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When are there Condorcet winners despite
“extremist” preferences?

Ted Bergstrom∗

Very Preliminary draft
April 19, 2021

Introduction
The beach of social decision theory has been thoroughly combed by Condorcet,
de Borda, Lewis Carroll, Kenneth Arrow, Kenneth May, Duncan Black, Amartya
Sen, and hundreds of other talented scholars. Chances of finding even a pretty
pebble seem small, but the tides may sometimes uncover new stones.

Kenneth May [8] found that with two alternatives, if a voting method always
picks a winning candidate, and if it treats voters and alternatives symmetrically
and satisfies a simple Pareto criterion, then it must be majority rule voting.
May also observed that if a voting method treats voters and alternatives sym-
metrically and also satisfies independence of irrelevant alternatives, then this
method must be pairwise majority voting. He then noted that the example of
Condorcet’s majority voting cycle demonstrates that with three or more voters,
for some configurations of preference orderings pairwise majority voting does
not produce a winning outcome. Thus we have a simple proof of a variant of
Arrow’s impossibility theorem.

Duncan Black [2] discovered that if the domain of preference orders over
candidates is restricted to those that are single peaked, then pairwise majority
voting always produces a winning candidate. Inada [7] and Sen and Pattanaik
[11] extended Black’s result by finding other restrictions on the domain of prefer-
ences that are sufficient to imply that pairwise majority voting selects a winner.
All of these conditions require that certain preference orderings are never found
in the voting population. As they say:

“However the restrictions we consider are those that apply only
to types of permissible orderings and not on numbers holding them.”

The current paper builds on a very simple idea; one that allows us to apply
the results of Black, Inada, and Sen and Pattanaik to a much broader domain of

∗I am grateful to Zhengyuan (Franklin) Yang and Haoran (Steve) Li for suggestions and
helpful discussions.
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preferences than has been previously recognized. Notice that if two voters have
opposite preferences about every pair of candidates, then the results of majority
voting would be unchanged if neither of them voted. Thus if one preference
ordering is less common than its opposite, the majority voting results from this
profile will be the same as the results in which there are no voters with the less
common ordering and their number is subtracted from the number of voters
with the opposite preferences. If this “reduced form” profile is single-peaked,
then majority voting from the initial preference profile will produce a winning
candidate.

This means, for example, that qualitative results found for a population
where some preference ordering never appears will still be true in a population
that has a significant number of these “deviants,” so long as they are outnum-
bered by voters with opposite preferences. For example, even if for any left to
right array of three candidates there are a significant number of voters with “ex-
tremist” preferences, majority voting will still select a winner, so long as those
voters who prefer both extremes to the middle are outnumbered by voters with
opposite preferences, who who prefer the center candidate to both extremes.

In a masterful survey of the voting theory literature [10], Sen acknowledges
that it is possible to consider number-specific constraints on domain of prefer-
ence profile but warns that

“In order to make the exercise worthwhile, the number-specific
conditions must have some intuitive meaning that helps the inter-
pretation of the nature of the preference configurations.”

I believe that that the simple “number-specific” conditions proposed here
meet Sen’s criterion of having “intuitive meaning” and that they can help us
to better understand when it is likely that pairwise majority voting produces a
winning candidate. Applying this idea also allows us to simplify and unify the
conditions for transitive majority that were found by Sen and Pattanaik in a
way that I believe enriches our understanding of these conditions.

1 Some Fundamentals
Preference Profiles and Voting Relations
We consider a community with n voters. Each voter i is assumed to have a
reflexive, complete, and transitive preference relation ⪰i over the candidate
pool. Such a relation is known as a weak order. The corresponding strict
preference ≻i and indifference ∼i are defined in the usual way, where A ≻i B if
and only if A ⪰i B and not B ⪰i A, and where A ∼i B if and only A ⪰i B and
B ⪰i A.

Definition 1 (Preference profile). A preference profile for a community of
voters is a list, showing the number of voters who have each possible preference
ordering over the set of candidates.
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A preference profile for a set of voters determines the outcome of pairwise
majority voting. We define the relations R (gets at least as many votes as)
P (gets more votes than ) and I (ties) in the obvious way.

Definition 2 (Pairwise majority voting relations). For any preference profile,
and any two candidates, A and B, we define the induced majority relation R ,
where A RB if and only if at least as many voters prefer A to B as prefer
B to A. The corresponding strict preference relation P has A P B if and only
more voters prefer A to B than prefer B to A. The corresponding “indifference
relation” I has A I B if and only if exactly as many voters prefer A to B as
prefer B to A.

Definition 3 (Condorcet winner). For any preference profile, a Condorcet win-
ner is a candidate that is not defeated in pairwise majority voting by any other
candidate. Thus candidate X is a Condorcet winner if XRY for all other
candidates Y .

A strict Condorcet winner is a candidate who is never beaten or tied.

Definition 4 (Strict Condorcet winner). For any preference profile, a strict
Condorcet winner is a candidate who defeats all other candidates in pairwise
majority voting. Thus candidate x is a strict Condorcet winner if xP y for all
other candidates y.

Definition 5 (Strict Condorcet Loser). For any preference profile, a strict
Condorcet loser is a candidate who is defeated by all other candidates in pairwise
majority voting. Thus candidate x is a strict Condorcet loser if yP x for all
other candidates y.

Definition 6 (Transitive, quasi-transitive, and acyclic majority voting ). If for
any three candidates x, y, and z, majority voting is:

• transitive if ARB and BRC implies ARC .

• quasi-transitive AP B and BP C implies AP C.

• has no 3-cycles if AP B and BP C implies ARC.

Sen [9] argues that, while transitivity of the majority voting relation is suffi-
cient for the existence of a Condorcet winner, this assumption is overly restric-
tive. He shows that the weaker assumption of quasi-transitivity is sufficient to
guarantee that there is least one Condorcet winner for any finite set of can-
didates. Sen [9] proved the following result, using a straightforward induction
argument.

Lemma 1 (Sen). If the number of candidates is finite and the majority voting
relation R is quasi-transitive, there must be at least one Condorcet winner.

Although the converse of Lemma 1 is not true, we will make use of the
following related result.
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Lemma 2. In an election with three candidates, if there is either a strict Con-
dorcet winner or a strict Condorcet loser, then the the majority voting relation
R is transitive.

Proof. If there are three candidates and if R is not transitive, then there must
be a preference cycle of the form xR y, yR z, and zR x. With such a cycle,
we see that in pairwise contests, each candidate gets at least as many votes as
some other candidate and each gets no more votes than some other candidate.
A strict Condorcet winner must get more and a strict Condorcet loser must get
fewer votes than either of the other candidates in pairwise voting. So with three
candidates, if there is either a strict Condorcet winner or a strict Condorcet
loser, there can be no cycle. Hence Rmust be transitive.

Opposite preferences and reduced-form preference profiles
Let us define opposite preference orderings in the following way.

Definition 7 (Opposite preference orderings). Two strict preference orderings
are said to be opposite if these two orderings rank every pair of candidates in
opposite ways.

Where there are three candidates and strict preferences, two voters who have
opposite preference orderings must have the same second choice, with the first
choice of each being the third choice of the other.

Definition 8 (Dominant and dominated orderings). For any preference profile,
and any pair of opposite preference orderings, if the number of voters with one
ordering exceeds the number with the opposite ordering, we say that this ordering
is the dominant member of the pair and the other is dominated.

In any election between two candidates, the votes of two voters with opposite
preferences will cancel each other. Removing an equal number of voters from
each side of a pair of opposite preferences does not change the results from
pairwise majority voting.1 This suggests a way to find a simpler preference
profile for which the results of pairwise majority voting are the same as those
in the original profile.

We define the reduced form of a strict preference profile as a preference profile
in which equal numbers of opposite preference orderings are cancelled in such a
way as to reduce the number of voters holding the dominated member of each
pair of opposite preference orderings to zero.

Definition 9 (Reduced form frequency). For each candidate i, where i is the
second choice of a pair of opposite preference orderings, the reduced form fre-
quency of the dominant member of this pair is the difference m(i) between the
numbers of voters holding the dominant and the dominated preference orderings
from this pair. If the numbers of voters holding each of these opposite orderings
are equal, then m(i) = 0.

1This is also true of the Borda count, and of any other symmetric vote counting mechanism.
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Definition 10 (Reduced form preference profiles). The reduced form of a pref-
erence profile is a preference profile in which the only preference orderings that
appear are those that dominate the opposite ordering. In this profile, the reduced
form frequency of a dominant ordering is the difference between the number of
voters with this preference and the number with its opposite.

2 Three Candidates and Strict Preferences
The theory works out especially cleanly when there are only three candidates
and voters have strict, transitive preferences over the candidates. The case of
three candidates is interesting in itself, since political contests with three seri-
ous contenders are quite common. In addition, it turns out that with any finite
number of candidates, if preferences over every subset of three candidates are
quasi-transitive, then there will necessarily be at least one Condorcet winner for
the entire slate of candidates. We will show that when individual preferences
are strict and transitive, a simple condition on the reduced preference profile is
necessary and sufficient for the existence and uniqueness of a Condorcet win-
ner. This condition is satisfied in much broader cirumstances than the familiar
assumption of single-peaked preferencs.

Assumption 1. There are three candidates, and each voter i has a complete,
transitive, and asymmetric strict preference ordering ≻i over these candidates.2

A preference profile for a community of voters lists the number of voters
who have each possible preference ordering. In a preference profile with three
candidates and strict preferences, a voter could have any of six possible pref-
erence orderings over the three candidates. Table 1 shows a preference profile
with three candidates in its general form.

Table 1: A preference profile with 3 candidates

Ranking of Number of voters
candidates n1 n2 n3 n4 n5 n6

1 B C A C A B
2 A A B B C C
3 C B C A B A

In a reduced form preference profile with three voters and strict preferences,
at most three of the six possible preference orderings appear with a positive
number of voters. These are the orderings that dominate their opposites. Thus
if n1 voters order the candidates BAC and n2 < n1 voters order the candidates
CAB, then the reduced preference profile has n1 − n2 voters with ordering

2A binary relation R on a set S is complete if for any two elements x and y of S, xRy or
yRx. It is transitive if for any three elements, x, y and z, if xRy and yRz, then xRz. It is
asymmetric if xRy implies that not yRx. A relation with these three properties is sometimes
called a linear order. Arrow [1] calls this a strong ordering relation.
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BAC and no voters with ordering CAB. In case n1 = n2, neither ABC nor
CBA appear in the reduced preference profile. With three candidates, each pair
of opposite preferences shares a common second choice. Thus each candidate
appears at most once as a second choice in the reduced form preference profile.
In a reduced form profile, we denote the reduced form frequency of a preference
ordering with Candidate i ranked second as m(i).

Latin Squares and Condorcet Cycles

Table 2: A Latin Square reduced form preference profile

Ranking of Number of voters
candidates m(B) m(C) m(A)

1 A B C
2 B C A
3 C A B

Table 2 shows a reduced preference profile in which each candidate appears
once in each row and once in each column. An array of this type is known as a
“Latin square.”3

Definition 11 ( Latin Square reduced form profile ). Where there are three
candidates, a reduced form preference profile is a Latin square if each of the
three candidates appears is the first choice in one of the three orderings, the
second choice in another, and as third choice in the remaining ordering.

It is well-known that with three candidates, if the preference profile takes
the form of a Latin square, then the majority voting relation may have a cycle
and thus there will be no Condorcet winner. The following result shows exactly
when this is the case.

Lemma 3. If a preference profile satisfies Assumption 1, and if the reduced
form of a preference profile is a Latin square, then the majority voting relation
P has a cycle if and only if each of the three preference orderings in the reduced
form profile has fewer than half of the total number of voters counted in this
profile.

Proof. If each of the preference orderings in a reduced preference profile is held
by fewer than half of the voters in that profile, then in pairwise voting, any
candidate will be defeated by another that is preferred by two of the three
preference orderings in the profile. If the reduced form preference profile is
a Latin square, then for each candidate, there is another candidate that is
preferred in two of the three preference orderings in the profile. Therefore the
ordering P must have a cycle.

3Benjamin Ward [12] appears to be the first to have applied this term to voting theory.
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If one of the preference orderings ≥i in the reduced preference profile has
at least half of the voters in this profile, then for any three candidates, A, B,
and C, if A P B and BP C, it must be that A ≥i B and B ≥i C. Since ≥i

is assumed to be transitive, it follows that A ≥i C. Since at least half of the
voters in the reduced preference profile have the preference ordering ≥i, it must
be that ARC. It follows that P can not have a cycle if some profile has at least
half of the voters in the reduced preference profile.

Existence of Condorcet winners
If more than half of the voters in the reduced preference profile have the same
preference ordering, then in all pairwise voting contests, the preference of this
majority group will prevail. Since individual preferences are assumed to be
transitive, the majority voting relation is transitive. Where preferences are
strict, the unique candidate that is most preferred by those with the majority
preference is a strict Condorcet winner. Therefore, we have:

Lemma 4. If Assumption 1 is satisfied and if more than half of the voters in the
reduced preference profile share the same preference ordering, then the majority
voting relation is transitive and there is a unique strict Condorcet winner.

The possibility of ties in pairwise votes causes a bit of complication and
leads to slightly weaker results. Therefore, we begin by considering preference
profiles in which there are no troublesome tie votes.

Assumption 2 (No ties). No preference ordering in the reduced preference
profile is held by exactly half of voters in this profile. For at least one pair of
opposite preferences, the number of voters on one side exceeds the number on
the other side.

With three candidates, the reduced preference profile includes at most three
preference orderings. Since voters with opposite preferences share the same
second choice from among three candidates, if three candidates appear in the
reduced preference profile, then each of them will have a different second choice.
If the reduced preference profile has three candidates and is not a Latin square,
it follows that one candidate is ranked first in two of the preference orderings
and second in the other ordering. Another candidate must ranked first in one
ordering, second in another, and third in another. The remaining candidate
must never be ranked first, and must be ranked second in one ordering and
third in the other two orderings.

For any reduced form preference profile with three candidates that is not a
Latin square, we can assign labels as in Table 3, where candidate B is ranked
first by two orderings, candidate A is ranked first by one ordering, and candidate
C is never ranked first.

Lemma 5. If Assumptions 1 and 2 are satisfied and if the reduced preference
profile is not a Latin square, then there is a unique Condorcet winner and the
majority voting relation is transitive.
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Table 3: Reduced Form Profile Without Latin Square

Ranking of Number of voters
candidates m(B) m(C) m(A)

1 A B B
2 B C A
3 C A C

Proof. If more than half of the voters in this reduced preference profile share
one of the preference orderings, then in any pairwise contest, the candidate
preferred by this preference ordering will prevail. Therefore, since individual
preferences are assumed to be transitive, the ordering P will be transitive and
the first choice of this preference will be a unique Condorcet winner.

If fewer than half of the voters in the reduced preference profile hold each
of the preference orderings, then in any pairwise contest, the winning candidate
will the one favored by two of the three preference orderings. We have shown
that if a reduced preference profile with three candidates is not a Latin square,
then one candidate (B in Table 3) is the first choice of two of the three orderings,
and one candidate (C in Table 3) is the last choice of two of the three candidates.
It follows that candidate B, the favorite of two of the three preference orderings
is a unique Condorcet winner. For these three candidates, the relation P is also
transitive, since we have B P A, AP C, and B P C.

Assumption 2 implies that the reduced preference profile contains at least
one preference ordering. The reduced preference profile would have only one or
two preference orderings if for one or two of the pairs of opposite preferences,
the number of voters on each side is equal. If the reduced preference profile
has only one or two preference orderings, and if assumption 2 is satisfied, then
more than half of all voters in the reduced preference profile share a single
preference ordering. Therefore the majority voting relation Rwill be the same
as the preference of ordering of these voters. Hence Rwill be transitive and the
unique Condorcet winner will be the most preferred candidate of these voters.

Two kinds of ties are excluded by the No Ties assumption. One occurs
where the reduced preference profile contains no preference orderings because
there are equal numbers of voters on each side of all opposite pairs. The other
occurs when some preference ordering is held by exactly half of all votes counted
in the reduced preference profile.

In the case of equal numbers of voters on each side of all opposing pairs,
there will be a tie vote in every pairwise contest. Therefore in this case, all
three candidates are Condorcet winners.

If one preference ordering is held by exactly half of the voters in the reduced
preference profile, then the favorite candidate of this preference ordering is a
Condorcet winner, since it cannot be defeated in pairwise competition. There
may, however be a tie between this candidate and another candidate who is
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preferred by the other voters.

Lemma 6. If the reduced preference profile is not a Latin square and if exactly
half of the voters in this profile share a single preference ordering, there exists
at least one Condorcet winner, though it is not necessarily unique.

Proof. If exactly half of the voters in the reduced preference profile share the
same preference ordering, then in any pairwise contest, the candidate preferred
by this group will get a least half of the votes. A candidate that is the first
choice of half the voters must be Condorcet winner, since no other candidate
can get more votes in pairwise competition.

Lemma 7. If Assumption 1 is satisfied, if the reduced preference profile is not
a Latin square ,and if exactly half of the voters in the reduced preference profile
share the same preference ordering, then the majority rule ordering R is not
necessarily transitive, but it is quasi-transitive.

Proof. To see that R is not necessarily transitive, consider the case where ex-
actly half of the voters have the preference relation B ≻ C ≻ A and the remain-
ing voters have the ordering A ≻ B ≻ C. In this case, it must be that C RA
and A RB, since there is a tie vote in each case, but it is not the case that C
RB, since B is unanimously preferred to C.

To show that R is quasi-transitive we need to show that for any three candi-
dates A, B, and C, if A P B and B P C, then A RC. Suppose that half of the
voters in the reduced preference profile have the preference ordering ⪰i. Then
if A P B and B P C, it must be that A ≻i B and B ≻i C. Since ≻i is assumed
to be transitive, it follows that A ≻i C. But this means that at least half of all
voters prefer A to C. It follows that A RC. Hence R is quasi-transitive.

The results of Lemmas 4-7 can be summarized by the following propositions:

Proposition 1. If there are three candidates and individual preferences are
strict orderings, then there is at least one Condorcet winner if and only if one
or both of the following are true:

(i) One of the preference orderings in the reduced preference profile is held
by at least half of the voters counted in this profile.

(ii) The reduced preference profile is not a Latin square.

Proposition 2. If there are three candidates and individual preferences are
strict orderings, then a Condorcet winner is unique if Asssumption 2, (the no-
ties assumption) is satisfied.

Single-peaked Preference Profiles
A preference profile is said to be “single-peaked” if candidates can be arrayed
from left to right along a line, in such a way that every voter has a favorite
candidate and for any two candidates on the same side of the favorite, the one
who is closer to the favorite is strictly preferred to the other.
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We paraphrase Arrow’s [1] formal definition of single-peaked preferences as
follows:

Definition 12 (Single-peaked preferences-Arrow). A preference profile is single-
peaked if there is some complete ordering S of all candidates such that for every
preference ordering in this profile, and for any three candidates x, y and z such
that y lies between x and z in the ordering S, if x ⪰i y, it must be that y ≻i z.

Sen [10] pointed out that Arrow’s definition of single-peakedness is equivalent
to a definition that can be stated without explicit use of Arrow’s left-right
ordering, S. Sen’s version is as follows:

Definition 13 (Single-peaked preferences-Sen). A preference profile is single-
peaked if and only if for any three candidates, one of these candidates is strictly
preferred by all voters to at least one of the other two candidates.

Remark 1. Where ≥i is a complete prefernce ordering for all i, Sen’s definition
of a single-peaked preference profile is equivalent to Arrow’s.

Proof of Remark. Suppose that the preference profile is single-peaked by Ar-
row’s definition. We first show that if the preference profile satisfies Arrow’s
definition, it also satisfies Sen’s. In particular, the candidate positioned in the
middle by Arrow’s ordering S is strictly preferred by all voters to at least one
of the other two candidates. For three candidates, x,y, and z, where xSySz,
Arrow requires that for all voters i, if x ⪰i y, then y ≻i z. Since individual
preference orderings are assumed to be complete, it follow that if not x ⪰i y,
then y ≻i x. Therefore it must be that for every voter, the middle candidate y
is preferrred to at least one of the other two candidates.

Conversely, suppose that a preference profile satisfies Sen’s condition. Then
for any three candidates, there is one candidate who is strictly preferred by all
voters to at least one other candidate. Without loss of generality, name these
candidates x,y, and z where y is the candidate that all voters prefer to at least
one of the other two. Let the left-to-right ordering S rank them xSySz. Since
y is preferred to either x or to z for every voter i, it must be that if x ⪰i y, then
y ≻ z. Therefore Sen’s condition implies Arrow’s.

Definition 14 (Essentially single-peaked). A preference profile over three can-
didates is essentially single-peaked if the reduced form of this profile is single-
peaked.

Lemma 8. A preference profile that satisfies Assumption 1 is essentially single-
peaked if and only if it is not a Latin square.

Proof. According to Sen’s definition, if a reduced preference profile is single-
peaked, there is some candidate that does not appear in last place in any of the
three preference orderings in this profile. In a Latin square, every candidate is
the last choice of one of the profiles. Therefore if the reduced preference profile
is single-peaked, it cannot be a Latin square.
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In a reduced preference profile, each of the three candidates is the second
choice of one of the three preference orderings included. If this profile is not
a Latin square, it cannot be that each candidate is also the first choice of one
of the three orderings. So it must be that one candidate is the first choice of
two of the preference orderings and is not the last choice of any of the three.
Therefore one of the three candidates must be the first choice of none of the
three orderings and the last choice of two of them. The candidate who is the
first choice of two of the orderings must then be preferred by all three preference
orderings to the candidate who is the first choice of none of the orderings. (See
Table 3) Therefore if the reduced preference profile is not a Latin square, it
satisfies Sen’s condition for single-peakedness.

The following results follow directly from Lemma 8 and Propositions 1 and
2.

Proposition 3. If there are three candidates and individual preferences are
strict orderings, there is a Condorcet winner if the reduced preference profile is
essentially single-peaked. If in addition, Assumption 2 is satisfied, there will be
only one Condorcet winner.

Proposition 4. If there are three candidates, individual preferences are strict
orderings, and each preference ordering in the reduced profile is held by fewer
than half of all voters in this profile, then if there is a Condorcet winner, it must
be that preferences are single-peaked.

3 Preferences that allow indifference
The story gets a bit more complex if voters can be indifferent between two
candidates. Let us consider preference profiles in which preferences of each in-
dividual i are characterized by an “at least as good” relation ⪰i that is reflexive,
transitive, and complete. Such a preference relation is known as a weak order.

Assumption 3. There are 3 candidates. Each voter i has a preference relation
⪰i that is a weak order defined on these candidates.

With three candidates, when indifference is allowed, there are 13 possible
preference orderings. In addition to the six orderings with strict preference
only, there are six orderings with semi-strict preference orderings where there is
indifference between two of the three candidates. There is also one ordering that
is indifferent among all three candidates. Voters with this ranking have no effect
on majority voting outcomes, since they never prefer one candidate to another.
The six semi-strict orderings include three pairs of opposite preferences. Where
x(yz) denotes X ≻ Y and Y ∼ Z, these pairs are A(BC) and (BC)A, B(AC)
and (AC)B, and C(AB) and (AB)C.

Any preference profile in which preferences are weak orderings will induce
the same majority voting relation as its reduced preference profile. The re-
duced preference profile consists of a listing of six preference relations: the three
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strict preference orders that dominate their opposites, and the three semi-strict
preference orders that dominate their opposites, along with their reduced form
frequencies.

3.1 Single-peaked with weak orders
A single-peaked preference profile, as defined by Arrow and by Sen allows pref-
erences to be a weak order. This definition requires that there is a positional
ordering S such that a candidate who is located between the other two in the
ordering S is strictly preferred to at least one of its neighbors.

Sen and Pattanaik [11] and Sen [10] (pp 226-231) show that if the preference
profile is single peaked, then majority voting is quasi-transitive and hence selects
at least one Condorcet winner. They also find less stringent qualitative restric-
tions on preference profiles that imply the existence of one or more Condorcet
winners.

Since pairwise voting results with the reduced preference profile are the same
as for the original profile, the results found by Sen and Pattanaik can be ex-
tended by noting that it is sufficient for the existence of a Condorcet winner that
the reduced preference profile satisfies their restrictions on preference profiles.

Working directly with reduced preference orderings allows us to find alter-
native sets of assumptions with relatively simple intuitive interpretations that
imply the existence and/or uniqueness of Condorcet winners.

If preferences are single peaked and there are three candidates, the middle
candidate under the ordering S cannot be ranked last or tied for last. In the
reduced form preference profile, there are at most three strict preference order-
ings that appear with a positive number of voters. Each of the three candidates
is the second choice in one of these three orderings.

Table 4 represents all possible reduced form preference profiles with the
following conventions. The number mi is the difference between the number of
voters with the preference ordering listed below and the number of voters who
hold the opposite preference. If mi > 0, the preference ordering listed below
dominates its opposite. If mi < 0, the ordering listed below is dominated by its
opposite, and if mi = 0,the number of voters with this ordering is equal to the
number with the opposite ordering.

If the reduced form preference profile is single-peaked, there is some candi-
date that is not the last choice in any of the three strict preference orderings.
Let us label this candidate B. Since for the three strict preference orderings,
Candidate B is never the third choice and only once the second choice, it fol-
lows that Candidate B is the first choice in two of the strict orderings and the
second choice in one of them. Let us apply the label, A, to the candidate that is
the first choice when Candidate B is the second choice. It follows that the third
candidate, labelled C, must be the second choice in one of the strict orderings
and the third choice in two of them. Then if preferences are single-peaked, it
must bet that m1 ≥ 0, m2 ≥ 0 and m3 ≥ 0 in Table 4. If preferences are
single-peaked, then it must be that in the semi-strict orderings, Candidate B is
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never ranked last or tied for last. This implies that in Table 4, m4 ≥ 0, m5 ≥ 0
and m6 ≥ 0.

Table 4: Essential Single-peaked profile with weak orders

Ranking of Number of voters
candidates m1 m2 m3 m4 m5 m6

1 A B B B (AB) (BC)
2 B C A (AC) C A
3 C A C

3.2 Beyond the single peaks
The assumption that preferences are essentially single-peaked is stronger than
necessary to ensure the existence of a Condorcet winner. With three candi-
dates and single-peaked preferences, if Candidate B is the middle candidate in
a positional order S for which the preference profile is single-peaked, then in
the reduced preference profile, the three semi-strict preference relations, B(AC),
(AB)C, and (BC)A must dominate their opposites, (AC)B, C(AB) and A(BC).
Thus, if preferences are essentially single-peaked, it must be that where the
preference profile is represented as in Table 4, mi ≥ 0 for i = 1, 2, . . . 6.

The three semi-strict preference relations that must be dominated if the
reduced preference profile is single-peaked are shown in Figure 3.2, where the
horizontal axes show the candidates in a left-to-right positional order, where
Candidate A is on the left, Candidate B is in the middle and Candidate C is on
the right, and where the vertical axis represents utility for each candidate.

Figure 1: Examples violating single-peakedness

Twin peaks

u

A B C

Left flat valley

u

A B C

Right flat valley

u

A B C
As it turns out, in order to ensure that there is a Condorcet winner, we do

not need to exclude the right flat valley preference relation A(BC) be dominated
by its opposite.
Lemma 9. Where the preference profile is represented as in Table 4, there will
be at least one Condorcet winner and the pairwise majority relation Rwill be
quasi-transitive if mi ≥ 0 for i = 1, 2, . . . 5.
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Proof. Suppose that AP B. From Table 4, we see that if mi ≥ 0 for i = 1, . . . , 5,
then the only dominant preference order for which A ≻ B also has A ≻ C.
Therefore AP B implies AP C, Thus if AP B, A is a strict Condorcet winner,
and according to Lemma 2 R is transitive.

Suppose that BP A. We see from Table 4 that i if mi ≥ 0 for i = 1, 2, . . . 5,
then B ⪰ C for all voters in the reduced preference profile. Therefore BRC.
Since BP A and BRC, it must be that B is a Condorcet winner and the relation
R is quasi-transitive.

Suppose that A I B. From Table 4, we see that

m1 +m6 = m2 +m3 +m4 (1)

Since m3 ≥ 0 and m5 ≥ 0, this implies that

m1 +m3 +m5 +m6 ≥ m2. (2)

Equation 2 implies that ARC. Since mi ≥ 0 for i = 1, 2 . . . 5, it must be that
voters who prefer C to B never outnumber their opposites who prefer B to C.
Hence BRC. We now have A I B, ARC, and BRC. It follows that both A and
B are Condorcet winners. In this case there are no three alternatives x, y, and z
such that xP y and yP z. Therefore quasi-transitivity is trivially satisfied.

3.3 The remaining troublemakers
Where there are three candidates and the reduced preference profile over strict
preferences is single-peaked, there remain two semi-strict preference orderings
that can result in the absence of a Condorcet winner. With the labeling conven-
tions used in Tables 4, these are the semi-strict preference orderings A ∼ C ≻ B
and C ≻ A ∼ B, which we will denote as (AC)B and C(AB).

Examples 1 and 2 show reduced preference profiles that include positive
numbers of voters with preference orderings with these preference orderings and
for which the majority voting relation is cyclic and hence there is no Condorcet
winner. In the appendix to this paper, we show that in a preference profile where
either of these “trouble-makers” appear, there will be no Condorcet winner for
a large set of distributions of voter preferences.

Table 5: Example 1: No Condorcet winner with C(BA)

Ranking of Number of voters
candidates 5 2 1 1 6 1

1 A B B B C A
2 B C A (AC) (AB) (BC)
3 C A C

In Example 1, Candidate A beats B by 6 votes to 4. B beats C by 9 votes
to 6. C beats A by 8 votes to 7. Thus, we have AP B, BP C and CP A. There
is a Condorcet cycle and there is no Condorcet winner.

14



Table 6: Example 2: No Condorcet winner with (AC)B

Ranking of Number of voters
candidates 1 3 1 5 1 1

1 A B B (AC) (AB) (BC)
2 B C A B C A
3 C A C

In Example 2, A beats B by 6 votes to 5. B beats C by 6 votes to 5, and
C beats A by 4 votes to 3. Since we have AP B, BP C and CP A, there is a
Condorcet cycle and there is no Condorcet winner.

3.4 Consistent with strict preference
Where all voters have strict preferences over three candidates, we found that
that essentially single-peaked preferences are not only sufficient for there to be
a Condorcet winner, but also necessary in the following sense. If, the reduced
preference profile is not single-peaked and if no preference ordering in this profile
is shared by more than half of the voters, then the majority voting relation will
be cyclic and there will be no Condorcet winner.

When preferences are a weak order, single-peakedness remains a sufficient
condition but is no longer necessary for existence of a Condorcet winner. Ac-
cording to Lemma 9, there is a Condorcet winner if the preference profile takes
the form found in Table ??, although this preference profile is not single-peaked.
How can we interpret this weaker sufficient condition? When all preferences are
strict and there are three candidates, the assumption of single-peaked prefer-
ences requires that there is some candidate whom all voters agree is “moderate,”
and any voter who prefers one of the extreme candidates to the moderate will
prefer the moderate to the other extreme. When extending this notion to pref-
erences with weak orders, the definition of single-peaked preferences used by
Arrow and by Sen requires, not only that no voters rank the moderate candi-
date as strictly worse than the other two, but never rank this candidate in a tie
for worst. This assumption is stronger than one might hope, since it excludes
the possibility that some voters may find one of the extremes to be a clear first
choice, and do not bother to distinguish between the two less desired candidates.

Lemma 9 shows that a Condorcet winner can be guaranteed even if some
voters rank the moderate candidate in a tie for third place. As we see from
Table ?? there will be a Condorcet winner when the reduced preference profile
includes an ordering that ranks the extreme candidate, A as first choice and is
indifferent between the moderate, B, and the other extreme, C. The profile in
Table ?? does not, however allow the semi-strict ordering C(BA), in which the
first choice is Candidate C and where A and B are tied for last. Indeed, as we
will show, in some orderings where the semi-strict ordering C(BA) dominates
its opposite there will be no Condorcet winner.

Recall that with our naming convention, voters with strict preference order-
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ings who rank C as their first choice, are outnumbered by their opposites, who
rank A their first choice and C as their last choice. Thus the assumption that
voters with the semi-strict ordering C(BA) are outnumbered by their opposites
imposes a kind of consistency between relative numbers of semi-strict orderings
and corresponding strict orderings. This motivates the following definition.

Definition 15 (Consistent with strict preferences). A preference profile is con-
sistent with strict preferences if: (i) a candidate who is not ranked first by any
strict preference ordering is not strictly preferred to the other two candidates in
the profile’s semi-strict orderings. (ii) a candidate who is not ranked last by any
strict preference ordering is not ranked as worse than the other two candidates
in any of the profile’s semi-strict ordering.

Definition 16 (Consistently single-peaked). Where preferences are a weak or-
der with three candidates, the reduced preference profile is consistently single-
peaked if the preference profile is consistent with strict preferences and the dom-
inant strict preference relations do not make a Latin square.

From Proposition ?? and Lemma 9, we have the following proposition, which
extends the domain of preference profiles for which there is a Condorcet winner
by excluding only two of the three preference orderings excluded by single-
peakedness.

Proposition 5. Where there are three candidates and individual preferences are
weak orders, if the reduced form preference profile is consistently single-peaked,
there is at least one Condorcet winner and the majority voting relation R is
quasi-transitive. Except in the case where there is a voting tie, the Condorcet
winner is unique and between R is transitive.

4 Ties, cycles, and strategic Voting
Eric Maskin and Partha Dasgupta [4] compare pairwise majority voting with
other voting mechanisms. They show that where the number of voters is large
and voter preferences are strict, and the preference profile has no Condorcet
cycles, pairwise majority voting is the only voting mechanism that satisfies a set
of appealing assumptions, crucially including the assumption that it is strategy-
proof in the very strong sense that no coalition of voters, acting cooperatively
can benefit some and harm nocoalition member.

Maskin and Dasgupta avoid the complications that arise from tie votes by
assuming that there there is a continuum of voters and that voters are never
indifferent between two candidates. They justify the assumption of having an
infinite number of voters as a good approximation to there being a very large
number of voters, in which case, with any reasonable assumption about the dis-
tribution of preferences, the probability of a tie vote is negligible. The assump-
tion of a large number of voters and the near impossibility of ties is probably
appropriate for most governmental elections, but the theory of voting also has
important applications for decisions of small organizations and of committees
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only a few voters. In these cases, tie votes become quite likely and the prospect
of tie votes can not be ignored. Like Maskin and Dasgupta, we find that in the
absence of tie votes, if there are no tie votes and preferences are single-peaked,
pairwise majority voting produces a unique Condorcet winner and it is in the
interest of voters to vote their true preferences. 4

Lemma 10. If pairwise majority voting always produces a unique Condorcet
winner, then for any voter, it is a weakly dominant strategy to vote ones true
preference.

Proof. Suppose Candidate X is a unique Condorcet winner. The only way that
a voter could cause another candidate Y to be a Condorcet winner would be
to rank Y above X in his stated ordering, although he prefers X to Y. But if
the voter prefers X to Y, then such a deception would make him worse off, not
better off.

4.1 Multiple Condorcet winners and strategic voting
If, however, sincere voting produces more than one Condorcet winner, it is
possible that a voter could benefit by claiming a preference ordering different
from his actual ordering. If there is more than one Condorcet winner, a fully
specified voting process must determine what happens when there are ties. For
example, the winner might be selected at random, or by applying some other
criterion based on voting results.

If there are at least two Condorcet winners and at least three candidates,
it may be that a voter who prefers one of the Condorcet winners to another
can gain by strategically casting her vote in such a way as to eliminate a less
preferred outcome from the set of Condorcet winners.

Here is an example: The reduced preference profile is shown in Table 7. We
assume that there is a positive number of voters number of voters with preference
order A ≻ B ≻ C, but that this number is equal to the number with ordering
C ≻ B ≻ A so that in the reduced preference profile there are no voters of
either type. We also assume that the number of voters with order A ≻ C ≻ B
is equal to the number with B ≻ A ≻ C. With this preference profile, the
majority rule ordering has A I B, AP C and B I C. In this case, A and B are
undefeated in pairwise voting and hence are both Condorcet winners. If the
winner is randomly chosen from among the Condorcet winners, the outcome
has a positive probability of being either A or B.

A voter whose preferences are A ≻ B ≻ C would like to eliminate B from
the Condorcet set. In the contest between B and C, this voter prefers B, and if
she votes sincerely, B and C receive equally many votes. If this voter submits
the ranking A ≻ C ≻ B instead of her actual preference order, the reduced
profile of submitted votes becomes that shown in Table 8.

4Maskin and Dasgupta use a stronger concept of strategy-proofness. Their version requires
that no coalition, acting cooperatively can improve on sincere voting.
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Table 7: Room for strategic voting

Ranking of Number of voters
candidates 0 k k

1 A A B
2 B C A
3 C B C

Table 8: Manipulated profile

Ranking of Number of voters
candidates 1 k+1 k

1 C A B
2 B C A
3 A B C

In this case, A I B, CP B, and AP C. The unique Condorcet winner is now
A. This outcome is preferred by the voter with preference ordering A ≻ B ≻ C
to the outcome from sincere voting. So it is not in her interest to vote sincerely.

4.2 Cycles and random choice
One way to choose a winner when majority voting yields cycles is to construct
the “transitive closure” R∗ of the majority preference ordering. This amounts
to declaring any set of candidates in a voting cycle to be indifferent to each
other. Since R∗ is transitive, there will be a non-empty “Condorcet set” of
candidates such that no member of this set can be defeated by a candidate not
in the set. The mechanism could then declare the winner to be a randomly
selected member of the Condorcet set.

Table 9: Room for manipulation

Ranking of Number of voters
candidates 2k − 1 k k

1 A B C
2 B C A
3 C A B

A problem with this mechanism is that when it is used, voting one’s true
preference is not in general optimal. To see why, consider the voter profile in
Table 9. This profile is a Latin square. No preference order has more than half of
the voters and if voters vote their true preferences, the majority voting relation
is cyclic, with no Condorcet winner. Then if all vote their true preferences, the
outcome will be a lottery in which each of the three candidates is chosen with

18



probability 1/3. Suppose that a voter with preference ordering A ≻ B ≻ C
strongly dislikes Candidate C and would rather have Candidate B than this
lottery. If the other voters vote their true preferences, the voter who prefers
A to B and B to C could change the outcome by voting for B in the pairwise
contest between A and B. When he does so, Candidate B will defeat A by k+1
votes to is shared by more then half of the voters, Candidate A becomes the
Condorcet winner and the majority voting relation ranks Candidate A first,
Candidate B second and Candidate C third.

4.3 More thoughts on ties
As Maskin and Dasgupta [4] say, with a large number of voters, ties are ex-
tremely unlikely. But even if ties are very unlikely, is not obvious that this
means that voters will ignore the possibility of ties. Timothy Fedderson and
Wolfgang Pesendoerfer [5] remind us that a rational voter who cares mainly
about the outcome of the election would use his vote to maximize his payoff
conditional on his vote making a difference. But a voter’s vote will matter only
if it makes or breaks a tie. Of course a voter who believes that the probability
is nearly zero that his vote will be pivotal will have a negligible incentive to
think carefully about how his vote could affect the outcome and could hardly
be expected to determine his best strategy in the event that his vote is pivotal.

In general, determining how to cast ones vote strategically, a voter would
need to make a guess about what the others are going to do. Consider the
preference profile shown in Table 7. Suppose, for example, that a voter with
preference ordering A ≻ B ≻ C does not know whether in the reduced preference
profile, the number of voters with ordering A ≻ C ≻ B is k or k+1, but knows
that the number of voters with the other two orderings are as in the table. We
have seen that if the number is k, this voter can gain by pretending to have
preference relation A ≻ C ≻ B. But if, instead, the number of voters with
the order A ≻ C ≻ B is k + 1, then if this voter votes his true preference, the
outcome will be A, his first choice. If this voter pretends to have preference
A ≻ C ≻ B, the result will be a tie between A and B, which leads to a random
choice between A and B. Thus the voter will have harmed himself by not voting
his true preference.

(

This paper needs some more work. Among other things: The last 5 pages need
to be edited. It also needs a concluding section and an Appendix that details
the relation between this paper’s results and those of Sen and Pattanaik. Some
comments on plurality voting, and alternative forms of ranked voting, with
attention to [3] and to [6] would probably be worthwhile.
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Appendix 1: Relation to Sen-Pattanaik results
4.4 The Sen-Pattanaik conditions
Sen and Pattanaik [11] presented conditions on preference profiles that guaran-
tee the existence of a Condorcet winner when there are three candidates and
preferences are a weak order. The Sen-Pattanaik conditions most closely related
to this discussion are the following.

Definition 17 (The Not Worst condition). For some candidate x, candidate x
is strictly preferred to at least one of the other two candidates by every voter.

As Sen and Pattanaik point out:

Remark 2. The Not Worst assumption is equivalent to the assumption of
single-peaked preferences.

Definition 18 (The Not Best condition:). There is some candidate x such that
every voter prefers at least one other candidate to x.

Remark 3. The assumption that the reduced form profile satisfies the Not Best
condition is equivalent to the assumption that this profile can be written in the
form of Table ??.

For each candidate x, every voter strictly prefers some other candidate to x.
The Not Best assumption requires that some candidate is not the first choice
of any voters. Suppose that the reduced form preference profile satisfies Not
Best. Where we attach label C to the candidate that is not any voter’s first
choice, this requires that the reduced form profile is as shown in Table ??.
Therefore, according to Lemma 9, there is a Condorcet winner if the reduced
form preference profile satisfies Not Best.

Definition 19 ( The Limited Agreement condition). For some pair of candi-
dates x and y, all voters agree that xR y.

Remark 4. The Limited Agreement assumption is equivalent to the assumption
that either Not Worst or Not Best applies.

For an election with three candidates, Sen and Pattanaik [11] find three
conditions on preference profiles, each of which is sufficient for pairwise majority
voting to find a Condorcet winner.

These conditions are as follows:

Value restriction For any three candidates x,y,z, and for all voters i, one of
the three candidates (call it x) satisfies one of these conditions.

Not worst Candidate x is strictly preferred to at least one other candi-
date. That is: x ≻i y or x ≻i z.

Not best At least one other candidate is strictly preferred to Candidate
x. That is: y ≻i x or z ≻i x.
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Not middle Candidate x is either preferred to both of the other candi-
dates or both of the other candidates are preferred to x. That is:
(x ≻ y and x ≻ z) or (y ≻ x and (z ≻ x)).

Extremal restriction If for at least one voter j, x ≻j y ≻j z, then for any
voter i, if z ≻i x. then z ≻i y ≻i x.

Limited agreement there is some pair of candidates (call them x and y) such
that x ⪰i y for all voters i.

According to Sen and Pattanaik, when individual preferences are weak orders
(indifference is allowed), these conditions are completely logically independent.
That is, a preference profile could satisfy any of these conditions or any pair of
them while not satisfying the remaining conditions.

4.5 When preferences are strict
Sen and Pattanaik show that if individual preference orderings ≻i are strong
orders (without indifference), then the value restriction assumption is implied
by either the extremal restriction assumption or by the limited agreement as-
sumption. Hence the value restriction assumption is not only sufficient for there
to be a Condorcet winner, but also necessary in the sense that there is no other
ban on preference orderings that implies that this is the case.

If we apply the Sen-Pattanaik conditions to the reduced form of the pref-
erence profile, the equivalence of these conditions can be taken a step further.
The “not best” and “not worst” assumptions imply each other and the extremal
restriction assumption and the limited agreement assumption both imply and
are implied by either not best or not worst. To see this, note that in the reduced
form preference profile, each candidate is the second choice of at most one pref-
erence ordering, the ordering that dominates its opposite. Table ?? shows that
each of the three possible profiles that are not Latin Squares satisfies each of the
Sen-Pattanaik conditions, while the Latin square profile violates all of them.

In the reduced form profile, the condition “Not middle” holds only if some
candidate never appears as a second choice or if the number of voters with one
ordering is exactly equal to the number with its opposite. In this case, the
reduced preference profile has have only two different orderings. If the number
of voters with one of these orderings exceeds the number with the other, then
the majority voting relation P is transitive and is the same as the ordering of
the voters with the more common ordering. If there are equal numbers of voters
with each of these two preference orderings, then P is quasi-transitive and the
two candidates who are the first choice of one or the other of these preference
orderings will be Condorcet winners.

Remark 5. If the reduced profile satisfies any of the Sen-Pattanaik conditions,
then it is not a Latin square. If the reduced profile is not a Latin square, it
satisfies each of the Sen-Pattanaik conditions. Therefore if the reduced profile
satisfies any of the Sen-Pattanaik conditions, it satisfies all of them.
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As Sen and Pattanaik, remark, their not worst condition is equivalent to the
assumption that preferences are single-peaked, with respect to an ordering that
places the candidate who is not worst between the other two candidates. Thus,
when preferences are strict, all of the Sen-Pattanaik conditions as applied to
the reduced preference profile are equivalent to essential single-peakedness.

4.6 When indifference is allowed
Each of the Sen-Pattanaik conditions requires that the strict preference order-
ings in the preference profile must not be a Latin square. In the reduced form
preference profile, the three strict preference orderings that appear are those
that dominate their opposites. Each candidate in the reduced form preference
profile appears exactly once as second choice. When the reduced form profile is
not a Latin square, one candidate must be the first choice in two of the three
orderings, one candidate must appear as first choice in exactly one ordering, and
one candidate must not appear as first choice in any of the orderings. We label
these three candidates A, B,and C, respectively. With this naming convention,
if the preference profile of strict preferences is not a Latin square, it must take
the form shown in Figure 10.

Table 10: Reduced strict preference profile

Ranking of Number of voters
candidates m1 m2 m3

1 A B B
2 B C A
3 C A C

When indifference is allowed, in addition to the three strict preference or-
derings that appear in the reduced form preference profile, there are three pairs
of opposite preference relations in which there is indifference between two of the
three candidates.5 Where we use the same naming convention as in Table 10,
these three pairs of opposite preference are (i) A ≻ B ∼ C and B ∼ C ≻ A,
(ii) B ≻ A ∼ C and A ∼ C ≻ B and (iii) C ≻ B ∼ A and B ∼ A ≻ C. The
reduced preference profile will include one ordering from each pair, where this
ordering is held by more voters than its opposite.

The assumption of single-peaked preferences and the other Sen-Pattanaik
conditions assume that some of these orderings are taboo. The reduced form
construction assumes only that the “excluded” orderings are those whose ad-
herents are outnumbered by voters with opposite preferences.

5There is one relation where a voter is indifferent between all three candidates. Such voters
have no influence in majority voting and will be ignored here.
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4.6.1 The not worst condition

The only candidate that is not worst for voters with strict preferences is Candi-
date B. If Candidate B is not worst for any of the preference orders that include
ties, then the preference orders A ∼ C ≻ B, C ≻ B ∼ A, and A ≻ B ∼ C, can-
not appear in the reduced form preference profile. Therefore the full preference
profile must be as in Table 11. This can be seen to be the same reduced prefer-
ence profile that we under the assumption of essential single-peaked preferences,
shown in Table 4.

Table 11: Reduced form with “not worst” condition
Ranking of Number of voters
candidates m1 m2 m3 m4 m5 m6

1 A B B B (AB) (BC)
2 B C A (AC) C A
3 C A C

4.6.2 The not best condition

The only candidate that is not best for any voters who have strict preferences
is Candidate C. The assumption that Candidate C is not best requires that
every consumer prefers some other candidate to C. To assume that the not
best assumption applies to the reduced preference profile is to assume that the
preference orders A ∼ C ≻ B, C ≻ B ∼ A, and B ∼ C ≻ A are held by
fewer voters than their opposites. This means that the preference profile must
take the form shown in Table 12. This is the same preference profile that we
found for the reduced form under the assumptions of weak single-peakedness
and consistency with strict preferences.

Table 12: Reduced form with “not best” condition
Ranking of Number of voters
candidates m1 m2 m3 m4 m5 m6

1 A B B B (AB) A
2 B C A (AC) C (BC)
3 C A C

4.6.3 The extremal restriction

We have labeled candidates A, B, and C, in such a way that if the extremal
restriction applies, then for some voters A ≻ B ≻ C and for some voters,
B ≻ C ≻ A. The extremal condition requires that if some voters have the
ordering A ≻ B ≻ C, which ranks Candidate B in the middle, then if any
voter strictly prefers C to A, this voter must strictly prefer C to B and strictly
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prefer B to A. This requirement excludes the ordering A ∼ C ≻ P and the
ordering C ≻ A ∼ B. Since there are also some voters with the preference order
B ≻ C ≻ A, it must be that any one who strictly prefers A to C must have the
ranking A ≻ B ≻ C. This excludes the ordering A ≻ B ∼ C. With these three
exclusions, it follows that the preference profile must be as in Table 11.

4.6.4 Limited Agreement

The limited agreement condition requires that for some pair of candidates, all
voters agree that one of them is at least as good as the other. The only two
candidates about which all of the strict preference orderings are Candidates B
and C, with BRC. From the preference relations with indifference, this excludes
A ∼ C ≻ B and C ≻ B ∼ A. The remaining four preference orderings with
indifference are not excluded. Preference profiles that satisfy limited agreement
therefore must be one of the two profiles shown in Tables 11 and 12.

observe that with three candidates single-peakedness of the original prefer-
ence profile is sufficient, but not necessary for majority voting to be transitive.
They offer additional conditions, which they call value

To identify a left-right ordering for single-peakedness (if one exists) for three
candidates, one can simply examine the reduced form profile. There will be such
a single peaked ordering if the reduced form is not a Latin square. If the reduced
profile is not a Latin square, one of the candidates must not be the third choice
of any of the three preference orderings. Preferences will be single-peaked with
respect to either of the left-right orderings in which that candidate is the second
choice.

Notice that a sufficient condition for a preference profile to have a Condorcet
winner is that some preference ordering is common to at least half of the voters.

The assumption that in the reduced form of a preference profile, some candi-
date has at least half of the votes is a much weaker assumption and also implies
that there is a Condorcet winner.
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