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ABSTRACT

Convolutional Neural Networks in Learning Fokker-Planck Equations

by

Andrew Gracyk

We discretize spatial domains into lattices. We provide the multivariate Fokker-Planck partial differ-

ential equation and its numerical solutions. We establish our convolutional neural network details,

aiming to train these networks on our Fokker-Planck data with the goal of recovering Fokker-Planck

coefficients. We break up our objective into different cases. For each case, we discuss results.

First, we consider the simplified diffusion equation, then the advection-diffusion equation, where our

networks learn the differential operators. We consider long-time integration methods. Finally, we

consider finite difference and finite volume methods.
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1 Introduction

The Fokker-Planck equation is a partial differential equation that describes the time evolution of

a multivariate probability density function (PDF) subject to an initial condition as well as drift

and diffusion influences. It is our aim to extract unknown drift and diffusion coefficients given data

of solutions to this equation. In order to do this, there are machine learning techniques we may

employ.

Convolutional neural networks (CNNs) are a machine learning mechanism frequently used in clas-

sification. A lattice full of values represents an image, where a value typically corresponds to a

pixel. The goal of such a CNN is to learn a mapping from this lattice to a single value, and this

single value is representative of some classification. For example, if we are training on data to learn

classification between two types of images, a 0 may represent one class of images and 1 the other;

however, CNNs go beyond classification. Instead of learning mappings between images to the set N,

CNNs can be used to learn mappings from one image to another. Backpropagation can be performed

in this mapping, and trainable kernel parameters θ1,θ2, . . . ,θk, with its elements the weights, can

be learned in this mapping to minimize a loss function. This loss function is a penalization of how

incorrect a classification, or in this case a predicted image, is. Naturally, this is something we would

like to minimize, as we strive to make predictions as accurately as can be.

Figure 1. Above are examples of discretized functions turned into images. Training data for our

CNNs will be similar. In this particular case, the figures on the right-hand side f [i] are the Laplacian

∆ of the figures on the left u[i].

We can turn solutions of the Fokker-Planck equation into images by discretizing a spatial domain

in R2, and evaluating Fokker-Planck equations at times ti = i∆t, i ∈ N ∪ {0} along this domain.
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Such discretized solutions can be generated with a variety of numerical methods, which we will

elaborate later. With this data, we can use CNNs to learn time-evolution of the PDE, learning a

direct mapping between one discretized solution to the other, or to learn the differential operator.

In particular, we consider discretized domain

Ω =
{

(−mh, nh) ∈ R2 : h ∈ R,m, n ∈ {−λ, . . . ,−1, 0, 1, . . . , λ}
}
. (1)

We can define the continuous PDFs that solve the Fokker-Planck equation over the “closure” of this

domain, being the square in R2 that occupies the space covered by Ω, by

Ω = [−λh, λh]× [−λh, λh]. (2)

Similarly, define the boundary ∂Ω of Ω as the discretized points along the edges, being

∂Ω =
⋃

`∈{−λ,λ}

⋃
n∈{−λ,...,−1,0,1,...,λ}

(
(`h, nh) ∪ (nh, `h)

)
(3)

for point X = (a, b) ∈ R2. The mesh Ω is equispaced, meaning ∆X1 = ∆X2 = ∆X = h. These

discretized Fokker-Planck solutions will serve as valuable training data for our CNNs.

We are dealing solely with multivariate PDFs here, as only these are solutions to the Fokker-Planck

equation. Such means our solutions ρ will be subject to the constraint

∫∫
. . .

∫
Rn

ρ(X, ti|ρ0)dX = 1 (4)

where ρ(X, ti|ρ0) is a Fokker-Planck solution evaluated at spatial locationX and juncture ti, subject

to initial condition ρ0. In particular, in the context of our problem, as we restrict the domain of our

continuous PDFs to Ω, we consider

∫∫
Ω

ρ(X, ti|ρ0)dX ≤ 1. (5)

where equality is nearly attained, as the PDFs approach 0 along the ∂Ω. These conditions will not

prove to be imperative in learning drift and diffusion values, but they do provide a means to provide

correct initial conditions.

Our CNNs that learn either the time-evolution of the solutions or the differential operator will not

tell us everything we need to know explicitly. There is still a matter of deducing drift and diffusion
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coefficients. We may introduce a second CNN, where this CNN does not train on Fokker-Planck

data, but instead, trains on the kernels of the first CNN. Fokker-Planck solutions can be generated

by iterating drift and diffusion coefficient sequences, and we may train our first CNN in some manner

we prescribe. By turning these first CNN kernels into a new data set, our second CNN can predict

drift and diffusion values by mapping the weights to these values. The kernels of the first CNN

should be contingent on choice of drift and diffusion values, meaning these kernels are characteristic

of the coefficient choices.

After training the pair of CNNs on predetermined data, we can again train our first CNN on new

Fokker-Planck data with unknown drift and diffusion coefficients to generate new CNN kernels. We

can feed these kernels into the second CNN to predict these coefficients.

2 The Fokker-Planck equation

In this section, we provide the Fokker-Planck equation and its differential operator. This is the key

equation we will be considering. It provides the description on how a multivariate probability density

function behaves as it evolves in times. The drift and diffusion coefficients are what we ultimately

hope to deduce given data that conforms to this equation, where these coefficients are intended to

be omitted from the information that is given.

The Fokker-Planck equation coheres to the stochastic differential equation

dXt = µ(Xt, t)dt+ σ(Xt, t)dWt (6)

where Xt is an N -dimensional vector of random variables in a sequence in time. µ(Xt, t) is also an

N -dimensional random vector known as the drift vector. σ(Xt, t) is an N ×M matrix of diffusion

values, and Wt is an M -dimensional Wiener process.

In particular, the general N -dimensional Fokker-Planck equation [2] is given by

∂ρ(X, t|ρ0)

∂t
= −

N∑
i=1

∂

∂Xi
[µi(X, t)ρ(X, t|ρ0)] +

N∑
i=1

N∑
j=1

∂2

∂Xi∂Xj
[Dij(X, t)ρ(X, t|ρ0)] (7)

and the diffusion tensor is an N ×N matrix.

When we discretize solutions to equation (7), we do so over domain Ω. We use the following notation

to denote Fokker-Planck numerical solutions evaluated at the lattice points in this domain at time

ti:

Φi ≈ ρ(Ω, ti|ρ0) = ρ(X, ti|ρ0)
∣∣∣
X∈Ω

. (8)
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These form new lattices that are discretized solutions to equation (7).

Figure 2. Above we have cross-sections of discretized Fokker-Planck solutions over Ω. It appears

that the integration property is not satisfied in the second image, but this is because the drift values

are forcing the local maxima of the solutions to shift.

We will begin our investigation by reducing equation (7) to the diffusion and advection-diffusion

cases, which are Fokker-Planck equations under the right circumstances. We can also attempt to

learn a direct mapping of this equation, using a CNN to map Φi to Φi+1. We will hold N = 2 to

simplify our investigation. In general, with constant coefficients, the drift and diffusion matrices are

given by

µ = (µ1, µ2)T , D =

σ11 σ12

σ21 σ22

 . (9)

We will hold σ12 = σ21 = 0 throughout the remainder of our investigation, but one can extend the

ideas of what is done to cases when these coefficients are nonzero. A more sophisticated numerical

method would be required to generate data, and ability to determine coefficients from data may

become more difficult.

We also extract the corresponding differential operator to equation (7), which we will call D. Such

an operator means that the Fokker-Planck equation can be rewritten as

∂ρ(X, t|ρ0)

∂t
= D

[
ρ(X, t|ρ0)

]
. (10)

4



A large portion of what we do will be attempting to deduce the right-hand side of equation (10). We

will call a CNN that learns this right-hand side one that learns the differential operator. When we

discretize time, combined with the spatial discretization of Ω, our PDE formulation becomes

Φi+1 − Φi
∆t

= D
[
{Φi}i∈K

]
, (11)

where the right-hand side is a numerical approximation of the differential operator applied to the

lattices. Note that the corresponding differential operator D is given by

D = −
2∑
i=1

µi
∂

∂Xi
+

2∑
j=1

σj
∂2

∂X2
j

. (12)

It is also necessary to establish initial conditions. We consider two, being the multivariate normal

density function, and the multivariate t-distribution. We only consider distributions with supp(ρ) =

R2 × R, so we can appropriately create square lattices {Φk}k∈K over Ω. For example, the Dirichlet

distribution ρ(X) = 1
B(α)

∏K
i=1X

αi−1
i lacks desired support and cannot necessarily be discretized

over the entirety of Ω.

We denote the two initial functions as follows:

φ0 = φ(X, t0 = 0;µ1,Σ1) =
1

2π · |Σ1|1/2
exp

{
− 1

2
(X − µ1)TΣ−1

1 (X − µ1)
}
, (13)

where µ1 is a vector of means, and Σ1 is a variance-covariance matrix; and

ψ0 = ψ(X, t0 = 0; ν,µ2,Σ2) =
Γ[(ν + 2)/2]

Γ(ν/2)νπ|Σ2|1/2
[
1 +

1

ν
(X − µ2)TΣ−1

2 (X − µ2)
]−(ν+2)/2

. (14)

Coefficient ν is predetermined, as well are µ2 and Σ2.
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3 Designing our convolutional neural networks

b
3

a1

a2

a3

a4

b1

b2

Figure 3. We have a depiction of the CNN C1. A Fokker-Planck lattice is divided into subgrids

that are ultimately mapped to a new lattice, which can be either the differential operator lattice or

the next discretized Fokker-Planck solution in time.

We will consider two different CNNs, each with a different purpose. The first CNN we consider has

the aim of learning a function [8]

C1 : T0 × θ1
1 × . . .× θ1

k1 → T1, (15)

that takes arguments of a PyTorch tensor T0 and trainable kernel hyperparameters θ1
1, . . . ,θ

1
k1

.

PyTorch tensor T0, which has dimension m× 1× (2λ+ 1)× (2λ+ 1), is mapped to a new lattice T1

of the same dimension. An additional tensor will need to be taken as argument in our loss function,

however that function may be defined. This tensor will typically be the lattices in T0 but indexed

one higher.

This particular type of CNN has the aim of either learning a Fokker-Planck differential operator

or a direct mapping from one Fokker-Planck solution to the next in time. The kernel parameters

are crucial. The weights that belong to these kernels are contingent on choice of drift and diffusion

choices, and they will be determined by training our CNN. These kernels can be concatenated into

a new dataset, which will form the data we use for our second type of CNN C2. As we will later

see, we restrict the number of kernels of C1 to be either one or two, depending on our strategy of

recovering the coefficients.

The coefficients of our training data are from predetermined sequences that we choose and held

within ranges σj,min ≤ σj,i ≤ σj,max, µk,min ≤ µk,i ≤ µk,max. The first subscript in σj,i, µk,i refers
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to any of σ11, σ22, µ1, µ2 from the drift and diffusion matrices in the previous section. For example,

σ1,i refers to coefficient σ11. The second index is the index within the sequence in which it was

generated. We must also produce a test data set, whose coefficients differ from those in the training

set. We train upon this “test” data set in the same manner as the training set in order produce the

appropriate kernels.

Our second type of CNN has the aim of learning a function

C2 : Θ0 × θ2
1 × . . .× θ2

k2 → Σ0 (16)

where Θ0 is the dataset concatenation of the kernels created from C1, and Σ0 is some tensor that is

a prediction to any collection of drift or diffusion values.

Figure 4. Above is a generalized illustration of CNN architecture. Image size is typically compressed

as the data is processed through convolution layers, which is emphasized in this image. The number

of images produced per layer is dependent on architecture choices. More channels mean more images

produced.

This CNN will have a more sophisticated architecture than C1, and we will discuss this in future

sections. We train this CNN upon the kernels produced from C1 and the predetermined test drift

and diffusion coefficients. C2 is then applied to the test data set to predict the coefficients. This test

data set acts as a true test set, unlike for C1, because there will be no training on this. Instead the

CNN will be directly applied to the input data in order to produce the expected coefficients.

We use the following notation of a CNN mapping a lattice element of an input tensor to the respective

lattice element of the output tensor: C[Φi].
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4 Learning the diffusion equation: a special case of the Fokker-

Planck

We start by considering the simplified diffusion equation [7]


∂ρ(X, t)

∂t
= ∇ · [D(ρ,X)∇ρ(X, t)] = D∆ρ(X, t), X ∈ Ω, t ∈ [0, T ]

ρ(X, t0 = 0) = Ψ0

(17)

where diffusion function D(ρ,X) = D is constant here. Ψ0 is an initial condition, either φ0 or

ψ0. The diffusion equation is a special case of the Fokker-Planck equation under the circumstance

∇XD(ρ,X) = 0, which is certainly satisfied here. It is our aim to deduce diffusion coefficient D

using CNNs given snapshots of data {Φk}k∈K. Time is also discretized by ti = i∆t.

Our CNN C1
D can be represented by the operator R that is equivalent to the kernel θ = θ1, where

only one kernel is used in our CNN. This is certainly sufficient to learn the Laplacian ∆, as it is

known the Laplacian can be computed using a finite difference stencil encapsulated by the weights

of the kernel. The Laplacian can be represented by the operator L = −RTR, which is negative

semi-definite and constrains the hypothesis space to

H =
{
θ
∣∣ θ ∈ Rn×n, xT (−θTθ)x ≤ 0 ∀x ∈ Rn \ 0

}
. (18)

The operator R may have a non-unique representation given the possibility of a unitary matrix U

such that

L = −(UR)T (UR) = −RTUTUR = −RT IR = −RTR. (19)

To learn such an operator L, we have a CNN C1
D learn operator R, in which case an additional

CNN applies the same operator in the loss function but negative transpose, RT . The loss function

trains C1
D. The weights of this new operator L = −RTR are what forms our dataset for C2

D. Input

data is {Φk}k∈K, and the estimated Laplacian, {∆Φk}k∈K, is our overall output goal. The data

that is trained upon is produced using a predictor-corrector implicit Backward Euler analog for the

Laplacian. Kernels of dimension 3 × 3 are generally sufficient in learning R, hence L, but a wider

kernel can be under consideration and achieve equivalent, or potentially better, results. Allow us to

demonstrate results with the following table.
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Table 1: Diffusion equation

C1
D stencil size ∆t C1

D `2-loss C2
D `2-loss |D̂ −Dtest|/Dtest

3× 3 1e-4 0.9682 0.0009 0.0709
3× 3 1e-3 0.2208 3.9173e-5 0.0082
3× 3 5e-3 0.0344 5.5073e-5 0.0245
5× 5 1e-4 0.9397 3.0797e-6 0.0181
5× 5 1e-3 0.2328 9.5620e-5 0.0078
5× 5 5e-3 0.0379 4.0656e-5 0.0386

Table 1. We train our first CNN C1
D on Laplacian data where the diffusion coefficient Di is iterated

within a sequence {Di}i∈I . The kernels produced are merged into a new data set, on which we

train CNN C2
D mapping such data to the diffusion values. We provide a test data set with test

diffusion coefficient Dtest. The given C1
D loss is on such a test set. Relative error is provided for

the C2
D estimation of this diffusion coefficient. No activation is used in either CNN. Initial condition

Ψ0 = φ0 is used.

C1
D generally reached a convergence condition |Li+2 − Li| = |Li+3 − Li+1| = 0 for loss values

Li, (Emax − 3) ≥ i ≥ I in approximately I = 3, 000 epochs, where Emax is the final epoch. This

oscillating loss condition suggests the need for a lower learning rate, which we did apply, but this

did not yield better loss and was not needed. C2
D reached a sense of convergence in a higher number

of epochs, upwards of 10, 000.

The loss functions considered in the CNNs C1
D and C2

D are `2 loss, which we will elaborate in section

(6). The loss of C1
D is the difference between (θ1)T , (θ1) repeated convolution with data and the

data’s estimated Laplacian. The loss of C2
D is the difference between the predicted and true diffusion

coefficients
∑
i(D̂i −Di)

2.

As demonstrated in the table, diffusion coefficient estimation is consistently under 8% error, down

to less than 1% error. The architecture for C2
D that achieved the best results was moderate in

depth and moderate in node quantity. In particular, the above table was constructed with two

convolution layers and 100 intermediary nodes. One could consider adding an overfitting parameter∑k2
i=1 Tr((θ2

i )T (θ2
i )) within the loss function when more data is considered. Lower amounts of data{

θ1,m
}
m∈M were also found to be sufficient in learning diffusion coefficient approximations with C2

D,

but more data was found to provide similar results. We constructed the above table using up to 50

kernels from C1
D. We will discuss data set size in more depth later in section (7).
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5 Learning the advection-diffusion equation

The second Fokker-Planck equation we consider is the advection-diffusion equation


∂ρ(X, t)

∂t
= ∇ · (D∇ρ(X, t))−∇ · (v(X, t)ρ(X, t)), X ∈ Ω, t ∈ [0, T ]

ρ(X, t0 = 0) = Ψ0

(20)

which is a Fokker-Planck equation when ∇Xv(X, t) = 0, similar to the diffusion function condition

we previously saw. To satisfy this condition, we hold vector field v(X, t) constant such that v =

(v1, v2).

Our procedure for learning the coefficients is similar to the case with just the Laplacian term. We

can represent the Laplacian by learning an operator L = −RTR as we did in the previous case, and

we may also learn an operator A for the advection term. Our numerical scheme becomes

Φi+1 − Φi
∆t

= LΦi +AΦi = (L+A)Φi. (21)

Again, we gather data using a predictor-corrector Backward Euler scheme for the diffusion and

advection terms to obtain {Φk}k∈K. The diffusion and advection lattices can be stored independently,

in which we will train to learn the operators.

Just as before, we constrain the regression to learn a skew-symmetric operator A = −AT , which

possesses nice properties and similarly constrains the hypothesis space like the previous case with the

Laplacian. To learn a skew-symmetric operator, we may represent operator A = (1/2)(M−MT ) for

arbitrary matrixM , and our CNN learnsM . We may assign a new CNN with the same architecture,

and we fix the stencil weights as the transpose (θ1)T of the previous CNN stencil θ1, hence effectively

learning MT . The argument (1/2)(M −MT ) is taken in the loss function and the operator A is

obtained.
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Figure 5. Above are sample lattices. Initial conditions φ0 and ψ0 are on the very left, with Laplacian

and advection lattices on the center and right.

Allow us to demonstrate the capacity of learning just the advection data. We vary the advection

coefficients v1, v2 in sequences to obtain operator data A. We concatenate these operator weights

into new data sets, and we train CNN C2
AD to learn a mapping from the operator stencil weights

to the coefficients. Diffusion coefficient D, hence operator L, remains constant, and is irrelevant

from the data of A in the sense that it is not directly used; however, it is indirectly used, as it is

involved in the computation of {Φk}k∈K. We list average relative error in the following table for

certain cases.

Table 2: Advection-Diffusion equation, advection term

Parameter(s) varied 1
n

∑n
i=1 |v̂i − vtest,i|/vtest,i

v1 0.0134
v2 0.0529

v1, v2 0.0109

Table 2. We vary either coefficient v1, v2 or both, and record the average relative error on a test

data set that produces estimated coefficient values v̂i. Initial condition φ0 and 5 × 5 kernels are

used.

As the table shows, our CNNs demonstrate high learning capacity for the advection coefficients,

as the average relative error is around 1% − 5%. Similar to the case of the Laplacian, if we are

able to determine operator A, we have the ability to recover v coefficients. Now, suppose we

cannot determine operators L and A independently from each other, and the only data we possess

is information cohering to (Φi+1 − Φi)/∆t = PΦi, where P represents the differential operator

11



P = L+A. Is it still possible to recover both drift (advection) and diffusion (Laplacian) coefficients?

The following table illustrates our results.

Table 3. Advection-diffusion equation, both advection and diffusion terms

Coefficient(s) varied Avg. relative

test error for

D̂i

Avg. relative

test error for

v̂1,i

Avg. relative

test error for

v̂2,i

Di < 1 0.0145 0.0070 0.0067

v1,i ≤ 1 0.0062 0.0376 0.0150

−1 ≤ v2,i < 0 0.0142 0.0277 0.0581

v1,i ≤ 10 0.0023 0.0150 0.0237

−10 ≤ v2,i < 0 0.0625 0.0663 0.0337

Di, v1,i ≤ 10 0.0372 0.0066 0.0530

−10 ≤ Di, v2,i ≤ 1 0.0572 0.0857 0.0276

−10 ≤ v1,i, v2,i ≤ 10 0.0612 0.0714 0.0648

|Di|, |v1,i|, |v2,i| ≤ 1 0.0618 0.0663 0.1196

|Di| ≤ 1, |v1,i|, |v2,i| ≤ 5 0.0761 0.0153 0.0274

|Di| ≤ 1, |v1,i|, |v2,i| ≤ 10 0.1043 0.0622 0.0701

Table 3. Above is a table demonstrating the ability to recover the drift and diffusion coefficients

from CNN kernels. The first two portions of the table rely on preexisting knowledge of one or

two coefficients, as coefficients are fixed. Only some are variable. The third portion is when all

three coefficients are iterated, suggesting the ability to recover all three coefficients from Fokker-

Planck data. Relative error is recorded for test data sets in which the coefficients differ from taining

data.

Training coefficients are iterated within sequences {Di}i∈Ik , {v1,i}i∈Ik , {v2,i}i∈Ik , with sequences

changing on how many coefficients are iterated and the ranges. The values within these ranges are

contained within the table. We vary the ranges to ensure that one operator, L or A, does not

dominate the other in terms of stencil weights when constructing P . In certain cases, coefficients

are held constant and only certain coefficients vary. Such illustrates the first and second parts of

the table. The third case is the most interesting as it best illustrates the ability to recover all three
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coefficients given no information beforehand. Relative error is the greatest in this scenario (< 12%),

and it is the best in the case when only one coefficient is undetermined (< 7%). This is still not

terrible relative error and suggests that recovering all three coefficients is manageable. It is suspected

that coefficient approximation is best determined if a particular range in which the coefficients may

lie is used to construct the training data. For example, if the true coefficient v1 = 10, and CNN data

is trained upon v1 < 1, relative error may be high.

Just as with learning the Laplacian, data set sizes in the above table range up to 50 kernels from C1
AD.

Results using different data set sizes were similar, except more data was needed when more than

one coefficient was varied to get equivalent results among all cases. Again, we will do an in-depth

investigation on how data set size of the kernels from C1
AD impacts accuracy when we discuss finite

volume methods in section (7).

One problem with this method is that training data depends on P = L +A, where L is negative

semi-definite and A is skew-symmetric. If these exact operators cannot be determined, and only P

can be determined without L and A, we may not be able to recover the coefficients as effectively.

We will later on discuss this case when the differential operator is unconstrained.

6 Long-time integration

In this section, our CNNs now learn a mapping directly from one Fokker-Planck discretization Φi to

the next Φi+1, and we are no longer learning a differential operator. Our aim is for our CNN C1
LTI

to learn an operator Γ such that

Φi+1 = ΓΦi (22)

where the stencil weights of Γ directly map lattice values at time ti to ti+1 when convolution is taken

over lattice subgrids.

Again, we use a predictor-corrector Backward Euler scheme for generating data. The full numerical

method for finding data [2] [7] in our predictor step is given by

Φk,lm+1 − Φk,lm
∆t

= − µ1
Φk+1,l
m − Φk−1,l

m

2h
− µ2

Φk,l+1
m − Φk,l−1

m

2h
(23)

+ σ1
Φk+1,l
m − 2Φk,lm + Φk−1,l

m

h2
+ σ2

Φk,l+1
m − 2Φk,lm + Φk,l−1

m

h2
, (24)

where Φk,li are the elements of lattice Φi at position (k, l) along Ω. We use the same numerical method
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for the diffusion and advection-diffusion equations but in simplified forms. Note when σ1 = σ2, we

have the stencil for the five-point Laplacian ∆. The first two terms correspond to the advection terms,

holding vector field coefficients (v1, v2) = (µ1, µ2) in the previous section. Boundary conditions along

∂Ω are 0.

The individual loss function along with the overall optimization goal for C1
LTI are the MSE-analog

LiLTI(Φi,Φi+1|θ1
1, . . . ,θ

1
k) = γLTI

∑
k

∑
l

[
(ΓΦi)

k,l − Φk,li+1

]2
(25)

= γLTI

∣∣∣∣∣∣C1
LTI [Φi]− Φi+1

∣∣∣∣∣∣2
2

(26)

(θ1
1)∗, . . . , (θ1

k)∗ = arg min
θ1
1 ,...,θ

1
k

{ m−1∑
i=1

LiLTI(Φi,Φi+1)
}
. (27)

Similarly, (ΓΦi)
k,l are the elements of lattice ΓΦi. || · ||2 is the matrix norm equivalent to the

Frobenius norm || · ||F . A matrix norm is applicable because our lattices are equivalent to matrices

in the sense of how they are stored as data. 0 < γLTI ≤ 1 is a scaling constant to ensure minimal

loss is achieved for desirable choice of learning rate λ1 in a reasonable number of epochs. Only one

convolution kernel θ1 is needed to learn the mapping Γ.

We proceed in a similar manner as with the diffusion and advection-diffusion cases: we train a CNN

C1
LTI to learn the operator Γ. We can construct training data {Φk}k∈K using the numerical method

previously outlined. With the kernels from C1
LTI , we can train a new CNN C2

LTI mapping the weights

of the C1
LTI kernel to the drift and diffusion values, which are known as part of our training data.

The architecture for C1
LTI is simple, with only one 5 × 5 kernel and padding of 2. An architecture

for C2
LTI identical to that in the diffusion and advection-diffusion sections is chosen.

Allow us to demonstrate some results with the following tables:
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Table 4. Learning coefficients with long-time integration method

∆t Coef. varied Error for

µ̂1,i

Error for

µ̂2,i

Error for

σ̂1,i

Error for

σ̂2,i

1e-3 |µ1,i| ≤ 0.25 1.1509 0.1683 0.0102 0.0157

1e-3 |µ2,i| ≤ 0.25 0.0197 0.5881 0.1165 0.0868

1e-3 |σ1,i| ≤ 0.25 0.0132 0.0155 0.1273 0.0087

1e-3 |σ2,i| ≤ 0.25 0.0150 0.0113 0.0062 0.1130

1e-3 |µ1,i| ≤ 10 0.1282 0.0022 0.0880 0.0382

1e-3 |µ2,i| ≤ 10 0.0218 0.0586 0.1132 0.0862

1e-2 |µ1,i| ≤ 0.25 0.8962 0.0033 0.0113 0.0142

1e-2 |µ2,i| ≤ 0.25 0.0110 0.7830 0.0110 0.0118

Table 4. Above we have average relative error in predicting drift and diffusion coefficients using

the long-time integration method on a test data set in which the test coefficients differ from the

training coefficients. Only one coefficient is varied at a time. The others are expected to remain

constant.

The first observation we make is that there is a severe inability to recover drift values when they

remain relatively close in value to diffusion values (between 0 and 0.25 for all coefficients). Relative

error is as high as 1.1509, which is highly inaccurate; however, when we increase drift values to

as high as 10 but maintain diffusion values under 0.25, our accuracy in predicting coefficients on a

test data set increases dramatically. It is possible diffusion coefficients dominate the weights in the

kernels, or the weights cannot measure differences in drift when sufficiently small. We also notice

a change in ∆t does not make a dramatic change in ability to recover drift values. Lastly, we note

ability to recover diffusion values is decent (∼ 10% relative error) for all cases, even when sufficiently

small.

Table 5. Learning coefficients with LTI continued

Coef. varied Error for

µ̂1,i

Error for

µ̂2,i

Error for

σ̂1,i

Error for

σ̂2,i

|µ1,i|, |µ2,i| ≤ 0.25 0.7406 0.9219 0.0085 0.0120

|µ1,i|, |µ2,i| ≤ 10 0.2362 0.2114 0.0052 0.0113

|σ1,i|, |σ2,i| ≤ 0.25 0.0083 0.0217 0.2312 0.1638

15



Table 5. Above we have average relative error in coefficient predictions when more than one

coefficient at a time is varied. This table is more interesting as it better demonstrates ability to

predict coefficients when they are unknown.

Relative error increases (∼ 20%) when more than one coefficient at a time is varied, but this is to

be expected. Relative error is equally high as before in cases with low drift values, but decreases

dramatically as these values are increased and made further from the diffusion values.

Overall, we see that our long-time integration method of determining drift and diffusion coefficients

does not perform as well as in the previous cases when C1 learns a differential operator. In the next

section, we will return to learning differential operators but in a more generalized setting.

7 Finite difference and finite volume methods

The diffusion and advection-diffusion equations provide good benchmarks for cases to check and

understand when learning the differential operator. Now we aim to deduce drift and diffusion co-

efficients in a more generalized setting, one in which we can leave the Fokker-Planck differential

operator in its form D. Our CNNs are now motivated by two problems. The first is finite difference

method (FDM) [4] [5]

Φi+1 − Φi
∆t

= DFDM
[
Φi
]

(28)

which can be reformulated as

Φi+1 =
(
1 + ∆t · DFDM

)
Φi. (29)

DFDM is the Fokker-Planck differential operator applied to lattice Φi computed with finite difference

methods, providing the subscript notation. Φi is distributive in the traditional sense, hence

DFDM · Φi = DFDM
[
Φi
]
≈
[(
−

2∑
i=1

µi
∂

∂Xi
+

2∑
j=1

σj
∂2

∂X2
j

)
ρ(X, ti|ρ0)

]∣∣∣
X∈Ω

(30)

is the numerical approximation of the differential operator applied to Φi. Our CNN attempts to learn

the differential operator DFDM which we can do with the individual loss minimization problem
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LiFDM (Φi,Φi+1|θ1
1, . . . ,θ

1
k) = γFDM

∣∣∣∣∣∣Φi+1 − βi
∆t

∣∣∣∣∣∣2
2

(31)

βi =
(

1 + ∆t · C1
FDM

)
Φi. (32)

where our CNN C1
FDM takes place of DFDM and is applied to Φi.

Our FDM is similar to the advection-diffusion case with combined operators but with some alter-

ations. The first is that there are now two diffusion coefficients instead of one D = σ1 = σ2. The

second is that the differential operator we are learning is unconstrained, and is no longer constricted

to the form P = L+A for negative semi-definite L and skew-symmetric A.

Figure 6. Above we have an illustration of cell construction for our finite volume methods. The

left depicts the layout of the lattice. The right depicts the flux through the cell walls, where the the

wall of one cell is an additional wall of a different cell.

The second problem motivating our CNN design is a finite volume model (FVM) [4] [5]. A differential

operator DFVM containing a divergence term can be learned such that the time discretization in

the left-hand side of equation (26) holds as it did in the previous FDM case. This new differential

operator corresponds to the Fokker-Planck differential operator. A FVM employs the divergence

theorem

∫
V

(∇ · u)dV =

∮
S

u · dA. (33)

for arbitrary vector field u and domains V , S = ∂V , meaning surface integrals are under considera-

tion. Additionally, FVMs are conservative. Mass is preserved, meaning the multivariate probability

density condition
∫∫

R2 ρdX = 1 is satisfied for our Fokker-Planck solutions. The FVM under con-
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sideration is

Φk,li+1 − Φk,li
∆t

=
1

µ(ck,l)

∑
f∈Fk,l

∫
f

DFVM [Φi] · dA. (34)

We use the notation outlined in the previous section, where Φk,li denote the elements of lattice Φi at

location (k, l) along Ω. The cells C = {[Xk− 1
2
, Xk+ 1

2
]×[Xl− 1

2
, Xl+ 1

2
]×[0, `] | k, l ∈ {1, . . . , 2λ+1}, ` ∈

R+} are constructed around discretized points in Ω. µ(ck,l) is cell Lebesgue measure, being measure

of the Cartesian product of intervals. µ(ck,l) = `(∆X)2 given equispaced construction of Ω. Cell

faces Fk,l = ∂ck,l are the rectangular surfaces in which the flux is passing through. We will attempt

to learn the operator in the integrand by solving the loss minimization problem

LiFVM (Φi,Φi+1|θ1
1, . . . ,θ

1
k) = γFVM

∣∣∣∣∣∣Φi+1 − Φi
∆t

−Λi

∣∣∣∣∣∣2
2

(35)

Λk,li =
1

µ(ck,l)

∑
f∈Fk,l

∫
f

C1
FVM [Φi] · dA. (36)

Here Λk,li is the surface integral for particular cell ck,l scaled by 1/µ(ck,l). Λi is the lattice containing

the values Λk,li . Again, the kernels are the tuned hyperparameter to minimize total loss, and γFVM

is a suitable scalar.

It is notable that the operator here, represented by CFVM , is producing a vector field from a lattice.

We require a CNN with two distinct ouput channels, one learning the vector field with respect to

one direction, say the faces with normal vectors in the ±x-direction in the R2 plane, and another

with normals facing the ±y-direction. Hence, we can write

∑
f∈Fk,l

∫
f

C1
FVM [Φi] · dA =

∑
f∈Fk,l

∫
f

(
CxFVM , C

y
FVM

)T
Φi · dA (37)

where CxFVM and CyFVM are the CNN output channels computing this discretized vector field with

respect to either the ±x or ±y directions. (CxFVM , C
y
FVM )TΦi is the vector concatenation of the

elements in CxFVM [Φi] and CyFVM [Φi], producing the discretized vector field. Based on cell con-

struction, we require vector field values situated not along Ω but along boundary ∂([Xk− 1
2
, Xk+ 1

2
]×

[Xl− 1
2
, Xl+ 1

2
]) instead. Such a setup is a staggered mesh. We can form our staggered mesh by

translating the vector field produced by the CNN.

Allow us to demonstrate our FDM and FVM results.
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Table 6. Learning coefficients with FDMs

Coefficient(s) varied Error for

σ̂1,i

Error for

σ̂2,i

Error for

µ̂1,i

Error for

µ̂2,i

0 < σ1,i ≤ 1 0.0304 0.0129 0.0108 0.0473

0 < σ2,i ≤ 1 0.0245 0.0195 0.0194 0.0333

0 < µ1,i ≤ 1 0.0322 0.0095 0.0672 0.0211

−1 ≤ µ2,i < 0 0.0173 0.0213 0.0287 0.0399

0 < µ1,i ≤ 10 0.0170 0.0126 0.0869 0.0175

−10 ≤ µ2,i < 0 0.0449 0.0441 0.0174 0.0728

|σ1,i|, |σ2,i| ≤ 1 0.0592 0.0987 0.0231 0.0979

|µ1,i|, |µ2,i| ≤ 1 0.0205 0.0093 0.0440 0.0235

|µ1,i|, |µ2,i| ≤ 10 0.0131 0.0139 0.0655 0.0652

|σ1,i|, |σ1,i|, |µ1,i|, |µ2,i| ≤ 1 0.0712 0.0916 0.0285 0.0100

|σ1,i|, |σ1,i| ≤ 1, |µ1,i|, |µ2,i| ≤

10

0.1738 0.1366 0.0376 0.0123

Table 6. Above are our results for coefficient estimation using our FDM scheme. Just as before, a

5 × 5 kernel is used for C1
FDM and initial condition φ0 is used. The results are for average relative

error on a test dataset.

Results with this approach are comparable to the advection-diffusion case when the constrained

differential operator is learned. Results in approximation for σ1,i, σ2,i when all coefficients are varied

are better when values lie closer to drift values µ1,i, µ2,i. Drift approximations do not change as much

when the coefficients are varied within different ranges. In general, average relative error is about

under 10%. Loss for C1
FDM typically terminated with a value of about 0.1 after 3,000 epochs. Loss

for C2
FDM varied on dataset size, as this was changed based on the coefficients to be estimated.
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Table 7. Learning coefficients with FVMs

Coefficient(s) varied Error for

σ̂1,i

Error for

σ̂2,i

Error for

µ̂1,i

Error for

µ̂2,i

0 < σ1,i ≤ 1 0.0390 0.0121 0.0255 0.0185

0 < σ2,i ≤ 1 0.1040 0.0503 0.1039 0.1037

0 < µ1,i ≤ 1 0.0174 0.0191 0.0136 0.0227

−1 ≤ µ2,i < 0 0.0231 0.0287 0.0230 0.0302

0 < µ1,i ≤ 10 0.0613 0.0608 0.0788 0.0172

−10 ≤ µ2,i < 0 0.0363 0.0369 0.0092 0.0599

|σ1,i|, |σ2,i| ≤ 1 0.0731 0.0369 0.0131 0.0105

|µ1,i|, |µ2,i| ≤ 1 0.0192 0.0275 0.0082 0.0205

|µ1,i|, |µ2,i| ≤ 10 0.0515 0.0526 0.0541 0.0748

|σ1,i|, |σ1,i|, |µ1,i|, |µ2,i| ≤ 1 0.1186 0.1238 0.1586 0.1669

|σ1,i|, |σ1,i| ≤ 1, |µ1,i|, |µ2,i| ≤

10

0.1597 0.0822 0.0124 0.0180

Table 7. Above are our results when using FVMs. Average relative error is generally consistent

with FDMs.

Results with FVMs do not differ significantly when learning a differential operator in a different

setting, such as with FDMs. Average relative error is low (typically < 6%) when one coefficient

is varied, and is generally under 15% when all coefficients are intended to be learned. Varying the

ranges of our coefficients in the final setting did not result in a significant impact in ability to recover

diffusion values, where diffusion values remain between 0 and 1, and drift values ascend as high as

10.

There are computational considerations when constructing a dataset for C2. Typically, we used under

50 kernels from C1 to generate our results, as we found that dataset size has insignificant impact.

50 kernels means that will we need to generate 50 Fokker-Planck datasets, as well as train 50 CNNs

to generate the kernels, each with 3,000 epochs. This becomes computationally expensive when

the number of kernels we wish to train C2 upon becomes large; however, for the sake of confirming

the suspicion that kernel size does not affect coefficient prediction accuracy to a notable extent, we

perform coefficient estimation with C2
FVM with 256 kernels. Our results are illustrated below in the
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following table.

Table 8. Learning coefficients with FVMs, higher quantity of C2
FVM data

Coefficient(s) varied Error for

σ̂1,i

Error for

σ̂2,i

Error for

µ̂1,i

Error for

µ̂2,i

|σ1,i|, |σ2,i| ≤ 1 0.2959 0.2947 0.0253 0.0653

|µ1,i|, |µ2,i| ≤ 1 0.0263 0.0328 0.0173 0.0346

|σ1,i|, |σ1,i|, |µ1,i|, |µ2,i| ≤ 1 0.0388 0.0535 0.0538 0.1059

Table 8. The above results were collected by training C2
FVM on 256 kernels generated from C1

FVM .

We perform such an investigation in attempt to deduce the effect the amount of training data has

on accuracy.

There is minimal discernible difference by training on more data for the last two cases of the table.

Average relative error is generally consistent with the FVMs when training on lower amounts of data.

Regarding the first case on the table, average relative error is significantly higher when deducing

diffusion coefficients. This may be caused by overfitting. In general, lower amounts of data are

sufficient or preferred.

8 Conclusion

We may compute numerical solutions of the Fokker-Planck equation over a discretized domain in

space, which are suitable for convolutional neural networks. These CNNs may be employed to learn

either some notion of a differential operator, or to map Fokker-Planck solutions at a particular

juncture to those at a greater juncture. We may train a second CNN to map the kernels of the

first to the drift and diffusion coefficients, allowing us to deduce these unknown values given Fokker-

Planck data. We break up our objective into cases. Relative error when predicting one coefficient is

generally below 5%, and when predicting all four coefficients, is generally below 15%.
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A Appendix: A proof of the Chapman-Kolmogorov theo-

rem

The Chapman-Kolmogorov theorem is one that is used in the derivation of the Fokker-Planck equa-

tion. We provide a proof of this theorem for the continuous case for three n-dimensional random

variables. The proof of the discrete case is significantly more renowned than the continuous case,

which is why we include it here. We omit the derivation of the Fokker-Planck equation, as one can

be found in references [1], [3]. Denote ρ(·, ·) as a joint probability density function and ρ(·|·) as a

conditional one.

Theorem 1 (Chapman-Kolmogorov): Suppose random variables X1,X2,X3 in Rn are part of

a Markov process, t1 < t2 < t3, all of which with PDF support Rn × R. Then

ρ(X3, t3|X1, t1) =

∫∫
. . .

∫
Rn

ρ(X3, t3|X2, t2)ρ(X2, t2|X1, t1)dX2.

Proof.

Consider

ρ(X3, t3|X1, t1) =

∫∫
. . .

∫
Rn

ρ(X3, t3,X2, t2|X1, t1)dX2.

By the conditional probability property for continuous random variables, if ρ(X1, t1) > 0,

=

∫∫
. . .

∫
Rn

ρ(X3, t3,X2, t2,X1, t1)

ρ(X1, t1)
dX2.

Now, the conditional probability property in conjunction with the Markov property gives a general

recursive formula

ρ(Xn, tn, . . . ,X2, t2,X1, t1) = ρ(X1, t1)

n−1∏
i=1

ρ(Xi+1, ti+1|Xi, ti)

where the Markov property is given by

23



ρ(Xi, ti|Xi−1, ti−1, . . . ,X1, t1) = ρ(Xi, ti|Xi−1, ti−1),

i.e., the probability of moving to a next state is dependent only the current state and not the previous

states. Hence,

=

∫∫
. . .

∫
Rn

ρ(X3, t3|X2, t2)ρ(X2, t2|X1, t1)ρ(X1, t1)

ρ(X1, t1)
dX2

and by canceling,

=

∫∫
. . .

∫
Rn

ρ(X3, t3|X2, t2)ρ(X2, t2|X1, t1)dX2.

�
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