
UC Berkeley
Recent Work

Title
Micromobility evolution and expansion: Understanding how docked and dockless 
bikesharing models complement and compete – A case study of San Francisco

Permalink
https://escholarship.org/uc/item/96g9c9nd

Authors
Lazarus, Jessica
Pourquier, Jean Carpentier
Feng, Frank
et al.

Publication Date
2020-04-01

DOI
10.1016/j.jtrangeo.2019.102620
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/96g9c9nd
https://escholarship.org/uc/item/96g9c9nd#author
https://escholarship.org
http://www.cdlib.org/


 

 

  
 

 

 

Micromobility evolution and expansion: Understanding how 

docked and dockless bikesharing models complement and 

compete – A case study of San Francisco 

 

Journal of Transport Geography 

Volume 84, April 2020 

 

https://doi.org/10.1016/j.jtrangeo.2019.102620 

 

 
Jessica Lazarus, Jean Carpentier 

Pourquier, Frank Feng, Henry 

Hammel, SusanShaheen 

 
  



 

ABSTRACT 

 

Shared micromobility – the shared use of bicycles, scooters, or other low-speed modes – is an 

innovative transportation strategy growing across the U.S. that includes various service models 

such as docked, dockless, and e-bike service models. This paper focuses on understanding how 

docked bikesharing and dockless e-bikesharing models complement and compete with respect to 

user travel behaviors. To inform our analysis, we used two datasets for February 2018 of Ford 

GoBike (docked) and JUMP (dockless e-bikesharing) trips in San Francisco. We employed three 

methodological approaches: 1) travel behavior analysis, 2) discrete choice analysis with a 

destination choice model, and 3) geospatial suitability analysis based on the Spatial Temporal 

Economic Physiological Social (STEPS) transportation equity framework. We found that 

dockless e-bikesharing trips were longer in distance and duration than docked trips. The average 

JUMP trip was about a third longer in distance and about twice as long in duration than the 

average GoBike trip. JUMP users were far less sensitive to estimated total elevation gain than 

were GoBike users, making trips with total elevation gain about three times larger than those of 

GoBike users, on average. The JUMP system achieved greater usage rates than GoBike, with .8 

more daily trips per bike and 2.3 more miles traveled on each bike per day, on average. The 

destination choice model results suggest that JUMP users travel to lower-density destinations, 

and GoBike users were largely traveling to dense employment areas. Bike rack density was a 

significant positive factor for JUMP users. The location of GoBike docking stations may attract 

users and/or be well-placed to the destination preferences of users. The STEPS-based bikeability 

analysis revealed opportunities for the expansion of both bikesharing systems in areas of the city 

where high-job density and bike facility availability converge with older and lower-income 

populations.  
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1. INTRODUCTION 

Shared micromobility services are growing rapidly across the United States (U.S.) and abroad. In 

2018, the number of shared micromobility trips in the U.S., including station-based and dockless 

bikesharing and e-bikesharing and scootersharing, reached 84 million (NACTO, 2019). Of those 

trips, 36 million were station-based (non-electric) bikesharing trips, about 500,000 were station-

based e-bikesharing trips, and about 6 million were dockless e-bikesharing trips. By enabling 

users to access a fleet of publicly available shared personal transportation devices on an as-

needed basis, shared micromobility offers on-demand, low-emission public transportation 

options that can help to reduce congestion and emissions, as well as improve public health within 

urban areas (Parkes et al., 2013). Traditional station-based bikesharing systems have been 

studied in depth, generating some agreement about their positive impact on cycling rates, modal 

shifts from personal vehicle use, and promotion of public transit ridership through improved 

first- and last-mile connections to public transit stations (Shaheen et al., 2010). These benefits 

can contribute to various federal, state, and local objectives to improve mobility, safety, and 

public health, and reduce congestion, fuel use, and emissions.  

Innovations to incumbent bikesharing technology and business models are spreading in a 

new wave of fourth generation bikesharing and scooter sharing, which includes dockless models, 

demand-responsive pricing and rebalancing, and electric fleets of bicycles, standing scooters, and 

moped-style scooters. The increased geographic coverage and availability of these new service 

models have great potential to further expand and integrate shared micromobility in the 

transportation system, as such factors have been identified as significant drivers in traditional 

bikesharing ridership (Martin and Shaheen, 2014; Peters and Mackenzie, 2019). Early analysis of 

aggregated activity data from dockless and scooter-based models shows substantial expansion of 

micromobility ridership in urban areas (NACTO, 2019), with an estimated market potential of 8 

to 15 percent of all passenger trips under 5 miles (Heineke et al., 2019). However, concerns 

about curb management, safety, and the sustainability of the micromobility vehicle supply have 

become a central focus of the ongoing development of regional and local regulations and 

permitting programs have (NACTO, 2019; Peters and Mackenzie, 2019; Shaheen and Cohen, 

2019).  

This paper examines the expansion of bikesharing in the City of San Francisco. In 

January 2018, the San Francisco Municipal Transportation Agency (SFMTA) issued a permit for 

a pilot dockless electric bikesharing (e-bikesharing) system, called JUMP, which began to 

operate in parallel to the existing regional station-based bikesharing system, Ford GoBike. 

Around the same time, it was announced that the GoBike system would expand to include 

electric bicycles as well, which became available in April 2018. The expansion of the docked 

GoBike system complemented by the newer stationless JUMP bikes necessitates an evaluation of 

the effectiveness of each system in providing additional mobility in San Francisco and 

consideration of the spatial distribution of bicycle infrastructure, such as bicycle lanes and public 

bike racks to support the potential increase in bicycle demand. As a city with a highly 

concentrated central business district that is surrounded by steep hills with medium density 

residential and mixed use areas, San Francisco offers an interesting case study for examining the 

impacts of e-bike and dockless models on bikesharing travel behavior throughout the city. 

Our research seeks to understand the impact that the dockless, e-bikesharing model might 

have on bikesharing users’ travel behavior as compared to traditional docked bikesharing. A 

primary objective is to characterize the spatial distribution of demand for both dockless electric 

and docked bikesharing throughout San Francisco. We created a destination choice model using 

a month of activity data (February 2018) from both JUMP and GoBike to quantify the relative 

bikesharing attractiveness at a neighborhood scale for users of each system. Our analysis 



 

revealed the impact that dockless, e-bikesharing has on the sensitivity of bikesharing users’ 

destination choices to various exogenous factors such as: bicycle infrastructure, topography, 

socio-demographics, and land-use variables.  

This article is organized into four sections. First, we provide background, including a 

brief history of bikesharing in general and in San Francisco, as well as a discussion of the major 

factors that impact bikesharing ridership, as revealed in existing literature. Next, we present an 

overview of our methodology. Third, we present the results of travel behavior analysis, 

destination choice modeling, and bikesharing suitability analyses. Finally, we highlight our 

conclusions and future work.  

 

2. BACKGROUND 

Public bikesharing and scooter sharing systems are quickly becoming the most widely adopted 

and rapidly growing shared miocromobility options across the U.S. (Parkes et al., 2013; Shaheen 

and Cohen, 2019). By enabling users to access a fleet of publicly available shared personal 

transportation devices on an as-needed basis, shared micromobility offers on-demand, low-

emission public transportation options that can help to reduce congestion and emissions, as well 

as improve public health within urban areas (Parkes et al., 2013). As shared micromobility 

continues to expand and evolve with emerging technology and business models, new insights 

regarding the unique impacts of electric vehicles and dockless models on ridership and travel 

behavior is needed to aid cities in understanding how to best manage local micromobility 

ecosystems to promote a more sustainable and equitable transportation system.  

 

2.1 Evolution of Public Bikesharing Systems 

The first public bikesharing system emerged in 1965 in Amsterdam, Netherlands. This 

innovation has expanded to reach cities across Europe, North America, South America, Asia, and 

Australia (Parkes et al., 2013, Shaheen et al., 2012 (a)). At present, most bikesharing systems are 

classified as third generation, characterized by the implementation of information technology 

(IT) for bicycle pick-up, drop-off, and tracking (Shaheen et al., 2012 (b)). Bikesharing systems 

are predominantly “station-based” or docked, where bicycles are located at public docking 

stations and trips are required to originate and terminate (roundtrip and point-to-point trips). 

Docks are typically concentrated in urban areas, creating a network of on-demand bicycles 

suitable for a variety of trip purposes. Users can instantly unlock an available bicycle from a 

docking station using a credit/debit card, membership card, key, and/or a smartphone application. 

There are a variety of fare structures applied in bikesharing systems including: daily, monthly, 

and annual passes. In most systems, fares tend to cover at least the first 30 minutes of a trip, with 

overage charges beyond that time. Many systems also allow users to chain multiple trip segments 

of 30 minutes or less, such that a user can extend their riding time by “ending” a trip segment at 

a dock and immediately unlocking a bike for another trip segment. 

Fourth generation bikesharing builds upon the IT-enabled third generation to deliver 

demand-responsive, multi-modal systems (Shaheen et al., 2012 (b)). The dockless, or free-

floating, bikesharing model is one such innovation, which allows users to pick-up and drop-off 

bicycles anywhere within a service zone. Demand-responsive bicycle redistribution and value 

pricing encourages users to participate in the rebalancing of bicycles, facilitating a 

spatiotemporal distribution of bicycles that closely matches system supply and demand (Shaheen 

et al., 2012 (b)). Bikesharing systems are also becoming more integrated with other 

transportation modes through mobility as a service (MAAS) models, including: public transit; 

carsharing (e.g., Zipcar, car2go); and ridesourcing/transportation network companies (e.g., Lyft, 

Uber). Uber Technologies, Inc. acquired JUMP in April 2018 (Rzepecki, 2018). Interestingly, 



 

Lyft acquired Motivate, the parent company of GoBike in July 2018. This likely signals that 

shared mobility companies are interested in becoming multi-modal MAAS platforms consisting 

of more than one shared mode. 

In late-2017 and early-2018, bikesharing operators Social Bicycles (SoBi) (which is now 

JUMP, owned by Uber), Motivate, and Lime, began operating bikesharing systems with electric 

assist bicycles or e-bikes. E-bikes have an electric motor that reduces the effort required by the 

rider, allowing for greater speeds and ease in riding uphill. Research on personally owned e-bike 

use has found that the main reasons people choose to use e-bikes include living or working in 

hilly areas, medical conditions, fitness, and the desire to ride with less effort (MacArthur, et al., 

2014). E-bikes can mitigate the inconvenience imposed by needing to shower after bicycling, 

thus providing an attractive alternative to traditional bikes for commute trips. MacArthur et al. 

(2014) found that 80% of sampled e-bike users under the age of 55 and 68% of those 55 and 

older said that they did not need to shower after using e-bicycles. A report on shared 

micromobility in 2018 found that, in cities where e-bikes were added to station-based 

bikesharing fleets, e-bike utilization was about twice that of pedal bikes, on average (NACTO, 

2019). 

 

2.2 Bikesharing in San Francisco: Ford GoBike and JUMP 

Ford GoBike launched in Summer 2017 as a re-branding and expansion of the Bay Area Bike 

Share system, which launched in San Francisco and San Jose in 2013. GoBike provides access to 

five cities, 540 stations, and 7,000 bikes (Ford GoBike, 2018). As with many docked bikesharing 

systems, standard GoBike rides are 30 minutes long, with each additional 15 minutes costing 

extra. GoBike offers single ride, day pass, and annual membership payment plans, with the 

day/annual passes providing unlimited standard rides for the duration of their validity (Ford 

GoBike, 2018 (a)). Users can locate and unlock a bicycle using a mobile app, Clipper Card, or by 

paying on-site using a kiosk. Around the same time as the JUMP pilot launch, in April 2018, 

GoBike added 250 electric pedal-assist bicycles to its San Francisco fleet followed by an 

additional 600 in December 2018 (Ford GoBike, 2018 (b)). However, we note that at the time of 

the study period, the GoBike fleet comprised solely of standard pedal bicycles. Figure 1 below 

shows the service areas of GoBike and JUMP during the study period.  

JUMP Bikes, a program of Social Bicycles, launched in January 2018 after the SFMTA 

issued the city’s first permit to operate a dockless bikesharing service. As an 18-month pilot 

program under evaluation by SFMTA, JUMP is committed to providing a “safe, equitable, and 

accountable” dockless e-bikesharing system (SFMTA, 2018). For the duration of the pilot, 

SFMTA will not issue any other dockless bikesharing permits and aims to develop policy 

recommendations based on the pilot’s results. The initial pilot allowed for 250 bikes until 

October, 2018 when an additional 250 bikes were added to the fleet. With integrated onboard U-

locks, JUMP bikes are parked at regular bike racks or locked to a fixed object in the sidewalk 

“furniture zone,” the portion of sidewalk from the curb to the pedestrian walk zone (JUMP 

Bikes, 2018, NACTO, 2016). Users can locate and unlock the bikes using a smartphone 

application, password, or radio-frequency identification (RFID) member card (SFMTA, 2018).  



 

 
FIGURE 1. Ford GoBike Bike (top) and JUMP (bottom) Service Areas in San Francisco 

Note: Both maps are screenshots from the GoBike and JUMP user applications. The GoBike 

map shows station locations colored by the availability of bikes and the JUMP map shows the 

JUMP service area, with dots indicating the location of available bikes. 

 

2.3 Factors Influencing Bikesharing Ridership and Travel Behavior 

While the literature on ridership and travel behavior of dockless and electric shared 

micromobility is limited, there has been extensive research on the use of station-based 

bikesharing models. The literature reveals three major external factors that impact bikesharing 

ridership: 1) infrastructure (e.g., bike lanes, bike racks), 2) geography (e.g., land use, 

topography), and 3) user demographics (e.g., age, income). Internal factors (e.g., supply 

rebalancing, vehicle type, pricing) are also important drivers of bikesharing ridership. Much of 

the literature on internal factors has focused on a-priori and optimization analyses of station 

location, dock allocation, fleet sizing, and rebalancing algorithms (Garcia-Palomares et al., 2012; 

Shu et al., 2010). We thus focus our attention on empirical findings from the literature on the 

impacts of external factors on bikesharing ridership and travel behavior. 

 

2.3.1 Infrastructure 

Infrastructure indicators for bikesharing ridership relate to the availability and attractiveness of 

bicycle facilities, such as bike lanes, bike paths, and bike boulevards. Buehler and Pucher (2012) 

show that bike commute ridership correlates positively with the supply of bike paths and lanes, 

even when controlling for other contributing factors (Buehler and Pucher, 2012). A destination 

choice analysis of the Divvy docked bikesharing system in Chicago found that bikesharing users 

preferred destinations with a greater density of bicycle facilities in the surrounding area, and 

bikesharing members (subscribers) were more sensitive to this factor than non-members (Faghih-

Imani and Eluru, 2015). Finally, a multiple regression analysis of the Capital Bikeshare system 

in Washington, D.C., found that the total length of bike lanes within .5 miles of a station was a 

significant positive factor in the number of rides per day at the station (Buck and Buehler, 2012). 



 

The quality of the bike infrastructure can also impact the sensitivity of demand for 

bikesharing. Indeed, route choice modeling of Grid Bikeshare users in Phoenix, Arizona found 

that bike-specific facilities increase the preference for a particular route by an amount equivalent 

to decreasing the travel distance by 44.9% (Khatri et al., 2016). In Portland, Oregon, route choice 

modeling revealed that bicyclists prefer bike boulevards and bike paths, which are typically on 

streets with little and no vehicle traffic, respectively, to bike lanes, which are facilities that share 

the road with regular traffic (Broach et al., 2011).  

 

2.3.2 Geography 

The next critical question is where to supply infrastructure per demand. Although station 

proximity to bike infrastructure is a top design priority (NACTO, 2016; Buck and Buehler, 

2012), it is important to note⎯that due to geographical constraints⎯not all origin-destination 

pairs are equally attractive. Job density, proximity to public transit services, and proximity to 

recreational areas at the location of a bikesharing station have been found to be positive factors 

in bikesharing demand (Wang and Akar, 2019; Wang et al., 2015).  

For example, in the Nice Ride program in Minneapolis-St. Paul, stations farther away from 

central business districts (CBDs) of the twin cities as well as those farther away from parks 

generated fewer bikesharing trips (Schoner, 2012). For e-Bikes, an elevation change between 

origin and destination locations is also a positive demand factor. A study of Bicing bikesharing 

user activity in Barcelona found that the average difference in elevation between origin and 

destination stations for e-bikesharing trips was +6.21 meters, compared to -3.11 meters for 

conventional bikesharing trips (Moose, 2016).     

 

2.3.3 User Demographics 

Although bikesharing offers the opportunity to expand cycling mode share, the evidence from 

traditional bikesharing ridership suggests that bikesharing users are not socio-demographically 

representative of the broader population in areas they operate. Existing studies of station-based 

bikesharing in North America have shown that bikesharing use is strongly correlated with certain 

user characteristics such as: gender, age, and race. Station-based bikesharing users tend to be 

younger and upper-to-middle income, with higher levels of educataional attainment than the 

general population (Shaheen et al., 2014; Shaheen et al., 2012). Station citing has been found to 

reflect the socio-demographic inbalances in bikesharing ridership, with one study of 42 U.S. 

bikesharing system reporting that the 60 percent of census tracts with greatest economic hardship 

contained less than 25 percent of bikesharing stations (Smith et al., 2015). Moreover, bikesharing 

station activity increases in locations with higher percentages of white residents and decreases in 

relation to older populations (Wang et al., 2015; Schoner et al., 2012).   

A growing emphasis on transportation equity, particularly with respect to emerging 

mobiliy services, has motivated many agencies to incorporate equity-focused provisions in their 

shared micromobility programs (Shaheen and Cohen, 2019). Common approaches to promote 

equity across station-based bikesharing systems have included offering discounted annual 

memberships to low income riders, citing stations based on equity reasons, providing payment 

plan options and assistance in obtaining bank accounts, credit, and/or debit cards in order to 

lower access barriers to bikesharing (Buck, 2012). Many cities have required that shared 

micromobility operators provide such options as a condition for obtaining an operating permit. 

However, additional barriers to shared micromobility use remain unaddressed. Shaheen et 

al. (2017) introduced the STEPS to Transportation Equity framework to evaluate transportation 

equity by recognizing the opportunities and limitations of Spatial, Temporal, Economic, 



 

Physiological, and Social elements (Shaheen et al., 2017). The STEPS framework can be used to 

evaluate whether a shared mobility system provides equitable transportation services by 

identifying specific barriers and opportunities within each category. In particular, spatial factors 

such as steep terrain and low population density may constrain bikesharing use in certain cities 

with these characteristics. Temporal factors, which pertain to travel time considerations of travel, 

may be an issue in cities where shared micromobility demand is unbalanced during peak hours, 

generating concerns about the reliability of available vehicles. Economic factors include both 

direct costs (e.g., usage costs and membership fees) and indirect costs (e.g., smartphone, internet, 

and credit card access) that may create hardship for particular groups of travelers. Physiological 

factors may have posed a serious limitation to bikesharing use that is reflected in the age 

distribution of riders, though there may be an opportunity to expand shared micromobility use 

for older and less physically active individuals through electric bikesharing and scootersharing. 

Finally, social factors encompass social, cultural, safety, and language barriers that may inhibit 

an individual’s use of a particular service. 

 

3. METHODOLOGY 

Our study consists of three major analytical components: 1) a comparative analysis of 

bikesharing travel behavior, 2) a discrete choice analysis (DCA) using a destination choice 

model, and 3) a geospatial suitability analysis based on the STEPS framework using the DCA 

coefficients.  

To inform our analysis, we employed two datasets from February 2018 of Ford GoBike 

and JUMP, composed of 77,841 docked, conventional pedal bikesharing trips and 24,270 

dockless e-bikesharing trips that occurred in San Francisco. We note that February 2018 in San 

Francisco was slightly warmer than average and relatively dry, with 10 mm of precipitation 

compared to an average of 112 mm (Weather Underground, 2018). The high temperature and 

low precipitation may have resulted in greater observed ridership than would be expected during 

this time of year (Rixey, 2013). The trip-level data include trip duration and start and end times. 

The origin and destination (OD) of a trip are docking stations for GoBike and census blocks in 

which the trip started and ended for JUMP. The age and membership status (annual membership 

subscribers versus single ride or day pass users) of GoBike users are also included for each trip. 

The datasets do not include further information regarding user identification, user characteristics, 

or the trajectories taken for each trip.  

Our analysis is thus constrained to the revealed preferences of unidentified, unlinked 

bikesharing users. Rather than perform a traditional discrete choice model in which individuals’ 

preferences for specific alternatives among a finite set of choices are modeled, we implemented a 

destination choice model (Ben-Akiva and Lerman, 1985). We modeled the decision to travel to a 

particular destination given that a trip originating in a particular location is made using a 

particular bikesharing service.  

We supplemented the trip-level data with: tract-level population, job count, employment 

rate, age, income, and gender distributions from the U.S. Census (ACS, 2016; LEHD, 2013). 

From OpenStreetMap, we used the locations of bike lanes and public bike racks to determine the 

density of these facilities in each census tract in San Francisco (SM, 2018). Finally, we queried 

the Google Directions and Elevations Application Programming Interfaces (APIs) for estimates 

of travel distance, duration, and elevation gain along suggested bike routes for each bikesharing 

trip (Google, 2018). Queries to the Google Directions API used the latitude and longitude of 

specified trip OD pairs to generate a suggested route that provide a path, estimated travel time, 

and distance for each query. These paths were then used to query the Google Elevations API for 

elevation samples at 100 meter intervals, which were used to estimate the total elevation gain of 



 

each trip. All unique OD pairs in the activity dataset were used in this querying process, as well 

as OD pairs for all alternative trips used in the DCA. Alternative GoBike trips included all 

possible OD pairs starting and ending at a GoBike station in San Francisco, while alternative 

JUMP trips were generated as the set of all actual origins of JUMP trips paired with the centroid 

of every census tract in San Francisco.  

We applied the results of the destination choice model and the STEPS framework in a 

suitability analysis, which is a geographic information system (GIS)-based method for 

determining the ability of a system to meet a user’s needs (McHarg, 1969). In our analysis, we 

examined the geospatial distribution of bikesharing suitability in San Francisco. In the following 

sections, we detail the steps taken to process data, specify a destination choice model, and apply 

the model and the STEPS framework in a suitability analysis. 

 

3.1 Data Aggregation 

In this study, observed bikesharing trip destinations are modeled as choices among a discrete set 

of alternative destinations. Although techniques exist to estimate continuous models (Ben-Akiva 

and Watanatada, 1981), neither the GoBike nor JUMP datasets entail location data on a 

continuous scale. The GoBike OD locations are constrained to the discrete locations where 

GoBike stations exist, while the JUMP OD locations are classified by the census block in which 

the trip started or ended for the purpose of privacy protection. With such discrete spatial data, we 

took the approach of aggregating trip OD pairs to the census tract level for two reasons to: 1) 

avoid high correlation between very close OD pairs and 2) simplify the model analysis. 

Aggregating the data by census tracts also allows for the inclusion of additional attributes to the 

model such as: demographics, employment rate, job density, and population density, all of which 

can be measured at the census tract level.  

 

3.2 Census Tract Clustering by K-Means 

With aggregation of the data to the census tract level, we note a major limitation in the 

computability of a model with as many alternatives as there are census tracts in the coverage 

areas of the two SF bikesharing systems. Forty-six census tracts are serviced by the Ford GoBike 

system, and 192 census tracts are serviced by JUMP. Discrete choice models generally include 

Alternative Specific Constants (ASCs) that aim to capture the biases toward each alternative that 

is not explicitly explained by the other model attributes. To avoid overfitting and aid in the 

interpretability of our model, we reduced the number of ASCs by clustering the census tracts 

based on their attributes. We included just one ASC in the model for each of the k clusters, 

making reasonable assumptions that clustered alternatives have similar unexplained bias. 

Several techniques can be applied to solve this unsupervised clustering problem. We 

considered three commonly used techniques for clustering: 1) DBSCAN, 2) Gaussian Mixture 

Models (GMM), and 3) k-means (Shewchuck, 2012). We decided to work with k-means as it 

offers two desirable properties: 1) clusters tend to have similar sizes, and 2) clusters are grouped 

around a centroid. The last property suited our objective of having an average ASC for the entire 

cluster.  

K-means is a distance-based algorithm that requires preprocessing of the data to avoid 

biases due to differences in scale. First, we apply standard normal scaling on every census-level 

attribute available in our data sets. As our final objective is to determine the relative likelihood of 

trips destined for a location, we performed a Cross Correlation Analysis between the attributes of 

a tract and the number of trips that end in the tract. This process produces a projection of the set 

of attributes so that the clustering analysis favors attributes with a strong correlation to ridership 



 

(Ben-Akiva and Lerman, 1985). Figure 2 presents the resulting clusters with an intuitive 

interpretation of each, based on our a-priori understanding of the neighborhoods they represent. 

 

 
FIGURE 2. K-Means Clustering of Census Tracts 

 

3.3 Destination Choice Modeling 

To compare the factors influencing user travel behavior across the two bikesharing systems, we 

designed a single destination choice model specification to apply to the GoBike and JUMP trip 

data separately, producing two models with unique coefficients for the same set of attributes. We 

used a Multinomial Logit (MNL) model that is based on the utility associated with each possible 

choice (Ben-Akiva and Lerman, 1985). We define: 

 

● The choicemaker as an individual making a trip using either GoBike or JUMP. 

Choicemaker characteristics may include trip origin, time of day, and day of week. 

● Alternatives are all of the possible destination census tracts of a choicemaker using a 

particular system (i.e, all census tracts with a GoBike station for GoBike users and all census 

tracts in the study area for JUMP users). Alternative attributes may include land use, socio-

demographics, and density of bicycle facilities in the census tract.  

● The trip attributes, such as trip duration, trip distance, and elevation are the result of both 

choicemaker characteristics (related to the origin) and alternative attributes (related to the 

destination). 

 

We did not interact the coefficients of the model because of the high number of 

choicemaker characteristics and alternative attributes. It follows that all coefficients in the model 

were alternative generic except the ASCs. We did not explicitly account for the spatial 

correlation between tracts, which would require a nested logit model (Ben-Akiva and Watanada, 

1981). Instead, we made the assumption that the cluster ASCs were independent. 

The model we formulated was focused on the characteristics of the destination choices 

and limited the influence of the origin and routing to basic trip characteristics: trip distance and 

elevation gain. We did not include trip duration in the DCA, as it was found to be highly 

correlated with trip distance and elevation gain. We made these simplifications in favor of 

attempting to estimate other choicemaker or trip characteristics (e.g., user characteristics, exact 

routing attributes), which would introduce additional error in the model.  

 



 

3.4 Generation of Trip Alternatives 

The nature of our dataset required that we simulate the choice situation experienced by riders. To 

do so, we used the Google Directions and Google Elevations APIs to estimate trip attributes, and 

we used census data for all attributes related to the destination tract. Any information sourced 

from the Google APIs are hereby referred to as “estimated.” For a given trip observed in the 

activity data, we considered the destination of that trip as the chosen alternative of that 

choicemaker, and we generated the attributes of alternatives by considering all of the other tracts 

to which they could have traveled. We use these estimates rather than the “real” values recorded 

in the activity data to maintain consistency between the attributes of actual and hypothetical 

trips. The steps taken to estimate distance and elevation gain are as follows:  

 

● For GoBike trips, we first queried the Google APIs for travel distance and elevation 

samples (every 100 m) along the suggested routes between each pair of bike stations. Then, for 

each trip origin station and destination tract pair, we computed the average estimated distance 

and elevation gain from that origin station to each station in the destination tract.  

● For JUMP trips, we queried the Google APIs for travel distance and elevation samples 

(every 100 m) from the centroid of the origin census tract to the centroid of a destination tract for 

every OD tract pair. 

 

For both systems, we computed elevation gain by summing all increases in elevation 

observed in the 100 meter intervals sampled. A complete list of attributes included in the final 

model are found in Table 1. 

This model excludes some parameters that were found to be insignificant to the 

destination choices of bikesharing users. Among them, unemployment measures such as the 

unemployment ratio or employment to population ratio were not significant when accounting for 

the log number of jobs. We chose not to include trip cost and membership considerations, as they 

differed considerably across the GoBike and JUMP systems. GoBike members pay annual 

membership fees, resulting in variable per-trip costs for each member depending on the 

frequency with which they use the service. We also did not have information on which of the 

short-term pass options were used by nonmembers. Though start time has a tremendous impact 

on destination choice, this choicemaker attribute can only be incorporated in the model by 

interacting it with other relevant features. We chose not to add this refinement for model 

simplicity. Finally, the distribution of race or ethnicity at trip destinations were found to be 

highly correlated with economic attributes of destinations thus were not included in the final 

model.  

For the JUMP system, we considered every tract in San Francisco County as an 

alternative, while for GoBike we constrained the choice set to the tracts that contain at least a 

GoBike station to account for trip feasibility given the service area at the time the data were 

collected. The sample sizes for each model amounted to 70,779 trips, with 45 alternatives for 

GoBike and 24,034 trips with 192 alternatives for JUMP. 

 

TABLE 1: Parameters of Proposed Model 

Parameter System Min. Max. Mean Std. Description 

Estimated distance 

(miles) 

GoBike 0.2 5.6 2.1 1.0 Estimated distance and elevation gain 

GoBike: Estimated from the origin station 
to all stations in the alternative tract 

JUMP 0 15 3.9 2.1 

GoBike 0 113 28 20 



 

Estimated total elevation 

gain (meters) 

JUMP 0 428 85 54 JUMP: Estimated from the origin block 

centroid to the alternative tract centroid 
Log of the number of 

jobs  

GoBike 5.9 11.7 8.2 1.4 Represents the relative amount of total 

travel activity to and from residences and 

employment in the area 
JUMP 3.6 11.7 7.0 1.3 

Log of the population GoBike 7.5 9.5 8.3 0.4 

JUMP 4.5 9.5 8.3 0.6 

Availability of the 

bikesharing system  

(bikes/ miles2) 

GoBike 3.1 42.3 16.1 8.9 GoBike: Density of stations in the 

alternative tract 

JUMP: Average density of available bikes 

in the alternative tract 

JUMP 0 80 10.4 14.9 

JUMP service area 

indicator 

JUMP 0 1 n/a Indicates whether the alternative is in the 

JUMP service area (JUMP only) 

Bike lane density 

(miles/ miles2) 

GoBike 0 19.6 7.4 4.9 Total bike lane length in the alternative is 

divided by the tract area; represents 

bikeability of the alternative 
JUMP 0 19.6 5.9 4.6 

Bike rack density  

(racks/ miles2) 

GoBike 0 289 37 65 Total number of public bike racks in the 

alternative divided by the tract area; 

represents ease of parking JUMP bikes 
JUMP 0 1013 23 91 

Density of resident 

population  

(people/ miles2) 

GoBike 4k 151k 35k 24k Represents density of the housing in the 

alternative 
JUMP 53 151k 31k 22k 

Median income ($) GoBike 12k 200k 90k 47k Median income of resident population 

JUMP 0 200k 91k 39k 

Fraction of pop. aged 0 

to 25 

GoBike 0 0.4 0.2 0.1 Age fraction in the population to capture 

some activity characteristics, such as 

family-oriented neighborhoods; 35 to 55 

age range is the base case 

 

JUMP 0 0.8 0.2 0.1 

Fraction of pop. aged 25 

to 35 

GoBike 0.1 0.4 0.3 0.1 

JUMP 0.05 0.5 0.2 0.1 

Fraction of population 

aged 55 and more 

GoBike 0.1 0.6 0.2 0.1 

JUMP 0.05 0.6 0.3 0.1 

Entertainment centers GoBike 0 1 n/a ASC aggregated to the cluster level; 

residential low density cluster is the base 

level 
JUMP 

Employment centers GoBike 0 1 n/a 

JUMP 

Mixed use GoBike 0 1 n/a 

JUMP 

South of Market (SoMa) GoBike 0 1 n/a 

JUMP 

Residential- low density GoBike 0 1 n/a 

JUMP 



 

 

3.5 Model Estimation Using the Bootstrap Method 

Including all trips and alternatives, our datasets exceeded our computational power to fit the 

models using the PyLogit Python package. We employed an ensemble method that combines 

several “weak learners” to divide the workload. In this case, a weak learner is a MNL model 

trained on a sample of choice experiments. For the GoBike model, each weak learner was trained 

on 500 choice experiments using all 45 alternatives. However, for JUMP considering all 

alternatives would result in keeping too few choice experiments. So, we chose to have an 

approach similar to those employed in stated preference surveys by restricting the number of 

alternatives for each choice experiment. To fit the JUMP model, we randomly sampled 110 

alternatives to use for each weak learner with 500 choice experiments.  

Cross-validation and the bootstrap are two commonly used methods for partitioning 

model estimation (Gareth et al., 2013). We chose to use the bootstrap as it measures the variance 

in the parameters, indicating which parameters are not relevant in the model and can be removed. 

On the other hand, cross validation is more focused on assessing predictive power (Gareth et al., 

2013). Since we are more concerned with narrowing attributes to those that are most influential 

in destination choice rather than producing a model that predicts exactly where a bikesharing 

user will travel to, we considered the bootstrap a more appropriate method for this analysis. 

Estimating identical models separately on the two datasets required that we keep 

attributes that happened to be significant for one system but not for the other. In addition to 

choosing attributes based on significance, we considered the importance of attributes for policy 

implications. For this reason, we kept the densities of bike lanes and bike racks even though they 

were not statistically significant in the final model.  

 

3.6 STEPS Transportation Equity: “Bikeability” Analysis 

As part of our analysis, we applied the STEPS transportation equity framework to both 

bikesharing systems in this study (See Figure 3).  

 

 
 



 

Figure 3: STEPS Transportation Equity Bikeability Analysis Process 

 

A member survey of five bikesharing systems in five different cities from 2011 to 2013 

(Shaheen et al., 2012 (b)) showed that bikesharing users tend to be wealthier, more educated, 

younger, Caucasian, and male compared to the general population. Bearing in mind these 

baseline bikesharing demographics, we applied the STEPS transportation equity framework to 

evaluate bikesharing’s attractiveness or “bikeability” at different destinations of the city through 

the Spatial, Temporal, Economic, Physiological, and Social elements of STEPS (Shaheen et al., 

2017). Our bikeability analysis is adapted from the map-based suitability analysis first 

introduced by Ian McHarg, one of the eminent theoreticians in environmental planning (McHarg, 

1969). McHarg's method involves superimposing layers of geographical data so their spatial 

intersection or relationships can be used in making land-use decisions.  

 

TABLE 2: Bikeability Factor and Corresponding STEPS Components 

 

Bikeability Factor Opportunit

y/ 

Constraint 

STEPS 

Components 

Criteria GIS 

Feature 

Bike lane density Opportunity Spatial 

Range set above or below 

spatial distribution of the 

feature 

Line 

GoBike station 

density 

Opportunity Spatial/Temporal Point 

Bike rack density Opportunity Spatial Point 

High elevation Constraint Spatial Polygon 

Log of jobs Opportunity Economic Range set above or below 

respective median census 

tract metric 

Polygon  

Low median income Constraint Economic Polygon  

High population 

density 

Constraint Economic Polygon  

Population > 55 

years 

Constraint Physiological  

Range set above or below 

respective median of the 

census tract metric 

Polygon  

 

3.7 STUDY LIMITATIONS 

The major limitations of this study stem from the nature of the bikesharaing activity data that is 

used. The time period observed (February 2018) is the first full month of JUMP operations in 

San Francisco, which is likely to include travel behavior of early adopters and novelty rides that 

do not reflect more regular patterns that may have emerged among JUMP users since its launch. 

In addition, by comparing JUMP and GoBike trips during this time period, we observe the 

interdependent effects of both the dockless model and the electric pedal-assist bicycles on JUMP 

travel behavior compared to that of GoBike, which used non-electric bicycles with a station-

based model during the study period. While differences in travel behavior related to elevation 

may be more directly linked to the e-bikes in the JUMP system, most other trip attributes 

examined may be influenced by a number of variants in the operation and/or ridership across the 

two bikesharing systems. The lack of user data linked to the trips we observe constrains our 



 

ability to account for socio-demographic differences across the riders of the two systems. We use 

census data to differentiate bikesharing trip destinations by the socio-demographic makeup of the 

surrounding census tracts, though we cannot directly draw conclusions about the socio-

demographic characteristics of riders, nor of the actual points of interest visited during each trip.  

In addition, we used suggested bike routes from the Google Directions API to estimate 

trip distances, durations, and elevation gain in the absence of trajectory data. However, we chose 

not to incorporate bike path availability along these suggested routes in the DCA model due to a 

concern that the results would overestimate the use of bike routes. Lastly, there is a degree of 

endogeneity in our DCA results for GoBike, as the destination choices of GoBike users are 

completely constrained to the station locations of the GoBike system.  

 

4. RESULTS 

In this section, we discuss the results of travel behavior analysis, destination choice DCA, and 

STEPS transportation bikeability analysis. 

 

4.1 Travel Behavior 

We begin with a visual analysis of the geographical and temporal distribution of demand for 

each bikesharing system. Figures 4.a – d. display heat maps of bikesharing activity during 

February 2018 by time of day. Areas in which the departures constitute the majority of activity 

are shaded green, while areas in which arrivals constitute the majority of activity are shaded red. 

Thirty-two percent of JUMP trips, 33% of GoBike non-member trips, and 43% of GoBike 

member trips took place during the AM period (12:00 AM to 11:59 AM). Both JUMP and 

GoBike exhibit concentrated AM demand destined for dense employment centers along Market 

Street and in the South of Market (SoMa) and Financial District (FiDi) areas just South-East and 

North-West of Market Street, respectively. These neighborhoods are home to many large office 

buildings housing numerous corporate headquarters and branch offices. The intensity of trip 

arrivals around the Civic Center could represent multi-modal trips, as bikesharing users may 

choose to transfer to the Bay Area Rapid Transit (BART) line at this most North-Western access 

point. There is a clear difference in the trip origins of JUMP and GoBike in the AM period, 

where we see a concentration of GoBike trips departing from the CalTrain and Embarcadero 

BART stations, while JUMP trip departures were spread out in neighborhoods outside of the 

CBD. In the PM period (12:00 PM to 11:59 PM), we observed both systems servicing riders 

originating in the CBD, but the destinations of JUMP trips were again spread out in 

neighborhoods farther away from the CBD, while GoBike trip destinations were concentrated at 

the Caltrain and Embarcadero BART stations. 

  



 

   
4.a. Net JUMP AM Activity    4.b. Net JUMP PM Activity 

 

   
4.c. Net GoBike AM Activity   4.d. Net GoBike PM Activity 

 

Figure 4: AM and PM Demand Distribution Heat Maps for JUMP and GoBike Trip 

Activity. 

Note: Green indicates a net departure of trips and red indicates net arrival. Complete 

transparency indicates overall balance between trip arrivals and departures.  

 

The distribution of bikesharing trip distance and duration for each of the two systems 

exemplifies the behavior observed in the visual analysis. We assess the trip characteristics of 

GoBike members and non-members separately, noting that 95% of GoBike trips were made by 

members. JUMP trips tended to be longer in distance and duration than GoBike trips (Figure 5, 

6). The average JUMP trip was about a third longer in distance and about twice as long in 

duration as the average GoBike member trip. The distribution of JUMP trip durations seemed to 

align with GoBike non-members. While this may be a result of the newness of JUMP in 

February 2018, the similarity implies that JUMP tended to be used for longer, potentially more 

recreational trips, which are more similar to GoBike non-member trips. Indeed, 7% and 8% of 

JUMP and GoBike non-member trips, respectively, are longer than one hour in duration, 

compared to less than a third of a percent of GoBike member trips. Unlike GoBike members who 

pay on an annual basis and are incentivized to make the most out of their membership regardless 

of trip length, JUMP users pay per trip and thus may prefer to make longer, less frequent trips.  



 

 

 

FIGURE 5: Distribution of Bikesharing Trip Duration 

 

 

FIGURE 6: Distribution of Bikesharing Trip Distance 

 

 
FIGURE 7: Distribution of Estimated Bikesharing Trip Total Elevation Gain 

 

Figure 7 displays the distribution of the estimated total elevation gain for bikesharing 

trips by GoBike members and non-members and JUMP users. The average JUMP trip gains 

three times as much elevation in contrast to the average GoBike member trip. In addition, JUMP 



 

trips have a larger range of estimated total elevation gain per trip, with over one third of JUMP 

trips climbing 30 meters or more compared to just 6% of GoBike trips with the same estimated 

elevation increase. The distributions of trip length and estimated elevation gain suggest that e-

bikes may indeed be enabling users to overcome barriers of distance and elevation. 

 

 
FIGURE 8: Bike Use: Average Daily Trips per Bike 

 

 
FIGURE 9: Bike Use: Average Daily Miles Ridden per Bike 

 

Figures 8 and 9 display the average daily bike usage rates of JUMP and GoBike in terms 

of average trips taken per bike per day and average miles traveled per bike per day, respectively. 

The JUMP system achieved greater usage rates than GoBike during February 2018, with .8 more 

daily trips per bike and 2.3 more miles traveled on each bike per day, on average. We note that 

there were 1,558 unique bikes identified in the GoBike San Francisco trip data, while there were 

just 375 JUMP bike IDs. Since JUMP was only issued permits for 250 bikes, we presume that 

some bikes were switched in or out of service during February 2018.  

 

4.2 Destination Choice Model 

Next, we present the results of the destination choice model estimation to better understand the 

influence of different factors on bikesharing users’ destination choices in the GoBike and JUMP 

systems (see Table 3). The final log-likelihood values for the destination choice models for 

GoBike and JUMP trips were -1,402 and -1,713, respectively. The R squared values for the 



 

models were 0.26 for GoBike and 0.27 for JUMP, while the R bar squared values for each were 

0.23 and 0.24, respectively. 

Across both systems, increase in estimated trip distance and elevation gain were both 

strong negative factors in bikesharing users’ destination choices. The estimated total elevation 

gain was by far the most negative coefficient in the GoBike model, indicating that destinations 

that involved climbing in elevation were very unpreferable to GoBike users. The coefficient for 

estimated distance in the JUMP model was more negative than that of estimated total elevation 

gain. The range of estimated trip distances for the destination choice set was inherently larger for 

JUMP than for GoBike, since JUMP users were not entirely restricted by the service area of the 

system. Seven percent of JUMP trips in our dataset were completed outside of the service area. 

JUMP users were fined for ending a trip outside of the service area, but they were not prohibited 

from doing so. The large positive coefficient for the JUMP service area indicator reflected this 

incentive. 

Factors indicating the level of activity at a destination (log of the population and log of 

the number of jobs) were significant and positive across models. In addition, the density of the 

resident population and the ASC for low-density residential census tracts were both significant, 

negative coefficients in the JUMP model, suggesting an affinity of JUMP users to travel to 

lower-density destinations. Conversely, the model results support our findings from visual spatial 

analysis that GoBike users were largely bikesharing to work, as the activity level parameters 

were the two most positive coefficients, and the employment center ASC was positive and 

significant. 

The age and income characteristics of destinations were mostly insignificant in the 

model. JUMP destination choices were significantly negatively influenced by the fraction of 

residents over the age of 55 in a destination census tract. The median income of destinations is 

not a significant factor in the destination choice models for either system, with coefficient 

estimates close to zero in both models.  

While bike rack density is unsurprisingly an insignificant factor in the GoBike model, it 

is a significant positive factor in the destination choices of JUMP users. Since JUMP users were 

instructed to lock the bikes to public racks, this finding has two possible implications for the 

destination choices of dockless bikesharing users: 1) JUMP users may prefer destinations with a 

higher availability of public bike racks with which to easily end their trips, and/or 2) the spatial 

distribution of public bike racks is well suited to the preferred destinations of dockless 

bikesharing users. On a related note, the density of GoBike stations in a destination tract was a 

significant positive factor in the GoBike model. Again, the location of docking stations may 

attract users, and/or they are well-placed to serve the destination preferences of GoBike users. 

 The insignificance of bike lane density in both destination choice models may be an 

artifact of our choice to model this factor as an alternative attribute rather than a trip attribute. 

Bike lane density along suggested destination routes or even the cumulative bike lane density 

across each of the census tracts along the destination route may provide a more explanatory 

variable with which to assess the bikesharing user sensitivity to bike lane availability.  

 

TABLE 3:  Parameter Estimates for Destination Choices of GoBike and JUMP Users 

 

 GoBike JUMP 

Parameter Estimate p-value Estimate p-value 

Estimated distance (miles) -0.75 <0.01 -0.93 <0.01 



 

Estimated total elevation gain (meters) -1.77 <0.01 -0.50 <0.01 

Log of the number of jobs  0.39   0.03  0.22   0.05 

Log of the population  0.58 <0.01  0.23 <0.01 

Availability of the bikesharing system (bikes/ 

miles2) 

 0.34   0.09  0.11   0.18 

JUMP service area indicator - -  0.88   0.05 

Bike lane density 

(miles/ miles2) 

-0.07   0.54  0.01   0.77 

Bike rack density 

(racks/ miles2) 

 0.09   0.50  0.16   0.02 

Density of resident population (people/ miles2) -0.25   0.18 -0.29   0.05 

Median income ($) <0.01   0.83  0.05   0.72 

Fraction of population aged 0 to 25 -0.38   0.16 -0.203   0.38 

Fraction of population aged 25 to 35 -0.03   0.79 -0.09   0.57 

Fraction of population aged 55 and more -0.30   0.10 -0.34 0.016 

Entertainment centers -0.03   0.61  0.04 0.406 

Employment centers  0.10   0.01  0.11 0.089 

Mixed use -0.12   0.48 -0.02 0.800 

SoMa -0.03 0.527  0.07 0.045 

Residential- low density -0.08 0.426  0.08 0.29 

 

4.3 STEPS Transportation Equity: “Bikeability” Analysis 

We applied the results of the destination choice model and the STEPS transportation equity 

framework in a “bikeability” analysis for dockless e-bikesharing in San Francisco. The map 

layers shown in Figure 10 correspond to each of the opportunities and constraints listed in Table 

2 except for the low income layer, which was not included as a result of its’ insignificance in the 

destination choice model. For each bikesharing system, the map layers were weighted using 

factors equal to the corresponding coefficient estimates from the destination choice models. 

These weight-coded map layers were overlaid to generate the opportunity and the constraint 

maps in Figures 11.a-d. We then combined these maps into one “bikeability map” for each 

bikesharing system, displaying the distribution of bikesharing’s attractiveness across the city 

(Figures 11.e-f.). 

 



 

 
FIGURE 10: Suitability Analysis Map Layers 

Note: Each map layer represents a factor in the DCA model. All opportunity factors are labeled 

in green (left), and all constraint factors are labeled in red (right).  

 
 



 

 
FIGURE 11: STEPS Transportation Equity “Bikeability” Composite Maps 

 

The composite suitability maps reveal the geospatial distribution of the “bikeability” for 

users of JUMP and GoBike in San Francisco. In particular, residential neighborhoods in the 

Northwest and along the Northeast of the city provide opportunity for expansion for both 

systems to improve equity based on physiological and economic factors. The distribution of the 

population over 55 and elevation in these neighborhoods appear to be the main constraints in 

these areas, while considerable job density and available bike facilities provide opportunities. 

Though e-bikesharing has potential to overcome physiological barriers for older residents in 

these areas, considerable social barriers may exist since JUMP is only accessible through a 

smartphone application. Additional social constraints, which are not visualized in the bikability 



 

maps, may stem from language barriers or broader cultural differences across the city. Finally, 

introduction of temporal variables would aid in assessing the opportunities and challenges for 

equitable bikesharing based on the time of day. Bikeability may vary across time periods with 

different levels of congestion, or across hours of daylight versus darkness.  

 

5. CONCLUSION 

Shared micromobility service models are growing across the U.S. including: docked, dockless, 

and e-bikesharing models. Our research analyzes the tripmaking behavior of JUMP dockless e-

bikesharing and GoBike docked bikesharing users in the first month of the JUMP pilot program. 

Travel behavior and destination choice analyses reveal that the two systems appear to 

complement one another: GoBike trips tended to be short, flat commute trips, mostly connecting 

to/from major public transit transfer stations while JUMP trips were longer, more spatially 

distributed and more heavily servicing lower-density neighborhoods. The average JUMP trip was 

about a third longer in distance and about twice as long in duration than the average GoBike trip. 

In addition, JUMP trips underwent about three times the elevation gain per trip, on average, 

compared to GoBike trips.  

Our findings suggest that the assistance provided by e-bikes in addition to the flexibility 

afforded by the dockless model are serving mobility demand outside the dense urban core of the 

city, where docked models are not available. Furthermore, we found that the destination choices 

of docked bikesharing users are positively influenced by the density of stations, and bike rack 

density was a significant positive factor for JUMP users. The location of facilities necessary to 

use either the docked or dockless system may attract users and/or be well-placed to the 

destination preferences of users. While the sensitivity of destination choices to factors 

influencing equity, such as older age are slight, our bikeability analysis reveals that the 

composite effect of constraints and opportunities that impact bikesharing demand can have 

adverse effects in neighborhoods otherwise ripe for bikesharing expansion. 

Additional research is needed to more closely link the characteristics of shared 

micromobility users with differences in travel behavior across business models and service areas. 

This study focuses on San Francisco, a city with unique topographic, sociodemographic, and 

cultural features which have distinct effects on travel behavior that may not be generalizable to 

other locations. As policies and guidelines for shared micromobility are being piloted and 

refined, similar data sources to those used in this study complemented with user surveys can be 

used to monitor the emerging trends in ridership across multiple shared modes. Research into the 

multimodal tripmaking and trip chaining using shared micromobility is needed to further the 

understanding of the potential positive impacts of electric and dockless models on overall 

mobility and accessibility across trip purposes. Finally, time series analysis of travel behavior 

before, during, and after the implementation of innovative policies would provide invaluable 

insights to help hone public interventions strategies that effectively bolster mobility while 

promoting sustainability and equity within the broader transportation system.  
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