue.

Proof. The throughput of QSMA is simply the ratio of the time

𝑈 spent transmitting packets without MAI in an average queue

cycle divided by the time 𝐶 of an average queue cycle.

Each queue turn of a cycle contains a successful packet with

probability 𝜇 lasting 𝛿 seconds; therefore,𝑈 equals 𝜇𝛿𝑄 . The value

of 𝐶 depends on the average queue size and the average length of

the join turns that occur in each cycle.

Based on the queue-join strategy we described in Section 3.3,

a join turn with at least one join request lasts 𝜔 + 𝜏 + 𝛾 , while an
empty join turn lasts only 𝜔 + 𝜏 + 𝜉 .

The probability of having an empty join turn equals the probabil-

ity of no requests arriving for transmission in the last 𝛿 seconds of

the queue period. Given that the arrivals of join requests is Poisson

with parameter 𝜆, this probability is 𝑒−𝜆𝛿 . Therefore, the average
duration of a join turn equals 𝐽 = 𝜔 + 𝜏 + 𝜉𝑒−𝜆𝛿 + 𝛾 (1 − 𝑒−𝜆𝛿).

Similarly, a queue turn has a transmission with probability 𝜇, in

which case it lasts lasts 𝜔 + 𝜏 + 𝛿 , and lasts only 𝜔 + 𝜏 + 𝜉 when

it is empty. Therefore, the average duration of a queue turn is

𝑇 = 𝜔 + 𝜏 + (1 − 𝜇)𝜉 + 𝜇𝛿 .

The duration of an average queue cycle is then 𝐶 = 𝑄𝑇 + 𝐽 and

the result follows by taking the ratio𝑈 /𝐶 . □

Theorem 4.2. The throughput of QSMA with no carrier sensing is

𝑆𝑁𝐶𝑆 =
𝛿𝜇𝑄

𝑄 (𝜔 + 𝜏 + 𝛿) + 𝜔 + 𝜏 + 𝛾
(2)

where 𝜇 is the probability that a node transmits a packet during its
queue turn and 𝑄 is the average size of the transmission queue.

Proof. Given an average queue size𝑄 , the average time𝑈 spent

transmitting packets without MAI without carrier sensing is the

same as in the previous theorem, i.e., 𝜇𝛿𝑄 .

Given the assumption that all data packets have the same length,

the duration of a queue turn is the same whether or not it is used

for a transmission, because nodes must defer long enough without

the benefit of sensing that transmissions are taking place. The same

applies for a join turn.

With the assumption that all data packets last 𝛿 seconds and

join requests last 𝛾 seconds, we thus have that 𝑇 = 𝜔 + 𝜏 + 𝛿 and

𝐽 = 𝜔 + 𝜏 + 𝛾 , which implies that the duration of an average queue

cycle is

𝐶 = 𝑄𝑇 + 𝐽 = 𝑄 (𝜔 + 𝜏 + 𝛿) + 𝜔 + 𝜏 + 𝛾 (3)

The result follows by taking the ratio𝑈 /𝐶 . □

4.2 Average Size of Transmission Queue
Given that at most one node may join or leave the transmission

queue in any given cycle, a cycle of length 𝑘 must be followed by

a cycle whose length can only be 𝑘 − 1, 𝑘 , or 𝑘 + 1, depending on

whether a node leaves the transmission queue and a node joins

the transmission queue. Figure 4 illustrates the nature of channel

utilization in QSMA.

Figure 4: Example of channel utilization in QSMA

The figure shows cycle 𝑘 having a queue with 𝑚 turns and a

single request to join the queue occurring during the last 𝛿 seconds

of the queue period, which results in a success and hence cycle 𝑘 +1

has𝑚 + 1 nodes in the queue. Three requests to join the queue are

allowed to persist in cycle 𝑘 + 1, which results in a collision and

cycle 𝑘 + 2 has again𝑚 + 1 nodes in the queue. One node leaves the

queue after transmitting and no requests to join the queue occur

during cycle 𝑘 +2, which results in cycle 𝑘 +3 having𝑚 queue turns

again. The example also shows a single join request being able to

persist in cycle 𝑘 + 3, which results in an increase of the queue size.

The following theorem states the average queue size in QSMA

as a function of the target value of the queue size.

Theorem 4.3. The average queue size in QSMA is

𝑄 =𝑚 + 𝑃𝑠 (1 − 𝑞)
𝑞 − 𝑃𝑠

with 𝑃𝑠 < 𝑞 (4)

where𝑚 is the target queue size, 𝑞 is the probability that the first node
that joined the queue leaves in a given cycle, and 𝑃𝑠 is the probability
of success during the request turn of a cycle.

Proof. Given that the system is assumed to operate in equilib-

rium, the size of the queue must drift to𝑚 as successes to join the

queue take place within a finite period of time. Once the queue size

is𝑚, nodes may join and leave the queue with some probability, but

the queue size must return to any given size𝑚 + 𝑘 with 𝑘 = 0, 1,

The average size of the queue 𝑄 equals 𝑚 + 𝑣 , where 𝑣 is the

average number of queue turns in addition to𝑚. The value of 𝑣

can be obtained using a homogeneous Markov chain whose states

represent the number of nodes in the transmission queue once the

transmission queue has grown to include at least𝑚 nodes.

As Figure 4 illustrates, the probability of growing the queue size

from𝑚 + 𝑘 to𝑚 + 𝑘 + 1 and the probability of reducing the queue

size from𝑚 +𝑘 to𝑚 +𝑘 −1 are independent of the number of nodes

in the transmission queue𝑚 + 𝑘 , with 𝑘 = 0, 1, 2,

Figure 5 shows the resulting Markov chain representing the

number of queue turns in a cycle.

We denote by 𝜋𝑘 (𝑘 = 0, 1, 2, ...) the stationary probability that

there are𝑚 + 𝑘 nodes that have joined the transmission queue in a

given queue cycle. The probability of increasing the queue size by

one in a cycle is denoted by 𝑔 and the probability of reducing the

queue size by one in a cycle is denoted by 𝑟 .

Starting with a queue size of𝑚, the addition of a new node to

the queue is independent of the departure of a node from the queue

during a given cycle.

Figure 5: Markov chain for QSMA with one departure per
queue cycle after target queue size𝑚 is reached and an un-
bounded queue size is allowed

With the results stated above and our modeling assumptions

we obtain the following balance equations for the Markov chain

shown in Figure 5:

𝑔 𝜋0 = 𝑟 𝜋1; (5)

(𝑟 + 𝑔)𝜋𝑘 = 𝑔𝜋𝑘−1
+ 𝑟𝜋𝑘+1

for 𝑘 = 1, 2, ...

Eq. (5) results in the following by iteration and induction:

𝜋𝑘 = 𝜋0 (𝑔/𝑟)𝑘 for 𝑘 = 1, 2, ... (6)

The transmission queue must have some size of at least𝑚 in any

given cycle; therefore,

𝜋0 + 𝜋1 + ... + 𝜋𝑘 + ... = 1 (7)

Substituting Eq. (6) in Eq. (7) we obtain

1 = 𝜋0 +
∞∑
𝑖=1

𝜋𝑖 =

(
1 +

∞∑
𝑖=1

(𝑔
𝑟

)𝑖)
𝜋0 (8)

For the system to operate in equilibrium, it must be true that

𝑔 < 𝑟 ; therefore, 𝜌 = 𝑔/𝑟 < 1. From Eq. (8) we have

𝜋0 =

(
1 +

∞∑
𝑖=1

(𝑔
𝑟

)𝑖)−1

= 1 − 𝑔

𝑟
= 1 − 𝜌 (9)

Substituting Eq. (9) in Eq. (6) we obtain:

𝜋𝑘 =

(
1 − 𝑔

𝑟

) (𝑔
𝑟

)𝑘
= (1 − 𝜌) 𝜌𝑘 with 0 < 𝜌 < 1 (10)

The average size of the transmission queue is then:

𝑄̄ = 𝑚 +
∞∑
𝑖=0

𝑖 𝜋𝑖 =𝑚 + 𝜌

∞∑
𝑖=1

𝑖 (1 − 𝜌)𝜌𝑖−1

= 𝑚 + 𝜌

1 − 𝜌
with 0 < 𝜌 < 1 (11)

With the assumptions in our model and 𝑔 < 𝑟 we have

𝑔 = 𝑃𝑠 (1 − 𝑞); 𝑟 = (1 − 𝑃𝑠)𝑞; 𝑃𝑠 < 𝑞 (12)

The result follows by substituting the values of 𝑟 and 𝑔 in Eq. (11).

□

Assuming that the arrival of requests to join the transmission

queue is Poisson distributed with parameter 𝜆, a join request suc-

ceeds with probability 𝜆𝛿𝑒−𝜆𝛿 . Substituting this result for 𝑃𝑠 in

Eq. (4) leads to the following result.

Corollary 4.4. If the arrival of requests to join the transmission
queue is Poisson with parameter 𝜆 the average queue size in QSMA is

𝑄 =𝑚 + (1 − 𝑞)𝜆𝛿𝑒−𝜆𝛿

𝑞 − 𝜆𝛿𝑒−𝜆𝛿
with 𝜆𝛿𝑒−𝜆𝛿 < 𝑞 (13)

The previous results on the average queue size are independent

of the use of carrier sensing. This is a direct consequence of the

simple approach we chose to use for persistence as part of the

queue-join strategy. More specifically, the success of a join turn is

determined solely by the arrival of join requests during the last 𝛿

seconds of the queue period of a cycle, which is a process that does

not depend on carrier sensing.

4.3 Delay Reaching Target Queue Size
Figure 6 illustrates the random evolution incurred in reaching a

target queue size of𝑚 starting with the first request packet that is

transmitted successfully into the channel. Each node in the figure

represents the number of queue turns in a given queue cycle. The

arrows represent the transition from state 𝑘 to either state 𝑘 + 1 or

state 𝑘 itself for 𝑘 = 1, 2, ...,𝑚 − 1. The figure shows the transition

probabilities and the average delays incurred in transitions.

A transition from state 1 to state 2 or back to state 1 takes place

according to the bootstrapping strategy described in Section 3.2.

The probability of transitioning from state 1 to state 2 is denoted by

𝑃1. The average time spent in that transition is denoted by 𝐶1 (𝑠).
On the other hand, the probability of transitioning from state 1 back

to state 1 is 1 − 𝑃1, and the average time spent in that transition is

denoted by 𝐶1 (𝑓).
The transitions from a state 𝑘 to 𝑘 + 1 or back to state 𝑘 for

2 ≤ 𝑘 ≤ 𝑚 occur according to the queue-joining and sharing

strategies presented in Sections 3.3 and 3.4. As such, the probability

of transitioning from state 𝑘 to state 𝑘 +1 is the same for 2 ≤ 𝑘 ≤ 𝑚

and is denoted by 𝑃𝑠 , and the probability of transitioning from state

𝑘 back to state 𝑘 is 1 − 𝑃𝑠 . The average time spent in the transition

from state 𝑘 to state 𝑘 + 1 is denoted by𝐶𝑘 (𝑠), and the average time

spent in the transition from state 𝑘 back to state 𝑘 is denoted by

𝐶𝑘 (𝑓).

Figure 6: Random evolution reaching target queue size

The following theorem states the average delay reaching a target

queue size assuming that carrier sensing is used and the carrier-

detect time is negligible (𝜉 = 0).

Theorem 4.5. The average delay in reaching a target queue size
𝑚 in QSMA with carrier sensing and a probability 𝜇 that a node
transmits during its queue turn is

𝐷̄ (𝑚) = 1

𝜆
+
(
𝑒𝜆 (𝜔+𝜏) − 1

)
𝑅+ (𝜔 +𝜏 +𝛾)

(
𝑒𝜆 (𝜔+𝜏) + 1

)
(14)

+ (𝑚 − 2)
[
𝑠 + 𝑓

(
𝑒𝜆𝛿

𝜆𝛿
− 1

)]
+

(
𝑚 (𝑚 − 1)

2

− 1

)
𝑒𝜆𝛿

𝜆𝛿
(𝜔 + 𝜏 + 𝜇𝛿)

where 𝑠 = 𝜔 + 𝜏 + 𝛾𝜆𝛿𝑒−𝜆𝛿 and 𝑓 = 𝜔 + 𝜏 + (1 − (1 + 𝜆𝛿)𝑒−𝜆𝛿)𝛾 .

Proof. Given that the system is in equilibrium, there must be a

first join request transmitted without MAI with probability 1. To

grow the queue to two turns, a second node must succeed transmit-

ting its request without interference from any other node trying

to join the queue. Hence, 𝑃1 equals the probability that a request

packet is sent successfully. Given that carrier sensing is used and

nodes are deaf while they turn from receive to transmit mode, it

follows that 𝑃1 = 𝑒−𝜆 (𝜔+𝜏)
.

The average time elapsed between the first and the second suc-

cessful request packet equals the average interarrival time of re-

quests transmitted by nodes, given that no queue is established

until the second request succeeds. By assumption, the arrival pro-

cess of requests is Poisson with parameter 𝜆, and hence the average

elapsed time between two successful requests is 1/𝜆. Given that

each request takes 𝜔 + 𝜏 + 𝛾 seconds, we have

𝐶1 (𝑠) = 1/𝜆 + 2(𝜔 + 𝜏 + 𝛾) (15)

The average time elapsed in a transition from state 1 back to

state 1 is the average time between the transmission of request

packets by the head of the queue according to the bootstrapping

strategy. Given that an average random time 𝑅 is used between

the retransmissions of requests by the same node until a second

request succeeds to acknowledge the head of the queue, we have

𝐶1 (𝑓) = 𝑅 + 𝜔 + 𝜏 + 𝛾 (16)

A transition from state 𝑘 to state 𝑘 + 1 (2 ≤ 𝑘 ≤ 𝑚 − 1) requires a

single request to be transmitted during the request turn of a queue

cycle. Given that the persistence interval during a queue cycle is

𝛿 seconds, it follows that the transition probability from state 𝑘 to

state 𝑘 + 1 for 2 ≤ 𝑘 ≤ 𝑚 − 1 equals 𝑃𝑠 = 𝜆𝛿𝑒−𝜆𝛿 .
A queue cycle in state 𝑘 incurs 𝑘 queue turns, and a request turn

lasts 𝜔 + 𝜏 + 𝛾 for a successful request; therefore,

𝐶𝑘 (𝑠) = 𝑘𝑇 + 𝜔 + 𝜏 + 𝛾𝜆𝛿𝑒−𝜆𝛿 (17)

where 𝑇 is the average length of a queue turn and for 𝜉 = 0 equals

𝑇 = 𝜔 + 𝜏 + 𝜇𝛿.

A transition from state 𝑘 back to state 𝑘 (2 ≤ 𝑘 ≤ 𝑚− 1) involves

𝑘 queue turns and occurs if no request is sent or multiple requests

are transmitted during the request turn of the cycle. No request is

sent in a request turn with probability 𝑒−𝜆𝛿 and the request turn

lasts 𝜔 + 𝜏 + 𝜉 seconds in that case. Similarly, multiple requests are

sent in a request turn with probability 1 − 𝑒−𝜆𝛿 − 𝜆𝛿𝑒−𝜆𝛿 and the

request turn lasts 𝜔 + 𝜏 + 𝛾 seconds in that case. Hence,

𝐶𝑘 (𝑓) = 𝑘𝑇 + 𝜔 + 𝜏 + 𝜉𝑒−𝜆𝛿 + 𝛾 (1 − (1 + 𝜆𝛿)𝑒−𝜆𝛿) (18)

= 𝑘𝑇 + 𝜔 + 𝜏 + 𝛾 (1 − (1 + 𝜆𝛿)𝑒−𝜆𝛿)
The success of a request to join the queue is independent of any

other request. Accordingly, the average delay incurred in growing

the queue size to𝑚 starting from state 1 can be obtained from the

following equations:

𝐷̄1 = 𝑃1 (𝐶1 (𝑠) + 𝐷̄2) + (1 − 𝑃1) (𝐶1 (𝑓) + 𝐷̄1) (19)

𝐷̄𝑘 = 𝑃𝑠 ((𝐶𝑘 (𝑠) + 𝐷̄𝑘+1
) + (1 − 𝑃𝑠) (𝐶𝑘 (𝑓) + 𝐷̄𝑘), 2 ≤ 𝑘 ≤𝑚 − 2 (20)

𝐷̄𝑚−1 = 𝑃𝑠𝐶𝑚−1 (𝑠) + (1 − 𝑃𝑠) (𝐶𝑚−1 (𝑓) + 𝐷̄𝑚−1) (21)

Solving Eq. (19) for 𝐷̄1 and substituting the values of 𝑃1, 𝐶1 (𝑠),
and 𝐶1 (𝑓) we obtain

𝐷̄1 =
1

𝜆
+

(
𝑒𝜆 (𝜔+𝜏) − 1

)
𝑅 +

(
𝑒𝜆 (𝜔+𝜏) + 1

)
(𝜔 + 𝜏 + 𝛾) + 𝐷̄2 (22)

Solving Eqs. (20) and (21) for 𝐷̄2 we have

𝐷̄2 = (𝑚−2)
[
𝑠 + 𝑓

(
𝑒𝜆𝛿

𝜆𝛿
− 1

)]
+

(
𝑚 (𝑚 − 1)

2

− 1

)
𝑒𝜆𝛿

𝜆𝛿
(𝜔 +𝜏 + 𝜇𝛿) (23)

where 𝑠 = 𝜔 + 𝜏 + 𝛾𝜆𝛿𝑒−𝜆𝛿 and 𝑓 = 𝜔 + 𝜏 + (1 − (1 + 𝜆𝛿)𝑒−𝜆𝛿)𝛾 .
The result follows by substituting Eq. (23) in Eq. (22). □

5 PERFORMANCE COMPARISON
5.1 Results from Analytical Model
We compare QSMA with the most efficient schedule-based

MAC protocol (TDMA with a fixed schedule), the most efficient

contention-based MAC protocol (CSMA/CD, which requires full-

duplex nodes), and ALOHA and CSMA, which are similar in com-

plexity to QSMA.

The results are normalized to the length of a data packet by

making 𝛿 = 1 and use 𝐺 = 𝜆 × 𝛿 as the normalized traffic into the

channel. The normalized value of each other variable, which equals

its ratio with 𝛿 is used as needed. The carrier-detect time 𝜉 is set to

0 in order to use published results.

5.1.1 Throughput Results: The arrival of all packets is Poisson

with parameter 𝜆. For ALOHA, CSMA, and CSMA/CD this means

data-packet arrivals. For QSMA, a node in the queue transmits

during its own turn if it has at least one data-packet arrival during

the previous 𝛿 seconds. Furthermore, if there is one or multiple

arrivals in the last 𝛿 seconds prior to the start of a queue turn, then

there is at least one arrival for the next queue turn in the cycle. The

average queue size is assumed to be equal to the target queue size

(i.e., 𝑄 =𝑚, which implies that 𝑞 = 1 in Eq. (13)).

With these simplifying assumptions, the intensity of traffic from

nodes in the queue correlates with the total traffic intensity, and

means that 𝜇 = 1 − 𝑒−𝜆𝛿 in Eqs. (1) and (2).

The throughput of fixed-schedule TDMA can be derived from

Eq. (2) for QSMA by considering that the only overhead TDMA

would incur is due to propagation delays and turn-around times.

Assuming the same traffic intensity 𝜇 above, this results in:

𝑆𝑇𝐷𝑀𝐴 = 𝛿𝜇/(𝜔 + 𝜏 + 𝛿) = (1 − 𝑒−𝜆𝛿)𝛿/(𝜔 + 𝜏 + 𝛿) (24)

Figure 7 shows the throughput (𝑆) as a function of 𝐺 for QSMA

based on Eqs. (1) and (2), fixed-schedule TDMA (Eq. (24)), ALOHA

with priority ACK’s (Eq. (20) in [14]), non-persistent CSMA with

priority ACK’s (Eq. (18) in [12]), and non-persistent CSMA/CDwith

priority ACK’s (Eq. (3) in [13]).

The results assume a channel data rate of 1 Mbps, physical dis-

tances of 500 meters, a data packet of 1500 bytes, which renders a

normalized propagation delay of 1.7× 10
−6
, and an overhead due to

the PLCP (Physical Layer Convergence Procedure) of 24 bytes at 1

Mbps normalized to 240 bytes. The turn-around time 𝜔 is assumed

to be the same as a propagation delay, and an ACK in ALOHA,

CSMA , and CSMA/CD consists of 40 bytes. No carrier sensing in

QSMA is denoted by “NCS."

The results in Figure 7 illustrate the high efficiency and stability

of QSMA, which outperforms CSMA and CSMA/CD even when the

average queue size is only two turns. This is remarkable, given that

only carrier sensing is used to attain collision-free transmissions

from all the nodes that join the transmission queue.

It is clear that carrier sensing is very useful in QSMA at light

loads by allowing a node in the queue to quickly take over an

unused queue turn or request turn after detecting no carrier at

the start of the turn. This results in a very effective transmission

strategy without collisions that is even better than TDMA with a

fixed schedule, which may leave time slots unused. At high loads,

carrier sensing does not provide any advantage in QSMA, because

most request and queue turns tend to be used. QSMA is slightly less

efficient than fixed-schedule TDMA at high loads only if every data

packets occupies most of its time slot. Large variances in packet

lengths makes QSMAmore efficient than TDMA even at high loads,

because a queue turn does not have a fixed length.

5.1.2 Delay Results: Figure 8 shows the average delay incurred

in QSMA to reach different target queue sizes as a function of the

normalized number of join requests𝐺 = 𝜆𝛿 when 𝜇 = 1 and𝑅 = 0. It

is clear from Eq. (14) and the figure that the average delay incurred

in reaching a target queue becomes very large when𝑚 is large, the

average length of data packets is long, and the average number of

requests per request turn (𝜆𝛿) is much larger than 1. This is because

each success would take many cycles to occur and each cycle would

last a long time. has many queue turns.

In a finite networkwith a target queue size that can accommodate

all active nodes, the arrival rate of queue-join requests decreases as

more nodes join the queue. This makes the results in Figure 8 far

more promising, because they suggest that a target queue size that

includes all active nodes can be reached in just a few seconds even

in networks with a hundred nodes.

5.2 Simulation Comparison
5.2.1 Simulation Setup and Scenarios: We use the ns-3 simulator

[22] to verify the average throughput of QSMA and delays incurred

in reaching a target queue size predicted by the analytical model.

Given the results from the analytical model, we compare QSMA

only with ALOHA with ACK’s and CSMA with ACK’s. TDMA with

fixed schedules would result in very similar throughput as QSMA,

and CSMA/CD would require full-duplex transceivers.

The results represent the mean and the standard deviation of 10

trials for each experiment. The scenarios assume fully-connected

topologies of 10 or 50 nodes that always have data packets to send.

Node placement is random with nodes being within 425m of each

other, resulting in propagation delays of 1415 ns or less. No channel

capture or channel errors occur, the MAC data rate is 10Mbps, and

the transmission rate for the PLCP (Physical Layer Convergence

Procedure) preamble and header of 24 bytes is 1 Mbps in the three

protocols. Each simulation experiment lasts 10 min.

ALOHA and CSMA use a binary exponential backoff scheme

with a maximum backoff of 256 epochs, where each epoch lasts 100

𝜇𝑠 . ACK’s in ALOHA and CSMA are set to 14 bytes used in 802.11

ACK’s. Until the queue is successfully bootstrapped, QSMA uses

a binary exponential backoff scheme with a maximum backoff of

10ms. Once the queue is established, nodes’ backoffs are calculated

Figure 7: Throughput of ALOHA with ACK’s, CSMA with ACK’s, CSMA/CD with ACK’s, TDMA, and QSMA

in queue turns, with a maximum backoff of 32 turns. Data packets

in QSMA add three bytes, which suffices to carry the 𝑆 , 𝑃 , 𝐴, and

𝑁 feedback for up to 64 nodes. The target queue size in QSMA is

set to accommodate any number of nodes.

5.2.2 Throughput Results: Given the results from the analytical

model, we do not consider TDMA , which performs much like

QSMA, and CSMA/CD, which requires full-duplex operation. Fig-

ure 9 shows the normalized throughput for ALOHA, CSMA and

QSMA with and without carrier sensing. QSMA w/o CS denotes

QSMA without carrier sensing, and QSMA denotes the use of car-

rier sensing in QSMA. We consider data payloads of 218 bytes,

which correspond to a typical VoIP frame [23], and 1500 bytes,

which is the typical payload MTU of an IP packet [16], and an even

combination of them.

Figure 8: Average delay reaching target queue size

As the figure shows, QSMA attains far better throughput than

ALOHA and CSMA independently of the network size or payload

type, with better than 90% throughput even when no carrier sensing

is used. The small throughput degradation with small payloads in

QSMA results mainly from the relatively lager overhead of propa-

gation delays in queue turns with short packets. ALOHA performs

much worse with large and mixed payloads because because the

average vulnerability period of a data packet is larger. CSMA at-

tains throughput values above 60% and below 90%; it performs

better with large payloads because the overhead of priority ACK’s

is comparatively smaller than with small data packets.

Figure 9: Throughput of ALOHA, CSMA and QSMA

5.2.3 Delay Results: Figure 10 shows the average delay incurred

by each node to join the distributed queue in QSMA in the order

in which each node joins the queue when data packets payloads

have 218 and 1500 bytes. It should be noted that nodes do no reset

their backoff exponent as in ALOHA or CSMA, and nodes that

fail repeatedly can face long delays joining the queue, even when

the network has a few nodes attempting to join. Furthermore, as

the shared queue grows in size, each queue cycle becomes longer,

which increases the time a node must wait before re-transmitting a

join request, and decreases the probability that a node will come

out of backoff within the persistence interval. Fortunately, each

node needs only one success to join the queue, which results in

all the nodes joining the queue in a very short period of time for

practical purposes.

The simulation experiments show that, even with no carrier

sensing, all nodes join the queue well within 9 seconds when data

packets have 1500 bytes, and well within 3 seconds when data pack-

ets have 218 bytes. The delay results shown in Figure 10 would be

more than adequate in most real networks. However, the simplistic

queue-joining strategy assumed in this paper can and should be

improved to make QSMA more effective in the presence of long

propagation delays resulting from longer distances.

Figure 10: Delay joining the queue in QSMA

6 CONCLUSIONS AND FUTUREWORK
We introduced QSMA, a new family of channel-access protocols in

which collision-free transmissions and maximum channel-access

delay guarantees are quickly attained through the sharing of a trans-

mission queue without the need for time slotting at the physical

layer or the use of explicit handshakes requiring transmitters to

know the identity of intended receivers before such nodes have

joined the transmission queue.

The signaling overhead in QSMA is very small. Each packet

header states the queue size, a position in the queue, a bit informing

whether the transmitter is leaving the queue, and the identifier of

the last node that joined the transmission queue. A request packet

used to join the shared transmission queue simply specifies this

same information, and is much smaller than a data packet.

Our results show that QSMA is more efficient than even TDMA

with a fixed schedule, and yet it maintains much of the simplicity

of ALOHA and CSMA.

Several QSMA optimizations can be made and deserve further

study. The delays incurred in reaching target queue sizes could be

reduced by either allowing multiple successes during a requests

turn, or by increasing the probability of having a successful request

in a request turn. In addition, the efficiency of QSMA could be

further improved by making the queue-joining mechanism more

aggressive when the queue size is small and recent join requests

are successful, and less aggressive otherwise.

Our results on QSMA open up many research avenues on the

design of channel-access protocols based on distributed-queues. Of

particular interest are: (a) designing signaling to cope with hidden

terminals while attaining collision-free transmissions; (b) taking

advantage of multiple channels; (d) having nodes occupy multiple

turns per queue cycle to support quality-of-service guarantees; and

(e) allowing nodes in the queue to save energy by being inactive in

some queue cycles.

ACKNOWLEDGMENTS
This material is based upon work sponsored by the National Science

Foundation (NSF) under Grant CCF-1733884, and by the Defense

Advanced Research Projects Agency (DARPA) and the Air Force

Research Laboratory (AFRL). Any opinions, findings, conclusions

or recommendations expressed in this material are those of the

author and do not necessarily reflect the views of NSF, DARPA,

AFRL, the U.S. Department of Defense, or the U.S. government.

REFERENCES
[1] N. Abramson, “The ALOHA System–Another Alternative for Computer Commu-

nications," Proc. Fall Joint Computer Conference ‘70, 1970.
[2] L. Bao and J.J. Garcia-Luna-Aceves, “A New Approach to Channel Access Schedul-

ing for Ad Hoc Net-works," Proc. ACM MobiCom ‘01, July 2001.

[3] L. Bao and J.J. Garcia-Luna-Aceves, “Hybrid Channel Access Scheduling in Ad

Hoc Networks," Proc. IEEE ICNP ‘02, Nov. 2002.
[4] D. Bertsekas and R. Gallager, Data Networks, Prentice-Hall, 1992.
[5] A. Boukersche, et al., Handbook of Algorithms for Wireless Networking and Mobile

Computing, CRC Press, 2005.

[6] J. Capetanakis, “Tree Algorithm for Packet Broadcasting Channel," IEEE Trans.
Info. Theory, 1979.

[7] D. Cirimelli-Low and J.J. Garcia-Luna-Aceves, “ns-3 Simulation of QSMA." [Online]

Available at: https://github.com/DylanCirimelli-Low/QSMA-Sim

[8] F. Clazzer et al., “Enhancing Contention Resolution ALOHA Using Combining

Techniques," IEEE Trans. Commun., 2018.
[9] A. Laya et al., “Goodbye, ALOHA!," IEEE Access, April 2016.
[10] R. Garces and J.J. Garcia-Luna-Aceves, “Collision Avoidance and Resolution

Multiple Access with Transmission Groups," Proc. IEEE INFOCOM ‘97, April 1997.
[11] J.J. Garcia-Luna-Aceves and A.N. Masilamani, “NOMAD: Deterministic Collision-

Free Channel Access with Channel Reuse inWireless Networks," Proc. IEEE SECON
‘11, June 2011.

[12] J.J. Garcia-Luna-Aceves, “Carrier-Sense Multiple Access with Collision Avoidance

and Detection," Proc. ACM MSWiM ‘17, 2017.
[13] J.J. Garcia-Luna-Aceves, “Carrier Resolution Multiple Access," Proc. ACM PE-

WASUN, 2017.
[14] J.J. Garcia-Luna-Aceves, “KALOHA: ike i ke ALOHA," Proc IEEE MASS 2019, Nov.

2019.

[15] A.C.V. Gummalla and J.O. Limb, “Wireless Medium Access Control Protocols,"

IEEE Communications Surveys & Tutorials, 2000.
[16] C. Horning, “A Standard for the Transmission of IP Datagrams over Ethernet

Networks," RFC 894, IETF, April 1984.

[17] G. Jakllari and R. Ramanathan, “A Sync-less Time-Divided MAC Protocol for

Mobile Ad-hoc Networks," IEEE MILCOM ‘09, Oct. 2009.
[18] G. Jakllari, M. Neufeld and R. Ramanathan, “A Framework for Frameless TDMA

Using Slot Chains," Proc. IEEE MASS 2012, Oct. 2012.
[19] R. Jurdak et al., “A Survey, Classification and Comparative Analysis of Medium

Access Control Protocols for Ad Hoc Networks," IEEE Communications Surveys &
Tutorials, 2004.

[20] L. Kleinrock and F. A. Tobagi, “Packet Switching in Radio Channels: Part I - Carrier

Sense Multiple-Access Modes and Their Throughput-Delay Characteristics,” IEEE
Trans. Commun., 1975.

[21] A. Muir and J.J. Garcia-Luna-Aceves, “An Efficient Packet-Sensing MAC Protocol

for Wireless Networks," Mobile Networks and Applications, 1998.
[22] ns3 Network Simulator. On-line: https://www.nsnam.org

[23] M. Ramalho et al., “RTP Payload Format for G.711.0," RFC 7655, IETF, Nov. 2015.

[24] S. Ramanathan and E.L. Lloyd, “Scheduling Algorithms for Multihop Radio Net-

works," IEEE/ACM Trans. Networking, 1993.
[25] A. Sgora et al., ,“A survey of TDMA Scheduling Schemes in Wireless Multihop

Networks," ACM Computing Surveys, 2015.
[26] Z. Tang and J.J. Garcia-Luna-Aceves, “A Protocol for Topology-Dependent Trans-

mission Scheduling," Proc. IEEE WCNC ‘99, Sept. 1999.
[27] Z. Tang and J.J. Garcia-Luna-Aceves, “Hop Reservation Multiple Access (HRMA)

for Ad-Hoc Networks," Proc. IEEE INFOCOM ‘99, 1999.
[28] A. Tzamaloukas, J.J. Garcia-Luna-Aceves, “Channel Hopping Multiple Access

with Packet Trains for Ad Hoc Networks," Proc. IEEE MoMuC ‘00, 2000.
[29] F. Tobagi and L. Kleinrock, “The Effect of Acknowledgment Traffic on the Capacity

of Packet-Switched Radio Channels," IEEE Trans. Commun., June 1978.
[30] D. J. Vergados et al., “Local Voting: Optimal Distributed Node Scheduling Algo-

rithm for Multihop Wireless Networks,” INFOCOM Workshop ‘17 , 2017.
[31] W. Xu and G. Campbell, “A Distributed Queuing Random Access Protocol for a

Broadcast Channel," Proc. ACM SIGCOMM ‘93, Oct. 1993.
[32] C. Zhu and M. S. Corson, “A Five Phase Reservation Protocol (FPRP) for Mobile

Ad Hoc Networks," Proc. IEEE INFOCOM ‘98, 1998.

	Abstract
	1 Introduction
	2 Related Work
	3 QSMA
	3.1 Transmission Strategy
	3.2 Queue-Bootstrapping Strategy
	3.3 Queue-Joining and Departure Strategy
	3.4 Queue-Sharing Strategy

	4 Performance Analysis of QSMA
	4.1 Throughput of QSMA
	4.2 Average Size of Transmission Queue
	4.3 Delay Reaching Target Queue Size

	5 Performance Comparison
	5.1 Results from Analytical Model
	5.2 Simulation Comparison

	6 Conclusions and Future Work
	References

