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ABSTRACT OF THE DISSERTATION 

 

Deconstructing the “Leaky Pipeline”: Three Studies to Describe and Explain STEM Career 

Trajectories with Gender Differences 

by 

Yannan Gao 

Doctor of Philosophy in Education 

University of California, Irvine, 2022 

Professor Jacquelynne S. Eccles, Chair 

Patching the “leaky STEM pipeline” has been central to increasing the STEM labor 

supply as well as the gender balance of the STEM workforce. Recently, criticisms have 

accumulated about the limitations and the stigma conveyed by this metaphor. Yet, there lacks 

evidence on STEM career paths to examine to what extent and in what ways the “leaky pipeline” 

metaphor represents STEM career trajectories accurately. Previous studies have shown STEM 

entry as an alternative pathway into STEM careers and as a venue to address the gender gap in 

STEM degree attainment. More research is needed to further understand the profiles of people 

entering STEM fields at a later time point. The Situated Expectancy-Value Theory indicates that 

STEM career choices are linked to individual differences in the motivation about the STEM and 

non-STEM domains. More specifically, individuals evaluate the career choices available to them 

at a given point in time and choose one ranked among the highest in their hierarchy of options. 

The Dimensional Comparison Theory further elaborates on this inter-personal comparison, with 

evidence showing its implications on the formation of expectancy-value beliefs and achievement 

choices in different domains. To what extent understanding based on these theories about 

achievement-related choices at one point in time can be applied to career trajectories over time 
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requires further examinations. Most of the studies in this area were based on quantitative data 

analyzed in a confirmatory manner. Evidence is needed to demonstrate to what extent the 

motivational processes described in the Situated Expectancy-Value Theory occur in the 

spontaneous process of an individual’s career decision-making.  

To address these gaps in the literature, I attempted to describe and explain changes in 

STEM career paths in the three studies of this dissertation. In study one, I used a national, 

longitudinal sample to describe the existing STEM career trajectories from age 13 to 25. I plotted 

men’s and women’s career paths in the broad STEM field, as well as in the health STEM domain 

and the physics-related STEM domains. I included the often-overlooked distinction among 

STEM careers regarding the education requirement, between the blue-collar STEM jobs and the 

white-collar STEM jobs. My graphs and analyses visualized the much-studied STEM career 

trajectories and provided evidence for the limitations of the “leaky pipeline” metaphor. In study 

two, I used logistic regressions to examine the sociodemographic, achievement and motivational 

factors of the STEM entry and the STEM attrition. Results showed meaningful differences 

between individuals taking different trajectories. In study three, I used students’ open-ended 

responses to understand the reasons for changes in their major plan in college introductory 

STEM courses. The results demonstrated that expectancy-value beliefs were a natural part of 

students’ considerations, and that different beliefs may play roles in different types of changes in 

career paths. In sum, findings from the three studies supported the gender differences and more 

broadly, individual differences in STEM career paths and pointed to the developmental roots of 

these trajectories.  

Keywords: STEM career trajectory, gender differences, STEM attrition, STEM persistence, STEM 

entry, health STEM careers, physics-related STEM careers, blue-collar STEM careers, white-

collar STEM careers, cumulative disadvantage, Situated Expectancy-Value Theory, Dimensional 
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Comparison Theory, underrepresented racial minority, person-centered approaches, longitudinal 

latent class analysis 
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INTRODUCTION 

In the U.S., the STEM (Science, Technology, Engineering and Math) career pathway is 

called the “leaky pipeline”. The name implies a long training process for getting STEM jobs with 

low proportions of individuals turning into STEM workers. The attrition rates in STEM majors 

range from 40 to 80 percent in two-year and four-year colleges (Chen & Soldner, 2013). The 

high attrition rates have raised policymakers’ concerns about meeting the demand for STEM 

labor supplies of the job market. In 2020, the U.S. Department of Education invested $578 

million in STEM-related research (Department of Education, 2022). However, less is understood 

about the phenomenon of STEM career trajectory: what does the “pipeline” look like? How often 

do people leave their STEM career paths? What section of the “pipeline” sees the largest 

attrition? More recently, scholars have criticized the “leaky pipeline” metaphor for its failure to 

represent alternative, diverse STEM career trajectories (Cannady et al., 2014; Lykkegaard & 

Ulriksen, 2019). The discussion calls for descriptive evidence to visualize STEM career 

trajectories. 

Gender differences in STEM persistence have been at the center of reducing STEM 

attrition over the past few decades. The field has seen remarkable progress in increasing 

women’s representation in STEM, with women earning more than half of postsecondary degrees 

in biology and health-related STEM fields and remaining underrepresented in physics, 

engineering and math-related fields (Ceci et al., 2014; National Center for Education Statistics 

[NCES], 2017; Sax & Newhouse, 2018). Much is known about the psychological and contextual 

explanations for the gendered participation in STEM and the variation of gender representations 

across STEM domains (for a review, Kanny et al., 2014; Wang & Degol, 2013; Xie et al., 2015), 
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underscoring the theoretical and empirical roots to consider men’s and women’s STEM career 

trajectories and motivations separately.   

The Situated Expectancy-Value Theory (SEVT) developed by Eccles and colleagues 

(Eccles & Wigfield, 2020; Eccles et al., 1983) portrays the process through which individuals 

develop general and specific beliefs about themselves and their career choices that give rise to 

the overall gendered participation in STEM. Numerous studies have provided empirical support 

for the SEVT by showing the causal association between individuals’ expectancy-value beliefs 

and their career choices (e.g., Chow et al., 2012; Guo et al., 2017; Harackiewicz et al., 2016; 

Simpkins et al., 2006). STEM attrition is one instance of career choices, for which the person 

chooses between their original career path in STEM and the alternative option in the non-STEM 

field. In this regard, the decisions to change career paths are similar to career choices at one time 

and may be understood from the perspective of the SEVT.  

In this dissertation, I conducted three studies to describe and explain the STEM career 

trajectories with gender differences in career development and motivation in mind. I present 

evidence for diverse trajectories leading to STEM occupations and for the shrinkage as well as 

the expansion of STEM labor supply over time. The analyses were followed by examinations of 

men’s and women’s STEM career trajectories. Then I used one quantitative study and one 

qualitative study to understand why individuals decided to enter STEM from their non-STEM 

path or to leave STEM. Both studies provided insights into the decisions to change STEM career 

paths, with unique findings brought about by the respective analytic approach of each study.  

Gendered Representations and Motivation in STEM 

Researchers in sociology, psychology and education policy have conducted extensive 

research in the past few decades to understand gender differences in STEM career choices. In 
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cross-disciplinary reviews of the literature, explanations have shifted from gender differences in 

math and science competence, which lacks empirical support, to the gender differences in 

motivation and in the socio-structural and contextual factors (Kanny et al., 2014; Wang & Degol, 

2013; Xie et al., 2015). The literature suggests that the gender differences in STEM motivation 

are deeply rooted in the situated formation of motivational beliefs in a person’s sociocultural 

context. In my dissertation, I will take the perspective of developmental psychology and focus on 

the motivational explanations for the phenomenon.  

One way that the sociocultural context influences adolescents’ career choices is through 

gender-role socialization. Eccles and colleagues (Eccles, 2015; Eccles et al., 1990, 1983; 

Simpkins et al., 2015) integrated prior work and elaborated on the socialization processes in 

SEVT and the parent socialization model. They discussed the process through which parents’ 

gender-differentiated beliefs bring about children’s gender-differentiated career choices. Versed 

in the cultural milieu, parents hold varied beliefs about what their child should do well in and 

what their child should value based on their child’s gender (e.g., boys should be good at sports, 

and girls should like to read). These beliefs influence parents’ gender-specific expectations for 

their children and their perceptions of their children’s competence and interest in different 

domains, above and beyond their children’s actual engagement and performance. These gender-

typed beliefs manifest in parents’ behaviors with or without the parents’ intention. Parents 

provide gender-typed toys and activities, respond to boys’ and girls’ emotions differently, 

communicate values aligning with what they expect to see among boys and girls, and interpret 

boys’ and girls’ behaviors in a way consistent with parents’ gender role beliefs. These behaviors 

shape children’s engagement with and experience in different domains, leading children to 

become differentially interested in and confident about their abilities in gender-typed 
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occupations. Qualitative studies with talented women in STEM fields showed that their 

experience of engaging in STEM activities in childhood and adolescence cultivated their strong 

interest, identity and confidence in STEM areas (DuBow et al., 2016). The gender-based 

socializations also appear in teacher-student interactions (Jussim et al., 1996; Upadyaya & 

Eccles, 2015). The socialization processes can explain why young children have gender-typed 

beliefs to start with and the ways through which such beliefs are reinforced over time (Bian et 

al., 2017; Jacobs, 1991).  

As adolescents grow up, the influence of the gender-role socializations manifests in their 

motivational beliefs about various careers. If a career option hinders the person to fulfill their 

values, they will be less likely to pursue such career. The goal congruity model and the interest 

congruence theory document a mismatch between women’s values and some male-dominant 

STEM fields. Building on Eagly’s work on gender and social roles (Eagly & Karau, 2002; Eagly 

& Steffen, 1984), Diekman and colleagues (Diekman et al., 2017; Diekman & Steinberg, 2013) 

have posited that the social roles prescribed in society, such as traditional gender roles, 

encourage individuals to lean towards goals congruent with their social roles and step back from 

incongruent ones. STEM careers in some domains (e.g., math, physics, computer science) are 

perceived as incongruent with traditional gender roles of women, which prescribe that women 

are the caretakers and work with others (communal goals), in contrast to careers in the life and 

health STEM fields allowing the fulfillment of such values. Another strand of literature based on 

Holland’s person-environment fit theory similarly highlights the match between a person’s 

vocational interest and the type of the occupations. Different from the goal congruence theory, 

the interest congruence theory differentiates six types of vocational interest and occupations 

based on Holland’s work, which are realistic, investigative, artistic, social, enterprising and 
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conventional (Nye et al., 2017). A person is most likely to like and perform well in an occupation 

when the primary vocational interest of an occupation matches the person’s vocational interest. 

Evidence has shown that the people-thing spectrum in vocational interest can explain the gender 

variation in non-STEM versus STEM major choices (Ertl & Hartmann, 2019). The differences in 

value orientation also explain the varied gender representation across STEM fields. Physics, 

engineering and technology fields are primarily thing-oriented and thus attract fewer women than 

the people-oriented biological and health fields (Su et al., 2009; Su & Rounds, 2015). Students in 

biological and health majors perceived their majors to be more people-oriented than thing-

oriented, whereas the opposite was true for students in physics and engineering majors (Yang & 

Barth, 2015). Longitudinal studies have suggested that the preference of working with people 

and the endorsement of altruistic values predict fewer women to work in the physics and 

engineering versus life science STEM fields in mid-adulthood (Eccles & Wang, 2016). In a 

nutshell, work above reveals women’s and men’s different vocational interest that gives rise to 

the uneven gender representation in STEM and across STEM subfields.  

In addition to the indirect influences of socialization when at home or in the classroom, 

the sociocultural environment directly shapes a person’s STEM motivations, which may convey 

signals about the differential associations among gender identity and STEM careers. According 

to Turner’s work on social identity theory, individuals develop a sense of identity by comparing 

themselves with others, and by self-referentially organizing themselves into respective groups 

(self-categorization, Stets & Burke, 2000). This self-classification involves comparing oneself to 

their own perceptions, or stereotypes, about particular social groups. Groups of individuals will 

be categorized as in-groups and out-groups based on the perceived degree of similarity to said 

persons. Self-categorization affects the extent to which individuals identify themselves as being a 
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member of a given social group, as well as the way people in different social groups treat in-

group and out-group members. Research on social roles has suggested that the numeric 

distributions of men and women in different occupations influence people’s association of 

gender with respect to these occupations, more so than the distributions of leadership roles 

between men and women in a field (Eagly & Steffen, 1984). As a result, girls may be less likely 

to associate themselves with male-dominant fields, than with those of female-dominant, or 

gender-balanced fields. Evidence suggests that the proportion of women in STEM college 

classrooms is predictive of the persistence of women in STEM majors (Griffith, 2010). 

Furthermore, women in STEM fields with moderate percentages of women (e.g., biology, 

chemistry) more frequently report positive career attitudes than those in fields with low 

percentages (e.g., physics, engineering) (e.g., Luttenberger et al., 2019). Some aspects with 

which said persons compare themselves, are those of social competency and sexual 

attractiveness (for a review, see Cheryan et al., 2017). For instance, the perceived lack of social 

competency (e.g., “nerdiness”) of STEM workers in some fields is negatively linked to women’s 

identification with those fields (Starr, 2018). Self-to-prototype matching is another process 

through which individuals are able to attain a sense of identity, which involves the act of 

comparing traits of oneself with those of a prototypical member of the group. Evidence supports 

the notion that, at least in male-dominant STEM fields, the less that women see themselves as 

similar to prototypical members, the less they are interested in the careers of said field 

(McPherson et al., 2018).  

Discriminations and biases are another way that group membership influences career 

choice. Random experiments have shown that people favor men over women in hiring processes 

for researcher or lab manager positions in the science fields (Moss-Racusin et al., 2012; Reuben 
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et al., 2014). In fields favoring men numerically or culturally (e.g., physics, engineering, 

computer science), women encounter gender biases more frequently than in fields of biological 

and life sciences (Robnett, 2016). Gender biases also appear in form of gender microaggressions 

and barriers facing adolescents who intend to enter STEM fields (Grossman & Porche, 2014). 

Encountering these microaggressions can discourage girls from entering male-dominant fields, 

which in turn perpetuate the stereotypes about the gendered representation in different STEM 

careers. In sum, research on social identity has supported the notion that gendered career choices 

across STEM fields are not only a result of gendered interest in different fields but also gendered 

associations with social groups.  

Explaining Changes in STEM Career Paths Using the SEVT 

 Eccles and colleagues (Eccles & Wigfield, 2020; Eccles et al., 1983) theorized the 

process through which individuals develop their domain-specific beliefs that affect their career 

choices in SEVT. They have posited that the relative expectancy and subjective task values 

(STVs) that the person attaches to their available career options are immediate psychological 

factors affecting people’s career choices. These beliefs are shaped by the person’s daily 

interactions with their socializers through the person’s perception of their socializers’ beliefs and 

behaviors. At the same time, the person interprets their accumulated experience related to a 

domain and attaches affective marks to the domain. The conceptualizations of these mechanisms 

in SEVT make it particularly informative for understanding changes in career paths. Firstly, it 

specifies the key factors determining career choices, which are the relative level of the 

expectancy and STVs of various career options. Therefore, changes in career choices can occur 

because of the new ranking of career options due to changes to the expectancy and STVs. The 

influence of “developmental deadline” (Wrosch & Heckhausen, 1996) is one such example. The 
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“developmental deadline” in a society prescribes certain goals that a person should fulfill at a 

particular age. These prescriptions make certain tasks more important than at an earlier or late 

time and can cause a person to adjust their ranking of career options based on the extent to which 

each career option facilitates the fulfillment of these tasks. The “revolving door” hypothesis in 

sociology echoes this concept (Jacobs, 1989, cited from Ma, 2011). It states that STEM career 

opportunities are present on and off in women’s life, like the opening of a revolving door. This 

metaphor points out that the social structure regulates these developmental goals by constraining 

or expanding the opportunities and resources in competition or alignment with the goals (Jacobs, 

1995). The traditional deadline of childbearing imposed on females is an example of the 

developmental deadline. Career explorations, which commonly occur in adolescence and early 

adulthood (Kracke, 2002), can change a person’s hierarchy of career options by adding new 

career options. Changes in the experience that give rise to changes in expectancy and STVs is 

another mechanism that career paths change. Examples of school transitions and school-to-work 

transitions. The change in the environment changes the person’s experience with the same 

domain, such as the influence of different instructional practices in college on students’ interest 

(Steele et al., 2020). In sum, the SEVT provides a roadmap showing specific processes that can 

guide the creation of research questions and hypotheses. The cyclical occurrence of the processes 

portrayed in the theory also takes into account the time-specific, situated nature of career 

choices.  In this dissertation, I applied the SEVT to changes in career paths.  

Overview of Studies 

 In this dissertation, I carried out three studies to describe and explain the gender 

differences in STEM career trajectories.  
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In study one, I described STEM career trajectories of 1026 individuals from age 13 to age 

26 in the U.S. I used two person-centered approaches, the longitudinal latent class analysis and 

the cross-tabulation approach, to visualize numerically representative trajectories and all existing 

trajectories. In this approach, I further aggregated the attrition, persistence, and entry trajectories 

to examine to what extent men and women differed in their membership in these trajectories. I 

compared the number of STEM aspirants at age 13 and the number of STEM workers at age 25 

and calculated the change in sizes of the STEM labor supply. I extended these analyses to 

subfields of STEM varying in subjects (i.e., the health and physics-related STEM careers) and in 

educational requirements (i.e., the “blue-collar” and the “white-collar” careers). The study was 

among the few to portray dynamic STEM career trajectories from early adolescence to early 

adulthood. The results provided substantive evidence for diverse STEM career paths and helped 

clarify misunderstandings about STEM persistence and about the gender differences in STEM 

career trajectories. My findings revealed substantial variations of STEM trajectories in the health 

STEM and the physics STEM careers between men and women. The distinct career paths of the 

“blue-collar” versus the “white-collar” STEM careers underscored the need and benefit to 

differentiate the varied education requirement among STEM occupations. Our findings supported 

a “highway” representation of STEM career trajectories, with exits from and entry into STEM 

fields at various points from teenage to mid-20s.  

In study two, I used the SEVT and the Dimensional Comparison Theory to examine 

predictors of changes in STEM career paths. I focused on STEM attrition and STEM entry and 

conceptualized them as the result of comparisons with alternative career paths, which were 

persisting in the STEM field and persisting in the non-STEM field respectively. I tested to what 

extent prior achievement and the expectancy-value motivational beliefs in math and language 
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domains predicted the likelihood to enter or leave the STEM field. In addition, I investigated to 

what extent these achievement and motivational factors accounted for the differences in attrition 

and entry between gender groups, underrepresented minorities and their counterparts, and among 

individuals from families of different socioeconomic statuses. Finding revealed distinct profiles 

of individuals taking different STEM career paths and underscored the influential role of 

subjective task values on changes in career paths. The study extended the research based on the 

SEVT and the Dimensional Comparison Theory to the longitudinal trajectories of career choices. 

In study three, I analyzed college students’ motivation to change or persist in their majors 

with qualitative data of students’ open-ended explanations. I focused on the period of university 

introductory courses as an example to study how individuals make decisions at a crossroad in 

their career paths. Students’ open-ended explanations were coded based on the expectancy-value 

constructs in SEVT in a deductive, phenomenological approach. Findings revealed the 

explanatory power of expectancy and subjective task values in persistence decisions in a 

naturalistic setting. Other factors, which were representative of the developmental stage of the 

students, highlighted the situated nature of students’ choices. The qualitative data provided 

unique insights into what students consider in their persistence versus attrition decisions. Gender 

differences in students’ response patterns and explanations were found. Results from the 

qualitative data not only provided triangulated evidence with quantitative results about career 

choices and motivational development, but also offered a synthetic, wholistic understanding 

about the ways that students navigate their career path.  
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 CHAPTER 1 

A STEM “Highway”: Evidence from A Detailed Description of STEM Career Trajectories Across 

Domains and Education Requirement from Age 13 to 25 with Gender Differences 

In 2019, the U.S. Department of Education invested $578 million in STEM related 

research (U.S. Department of Education, 2020). In 2021, the National Science Foundation (NSF) 

spent 94 percent of its 8.5 billion dollar budget to fund research, facilities and STEM education 

(National Science Foundation, 2022a). The budget is projected to increase by 100 billion dollars 

in the coming five years (Remmel, 2021). A strong STEM workforce is the key to scientific 

advances, and numerous studies in the past several decades has been dedicated to patching the 

“leaky pipeline” of the STEM labor supply. Researchers, educators and policymakers strive to 

preserve the quantity of STEM labor supply that moves through various stages of education and 

vocational training by reducing STEM attrition and promoting STEM persistence. Yet less is 

known about what the STEM “pipeline” looks like.  

In recent decades, researchers have contended that the “leaky pipeline” is an inaccurate 

and misleading representation of the development of STEM labor supply (e.g., Cannady et al., 

2014; Kimmel et al., 2012). Using a national longitudinal sample of college students, Xie and 

Shauman (2003) presented evidence that college students not only leave STEM majors for non-

STEM majors, but also enter STEM majors from non-STEM majors. Others have advocated that 

STEM career trajectories are numerous, individualized, and recursive (Babarović, 2021; 

Blikstein & Worsley, 2016; Metcalf, 2010). In this regard, a singular, linear path as the “pipeline” 

metaphor implies may not only stigmatize individuals taking alternative pathways to STEM 

careers, but also constrain and even mislead efforts to expand the STEM labor supply. In this 
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study, I use two descriptive approaches to visualize STEM career trajectories from age 13 and 25 

in a national longitudinal sample from the Panel Study of Income Dynamics (PSID).  

A clear, specific, and replicable definition of “STEM” careers is the cornerstone of 

portraying the flow of STEM workforce. Previous studies on STEM career path have been 

mostly limited to course enrollment and college major (Maltese & Tai, 2011; Sadler et al., 2012; 

Shaw & Barbuti, 2010), which is difficult to commensurate nationwide and exclusive of non-

college-attending population. Existing STEM classification systems (e.g., by NSF, the 

Department of Homeland Security) often lack clear information of their criteria. What is at heart 

of the STEM course and major enrollment is the domain-specific knowledge, which is also the 

defining feature of STEM careers. In this study, I use individuals’ career aspirations as indicators 

of STEM career choices because they are not only detached from a particular educational 

institute but also better reflect a person’s career preferences. I then use individuals’ actual 

occupations at age 25 as the outcome indicator for STEM labor supply. I use the “knowledge” 

indices in the OUNET database to quantify the demand of nine types of STEM knowledge to 

establish our classification of STEM careers. We hope our attempt can provide an example of a 

STEM definition that is replicable to researchers and meaningful to participants.  

Taken together, in this study, I aim to visualize the STEM “pipeline” and more broadly, 

STEM career trajectories from age 13 to 25. I operationalize STEM career choices with 

individuals’ career aspiration and actual employment. I use the “knowledge” indices in the 

OUNET database to create the classification of STEM careers. Through these analyses, I hope to 

bring the much-studied phenomenon of STEM career trajectories into its concrete form.  
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Criticisms of the “leaky STEM pipeline” metaphor  

The “leaky pipeline” metaphor once provided a useful message that investigating STEM 

education and training processes, the “pipeline”, is necessary for a thorough understanding of 

STEM labor supply as the end result. It draws attention beyond the phenomenon of insufficient 

STEM labor supply or the gender disparity among STEM workers to the origin and mechanisms 

of these problems. However, more and more criticisms have accumulated in recent decades that 

the metaphor is a biased and oversimplified representation of STEM career trajectories.   

The “pipeline” implies that STEM career trajectories are linear and one-directional. In 

this portrayal, individuals with STEM career interest enter the field from early on and move 

along various stages of educational and vocational preparations without changing their career 

choices. It fails to represent recursive career paths, such as leaving and then returning to STEM 

fields amidst educational stage, as scholars point out (Metcalf, 2010). During adolescence and 

early adulthood, which is an important period of STEM career development (Malanchuk et al., 

2010), changes in career choices can result from adaptive updates in adolescents’ career beliefs 

and attitudes or useful explorations in alternative careers (Gottfredson, 1981; Stephen et al., 

1992). In this regard, a linear and unidirectional path may be uncommon and inaccurate. In 

addition, the emphasis of the metaphor on “leakage” overshadows late entrance into STEM field. 

Individuals differ in the development of their career interest because of the differences in their 

personal characteristics and social context (Messersmith et al., 2008). Some people may spend 

longer time before they become clear of their career goals or before they pick one career among 

the various options that are available and comparably desirable to them. Therefore, exclusion of 

the late entry into STEM fields will cause a biased representation of STEM workers by leaving 

out certain groups of people.  
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As a uniform image of the STEM career trajectories, the “leaky STEM pipeline” fails to 

represent the individual differences in STEM career paths. Sociological and psychological 

findings have underscored the individualized nature of career choices, because of the unique 

combination of personal characteristics and social context to each person (Eccles & Wigfield, 

2020; Hirschi, 2011). In addition, if the metaphor implies that an early and persistent trajectory is 

optimal for pursuing STEM careers or maximizing STEM labor supply, it requires close 

examination of how common such trajectory occurs across individuals and different types of 

STEM careers. Lastly, educational scholars have criticized the metaphor for problematizing 

individuals who leave STEM fields (Cannady et al., 2014; Metcalf, 2010). If the goal is the 

expand STEM labor supply, understanding the context and reasons of attrition decisions may be 

more fruitful. In sum, the “leaky STEM pipeline” metaphor has become an outdated 

representation of STEM career paths, as our understanding about the development of career 

choices has advanced in the latest decades. In this study, we explore STEM career trajectories of 

all possibilities that exist in the full-form career path analysis and trajectories that numerically 

representative of heterogenous subgroups in the longitudinal latent class analysis.  

Current Descriptions of STEM Career Trajectories 

Though there is extensive literature on the factors and practices to promote STEM 

persistence, studies to describe the phenomenon of STEM persistence/attrition or STEM career 

trajectories in general are fewer. In a sample of 6,860 college students in a variety of 

postsecondary institutes, 50% boys and 53% girls reported they aspired to STEM careers in 9th 

grade; among them, 21% girls and 39% boys changed their career goals to non-STEM fields by 

the end of high school (Sadler et al., 2012). In a national longitudinal study of adolescents’ career 

expectations, 827 out of 24,599 8th-grade students expected to work in science and engineering 
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occupations; over a period of 6 years, 22% continued to have the career expectations in these 

fields (Mau, 2003). In a sample of high ability Black, Hispanic and White students, 54% plan to 

continue STEM course enrollment in high school or choose STEM majors in college (Andersen 

& Ward, 2014). The attrition rate of high school students’ STEM career aspirations varies widely 

across studies, between 22% and 79%. These studies showed that changes in STEM career paths 

occur often, but the portrayal of STEM career paths has been often limited to STEM attrition and 

persistence in most of the studies.  

The choice of college major and the major of the attained degree are predictive of the 

jobs that the individual takes on in the labor market. These indicators have been much studied as 

the key of attaining a STEM job. In a sample of 589 college freshmen in introductory 

Psychology class, 85% intend to choose STEM majors; over the course of 8 years, 352 students 

(60%) graduated with STEM degrees (Ackerman et al., 2013). In a national longitudinal study of 

over 19,000 students in four-year and two-year colleges, Chen and Soldner (2013) tracked 

students’ declared major in first year of college and their degree attainment 6 years later. They 

found 48% to 69% students who declared a STEM major did not persist in the following years. 

Half of these students dropped out of college, and the other half earned their degrees in non-

STEM majors. In another study, Shaw and Barbuti (2010) used a national sample of high school 

SAT test-takers and matched their intended choice of major in high school with their declared 

college major three years later. They found that 59% of students planning to major in STEM 

switched to non-STEM majors in college. In these studies, STEM career trajectories were 

studied in form of STEM persistence and attrition, and career paths were limited to two time 

points. Alternative career paths, such as switching out of non-STEM majors to graduate in STEM 

majors, were rarely investigated. The selection of college-matriculated sample excludes not only 
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STEM careers that do not require a college degree, the importance of which industry I will 

discuss in a following section, but also the STEM worker population who do not attend 

postsecondary education, which comprises of high proportion of individuals from disadvantaged 

backgrounds (Clotfelter et al., 2013). 

Alternative Career Paths into STEM Fields and Gender Differences 

Xie and Shauman (2003) pioneered the study on entry into the STEM fields. They used a 

longitudinal sample of high school graduates to track their choices of college over time. They 

documented students’ expected major in senior year in high school, choice of major in the first 

semester in college, choice of major after two years in college, and the final major of degree six 

years after high school graduation. They carried out the reduced-form educational path analysis 

to represent the probability of an individual to choose a science/engineering major given their 

choice at an earlier time point. Between two time points of high school major plan and college 

degree attainment six years later, they found that persistence was the most common path taken 

by male science/engineering baccalaureates, whereas entry from non-science/engineering major 

plan was the most common path taken by female science/engineering baccalaureates. Their 

findings not only shed light on the STEM entry as an alternative pathway into the STEM fields 

but also showed that there were meaningful gender differences in the likelihood of taking this 

trajectory. Xie and Shauman (2003) further examined the timing of the STEM entry. Comparing 

a switch from non-STEM to STEM major choices, they identified such switch after high school 

graduation and before the first semester of college, within first two years of college and after the 

2nd year in college. They found that the gender gap in the switch by the first year of college was 

the most influential to the gender gap in STEM degree attainment. Men were two times as likely 

as women to switch into STEM fields by the first semester of college, whereas the probability of 
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STEM entry was comparable afterwards. In sum, Xie and Shauman’s work shed light on the 

alternative paths into STEM fields, other than STEM persistence, and showed gender differences 

in the likelihood and patterns of STEM entry trajectories. In this study, I expand this strand of 

research by examining in detail how often STEM workers take entry paths into their field, the 

original field they aspire to, and the timing of their entry.  

More work showed men and women took different trajectories into attaining STEM 

Bachelor’s degree. Modeling Xie and Shauman’s approach, Ma (2011) portrayed gendered paths 

between the 12th grade, the 1st officially declared major in college and the final degree attainment 

8 years after high school graduation. She found that the STEM career trajectories of boys 

followed the “leaky pipeline” image with fewer and fewer boys persisting in STEM majors over 

time. In contrast, the percentage of girls in STEM majors remain stable over 9 years, with a small 

increase between high school graduation and the second year in college. Another study (Cimpian 

et al., 2020) using a nationally representative sample of high school students in the High School 

Longitudinal Study tracked high school graduates’ intention to choose STEM majors and their 

actual choice of major after three years in college. They found that among students with high 

school STEM achievement in the top half of the sample, girls were more likely than boys to 

fulfill their intention of choosing engineering or computer science majors. In other words, among 

students with medium to high STEM achievement, girls were more likely than boys to persist in 

engineering and computer science fields. However, contradictory results were found that 

between sophomore years in college to 6 years after, men were more likely to persist and attain a 

STEM degree than women (Weeden et al., 2020). In this study, I contribute evidence to this 

question by examining the entry and persistence rates among women and men in STEM fields 

and comparing men’s and women’s path into STEM occupations.   
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The “Cumulative Disadvantage” in STEM Career Paths 

The “pipeline” metaphor is linked to the “cumulative disadvantage” hypothesis about 

individual differences in STEM trajectories. Mainly used to explain gender differences in STEM 

representation, the “cumulative disadvantage” states that women are less likely to participate in 

STEM due to their cumulative disadvantage in STEM domains compared with men over time 

(Ma, 2011). The early gender role socialization leads to girls’ lower likelihood to participate in 

STEM-related activities. As a result, girls become less confident about their abilities. This lack of 

confidence further drives girls to avoid participating in the STEM domain, such as enrolling in 

fewer STEM courses or taking part in fewer STEM extracurricular activities, which in turn 

undermines girls’ STEM motivation. Over time, as girls miss one section in their educational and 

vocational preparation for STEM careers, their disadvantage will trigger this negative cycle and 

accumulate into considerable discrepancies in girls’ and boys’ STEM career choices and 

trajectories.  

 The developmental mechanism underlying the “cumulative disadvantage” hypothesis is 

that prior experience has a cascading effect on following choices. This effect has been supported 

by findings of a positive association between earlier STEM engagement and later STEM career 

choices. For instance, high school advanced STEM course enrollment and performance are 

influential predictors of students’ choice of STEM majors in college or STEM interest (Sadler et 

al., 2014; Shaw & Barbuti, 2010; Tyson et al., 2007). Furthermore, high school course 

enrollment can by predicted by STEM engagement in middle school or childhood (Almeda & 

Baker, 2020).  A conclusion seems to support the notion that STEM career choices at one time 

point depend on STEM participation at an earlier time point, and that the best way to promote 

STEM career choices is to get introduced to STEM fields early and maintain participations over 
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time.  However, the extent to which the cumulative disadvantage explains individual differences 

in STEM career trajectories requires further examinations for two reasons. Firstly, it remains 

unclear how powerful the cumulative disadvantage is for preventing a person from entering the 

STEM field. Theoretically, is the lack of previous experience in STEM fields a deterministic 

factor, a risk factor or a protective factor? Realistically, how common do people attain a STEM 

job without an earlier choice in the field? How much do people differ in their chance to get a 

STEM job based on the amount of their prior experience in STEM? Previous studies heavily 

focused on the contrast between STEM persistence and STEM attrition, and there lacks studies 

on STEM entry to examine the other part of the picture. Secondly, from the perspective of the 

Situated Expectancy-Value Theory of achievement choices (Eccles & Wigfield, 2020), the 

cumulative advantage neglects the possibility that the lack of engagement with STEM domains is 

due to choices, not the lack of competence. If a person is comparably high achieving and 

confident about their abilities in STEM and non-STEM domains, they may choose a non-STEM 

career because they find it valuable to them. Previous studies showed that STEM careers that 

fulfill women’s communal or altruistic values are more likely to attract women than their 

counterparts (Eccles & Wang, 2016; Wegemer & Eccles, 2019). In other words, the competence-

based disadvantage of entering STEM field might be of limited scale. In this study, I inspect into 

the implications of the cumulative disadvantage on STEM employment in several ways. I 

examine the prevalence of STEM entry among STEM workers. Moreover, I explore all types of 

trajectories that lead to STEM employment and compare the prevalence of the paths based on the 

number of previous choices in the field of employment. The comparison can show whether the 

more prior choices in a STEM field correspond to higher probability of working in the STEM 

field.  
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Specifying the Definition of STEM Careers 

  There lacks consensus on the definition of STEM careers and more broadly, the STEM 

fields. They key disagreement centers on whether social science, life science and health related 

fields/careers, and secondary teachers of these disciplines are STEM fields/careers or not. The 

NSF uses a broad definition of STEM, including social science and life and medical disciplines 

as STEM fields and the post-secondary teaching professions in these disciplines as STEM 

careers (National Science Foundation, 2022b). The Department of Homeland Security classifies 

postsecondary STEM education programs for immigration purposes. International students who 

graduate from STEM programs have extended period of stay in the U.S. (Title 8 of the Code of 

Federal Regulations, n.d., p. 8), increasing their likelihood of being hired on full-time, long-term 

positions and gaining work visas. Some social science fields, such as social psychology and 

econometrics, are qualified as STEM programs whereas some social science fields such as 

sociology are not (Department of Homeland Security, 2022). In addition, nursing and teacher 

education programs are not categorized as STEM programs. Another federal agency, the 

Department of Education, funds the SMART (National Science and Mathematics Access to 

Retain Talent) grant to provide need-based scholarship to undergraduates in STEM programs. 

Their STEM classification excludes many social science programs, such as sociology, 

psychology except psychobiology, but includes life sciences and several foreign languages (U.S. 

Department of Education, 2009). The ranges of STEM fields and careers in the different STEM 

classifications potentially reflect the goals and needs of each agency. Yet, they can lead to 

different results and conclusions about STEM labor supply and the gender differences in STEM 

fields (Granovskiy, 2018; Manly et al., 2018; National Science Board, 2015). For investigating 

STEM careers, the OUNET database, hosted by the Department of Labor, creates a list of STEM 



 

27 
 

occupations based on various aspects of each occupation and experts’ advice (National Center for 

OUNET Development, 2022). It includes life and health science occupations, social scientists, 

and postsecondary teachers in social science fields in STEM careers. However, there lacks 

information on the classification criteria of the OUNET STEM classification, making it difficult 

for researchers to ensure an alignment between the STEM definition and their research questions. 

In this study, I attempted to create a specific, replicable STEM classifications based on the 

demand of STEM knowledge of each occupation.  

 Economists and policy researchers have pointed out the variation of education 

requirement among STEM workers (Carnevale et al., 2011; National Science Board, 2015; 

Rothwell, 2013). STEM occupations that require less than a Bachelor’s degree have been 

overlooked in previous literature, yet they comprise thirty to forty percent of STEM workforce 

and STEM job openings in the future (Carnevale et al., 2011; Rothwell, 2013). Moreover, the 

varied degree requirements have tangible implications for students’ educational trajectories, 

making them important for understanding diverse STEM career trajectories. In this study, I 

differentiate STEM careers that require a Bachelor’s degree or higher, named “white-collar” 

STEM jobs, and STEM careers that requires less than a Bachelor’s degree, named “blue-collar” 

STEM jobs, and examine paths leading to each type of careers.  

Differentiation between Health- vs Physics-related STEM Careers 

The gendered pattern of career choices in STEM is perhaps the most notable between 

health STEM and physics-related STEM careers. In the past half century, life science related 

STEM fields have achieved remarkable progress in reducing gender disparities. Nowadays 52% 

of PhDs in life science have been earned by women (in contrast to 13% of PhDs in life science in 

1970s) (Ceci & Williams, 2011).  In the past ten years, a predominant number of Bachelor’s and 
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Associate’s degree in the biological sciences (61%) and health professions (84%) were conferred 

to women (NCES, 2017). Meanwhile, gender disparities persisted in physics-related STEM 

fields, such as computer sciences and engineering fields (Ceci et al., 2014; Sax & Newhouse, 

2018). In engineering and computer science, 20% graduates in two-year and four-year colleges 

were women (NCES, 2017). In economics, women consisted of less than a third of 

undergraduate students (Buckles, 2019). Even within the engineering field, there was variation of 

student gender representation across subfields. For instance, biomedical, chemical and 

environmental engineering had a more balanced gender composition, with around 40% of 

undergraduate degree holders being women; in contrast, in computer science, electrical, 

mechanical, nuclear and petroleum engineering, less than 20% of bachelor degree holders were 

women (Chesler et al., 2010). Before entering college, high school boys and girls have shown a 

similar pattern in their career plans, with boys more interested in careers in engineering and girls, 

in health and medicine (Sadler et al., 2012). This gendered representation in health versus 

physics-related STEM fields can be attributed to men’s and women’s differences in altruistic 

values, people- or tool-oriented vocational interests and community or family related life goals 

(Dicke et al., 2019; Eccles & Wang, 2016; Sax & Newhouse, 2018; Su et al., 2009). Thus, 

aggregating health and physics-related STEM careers under a broad STEM category will mask 

meaningful gender differences in STEM career choices.  

At the same time, more is to be understood about gender differences in the trajectories in 

these fields. The gender differences in these values might lead to gender difference in the 

attrition from and entry into health and physics-related STEM fields. Researchers have found 

that women were more likely to leave physics-related STEM fields than men in high school and 

college years (Ellis et al., 2016; Mau, 2003). Women who held lower intrinsic values about 
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physics-related STEM careers were more likely to change their career path and move out of 

physic-related STEM fields (Frome et al., 2006). Endorsing traditional gender role beliefs about 

women’s and men’s differential family obligations and vocational interest predicted higher 

likelihood to work in health STEM fields than in physics-related STEM fields (Dicke et al., 

2019). Therefore, these gender differences in values can lead to men’s and women’s varied 

trajectories in health and physics-related STEM careers. Moreover, some studies showed 

additional nuances in gendered trajectories in health and physics-related STEM fields. For 

instance, one longitudinal studies on high school students showed that boys and girls with STEM 

career interests did not differ in their likelihood to enter health STEM fields in college but differ 

in their likelihood to enter engineering majors (Kimmel et al., 2012). Similarly, another study 

showed that men were more likely than women to persist in math and engineering majors in 

college, but men and women did not differ in their persistence rates in health STEM majors 

(Weeden et al., 2020). There seemed to be less gender difference in STEM career paths in health 

STEM fields, but more studies are needed to test this conjecture. The evidence does support 

separate examinations of gender career paths in health and physics-related STEM fields. In this 

study, I address this question by portraying men’s and women’s persistence, entry and pathways 

leading to STEM employment in health and physics-related STEM careers.  

Differentiation Between Blue-collar versus White-collar STEM Careers 

According to the U.S. Bureau of Labor statistics, in 2015, 93% of STEM occupations in 

the U.S. were paid above the national average (Fayer, Lacey & Watson, 2017). In 2015, the 

average wage of all STEM occupations was $87,570, in contrast to $45,700 of non-STEM 

occupations (Fayer et al., 2017). This wage premium of STEM occupations has existed in past 

decades and can be found among jobs of all skill and knowledge levels (Carnevale et al., 2011). 
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Nationwide, there was a strong correlation between the geographic distribution of STEM 

occupations and the average wages of different states (Cover, Jones & Watson, 2011), such that 

states with a bigger STEM industry have higher average wages. However, considerable wage gap 

exists among STEM careers. For example, in 2009, the top four highest-paying occupations 

reached an average of $120,000 a year, but the four lowest-paying occupations earned less than a 

third of this amount (Cover, Jones & Watson, 2011). The size of this gap remained in 2015 

(Fayer, Lacey & Watson, 2017).  

This variation in wage within STEM fields parallels with the education requirement of 

the jobs. STEM occupations requiring less than a four-year college degree earns $53,000 

annually on average, 40% lower than their highly educated counterparts (Rothwell, 2013). These 

“blue collar” STEM jobs, STEM jobs that require less than a Bachelor’s degree, are more often 

excluded in the definition of STEM occupations, yet they make up of 30 to 50 percent of STEM 

jobs (Carnevale et al., 2011; Fayer et al., 2017; Xue & Larson, 2015). The blue-collar STEM jobs 

are an integral part of the STEM industries. In manufacturing and engineering industries, these 

jobs are at the front end of producing, installing and repairing machines and products. The 

workers help improve the design and reduce product defects, increasing the efficiency of the 

product line. In healthcare industry, these supporting STEM workers take over healthcare and 

hygienic routines, administer examinations, supervise and educate patients. They are key to the 

adherence to the treatment. In fact, estimates suggested the growth of job openings will be faster 

among blue-collar STEM jobs than white-collar ones in the next decade (Rothwell, 2013).  

Moreover, the differed degree requirement of blue-collar STEM occupations has 

implications on students’ educational paths. Jobs requiring an Associate’s or vocational degree 

often draw students from two-year colleges. These students are more likely to be 
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underrepresented ethnic minorities, come from families with lower SES, enroll at school part 

time and have other commitments outside of school than students in four-year universities 

(Clotfelter, Ladd, Muschkin & Vigdor, 2013). The mechanisms relating to students’ STEM major 

choice may be different for two-year college students. For example, prior course enrollment in 

high school and perceived competence in science positively associated with students’ entrance to 

STEM majors among four-year university students, but the association was smaller or none for 

community college freshmen (Wang, 2013). Likewise, community college students who intend 

to major in STEM at the beginning of college were less likely to attain a STEM degree 5 years 

later than their peers with the same academic and socioeconomic backgrounds in four-year 

universities, despite some of them transfer to four-year universities (Wang, 2015). These findings 

showed different educational and career trajectories into blue-collar STEM careers, because of 

the different student population and the characteristics of the occupations. In my study, I 

differentiate STEM careers based on their education requirement and compare the trajectories in 

white-collar versus blue-collar STEM jobs.   

The Present Study 

 In this study, I aim to plot STEM career trajectories from age 13 to 25 using a national 

longitudinal sample. I use two descriptive approaches to portray numerically representative 

STEM career trajectories in longitudinal latent class analysis and to portray all existing STEM 

career trajectories in the full-form career path analysis. To provide a clear and replicable criteria 

of STEM categorization, I use the domain-specific knowledge of each occupation in the OUNET 

database to differentiate STEM versus non-STEM jobs, health versus physics-related STEM 

jobs, and blue-collar versus white-collar STEM jobs. I plot trajectories of two, three and four 

time points in each of the field. The results can not only show the change in the STEM labor 
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supply between age 13 and age 25, but also reveal the dynamic movements during this time span. 

I aim to answer the following research questions (RQs) in this study:  

RQ1: What are the trajectories for STEM career choices from age 13 to age 25,  

RQ1a: in terms of 1) STEM and non-STEM careers,  

RQ1b: health-STEM, physics-related STEM and non-STEM careers, and  

RQ1c: blue-collar/white-collar STEM and non-STEM careers?  

RQ2: How does STEM labor supply change over time?  

RQ2a: Does STEM labor supply grow or reduce over time? 

RQ2b: How does STEM labor supply compare with non-STEM labor supply? 

RQ2c: How does STEM labor supply compare between men and women?   

RQ3: what are the trajectories of STEM attrition in STEM and non-STEM fields? 

RQ3a: What is the attrition rate of STEM and non-STEM aspirations respectively? 

RQ3b: Which field do individuals leaving STEM field move into by age 25?  

RQ3c: Which attrition trajectory is the most common?  

RQ3d: Do results of questions above differ by gender?  

RQ4: What are the trajectories of STEM entrance for STEM and non-STEM 

employment?  

RQ4a: What is the entrance rate among STEM workers?  

RQ4b: Which field do STEM workers who enter STEM field come from?  

RQ4c: Which entry trajectory is the most common? 

RQ4d: Do results of questions above differ by gender?  

RQ5: Do men and women differ in their trajectories to obtain STEM employment?   
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Hypotheses 

Based on prior research on STEM attrition and STEM entry (Chen & Soldner, 2013; Xie 

& Shauman, 2003), I hypothesize to find trajectories of STEM persistence, STEM attrition, 

STEM entrance, and non-STEM paths between age 13 and 25. Based on the literature on the 

gender differences in motivation and career choices in the health STEM field and the physics-

related STEM fields (Eccles & Wang, 2016; Su et al., 2009), I hypothesize to find more women 

than men choose health STEM careers at age 13 and age 25 and more men than women choose 

physics-related STEM careers at age 13 and age 25.  

Regarding changes in the size of the STEM labor supply, as previous studies showed 

higher STEM attrition rates and lower STEM entry rate among women than among men (Chen 

& Soldner, 2013; Xie & Shauman, 2003), I hypothesize to find a greater shrinkage in STEM 

labor supply among women than among men in STEM careers in general. Because of findings 

that women were less likely to choose physics-related STEM careers than health STEM careers 

(Ma & Liu, 2017; Toh & Watt, 2022), I hypothesize to find a greater shrinkage of the women 

labor supply than the men labor supply in the physics-related STEM careers, and a greater 

shrinkage of men labor supply than the women labor supply in the health STEM careers.  

As previous studies showed a higher attrition rate among STEM careers than non-STEM 

careers (Chen & Soldner, 2013), I hypothesize to replicate this result and find a higher attrition 

rate in the STEM field than in the non-STEM field. Considering a better fit between health 

STEM careers (than physics-related STEM careers) and women’s altruistic value (Diekman et 

al., 2017; Eccles & Wang, 2016), I hypothesize to find a lower attrition rate among women than 

among men in the health STEM careers and a higher attrition rate among men than among 

women in the physics-related STEM careers.  
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Regarding STEM entry, I hypothesize to find a lower STEM entry rate among women 

than among men based on previous findings by Xie and Shauman (2003); in addition, I 

hypothesize to find the most entry into STEM between age 18 and 21, because of Xie and 

Shauman's (2003) finding of the largest group of entrants between high school graduation and 

first year in college.  

Regarding the trajectories leading to STEM employment, based on the studies by Ma 

(2011), I hypothesize to find that women were more likely than men to take a path of late entry 

followed by persistence in STEM careers. Based on the findings of (Ma & Liu, 2017), I 

hypothesize to find that persistence route was more common among women than among men in 

health STEM fields and the reverse in physics-related STEM careers.  

Methods 

Participants 

Participants are 1026 adolescents in the original cohort of the Child Development 

Supplement (CDS) of the Panel Study of Income Dynamics (PSID) launched in 1997 (54% girls; 

47% White, 42% Black, 7% Latino, 1% Asian, 3% other; average age in 2002 = 13.08 years old 

[SD = 1.94]). They were recruited as the children of families in the PSID main study, which are 

nationally representative of US families, and interviewed separately by the project team. The 

original CDS sample consist of 3563 children from birth to age 12 in 1997 and have been 

followed every 5 years until age 18. In 2005, the Transition to Adulthood Supplement (TAS) was 

launched to follow any participants reaching age 18. The participants were followed every 2 

years until they start their own households and enter the main PSID sample. This study uses all 

available waves by the time of data coding in 2019: CDS 1997’, CDS 2002’, TAS 2005’, CDS 

2007’, TAS 2007’, TAS 2009’, TAS 2011’, TAS 2013’, main PSID 2013’, TAS 2015’ and main 

PSID 2015’. Figure 1 showed waves of CDS and TAS data used in this study.  
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In CDS, questions on career aspiration were first asked in 2002. Children needed to be at 

least 8 years old to be eligible for CDS child interviews and at least 12 years old to be eligible for 

questions on career aspirations. Participants were included in the current study if 1) they named 

at least one desired occupation in CDS 2002’ interview, and 2) they reported their occupation(s) 

in 2013’ or 2015’. Detailed sample exclusion information can be found in Table Appendix A. 

Procedure 

PSID project researchers interviewed participants at home face to face or on phone based 

on protocols and scripts. Responses were recorded, cleaned and documented by the PSID project 

team and made available on PSID online data center. Authors of this paper recoded and analyzed 

the data. 

Measures 

Career aspirations 

Adolescents were asked “What are the three kinds of jobs you would like to have when 

you are done with school?” Respondents were free to name any jobs they like. Up to three jobs 

were recorded for each adolescent, in the order of being mentioned. When the respondent listed 

more than one aspiration, they were asked to identify the one that they desired the most. One 

response, the 1st mentioned or the most desired, was used for one participant. For respondents of 

age 18 and older, the question was worded as “What job would you most like to have when you 

are 30?” Responses were recorded in 3-digit 2000 Census occupation code in PSID dataset. 

Responses in CDS 2002’, TAS 2005’, CDS 2007’, TAS 2007’, TAS 2009’ and TAS 2011’ were 

used. 

Occupation in adulthood 
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Participants were asked about their current or most recent job in the past two years, 

including self-employed jobs (e.g., any work for money since Jan. 1, 2011, in 2013 interview). If 

the participant worked in multiple jobs, they were asked to identify one as their main job. 

Responses were recorded in the 2000 Census occupation code, in the same way as career 

aspirations.  

Responses in 2013 and 2015 TAS interviews and PSID main interviews were used. If the 

participant started their own households by the time of the interview, they will be interviewed in 

the PSID main study; otherwise, in TAS study. The questions were worded in the same way in 

all interviews. 

Census-O$NET translation 

Because the original PSID career aspirations and occupations were coded as three-digit 

2000 Census occupation codes, the codes were first translated into the eight-digit OUNET 

occupation codes by the 1st author. No crosswalk exists between 2000 Census codes and 2019 

OUNET codes. The coding used the occupation description in OUNET database to identify the 

best matching occupation and referenced a crosswalk between 2000 Census codes and 2018 SOC 

system, which is a set of six-digit occupation codes that the 2019 OUNET codes are based on. 

One to six OUNET occupations were matched for one census occupation, listed in the order of 

the best to least match.   

STEM classification 

The classification criteria were created using the “Knowledge” information on OUNET. 

The “Knowledge” dimension in OUNET database indicates the demand for a given type of 

knowledge in a specific occupation. We chose this dimension instead of “work activities” or 

“skills” because the knowledge category focuses content knowledge and skill set that are domain 
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specific, such as “chemistry”, “transportation”, “sales and marketing”, “law and government”, 

etc. There are a total of 33 knowledge domains available to describe each occupation. For each 

knowledge domain, an “importance” score is given to represent how important it is for an 

employee to possess the STEM knowledge for conducting the job in a typical situation. The 

score is an integer ranging from 0 to 100, which was created from the ratings of a national 

sample of current incumbents and supervisors of each occupation. The scores are standardized to 

represent the relative importance of the knowledge domain for a given job compared with all 

other jobs. An occupation may have “not applicable” on the scale for a knowledge domain that is 

not relevant.  

The importance scores of nine knowledge domains were used to create our STEM 

classification criteria: 1) Biology, 2) Chemistry, 3) Computers and Electronics, 4) Economics and 

Accounting, 5) Engineering and Technology, 6) Mathematics, 7) Mechanical, 8) Medicine and 

Dentistry, and 9) Physics. This list was created by asking two raters to mark whether each of the 

33 OUNET knowledge domains is STEM or not based on common sense. The nine knowledge 

domains above were consistently marked as STEM by two raters and thus were used. The inter-

rater reliability is 85%. The two raters were counter-balanced on gender and whether or not their 

racial/ethnic group is underrepresented in STEM fields. 

STEM occupations were classified based on two criteria: the absolute importance and the 

relative importance of STEM knowledge. The absolute importance means that for one 

occupation to be listed as STEM, it needs to be scored 60 or higher on importance in at least one 

STEM knowledge domain. For example, the occupation “accountants and auditors” fulfills this 

criterion because it is scored 73 on “mathematics”. This criterion reflects how important the 

STEM knowledge is for fulfilling tasks of the occupation. The relative importance means that for 
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one occupation to be listed as STEM, at least one of its STEM knowledge domains is ranked in 

the top half among its knowledge domains with a score greater or equal to 50. In other words, 

when knowledge domains with a score lower than 50 are excluded, there needs to be at least one 

STEM knowledge domain ranked among the top half of the rest of the knowledge domains. For 

example, for “accountants and auditors”, 8 of the 33 knowledge domains are scored higher than 

50; among these 8 domains, in the four highest ranked domains, two were STEM domains (i.e., 

“economics and accounting” and “math”). Therefore, the occupation fulfills the relative 

importance criterion. The relative importance criterion reflects how important STEM knowledge 

is, compared with other knowledge domains that are important for a job. This criterion is useful 

for ruling out occupations that generally require significant amount of knowledge but may not 

particularly specialize in STEM domains. For instance, “chief executives” is one example. It is 

scored 60 on “math” knowledge, but people usually would not consider it STEM job, like a job 

of pharmacist. An occupation needs to fulfill both the absolute importance criterion and the 

relative importance criterion to be classified as STEM occupations.  

Among STEM occupations, the distinction between physics vs health STEM is made 

based on the highest ranked STEM knowledge domain. Physics-related STEM occupations are 

STEM jobs whose highest ranked STEM knowledge domain is one of the following types: 1) 

Computers and Electronics, 2) Economics and Accounting, 3) Engineering and Technology, 4) 

Mathematics, 5) Mechanical, or 6) Physics. A STEM occupation is classified as health STEM if 

its highest ranked STEM knowledge is 1) Biology or 2) Medicine and Dentistry. This distinction 

among these STEM knowledge domains is created by asking the two raters to group the 9 STEM 

knowledge domains into either physics or health STEM. The raters agreed on all domains, except 
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for Chemistry (inter-rater reliability is 89%). For STEM occupations of which the highest ranked 

STEM knowledge domain is Chemistry, the second highest ranked STEM knowledge is used.  

A group of occupations were manually classified because of a lack of information on 

their knowledge domains in OUNET. Most occupations were aggregated items, such as 

“Miscellaneous Plant and System Operators”, “Engineers, all other”. They are usually listed at 

the end of a family of occupations to capture rare or new jobs that are not covered by specific 

occupations in the family. They were manually flagged by referencing the other occupations in 

the same family. For example, “Miscellaneous Plant and System Operators” were coded as 

physics STEM because other “Plant and System Operators” jobs in the family were classified as 

physics STEM. Four military occupations also lacked information on the knowledge dimension, 

so they were manually coded as non-STEM or physics STEM. One occupation, “Musicians, 

singers and other workers”, was originally categorized as physics-related STEM based on the 

criteria and was manually recoded as non-STEM. A full list of occupations present in the sample 

with STEM classification labels were provided in Appendix B. 

“Blue-collar” and “white-collar” classification 

The classification differentiates whether or not an occupation requires a Bachelor’s 

degree in the U.S. based on the OUNET Job Zone category. The Job Zone category indicates 

how much education and training is usually required for one occupation, on a scale from 1 “some 

of these occupations may require a high school diploma or GED certificate” to 5 “Most of these 

occupations require graduate school”. Blue-collar STEM jobs are STEM occupations that do not 

require a Bachelor's degree (Job Zone 1, 2, 3), and white-collar STEM jobs are STEM 

occupations that require at least a Bachelor’s degree (Job Zone 4 and 5).  



 

40 
 

Analyses 

 Two approaches were used to describe the longitudinal patterns of career aspirations, 

with each of them extracting patterns with different rationale. The longitudinal latent class 

analysis (LLCA) uses algorithm to model the most statistically probable pattern in existing 

trajectories. The generated results show the most common, representative pattern in the sample. 

Taking into account of subgroup differences, it generates a summary of a few most common 

patterns in several heterogeneous subgroups, in a similar manner as growth mixture modeling 

does. LLCA is common method to describe heterogeneous longitudinal patterns, so the results 

can be familiar to interpret with existing literature. The second approach uses cross-tabulations to 

identify all existing trajectories and then select and aggregate trajectories that are of interest. 

There are two prominent advantages of this approach. First, it provides targeted extraction of 

patterns based on a priori research questions and hypotheses. The search for patterns is guided 

by theory and literature, so it can provide direct evidence for hypothesis testing. Moreover, this 

approach allows for the flexibility to select and compare trajectories that are developmentally 

meaningful, such as trajectories sharing the same starting point but different endpoints later on, 

which are STEM persistence and non-persistence in the topic of this dissertation. Moreover, after 

trajectories of interest are selected, further computation for the total, ratio, differences of 

trajectories can be calculated with the exact frequencies of each trajectory readily available. 

Therefore, there is great flexibility for investigating the trajectories in greater depth based on 

research questions. This feature is particularly useful for studying STEM trajectories, given the 

extensive literature for formulating research questions and hypotheses for certain types of 

trajectories and the need to understand them further. Second, this approach overcomes the 

assumption of LLCA to identify the numerically dominant patterns, so it allows for discovering 
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trajectories that are not expected based on probability (Feinstein & Peck, 2008). For example, the 

trajectories of attaining a STEM occupation without an earlier STEM aspiration is rarely studied, 

but it is meaningful for understanding diverse STEM career paths and expanding STEM labor 

supply. These types of unexpected paths might be of smaller sizes and thus not extracted in 

LLCA.  

Cross-tabulation 

In cross-tabulations, we counted the frequency of the total group and subgroups for each 

existing trajectory. The cross-tabulation, despite a simple technique, is well suited for accurately 

identifying every existing trajectory of how career choices evolve over time. It shows all possible 

paths without reducing them to a representative, average trajectory, thus displaying individual 

differences to the full extent. The Chi-square Test of Independence were used to test any 

associations between gender and career paths when needed. Adjusted standardized residuals with 

Bonferroni corrections for multiple tests were used as post-hoc tests to examine the over- or 

under-representation of a given subgroup when the Chi-square test shows statistically significant 

associations.  Summary tables of frequencies about the timing, direction and trajectories of 

attrition and entry were created by aggregating selective subgroups in the cross-tabulation 

results.  

We plotted three sets of trajectory trees using cross-tabulation. The first set is two-wave 

trees between adolescents’ career aspiration at age 13 using data in CDS 2002’ and their actual 

occupations at age 25 using data in TAS 2013’, TAS 2015’, main PSID 2013’ or main PSID 

2015. Responses in TAS or main PSID 2015’ were used to replace missing values in TAS or 

main PSID 2013’ for reducing missing values. This set of trees consists of three trees on the 

same sample of 1026 adolescents using different grouping categories of occupations: the first 
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tree focused on whether adolescents chose STEM careers versus non-STEM ones; the second 

tree focused on whether adolescents chose non-STEM careers, physics-related STEM careers or 

health STEM careers; and the third tree focused on whether adolescents chose blue-collar non-

STEM careers, blue-collar STEM careers, white-collar non-STEM careers or white-collar STEM 

careers. Each tree is created from a two-way cross-tabulation of frequency between career 

aspiration at age 13 and actual occupation age 25.  

The second set is three-wave: career aspiration at age 13 (CDS 2002’), career aspiration 

at age 19 (CDS 2007’, TAS 2007’ or TAS 2009’), and actual occupation at age 25 (TAS/main 

PSID 2013’, TAS/main PSID 2015’). Data in TAS 2009’ were used to fill any missing values in 

CDS 2007’ or TAS 2007’. Consistent with the first set of trees, this set consists of three trees 

based on the same grouping category.  

The third set is four-wave: career aspiration at age 13 in 2002, career aspiration at age 18 

in 2005/2007 (TAS 2005’, CDS 2007’ or TAS 2007’), career aspiration at age 21 in 2009/2011 

(TAS 2009’ or TAS 2011’), and actual occupation at age 25 in 2013/2015. Similarly, to create an 

aggregated variable, data from a later year (e.g., 2007) were used to fill in missing values from 

an earlier year (e.g., 2005). 

After individual paths were plotted, the gender composition of each trajectory was 

calculated. We aggregated individual trajectories into categories based on our predetermined 

research questions. Specifically, we aggregated trajectories with an aspiration in a STEM field 

but ending with an occupation in a different field as “attrition” trajectories, and trajectories 

ending with an occupation in a STEM field following an aspiration in different field as “entry” 

trajectories. Trajectories starting with an aspiration in a STEM field and ending with an 

occupation in the exact same STEM field were treated as “persistence” trajectories. In a nutshell, 
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when we aggregated trajectories for studying STEM attrition, we used the person’s career 

aspiration at age 13 as the reference and compared following career choices against it (i.e., 

continuing in the same field or not); when we aggregated trajectories for studying STEM entry, 

we used employment at age 25 as the reference and compared previous career choices against it 

(i.e., originating from the same field or not). When we studied career paths leading to STEM 

employment, we included all trajectories with an endpoint of STEM employment, with previous 

choices in or not in the field of employment.  

Chi-square Test of Independence and Fisher’s Exact Test were used to examine the 

association between gender and types of trajectory groups, when we tested the gender differences 

in attrition trajectories, entry trajectories and paths leading to STEM employment. Standardized 

adjusted residuals were calculated at α = .05 level to identify statistically significant over- or 

underrepresentation of a gender in a given type of trajectory.  

LLCA. We ran LLCA to model trajectories of adolescents’ STEM career choices over 

three and four time points. We chose longitudinal latent class analysis (LLCA) instead of other 

longitudinal mixture modeling techniques because 1) our data is strictly multinominal by nature, 

and 2) the changes to be modelled do not increase or decrease along a continuous scale but are 

patterns of states across time (Feldman et al., 2009). In this case, LLCA is the only suitable 

technique meeting these premises. Instead of modeling individual intercepts and slopes, LLCA 

estimates class-specific patterns of outcome variables over time by modeling the probability of 

meeting category thresholds.  

We tested a total of six models corresponding to the three-wave and four-wave cross-

tabulation trees: three-wave trajectory with binary STEM grouping, three-wave trajectory with 

three-level STEM grouping (i.e., non-STEM, health STEM and physics-related STEM), three-
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wave trajectory with four-level STEM grouping (i.e., blue-collar non-STEM, blue-collar STEM, 

white-collar non-STEM and white-collar STEM) and the same set of models with four-wave 

data.  

Each model was tested with 2 to 7 class solutions in Mplus 7.0. with 2000 initial stage 

starts and 500 final stage optimizations to avoid local maxima. Gender differences in class 

membership in the three-wave and four-wave class solutions were tested with Two-way Chi-

square Test of Independence with adjusted standardized residuals calculated to indicate the over- 

and under-representation of a gender in a given cell.  

Results 

Sample descriptive information was presented in Table 1.1.  

STEM Career Choices at Age 13 and 25 

Frequencies of career choices at each time point were shown in Table 1.2. More 

adolescents aspired to non-STEM occupations than STEM ones, at age 13, 18, 21 and 25. Health 

STEM were more common than physics-related STEM in aspirations between age 12 and 21, 

whereas physics-related STEM were more common than health STEM in employment at age 25. 

Blue-collar non-STEM aspirations and white-collar STEM aspirations were two most common 

aspirations at age 13. Between age 18 and 21, white-collar non-STEM aspirations were the most 

common, followed by blue-collar non-STEM aspirations. Among employment at age 25, blue-

collar non-STEM and blue-collar STEM occupations were most common.  

Gender differences 

The gender compositions of career choices at age 13 and at age 25 were presented in 

Table 1.3. At age 13, disproportionally more girls aspired to non-STEM and health STEM 

occupations than expected by chance, and disproportionally more boys aspired to physics-related 

STEM occupations. Across the educational ladder, boys were overrepresented in blue-collar non-
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STEM and blue-collar STEM aspirations, and girls are overrepresented in white-collar non-

STEM aspirations. No gender was over- or under-represented in the white-collar STEM 

aspirations, with a gender position close to that of the sample. Nearly all these gender-related 

patterns discrepancies maintained in occupation attainment at age 25, except that blue-collar 

non-STEM occupations are no longer gendered.  

Results of LLCA 

Model selection 

Models were selected based on the quality of convergence, relative fit and residuals 

guided by Feldman, Masyn and Conger’s paper on longitudinal growth modeling with 

categorical indicators (Feldman et al., 2009). Based on convergence, two models, three-wave 

trajectory with binary (STEM vs non-STEM) indicators and four-wave trajectories with binary 

indicators, did not generate reliable estimates in 3 to 7 class solutions, potentially due to model 

under-identification. Therefore, no solution was picked for these two models.  

The likelihood ratio test of comparing the difference in Chi-square index between two 

models could not be used, because solutions with various classes were not nested models within 

one another. BIC (Bayesian Information Criteria) and adjusted BIC were chosen over AIC 

because these two indices were more reliable for models with various sample sizes, number of 

indicators and class sizes (Nylund et al., 2007; Tein et al., 2013). The lower BIC and adjusted 

BIC indicates a better fit of a solution (Nylund et al., 2007). Though not a model selection 

criterion, extremely low entropy indicates a poor fit of a solution; thus, entropy was referenced to 

exclude poor solutions (Feldman et al., 2009). Lo-Mendell-Rubin (LMR) test and the 

bootstrapped LMR test were used to compare the improvement of a solution with K+1 classes 

relative to a solution with K classes (Feldman et al., 2009; Nylund et al., 2007). The p values of 
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the tests were listed in the column of K+1 classes. A p value lower than .05 indicates that a 

solution with K+1 classes is a better fit than a solution with K classes. These model fit indices 

were listed in Appendix C. Furthermore, the standard Pearson residuals, the standardized 

residuals from univariate margins and bivariate margins were inspected. Most of these residuals 

in all models were lower than 2, indicating a good fit of the class solutions.  

Based on the model fit criteria above, a three-class solution for three-wave trajectories 

with 3-level and 4-level indicators were selected respectively. A four-class solution for four-wave 

trajectories with 3-level and 4-level indicators were selected respectively. The plots for these 

solutions of the three-wave trajectory and four-wave trajectory were shown in Figure 2 and 

Figure 3, in form of class probabilities.  

Three-wave trajectories 

Across non-STEM, health STEM and physics STEM fields, three distinct trajectories 

were discovered (Figure 1.2A). One small class (N = 116, 12% of sample) featured a probability 

of nearly 70 percent to choose health STEM at age 13, with an even higher probability of 

choosing the health STEM field at age 19 but a considerable decrease in the probability to nearly 

40 percent to work in health STEM jobs at age 25. Between age 19 and age 25, the probability of 

working in non-STEM occupations increased from less than 10 percent to approximately 50 

percent. A second class was a large group (N = 555, 57% of sample) featuring a high probability 

(about 70 percent) of aspiring to non-STEM careers at age 13 and age 19, followed by an even 

higher probability (over 80 percent) of working in non-STEM jobs at age 25. At the same time, 

the probability of choosing health STEM careers decreased from around 20 percent to less than 5 

percent. The last class (N = 307, 31% of sample) consisted of roughly a third of the sample, 

featuring comparable probabilities (around 40 percent) of choosing physics STEM careers and 
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non-STEM careers at age 13. The probability of choosing physics-related STEM careers 

increased to around 60 percent from age 13 to age 19, followed by a decrease to less than 30 

percent by age 25. At the same time, the probability of choosing non-STEM careers increased to 

over 60 percent by age 25. Gender was associated with class membership, χ2 (2, N = 978) = 

147.94, p < .001. Women were overrepresented in class 1 and 2 and men were overrepresented in 

class 3 (Table 1.4).  

Three groups were found with distinct movement across the educational ladder in STEM 

and non-STEM fields (Figure 1.2B). One class comprised a fourth of the sample (N = 243, 25% 

of sample). This group featured around 50 percent of the probability to choose white-collar 

STEM careers at age 13, followed by a higher probability (over 60 percent) of doing so at age 19 

and a drop in the probability (to less than 30 percent) of working in white-collar STEM jobs at 

age 25. At the same time, the probabilities of choosing blue-collar non-STEM jobs and blue-

collar STEM jobs increased between age 19 and age 25. A second group comprised 29 percent of 

the sample (N = 279), characterizing nearly 50 percent of probability to choose white-collar non-

STEM aspirations at age 13. The probability increased to nearly 80 percent by age 19 and 

dropped to around 30 percent by age 25. Similar to the first group, the field that grew in its size 

was the blue-collar non-STEM field. A third group was the largest (N = 456), consisting nearly 

half of the sample (46% of sample). It featured the largest probability of choosing blue-collar 

STEM among the three groups, ranging from around 40 to 70 percent. The probability of 

choosing blue-collar STEM careers was also high, which increased from around 15 to over 30 

percent between age 13 and age 19 and dropped to around 25 percent by age 25. Gender was 

associated with class membership, χ2 (2, N = 978) = 136.43, p < .001, such that women were 

overrepresented in class 2 and men were overrepresented in class 3 (Table 1.4).  
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Four-wave trajectories 

Four classes emerged for trajectories spanning four time points. Across non-STEM, 

health STEM and physics STEM fields (Figure 1.3A), there was one group (N = 209, 26% of 

sample) featuring medium to high probabilities of choosing physics STEM over time. The 

probability increased from around 40 to over 60 percent between age 13 and 21 and decreased to 

40 percent by age 25. At the same time, the probability of choosing non-STEM careers decreased 

and then increased over time, showing an opposite trend. A second group is the smallest across 

all four groups (N = 72), comprising only 9 percent of the sample. This group featured 

substantial probabilities of choosing health STEM careers over time. The probability started with 

over 80 percent at age 13 and peaked at over 90 percent by age 18. The probability decreased 

considerably by age 25, ending at a level less than 50 percent. The decrease in the probably of 

pursuing health STEM careers paralleled an increase in the probability of pursuing non-STEM 

careers. A third group was the largest, comprising half of the sample (N = 418, 51% of sample). 

It featured stable and high probabilities (over 60 to 90 percent) of choosing non-STEM careers 

over time. The probability increased steadily between age 13 and age 21 and dropped slightly by 

age 25, to over 80 percent. Between age 13 and age 21, the increase in the probability of 

choosing non-STEM careers paralleled a decrease in the probability of pursuing health STEM 

careers; between age 21 and age 25, the lower probability of pursuing non-STEM careers 

paralleled a higher probability of pursuing physics-related STEM careers. A fourth group was 

also small (N = 115, 14% of sample) and featured late entry into and attrition from health STEM 

careers. There was a probability (nearly 80 percent) of choosing non-STEM careers at age 13. By 

age 18, the probability of choosing health STEM careers increased more than two times; it 

continued to increase and reached over 90 percent by age 21, after which it dropped considerably 
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to less than 20 percent by age 25. The change paralleled a decrease and then increase in the 

probability of pursuing non-STEM careers. Chi-square Test showed a statistically significant 

association between gender and class membership, χ2 (3, N = 814) = 139.63, p < .001, with more 

men than expected by chance present in class 1, and more women than expected by chance 

present in class 2, 3 and 4 (Table 1.4).  

Across the educational ladder of STEM and non-STEM careers, four distinct trajectories 

were found (Figure 1.3B). One was the largest (N = 315, 39% of sample) with sizable and stable 

probabilities (between 50 and 60 percent) of choosing blue-collar non-STEM careers between 

age 13 and 21; the probability further increased to nearly 80 percent by age 25. The increase in 

the probability of blue-collar non-STEM careers was accompanied by decreases in the 

probabilities of choosing white-collar non-STEM and white-collar STEM careers between age 

21 and age 25.  A second group (N = 146, 18% of sample) featured substantial probabilities of 

choosing white-collar STEM careers over time. The probability started at around 50 percent at 

age 13, increased steadily between age 21 and age 21 to nearly 80 percent. Between age 21 and 

age 25, the probability of choosing white-collar STEM careers dropped considerably, to nearly 

40 percent by age 25. The change paralleled decreases in the probabilities to choose blue-collar 

non-STEM careers between age 13 and age 21, followed by an increase in the probability 

between age 21 and age 25. The probability of choosing white-collar non-STEM careers also 

decreased considerably between age 21 and age 25. A third group (N = 155, 19% of sample) 

featured sizable and increasing probabilities (around 30 to 70 percent) of choosing blue-collar 

STEM careers between age 13 and age 21, which was followed by a remarkable drop of the 

probability to less than 40 percent by age 25. The change was accompanied by a decrease and 

then increase in the probabilities of pursuing blue-collar non-STEM careers between age 13 and 
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age 25. The probabilities of pursuing white-collar non-STEM and white-collar STEM careers 

decreased considerably over time. A fourth group (N = 198, 24% of sample) featured high 

probabilities of choosing white-collar non-STEM careers, with an increase from 40 to 90 percent 

between age 13 and age 21 and a decrease to around 40 percent by age 25. The change paralleled 

a decrease and then increase in the probability of pursuing blue-collar non-STEM careers. 

Gender was associated with class membership, with men overrepresented in class 1 and women 

overrepresented in class 4 (Table 1.4).  

Results of Cross Tabulation 

 Career trajectories were shown in Sankey diagram in Figures 1.4 to 1.6. Sankey diagram 

is a common visualization method to display processes and directions of flow, with each node 

representing one time point and each branch representing one subgroup in this study. The height 

of branches represents the relative size of subgroups.  

Changes of STEM Labor Supply  

Changes of STEM labor supply was examined via a “change ratio” of individuals in a 

STEM field over time. The ratio was calculated by dividing the number of STEM workers at age 

25 by the number of STEM aspirants at age 13, showing the relative size of STEM workers to 

aspirants. A change ratio greater than 100% indicated an expansion of the STEM labor supply in 

a field, and a change ratio lower than 100% indicated a shrinkage. For example, in the broad 

STEM field, there were 414 aspirants at age 13 and 255 workers at age 25. Dividing 255 by 414 

and converting the number into percentage was 61.6%, meaning the size of STEM workers by 

age 25 was 61.6% of the size of STEM aspirants at age 13. In other words, the labor supply 

shrank to 61.6% of its original size over time. The change ratios of various types of STEM 

careers were displayed in Table 1.5. Within STEM, the change ratio of physics-related STEM 
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careers was 101.6%, whereas the change ratio of health STEM careers was 27.7%. That is, the 

labor supply of physics-related STEM careers approximately remained its original size with a 

tiny increase, and the labor supply of health STEM careers shrank remarkably, to less than a 

third of its original size. In comparison, the change ratio of non-STEM labor supply was 126.0%, 

indicating a moderate increase in its size.  

Across the educational ladder, the blue-collar STEM “pipeline” expanded to 115.7% of 

its original size whereas the white-collar STEM “pipeline” shrank to 33.9% of its original size. 

In comparison, the change ratio for blue-collar non-STEM labor supply was 182.6%, and the 

change ratio for white-collar non-STEM labor supply was 52.8%.  

Gender Differences. To compare by gender groups, a change ratio was calculated for 

men labor supply and women labor supply respectively. For example, 203 girls aspired to STEM 

careers at age 13 and 111 women worked in STEM jobs at age 25. The change ratio of women 

STEM labor supply is 54.7% (111 divided by 203, Table 1.6). Among men, 111 boys aspired to 

STEM careers at age 13 and 211 men worked in STEM jobs at age 25; thus, the change ratio of 

men STEM labor supply was 68.2%. A comparison suggested that the labor supply across all 

STEM careers shrank more among women than among men. The counts of aspirants and 

workers and change ratios were listed in Table 1.6 by gender.  

Within STEM, the health STEM labor supply shrank at comparable rates for both men 

(25.5%) and women (28.4%); the number of health STEM workers by age 25 was less than a 

third of the number of aspirants at age 13 for both men and women. The woman labor supply in 

the physics-related STEM field expanded to 185.3% of its original size, whereas the men labor 

supply in the same field shrank to 83.3%. In the blue-collar STEM field, the labor supply 

expanded among both men and women, slightly larger among men than among women (men: 
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123.1%, women 106.5%). In the white-collar STEM field, the change ratios were close between 

genders, with a shrinkage to around a third of its original size (women: 31.9%, men: 36.1%). 

Attrition 

Attrition rates. Between age 13 and 25, 69.3% STEM aspirants changed their career 

path and switched into non-STEM careers (Table 1.5). Within STEM subfields, 71.1% physics-

related STEM aspirants worked in a different field, and 85.3% health STEM aspirants switched 

out of their field. In comparison, 20.9% non-STEM aspirants left their field. Across the 

educational ladder, 70.0% aspirants in the blue-collar STEM field and 84.3% aspirants in the 

white-collar STEM field worked in a field different from their initial choice. In comparison, 

30.4% blue-collar non-STEM aspirants and 77.5% white-collar non-STEM aspirants did so.  

Gender Differences. Across STEM careers in various subfields, women switched out of 

the careers at a higher rate than men did (women: 73.9%, men: 64.9%, Table 1.6). Within the 

subfields, men left health STEM careers at a higher rate than women did (men: 96.4%, women: 

81.7%), and women left physic-related STEM careers at a higher rate than men did (women: 

85%, men: 68%). Across the educational ladder, men and women switched out of blue-collar 

STEM careers at comparable rates (men: 67.9%, women: 72.6%), with a slightly higher rate 

among women. In white-collar STEM field, 87.2% of women and 81.2% of men switched out of 

the field, with a slightly higher rate among women.  

 Destinations of Attrition. Eighty-five percent of people leaving the health STEM field 

worked in non-STEM jobs, and the rest worked in physics-related STEM jobs (Table 1.7). 

Ninety-three percent of people leaving the physics-related STEM field worked in non-STEM 

jobs, and the rest worked in health-related STEM jobs. Eighty-five percent of people leaving the 

blue-collar STEM field worked in blue-collar non-STEM jobs, another 9% worked in white-
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collar non-STEM jobs, and 6% worked in white-collar STEM jobs. Sixty-eight percent of people 

leaving the white-collar STEM field worked in blue-collar STEM jobs, another 16% worked in 

blue-collar STEM jobs, and 17% worked in white-collar non-STEM jobs.  

Gender Differences. Among health STEM aspirants, 89% women and 74% men 

switched into non-STEM jobs, and the rest 11% women and 26% men worked in physics-related 

STEM jobs (Table 1.7). Among physics-related STEM aspirants, 93% women and 92% men 

worked in non-STEM jobs, and the rest 7% women and 8% men worked in health STEM jobs. 

Among blue-collar STEM aspirants, 82% women and 87% men worked in non-STEM jobs, 

another 13% women and 6% men worked in white-collar non-STEM jobs, and the rest 4% 

women and 8% men worked in white-collar STEM jobs. Among white-collar STEM aspirants, 

67% women and 68% men worked in blue-collar non-STEM jobs, another 13% women and 19% 

men worked in blue-collar STEM jobs, and the rest 20% women and 14% men worked in white-

collar non-STEM jobs.  

Paths of Attrition. Among people leaving all types of STEM careers, 42% of them 

exited between age 13 and 18, another 17% exited between age 18 and 21, 32% exited between 

age 21 and 25, and the rest 9% exited by age 18, returned by age 21 and finally exited by age 25 

(Table 1.8). Among people leaving health STEM careers, 56% exited between age 13 and 18, 

another 12% exited between age 18 and 21, 23% exited between age 21 and 25, and the rest 9% 

took the recursive path. Among people leaving physics-related STEM careers, 50% exited 

between age 13 and 18, another 21% exited between age 18 and 21, 19% exited between age 21 

and 25, and the rest 10% took the recursive path.  

Among people leaving blue-collar STEM careers, 60% exited between age 13 and 18, 

another 10% exited between age 18 and 21, 21% exited between age 21 and 25, and the rest 9% 
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took the recursive path. Among people leaving white-collar STEM careers, 59% exited between 

age 13 and 18, another 18% exited between age 18 and 21, 14% exited between age 21 and 25, 

and the rest 9% took the recursive path.  

Gender Differences. Two-way Chi-square Tests of Association between gender and 

attrition trajectories showed no statistically significant associations between gender and 

trajectory group membership in any field (Table 1.9). Standardized adjusted residuals indicated 

no over- or under-representation of women or men in any STEM attrition trajectories (α = .05).  

Entry 

Entry rates. Fifty-two percent of workers at age 25 across STEM careers did not aspire 

to STEM careers at age 13 (Table 1.5). Within STEM subfields, 46.8% health STEM workers 

aspired to careers in a different field at age 13, and 71.5% physics-related STEM workers aspired 

to careers in non-STEM or health-related STEM field at age 13. In comparison, 37.2% non-

STEM workers entered their field after age 13. Across the educational ladder, 74.1% workers in 

the blue-collar STEM jobs and 53.8% workers in the white-collar STEM field switched into their 

field after age 13. In comparison, 61.9% blue-collar non-STEM aspirants and 57.4% white-collar 

non-STEM aspirants did so.  

Gender differences. Across STEM careers in various subfields, the entry rates among 

men and women were comparable (women: 52.3%, men: 48.6%, Table 3.6). Within the 

subfields, men entered the health STEM careers at a higher rate than women did (men: 85.7%, 

women:  

35.4%), and women entered physic-related STEM careers at a higher rate than men did (women: 

92.1%, men: 61.5%). Across the educational ladder, men and women entered blue-collar STEM 

careers at nearly the same rates (men: 74.2%, women: 74.0%). In white-collar STEM field, 



 

55 
 

60.0% of women and 47.9% of men entered into the field, with a slightly higher rate among 

women.  

Origins of Entry. Sixty-six percent of people entering the health STEM careers chose 

non-STEM careers at age 13, and the rest 34% chose physics-related STEM careers (Table 1.10). 

Seventy-nine percent of people entering the physics-related STEM field chose non-STEM 

careers as teenagers, and the rest 21% aspired to health-related STEM careers. Forty-one percent 

blue-collar STEM workers chose blue-collar non-STEM careers as teenagers, another 29% chose 

white-collar non-STEM careers, and 30% chose in white-collar STEM careers. Forty-six percent 

of white-collar STEM workers had aspirations in the blue-collar STEM field at age 13, another 

12%, in the blue-collar STEM field, and 42%, in the white-collar non-STEM field.  

Gender Differences. Among women health STEM entrants, 88% chose non-STEM 

careers and 12% chose physics-related STEM careers at age 13 (Table 1.10). Among men health 

STEM entrants, 33% chose non-STEM careers and 67% chose physics-related STEM careers at 

age 13. In the physics-related STEM field, 74% women entrants and 83% men entrants aspired 

to non-STEM careers in teenage years. The rest 26% women entrants and 18% men entrants 

aspired to health STEM careers at age 13.  

In the blue-collar STEM field, 33% women entrants and 46% men entrants chose blue-

collar non-STEM careers at age 13, 35% women entrants and 25% men entrants, white-collar 

non-STEM careers and the rest 33% women entrants and 28% men entrants, white-collar STEM 

careers. In the white-collar STEM field, 44% women entrants and 48% men entrants aspired to 

blue-collar non-STEM careers at age 13, 7% women entrants and 17% men entrants, blue-collar 

STEM careers, 48% women entrants and 35% men entrants, white-collar STEM careers.  
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Paths of Entry. Among people entering all types of STEM careers, 35% of them entered 

between age 21 and 25, another 28% entered between age 18 and 21, 28% entered between age 

13 and 18, and the rest 9% entered by age 18, exited by age 21 and then returned by age 25 

(Table 1.11). Among people entering health STEM occupations, 24% entered between age 21 

and 25, another 32% entered between age 18 and 21, 40% entered between age 13 and 18, and 

the rest 4% took the recursive path. Among people entering physics-related STEM occupations, 

51% entered between age 21 and 25, another 26% entered between age 18 and 21, 17% entered 

between age 13 and 18, and the rest 6% took the recursive path. 

Among people entering blue-collar STEM occupations, 52% entered between age 21 and 

25, another 20% entered between age 18 and 21, 17% entered between age 13 and 18, and the 

rest 10% took the recursive path. Among people entering white-collar STEM occupations, 40% 

entered between age 21 and 25, another 24% entered between age 18 and 21, 33% entered 

between age 13 and 18, and the rest 2% took the recursive path. 

Gender Differences. Two-way Chi-square Tests of Independence and Fisher’s Exact 

Tests showed statistically significant associations between gender and entry trajectories in the 

health STEM field, the white-collar non-STEM field, and the white-collar STEM field (Table 

1.12). Among entrants of health STEM occupations, standardized adjusted residuals indicated 

that fewer women than expected entered the field between age 21 and 25, and that more women 

than expected entered the field between age 18 and 21. Among entrants of white-collar STEM 

occupations, fewer women than expected entered the field between age 13 and 18.  

Trajectories of STEM workers 

Among workers across all STEM careers, 18% did not have prior aspirations in the 

STEM field, 25% had one prior aspiration, 29% had two aspirations, and 28% had three 
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aspirations (that is, the individual chose the same field as their final occupation at age 13 and 

persisted at the following time points; Table 1.13). Among health STEM workers, 10% entered 

the field without any prior aspiration, 18% had one prior aspiration, 30% had two prior 

aspirations, and 42% chose the field and persisted since age 13. Among physics-related STEM 

workers, 36% did not have prior aspirations, 29% had one prior aspiration, 22% had two prior 

aspirations, and 13% had three prior aspirations.  

Among blue-collar STEM workers, 39% entered the field without any prior aspiration, 

27% had one prior aspiration, 21% had two prior aspirations, and 13% chose the field at age 13 

and persisted afterwards. Among white-collar STEM workers, 21% entered the field without any 

prior aspiration, 24% had one prior aspiration, 36% had two prior aspirations, and 19% chose the 

field and persisted since age 13. 

Gender Differences. Two-way Chi-square Tests of Independence Tests showed 

statistically significant associations between gender and paths leading to STEM occupations in 

the health STEM field, the physics-related STEM field, the blue-collar non-STEM field, the 

white-collar non-STEM field, and the white-collar STEM field (Table 1.14). Standardized 

adjusted residuals indicated imbalanced gender compositions of some paths in several subfields. 

Among health STEM workers, fewer women than expected by chance entered the field without 

prior aspirations, and that more women than expected chose health STEM careers at age 13 and 

persisted throughout the following three time points. Among physic-related STEM workers, 

more women than expected worked in the field without any prior aspirations. Among white-

collar STEM workers, fewer women than expected worked in the field after choosing it twice.   

Discussion 

In this study, we portrayed trajectories of STEM career choices across domains and the 

educational ladder from age 13 and 25. We used two descriptive approaches, the longitudinal 
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latent class analysis and the full-form career path analysis and provided visualizations of STEM 

career trajectories. Our graphs showed diverse, more often recursive than linear, STEM career 

trajectories with dynamic movements within STEM subfields and across the STEM and the non-

STEM fields. In the full-form career path analysis, we examined evidence for the various aspects 

of the “leaky STEM pipeline” notion. Firstly, we investigated the changes in the quantity of labor 

supply in STEM fields, in comparison with the non-STEM field. We discovered that the labor 

supply shrank in the health STEM field and the white-collar STEM field, maintained its size in 

the physic-related STEM field, and expanded in the blue-collar STEM field. Moreover, we are 

the first to report an expansion of women labor supply in the physics-related STEM careers. 

Secondly, we examined the attrition across STEM fields, in terms of the attrition rate, the 

destination of attrition and the path of attrition. We found that the attrition rates in STEM fields 

was higher than those across non-STEM fields and those in blue-collar non-STEM field, but not 

higher than the attrition rate in the white-collar non-STEM field. Between genders, the attrition 

rates were comparable, without sizable discrepancies. The majority of people leaving a STEM 

field landed in non-STEM jobs, and around half or more of attrition occurred between age 13 

and age 18. Thirdly, we examined the entry into STEM fields, which was defined as working in a 

STEM field without an aspiration in the same field at age 13. We inspected the rate, destination 

and paths of entry into various STEM careers. The entry rates varied considerably across 

different STEM and non-STEM careers; it was higher in the physics-related STEM field than the 

health STEM field. Moreover, the entry rate was remarkably higher among men than among 

women in the health STEM field, and considerably higher among women than among men in the 

physic-related STEM field. Most entry into a STEM career originated from the non-STEM field, 

instead of a different STEM field. However, most women entering health STEM jobs originated 
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from the non-STEM field, whereas most entering men in the health STEM field originated from 

the physics-related STEM field. Most entry into various STEM jobs occurred between age 21 

and 25, except that most entry into the health STEM jobs occurred between age 13 and 18. 

Women were more likely than chance to enter health STEM jobs between age 18 and 21, and 

less likely than chance to do so between age 21 and 25. Lastly, we examined all existing paths 

that led STEM workers to where they were at age 25, in test of the “cumulative disadvantage” 

hypothesis about STEM career trajectories. Our results did not support the hypothesis, because it 

showed that the most commonly taken paths into STEM employment were not those with 

frequent prior choices in the same field. The only exception was the health STEM careers, such 

that the most commonly taken path was the early entry and persisting path, followed by paths 

with fewer prior choices. We discovered the gender differences that women were more likely 

than chance to take the “early entry and persist” path into health STEM and blue-collar STEM 

careers, the path without any prior aspirations into physics-related STEM careers.  

In general, our discoveries did not support the “leaky STEM pipeline” metaphor in more 

aspects than it did. The STEM labor supply does not necessary shrink due to “leaks” – it 

depended on how much entry there were relative to the attrition. The sizable entry into STEM 

fields objects to the image of a closed, one-directional career path into STEM employment. The 

numerous, diverse trajectories showed that a “pipeline” representation is neither accurate nor 

representative. By visualizing STEM career trajectories, we put the “leaky pipeline” image in 

perspective. We propose a “STEM highway” metaphor as an alternative representation. We also 

presented evidence supporting gender similarities or gender discrepancies favoring women’s 

entry and persistence in STEM careers. Because of the richness of our finding, we discuss our 

results in more details in each of the following sections based on our research questions.  
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Labor Supply Expanded or Shrank Across Subfields, Comparably Between Gender, but 

Women Physics STEM Labor Supply Expanded 

 We discovered that the STEM labor supply did not always shrink among all STEM 

careers as the “leaky pipeline” implied. A shrinkage was found for health STEM and white-collar 

STEM labor careers, a maintenance of size was found for physics-related STEM careers, and an 

expansion was found for blue-collar STEM. This finding shows that the “pipeline” is not “leaky” 

in all types of STEM careers, and it might even expand in some fields.  

 The health STEM field and the white-collar STEM field were two STEM fields featuring 

considerably shrinkage in the labor supply over time. The number of people working in these 

fields were less than or around a third of the number of people aspiring to these careers in their 

adolescence. Some characteristics of careers in these two fields might be relevant. Firstly, both 

fields attracted large number of adolescents at the beginning. The health STEM careers, such as 

doctors and nurses, are familiar to adolescents from their daily experience of visiting doctors. 

The content, context and impact of these jobs are concrete to adolescents from early on. In 

contrast, physics-related STEM careers might be specifically known to teenagers who have 

family members working the field or watch particular TV programs or other media coverage. 

The possible differences in adolescents’ knowledge and exposure of careers in the health versus 

the physics-related STEM fields might underlie the varied popularity of these two types of jobs 

among adolescents. Regarding the differences between white-collar and blue-collar STEM 

careers, our previous work showed that white-collar career aspirations were more common than 

blue-collar ones (Gao & Eccles, 2020). Adolescents might have learned explicitly or implicitly 

about which jobs are highly valued and respected in our society. In addition, when asked to 

envision a scientist, children tend to imagine someone who works in labs (for a review, Ferguson 
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& Lezotte, 2020), which are more likely to be white-collar STEM jobs. In a nutshell, these 

mechanisms might lead to the particularly high prevalence of health STEM and white-collar 

STEM aspirations among adolescents. Secondly, recent evidence suggests that the small number 

of works compared to aspirants in the health STEM and white-collar STEM fields might result 

from a labor surplus in these fields. One analysis showed that in 2009, there was a surplus of 

STEM workers who hold an Associate’s to a Ph.D. degree (Charette, 2013). In addition, the 

biomedical field was one STEM area that saw a surplus of Ph.D. degree holders (Xue & Larson, 

2015). Nationwide, the growth of white-collar STEM jobs was smaller than that of white-collar 

STEM jobs (Rothwell, 2013). Taken together, the evidence points to an overflow of workers in 

the health and white-collar STEM area, thus manifesting in the small number of workers relative 

to aspirants. Thirdly, the high educational requirement of white-collar STEM careers and some 

healthcare professions might make it particularly challenging to fulfill aspirations in these fields. 

A comparable group of careers, the white-collar non-STEM ones, also saw a shrinkage in its 

labor supply, pointing to the common factor of high educational demand of white-collar jobs.  

 More gender similarities than differences were found in the changes of STEM and non-

STEM labor supplies. The change ratios were close between men and women in health STEM, 

and white-collar STEM fields. In blue-collar STEM field, the changes in labor supply were in the 

same direction among men and women, both expanding. Physics-related STEM field was the 

only field with divergent patterns between gender, with the labor supply expanding among 

women and shrinking among men. Taken together, these findings showed that the STEM labor 

supply was not more likely to shrink among women than among men. In the man-dominant 

physic-related STEM field, the women labor supply even expanded, and the man labor supply 

shrank. To our knowledge, our study is the first to report such findings. The pattern might result 
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from the decade-long efforts to promote women’s participation in the STEM field. Bachelor’s 

degree attainment is a useful reference for interpretation, for its proximity to the job attainment at 

age 25 in our study, as well as for its predictive power on STEM career attainment (Wright et al., 

2017). In the past few decades, increasing portions of Bachelor’s degree in the physical science 

and engineering have been awarded to women, and the percentage of women Bachelor’s holders 

in economics field has been at an historically high level (Ceci et al., 2014). In addition, our 

findings underscore gender similarities, more than discrepancies, in STEM career trajectories, 

adding supportive evidence for the gender similarity hypothesis proposed by the leading scholar 

in gender studies, Janet Hyde (Hyde, 2005).    

 The women labor supply for physics-related STEM careers expanded to nearly two times 

of its original size. This finding does not contradict with another result in this study that women 

were underrepresented in physics-related STEM jobs at age 25. The small number of women 

choosing physics-related STEM careers as initial aspirations and as the field to enter was the 

main factor of this underrepresentation. The literature has documented reasons such as the lack 

of appeal of physic-related STEM careers to women’s altruism values and people-oriented 

vocational interest, the influence of socializers’ gender biases and stereotypes, and an 

unsupportive atmosphere in professional settings (Fouad et al., 2011; Frome et al., 2006). More 

efforts are yet needed to achieve a more balanced gender composition in physics-related STEM 

careers. In this study, we found a sizable group of women entering these careers. Understanding 

the conducive and supportive factors and practices in their experience can possibly provide 

directions for future research and policies.  
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Attritions in STEM were Frequent, Complete, Early and Downward 

 We provided a more comprehensive understanding about STEM attrition, regarding not 

only the attrition rate across various STEM fields, but also the destination and paths of the 

attrition flow. As hypothesized, the attrition rate was higher in STEM fields than in non-STEM 

fields. Moreover, more than seventy percent of people leaving STEM switched into non-STEM 

jobs, instead of a different STEM field, leaving the STEM field entirely; about half of this group 

changed their career paths early, between age 13 and 18. These findings carry four implications 

for efforts to reduce STEM attrition. Firstly, there is plenty of room to lower the STEM attrition 

rate. The attrition rate in various STEM fields was around seventy percent or higher; in contrast, 

it ranged around twenty to thirty percent in non-STEM fields, except the white-collar non-STEM 

field. From this study, it remained unclear what caused the contrasting attrition rates in the 

STEM and non-STEM fields. One factor might be the educational demand of some STEM 

occupations. Another domain with high educational requirement, the white-collar non-STEM 

field, saw a similarly high attrition as STEM fields did. However, the high attrition rate in the 

blue-collar STEM field suggested factors other than the educational demand might be related to 

the high attrition. Further understanding about the general and specific factors of attrition across 

STEM careers can facilitate and guide future efforts to lower the STEM attrition rate.  

Secondly, the fact that most STEM attrition flowed into non-STEM field instead of 

another STEM field suggested one approach to reduce STEM attrition can be leading the attrition 

to flow into a different STEM field. Some of the preparation a person had for white-collar STEM 

careers, for example, might be transferrable to blue-collar STEM careers, giving the person an 

advantage for pursuing a career in the other STEM field. Currently, considerably more attrition 

from the white-collar STEM field flowed into the blue-collar non-STEM field and the white-
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collar non-STEM field than the blue-collar STEM field. The reason for this complete withdrawal 

from the STEM fields was unclear from this study, yet our detailed tracking of the attrition flow 

suggested one promising approach to reduce STEM attrition.  

Thirdly, the fact that about half of people who left STEM exited the field by age 18 

indicates the focus on reducing STEM attrition by increasing high school STEM participation 

might be of limited effects. Although the participation and career plans in later years of high 

school and during college have been much studied as influential antecedents of STEM career 

choices in following years (Sadler et al., 2014; Shaw & Barbuti, 2010), in my study, individuals 

who left STEM after age 18 only comprised of thirty to fifty percent of all STEM attrition in 

various STEM fields. Early attrition between age 13 and age 18 took up a larger share of the 

attrition. Therefore, shifting the focus to the younger age range might reach a broader attrition 

population.  

Lastly, over eighty percent of attrition from the white-collar STEM field flowed into 

blue-collar occupations. For researchers and policy makers to reduce STEM attrition, this finding 

might indicate a sobering message: adolescents who aspired to the white-collar STEM careers 

might be unlikely to obtain not only a typical, white-collar STEM job, but any white-collar jobs 

at all. In other words, the issue of STEM attrition might interweave with the barrier to attain 

four-year college education. This issue is particularly worth addressing considering that white-

collar STEM career aspirants comprised two thirds of all STEM aspirants. Prior research on the 

education-based “aspiration-attainment gap” pointed to sociodemographic disadvantages (Croll, 

2008), and more research is needed to understand the causes and antecedents of this downward 

STEM attrition.  
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More Gender Similarities than Discrepancies in Attrition Rates, Destination and Paths 

 In this study, we found that the STEM attrition rate was higher among women than 

among men only in physics-related STEM careers. In the health STEM field, the attrition rate 

was higher among men than among women. In the blue-collar STEM field and the white-collar 

STEM field, the attrition rates were comparable between men and women.  

 There was a lack of gender differences in attrition rates in the education-differentiated 

STEM subfields and the presence of gender differences in attrition rates in content-differentiated 

STEM subfields. Girls’ high academic performance and achievement in secondary and 

postsecondary education (for a review, Buchmann et al., 2008) may be an important factor for 

the gender similarity of attrition rates in white-collar fields. Blue-collar STEM also saw high 

attrition rates among both men and women. It appeared that a high educational or knowledge 

demand of the jobs is related to the high attrition rates, independent of the gender of aspirants. 

Thus, supporting students to overcome these challenges and increase their educational attainment 

may help reduce STEM attrition. In addition, we found that men were more likely to leave health 

STEM careers than women. The contrast with women’s higher attrition rate in physics-related 

STEM fields matched previous findings on men’s value congruity in physics-related STEM 

careers and women’s in health STEM careers (Diekman et al., 2017; Eccles & Wang, 2016; Su et 

al., 2009). It seems that people are just more likely to leave the field that cannot fulfill their 

values, and this might be true for both men and women. Therefore, in order to keep both men and 

women in a STEM field, career advisors in schools and media coverage can link a STEM field to 

a wide range of career options that include those appealing to men’s vocational interests and 

those appealing to women’s vocational interest. The contrasting gender differences in health and 

physics-related STEM field also matched with the gender compositions in these careers. Women 
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left the physics-related STEM fields more often than men, a field that was men-dominant, and 

men left the health STEM careers more often than women, a field that was women-dominant. 

Further studies are needed to unpack to what extent the difference in attrition rates was due to the 

mere numerical representation of gender in these fields. The loss of talents for this reason should 

be a focus of the efforts to reduce STEM attrition.  

There was a lack of gender differences in the destination and paths of people leaving 

STEM careers, and this held true across various types of STEM fields. This finding again 

supports the gender similarity in STEM attrition and suggests that other mechanisms might be a 

bigger force driving the gendered representation in STEM careers. This result may be the fruit of 

the long-time investment in reducing gender imbalance in the STEM field. Meanwhile, other 

mechanisms, such as STEM entry based on our findings in this study, may be a more effective 

focus for future research and policy efforts.  

Entry into STEM Were Consequential and Varied Across Fields 

 The entry rates of the STEM fields ranged from 47 to 74 percent, meaning that around 

half or more workers in various STEM jobs did not aspire to work in the field at age 13. The 

considerable portion of STEM entrants suggest the flexibility of entering STEM fields without 

an early aspiration. The entry rates were higher in the physics-related STEM field and the blue-

collar STEM field, which were two fields with a comparable or expanding labor supply over 

time. My findings suggest that securing and boosting the amount of STEM entrants can be 

influential for the STEM labor supply.  

Intricate Contrasts Between Health Versus Physics-related STEM Fields 

The entry rate was lower in the health STEM field than the physics-related STEM 

careers, indicating that persisters comprised of a larger portion of the workforce in the health 
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STEM field than in the physics-related STEM field. Moreover, the entry rate was lower among 

women workers than among men workers in the health STEM field, whereas the entry rate was 

lower among men than among women in the physics-related STEM field. In other words, the 

entry rate was lower in a gender group that was overrepresented in a field. Why was this the 

case? The flip side of the pattern is that the proportion of persisters was higher in the gender 

group that was overrepresented in a field. Aspiring to the field at an early age and attaining 

occupations in the same field was more common among women than among men in the health 

STEM jobs and among men than among women in the physics-related STEM jobs. This varied 

gender contrast in different fields may reflect the gender-differentiated formation of an 

adolescent’s perception of their possible career choices and their long-term goals, as 

conceptualized in the left and middle section of the Situated Expectancy-Value Theory (Eccles & 

Wigfield, 2020). In this study, men and women envisioned different possible future careers in 

early adolescence, which aligned with gender stereotypes about male-dominant, physics-related 

STEM careers (Makarova et al., 2019). They possibly used this envision to set their long-term 

career goals and directed their career paths in adolescence and early adulthood. Cultural and 

family influences might have contributed to their early aspirations in their field, and family, 

school and social influences might have facilitated the fulfillment of their aspirations (Hadjar & 

Aeschlimann, 2015; Jussim et al., 1996; Simpkins et al., 2015). In contrast, the men entrants in 

health STEM fields and the women entrants in physics-related STEM fields, who pursued 

counter-stereotypical careers, might have lacked the conducive contextual influence to develop 

aspirations to and commit to their field of employment from early on. Theoretically, these 

individuals took the “off-diagonal” career paths (Feinstein & Peck, 2008), which were “against 

the odds” given the external influences. For researchers and policymakers striving to improve the 
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gender parity in STEM workforce, understanding how these individuals beat the odds may 

provide useful lessons.  

Most of entrants in health and physics-related STEM jobs originated from non-STEM 

fields, except for the men entrants in health STEM jobs. Eight out of the twelve men entrants 

transitioned from physics-related STEM aspirations, whereas fifteen out of seventeen women 

entrants transitioned from non-STEM aspirations. This gender differences might reflect more of 

the gender composition of the physics-related STEM aspirants and non-STEM aspirants. There 

were disproportionally more women among non-STEM aspirants and more men among physics-

related STEM aspirants. Considering the limited group sizes, more research is needed to 

replicate this finding and explore the explanations for the phenomenon.  

Forty percent of health STEM entrants switched into the field between age 13 and 18, and 

24 percent between age 21 and 25. In comparison, the early entry made up only 17 percent of 

physic-related STEM entrants and the late entry comprised of 51 percent of total entry. Firstly, it 

suggests that it was quite common for physics-related STEM entrants to get into their field at a 

rather late stage of the educational and vocational training system. It was approximately three to 

seven years after high school graduation, one to five years after two-year college graduation and 

up to three years after four-year college graduation for some individuals that half of the physics-

related STEM entrants switched into their field. For researchers and policymakers to expand 

physics-related STEM labor supply, the finding indicates that the quantity of entry might 

potentially be malleable in a wide time span. Secondly, the relatively larger portion of early entry 

than late entry among health STEM workers might result from the unique characteristics of the 

field. Health care professions are familiar to adolescents on a daily basis. Adolescents may be 

clear about whether or not they are interested in pursuing the profession at an earlier age, 
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compared with other professions. In addition, the financial and educational demand of medical 

schools may drive earlier entry and commitment to the field for ample preparation. If so, efforts 

to boost health STEM entry may benefit from interventions at an earlier age range than in the 

physics-related STEM field. Understanding about the reasons for the late of late entry in health 

STEM field may also provide useful insights.  

Gender was not associated with entry trajectories into physics-related STEM careers but 

was associated with entry trajectories in the health STEM careers. The late entry path (i.e., 

entering between age 21 and 25) consisted of fewer women than expected, whereas the mid-

entry path (i.e., entering between age 18 and 21) consisted of more women than expected. The 

pattern might indicate the role of postsecondary education in career development, but much more 

research is needed to replicate the finding and explore its causes. The lack of gender differences 

in physics-related STEM careers indicates the wide time frame of entry into the fields apply to 

both men and women. This implication is particularly promising considering our finding that 

entry was critical for the expansion of women workforce in physics-related STEM careers. 

Efforts to improve women’s representation in the physics STEM labor supply may harness 

interventions at various age range or educational stages.  

Consistent Education-based Contrasts Between Blue-collar and White-collar STEM Fields 

 We found consistent education-based discrepancies between blue-collar and white-collar 

STEM careers. Firstly, the entry rate was higher among blue-collar STEM workers than white-

collar STEM workers, indicating greater barriers to enter white-collar STEM fields without an 

early aspiration. This field differences held true for both men and women. In addition,  

there were approximately even shares of blue-collar STEM entrants from the blue-collar non-

STEM, the white-collar non-STEM or the white-collar STEM fields, but a disproportionally 
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larger share of white-collar entrants originated from white-collar non-STEM field. The education 

demand of white-collar careers might facilitate the movement across the two white-collar fields. 

Relatedly, a disproportionally larger share of white-collar non-STEM entrants originated from 

the white-collar STEM field. Lastly, there was field differences in the trajectories entering each 

of the field. In blue-collar STEM, 17 percent of entrants switched into the field between age 13 

and 18, and 52 percent entrants between age 21 and 25. In contrast, in the white-collar STEM, 33 

percent of entrants switched into the field between age 13 and 18, and 40 percent between age 21 

and 25. The early entry took up a larger share of blue-collar STEM entrants than of white-collar 

STEM entrants. The educational and financial demand of white-collar careers may require 

adolescents to plan and prepare for at an early age. Evidence shows that adolescents who had 

plans to attend college were more likely to actually enroll in college than their peers of similar 

academic performance and family socioeconomic status (Eccles et al., 2004). Gender was not 

associated with the types of entry trajectories in blue-collar or white-collar STEM fields.  

 It was worth noting that there seemed to be disproportionally more white-collar STEM 

entrants originating from the blue-collar non-STEM field than from the blue-collar STEM field. 

In the sample, there were approximately two times as many blue-collar non-STEM aspirants as 

blue-collar STEM aspirants, but nearly four times as many as entrants from the blue-collar non-

STEM field as from the blue-collar STEM field. Although the overall entry into white-collar 

STEM careers was small, but a sizable portion of entrants overcome not only the education 

requirement but also the transition into a different field. There was a similarly large portion of 

white-collar non-STEM entrants from the blue-collar non-STEM field, but not the blue-collar 

STEM field, pointing to factors specific to entrants from the blue-collar non-STEM field. More 
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research is needed to understand what this group is like and what facilitated their entries into the 

challenging white-collar careers.   

Limited Evidence for “Cumulative Disadvantage” in Paths Leading to STEM Careers 

We found the paths leading to STEM careers were diverse and eclectic. STEM workers 

entered their field of employment after zero, one, two or three prior choices in the same field, 

with no type of trajectories covering a predominant portion of the group.  

The stereotypical “pipeline” path, with an early entry into the field followed by 

uninterrupted persistence, was not the most common trajectory among STEM workers in the 

physics-related STEM careers, blue-collar or white-collar STEM careers. This finding shows that 

the “pipeline” metaphor was not an accurate or representative image of STEM career trajectories. 

It represented less than 20 percent of workers in physics-, blue-collar and white-collar STEM 

jobs. Considering the diverse and prevalence of other types of paths leading to STEM 

employment, it remains a question of how useful and beneficial to focus on promoting a 

“pipeline” trajectory. Moreover, our findings showed that trajectories with more prior choices in 

the field of employment were not always more frequent. For instance, the most frequent path 

leading to physics-related STEM and blue-collar STEM jobs was working in the field without 

any prior aspirations. These results did not support the “cumulative disadvantage” hypothesis 

about STEM career trajectories, such that the continuation between prior and later career choices 

was not observed in these fields.  

The health STEM field was an exception to the findings above. Among health STEM 

workers, the trajectory of an early entry followed by uninterrupted persistence was the most 

common path. It was taken by around 40 percent of workers in the field. Moreover, a gradient 

pattern was found such that the second common trajectory was one with frequent prior choices, 
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and third common trajectory was one with infrequent prior choices, and the least common 

trajectory was the one with no prior choices. This finding adds to our results about STEM entry 

which point to uniqueness of health STEM careers. It seemed that the career path leading to 

health STEM careers was less open to entry compared with persistence, less open to late entry 

than early entry, and less open to infrequent previous choices in the field than to frequent, 

persistent previous choices. The health STEM career trajectories matched characteristics of the 

stereotypical “pipeline” trajectory. However, it was also evident that the labor supply shrank the 

most among health STEM careers across various types of STEM careers. The more closed, 

“pipeline”-like system might be pertinent to the drastic shrinkage, due to the limited amount of 

entry from other fields. More research is needed to understand what caused the unique career 

trajectories of the health STEM careers and what can be done to remove the barriers for people 

to enter the field.  

Intricate Gender Differences in Persistence 

 We found that more women than expected by chance in the health STEM and blue-collar 

STEM careers took the uninterrupted “pipeline” path to their STEM careers. In other words, 

women were more likely than expected to follow the stereotypical “pipeline” in these two fields. 

In particular, the health STEM “pipeline” trajectory entirely consisted of women. This finding 

may indicate that in STEM fields that match women’s vocational interest and provides 

supportive environment, women were very likely to show early interest and carry on their choice 

into employment in the field by early adulthood. The lack of such match and support seemed to 

correlate with a late entry. In physics-related STEM careers, more women than expected entered 

the field without any prior aspirations, and in health STEM careers, more men than expected by 

chance entered the field without any prior aspirations. It may take explorations and resilience to 
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pursue a STEM career that is atypical for a person’s gender group, and our finding showed that 

this may hold true for both women and men.  

It remains a question of why women were overrepresented in the “pipeline” trajectory to 

blue-collar STEM careers, especially considering that girls tend to have higher career aspirations 

than boys in adolescence (Howard et al., 2011). The other field that women are overrepresented 

in the “pipeline” trajectory is the health STEM field. Therefore, one direction is to investigate 

which blue-collar STEM jobs women aspired to and to how many of these jobs were health 

STEM jobs.   

Limitations and Future Directions 

 In this study, we differentiated STEM careers between the content (health vs physics-

related STEM) and between the education requirement (e.g., blue-collar vs white-collar STEM). 

These two dimensions can intersect with each other in reality, but we were unable to investigate 

it due to the limit of our sample size. The intersection would create smaller subgroups, leading to 

less reliable conclusions.  

 We believe that STEM teachers in elementary and secondary schools are STEM workers, 

because these jobs rely on STEM content knowledge. Unfortunately, teaching occupations in 

elementary and middle school stages were aggregated under one job title, without differentiations 

of the teachers’ subject, in the Census occupation and the OUNET database, so we were unable 

to identify STEM teachers among them. This constraint is one tradeoff of using secondary data. 

Researchers who collect their own data in the future can make such distinction so that STEM 

teachers can be included as STEM careers. More broadly, we call for an update in the Census 

occupation and the OUNET database to identify the subject of elementary and middle school 

teachers, as did for postsecondary school teachers.  
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Future studies could use differentiations within the non-STEM field to investigate the 

trajectories of humanities, law, business, social science, arts, and sports careers. Restricted by our 

sample size, we did not intersect health/physics STEM with blue/white-collar to avoid small 

subgroups that may not warrant reliable conclusions. National longitudinal studies, such as High 

School and Beyond, Add Health and Early Childhood Longitudinal Studies could be valuable 

data sources by including questions on participants’ career choices over time.  

Conclusion 

 In this study, we portrayed STEM career trajectories from age 13 to age 25 across 

domains and education requirement. We showed frequent exits as well as entry into STEM 

careers and demonstrated considerable field- and gender-variation in the changes of the labor 

supply across various types of STEM careers. We believe a broad “STEM” category would mask 

these meaningful discrepancies for understanding gendered pattern in STEM career paths. Our 

examinations of gender differences in the career paths clarified previous notion and showed 

gender similarities in STEM attrition in various STEM careers. Moreover, we pointed to great 

variations in STEM entry as the understudied aspect of the gender differences in STEM career 

paths. We showed evidence in support of higher persistence of women in the health STEM field, 

and higher late entry of women into the physics-related STEM careers. These findings point to a 

shift toward understanding and encouraging men’s and women’s distinct career trajectories into 

the STEM workforce. Lastly, we propose a “STEM highway” metaphor for a complete and up-

to-date representation of STEM career trajectories.  
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Table 1.1 
Descriptive Information of Sample  

 

  Percentage 
of women 
in sample 

Age  
(Mean [SD])  

N Women 
2002' 2005’/07’ 2007’/09’ 2009’/11’ 2013’/15’ 

2-wave sample 1026 552 54% 13.08 (1.94) --- --- --- 25.15 (1.95) 

3-wave sample 978 530 54% 13.07 (1.94) --- 19.4 (2.07) --- 25.14 (1.95) 

4-wave sample 814 450 55% 13.12 (1.94) 18.23 (1.39) --- 21.18 (1.92) 25.19 (1.93) 
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Table 1.2 
Frequency of Career Choices by Year and Sample 

 Two-wave sample  Three-wave sample  Four-wave sample 

Occupation Age 13 Age 25 
 

Age 13 Age 19 Age 25  Age 13 Age 18 Age 21 Age 25 

Non-STEM 
612 (60%) 771 (75%)  

579 
(59%) 

556 
(57%) 

735 
(75%)  

484 
(59%) 

474 
(58%) 

452 
(75%) 

602 
(74%) 

STEM 
414 (40%) 255 (25%)  

399 
(41%) 

422 
(43%) 

243 
(25%)  

330 
(41%) 

340 
(42%) 

362 
(25%) 

212 
(26%) 

Total 
1026 

(100%) 
1026 

(100%) 
 978 

(100%) 
978 

(100%) 
978 

(100%) 
 

814 
(100%) 

814 
(100%) 

814 
(100%) 

814 
(100%) 

            

Non-STEM 
612 (60%) 771 (75%)  

579 
(59%) 

556 
(57%) 

735 
(75%)  

484 
(59%) 

474 
(58%) 

452 
(75%) 

602 
(74%) 

Health STEM 
224 (22%) 62 (6%)  

217 
(22%) 

199 
(20%) 61 (6%)  

185 
(23%) 

167 
(21%) 187 (6%) 57 (7%) 

Physics STEM 
190 (18%) 193 (19%)  

182 
(19%) 

223 
(23%) 

182 
(19%)  

145 
(18%) 

173 
(21%) 

175 
(19%) 

155 
(19%) 

Total 
1026 

(100%) 
1026 

(100%) 
 978 

(100%) 
978 

(100%) 
978 

(100%) 
 

814 
(100%) 

814 
(100%) 

814 
(100%) 

814 
(100%) 

            

Blue-collar non-STEM 
345 (33%) 630 (61%)  

330 
(34%) 

237 
(24%) 

597 
(61%)  

272 
(33%) 

202 
(25%) 

187 
(61%) 

483 
(59%) 

Blue-collar STEM 
140 (14%) 162 (16%)  

134 
(14%) 

197 
(20%) 

152 
(16%)  

111 
(14%) 

162 
(20%) 

190 
(16%) 

131 
(16%) 

White-collar non-STEM 
267 (26%) 141 (14%)  

249 
(25%) 

319 
(33%) 

138 
(14%)  

212 
(26%) 

272 
(33%) 

265 
(14%) 

119 
(15%) 

White-collar STEM 
274 (27%) 93 (9%)  

265 
(27%) 

225 
(23%) 91 (9%)  

219 
(27%) 

178 
(22%) 172 (9%) 81 (10%) 

Total 
1026 

(100%) 
1026 

(100%) 

 
978 

(100%) 
978 

(100%) 
978 

(100%) 
 814 

(100%) 
814 

(100%) 
814 

(100%) 
814 

(100%) 
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Table 1.3 
Gender Composition of Aspirations at Age 13 and Employment at Age 25.  

Field 
Aspiration at 

age 13 
% Women 

Employment at 
age 25 

% Women 

Non-STEM 612 57%+ 771 57%+ 

STEM 414 49%- 255 44%- 

Non-STEM 612 57%+ 771 57%+ 

Health STEM 224 75%+ 62 77%+ 

Physics STEM 190 18%- 193 33%- 

Blue-collar non-STEM 345 45%- 630 55% 

Blue-collar STEM 140 44%- 162 41%- 

White-collar non-STEM 267 72%+ 141 68%+ 

White-collar STEM 274 51% 93 48% 

Total 1026 54% 1026 54% 

Note. +/- indicates over-/under-representation of women with standardized adjusted residual 

greater than 1.96 or less than -1.96.   
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Table 1.4 
Gender Composition of Each Class in Longitudinal Latent Class Solutions.  

 
3-wave non-/health/physics 

STEM trajectory 

 
3-wave blue-/white-collar 

STEM/non-STEM trajectory 

 4-wave non-
/health/physics STEM 

trajectory 

 4-wave blue-/white-collar 
STEM/non-STEM 

trajectory 

 N % women  N % women  N % women  N % women 

Class 1 116 76.7+  243 52.7  209 23.9-  315 48.9- 

Class 2 555 65+  279 68.8+  72 77.8+  146 51.4 

Class 3 307 26.1-  456 46.1-  418 59.1+  155 54.2 

Class 4 --- ---  --- ---  115 84.3+  198 69.2+ 

Total 978 54.2  978 54.2  814 55.3  814 55.3 

Note. +/- indicates over-/under-representation of women with standardized adjusted residual greater than 1.96 or less than -1.96.   
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Table 1.5 
Frequency of Aspiration and Employment in Each Field and the Change in “Pipeline” Sizes.  

 Aspirants at age 13  Workers at age 25   

Field Total Attrition Persistence 
Attrition 

rate 
 Total Entry Persistence 

Entrance 
rate 

 
Change 

ratio 

Non-STEM 612 128 484 20.9%  771 287 484 37.2%  126.0% 

STEM 414 287 127 69.3%  255 128 127 50.2%  61.6% 

Non-STEM 612 128 484 20.9%  771 287 484 37.2%  126.0% 

Health STEM 224 191 33 85.3%  62 29 33 46.8%  27.7% 

Physics STEM 190 135 55 71.1%  193 138 55 71.5%  101.6% 

Blue-collar non-STEM 345 105 240 30.4%  630 390 240 61.9%  182.6% 

Blue-collar STEM 140 98 42 70.0%  162 120 42 74.1%  115.7% 

White-collar non-STEM 267 207 60 77.5%  141 81 60 57.4%  52.8% 

White-collar STEM 274 231 43 84.3%  93 50 43 53.8%  33.9% 

Note. W = women, M = men. Attrition rate equals attrition size divided by total number of aspirants. Entry rate equals entry size divided 
by total number of workers. Change ratio equals the total number of workers divided by the total number of aspirants. 
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Table 1.6 
Frequency of Aspiration and Employment in Each Field by Gender 

 

 Aspirants at age 13  Workers at age 25    

 Total  Attrition  Persistence  Attrition rate  Total  Entry  Persistence  Entry rate  Change ratio 

Field W M  W M  W M  W M  W M  W M  W M  W M  W M 

Non-STEM 349 263  58 70  291 193  16.6% 26.6%  441 330  150 137  291 193  34.0% 41.5%  126.4% 125.5% 

STEM 203 211  150 137  53 74  73.9% 64.9%  111 144  58 70  53 74  52.3% 48.6%  54.7% 68.2% 

Non-STEM 349 263  58 70  291 193  16.6% 26.6%  441 330  150 137  291 193  34.0% 41.5%  126.4% 125.5% 

Health STEM 169 55  138 53  31 2  81.7% 96.4%  48 14  17 12  31 2  35.4% 85.7%  28.4% 25.5% 

Physics STEM 34 156  29 106  5 50  85.3% 67.9%  63 130  58 80  5 50  92.1% 61.5%  185.3% 83.3% 

Blue-collar  
non-STEM 

156 189  47 58  109 131  30.1% 30.7%  345 285  236 154  109 131  68.4% 54.0%  221.2% 150.8% 

Blue-collar 
STEM 

62 78  45 53  17 25  72.6% 67.9%  66 96  49 71  17 25  74.2% 74.0%  106.5% 123.1% 

White-collar 
non-STEM 

193 74  146 61  47 13  75.6% 82.4%  96 45  49 32  47 13  51.0% 71.1%  49.7% 60.8% 

White-collar 
STEM 

141 133  123 108  18 25  87.2% 81.2%  45 48  27 23  18 25  60.0% 47.9%  31.9% 36.1% 

Note. W = women, M = men. Attrition rate equals attrition size divided by total number of aspirants. Entry rate equals entry size divided by total 
number of workers. Change ratio equals the total number of workers divided by the total number of aspirants. 
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Table 1.7 
Frequency of Attrition Based on Destination 

Employment at age 25 

Aspiration at age 13 

non-STEM  Health STEM  Physics STEM 

Everyone Women Men  Everyone Women Men  Everyone Women Men 

Non-STEM --- --- --- --- --- ---  162 85% 123 89% 39 74%  125 93% 27 93% 98 92% 

Health STEM 19 15% 15 26% 4 6%  --- --- --- --- --- ---  10 7% 2 7% 8 8% 

Physics STEM 109 85% 43 74% 66 94%  29 15% 15 11% 14 26%  --- --- --- --- --- --- 

Total attrition 128 100% 58 100% 70 100%  191 100% 138 100% 53 100%  135 100% 29 100% 106 100% 

Empt.  
at  
age 25 

Aspiration at age 13 

Blue-collar non-STEM  Blue-collar STEM  White-collar non-STEM  White-collar STEM 

Everyone Women Men  Everyone Women Men  Everyone Women Men  Everyone Women Men 

BCNS --- --- --- --- --- ---  83 85% 37 82% 46 87%  151 73% 116 79% 35 57%  156 68% 83 67% 73 68% 

BCS 49 47% 16 34% 33 57%  --- --- --- --- --- ---  35 17% 17 12% 18 30%  36 16% 16 13% 20 19% 

WCNS 33 31% 19 40% 14 24%  9 9% 6 13% 3 6%  --- --- --- --- --- ---  39 17% 24 20% 15 14% 

WCS 23 22% 12 26% 11 19%  6 6% 2 4% 4 8%  21 10% 13 9% 8 13%  --- --- --- --- --- --- 

Total 
attri. 

105 100% 47 100% 58 100%  98 100% 45 100% 53 100%  207 100% 146 100% 61 100%  231 100% 123 100% 108 100% 

Note. Empt = employment, BCNS = blue-collar non-STEM, BCS = Blue-collar STEM, WCNS = white-collar non-STEM, WCS = white-collar 
STEM, Attri. = attrition.  
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Table 1.8 
Frequency of Attrition Trajectories 

 Aspiration at age 13 

Attrition trajectory Non-STEM STEM 
Health 
STEM 

Physics 
STEM 

Blue-
collar non-

STEM 

Blue-
collar 
STEM 

White-
collar non-

STEM 

White-collar 
STEM 

Exit by age 18: y-n-n-n 30 (29%) 93 (42%) 86 (56%) 49 (50%) 54 (62%) 47 (60%) 73 (45%) 106 (59%) 

Exit by age 21: y-y-n-n 29 (28%) 37 (17%) 18 (12%) 21 (21%) 17 (19%) 8 (10%) 27 (17%) 32 (18%) 

Exit by age 25: y-y-y-n 37 (35%) 72 (32%) 35 (23%) 19 (19%) 10 (11%) 16 (21%) 45 (28%) 26 (14%) 

Recursive: y-n-y-n 9 (8%) 21 (9%) 14 (9%) 10 (10%) 7 (8%) 7 (9%) 17 (10%) 16 (9%) 

Total attrition 105 (100%) 223 (100%) 153 (100%) 99 (100%) 88 (100%) 78 (100%) 162 (100%) 180 (100%) 

Note. Each letter in career path represents one time point (Age 13 – age 18 – age 21 – age 25). Y = choice in the field of each column, n = 

choice in other fields. No path is found to be over- or under-represented for any field with standardized adjusted residual greater than 1.96 

or less than -1.96.  
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Table 1.9 
Gender Differences in Attrition Trajectories 

 
Aspiration at age 13 

(frequency in cell, percentage of women in parentheses) 

Attrition trajectories 
Non-

STEM 
STEM 

Health 
STEM 

Physics 
STEM 

Blue-collar 
non-

STEM 

Blue-collar 
STEM 

White-
collar non-

STEM 

White-collar 
STEM 

Exit by age 18: y-n-n-n 30 (47%) 93 (56%) 86 (69%) 49 (24%) 54 (54%+) 47 (40%) 73 (63%) 106 (56%) 

Exit by age 21: y-y-n-n 29 (55%) 37 (49%) 18 (78%) 21 (24%) 17 (35%) 8 (63%) 27 (70%) 32 (50%) 

Exit by age 25: y-y-y-n 37 (32%) 72 (54%) 35 (77%) 19 (11%) 10 (10%-) 16 (63%) 45 (80%) 26 (54%) 

Recursive: y-n-y-n 9 (44%) 21 (57%) 14 (86%) 10 (20%) 7 (43%) 7 (57%) 17 (76%) 16 (50%) 

Total attrition 105 (44%) 223 (54%) 153 (73%) 99 (21%) 88 (44%) 78 (49%) 162 (70%) 180 (54%) 

Test statistics Chi-square Test of Association Between Gender and Trajectory Group Membership in Each Field 

χ2 3.57 0.64 2.51 1.71 7.27 3.32 4.20 0.43 

df 3 

n 105 223 153 99 88 78 162 180 

p value .31 .89 .47 .64 .06 .35 .24 .94 

Note. Each letter in career path represents one time point (age 13 – age 18 – age 21 – age 25). Y = choice in the field of each column, n = 

choice in other fields.  +/- indicates over-/under-representation of women with standardized adjusted residual greater than 1.96 or less than 

-1.96.   
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Table 1.10 
Frequency of Entry Based on Origin 

Aspiration at age 13 

Employment at age 25 

non-STEM  Health STEM  Physics STEM 

Everyone Women Men  Everyone Women Men  Everyone Women Men 

Non-STEM --- --- --- --- --- ---  19 66% 15 88% 4 33%  109 79% 43 74% 66 83% 

Health STEM 162 56% 123 82% 39 28%  --- --- --- --- --- ---  29 21% 15 26% 14 18% 

Physics STEM 125 44% 27 18% 98 72%  10 34% 2 12% 8 67%  --- --- --- --- --- --- 

Total attrition 287 100% 150 100% 137 100%  29 100% 17 100% 12 100%  138 100% 58 100% 80 100% 

Asp.  
at  
age 13 

Employment at age 25 

Blue-collar non-STEM  Blue-collar STEM  White-collar non-STEM  White-collar STEM 

Everyone Women Men  Everyone Women Men  Everyone Women Men  Everyone Women Men 

BCNS --- --- --- --- --- ---  49 41% 16 33% 33 46%  33 41% 19 39% 14 44%  23 46% 12 44% 11 48% 

BCS 83 21% 37 16% 46 30%  --- --- --- --- --- ---  9 11% 6 12% 3 9%  6 12% 2 7% 4 17% 

WCNS 151 39% 116 49% 35 23%  35 29% 17 35% 18 25%  --- --- --- --- --- ---  21 42% 13 48% 8 35% 

WCS 156 40% 83 35% 73 47%  36 30% 16 33% 20 28%  39 48% 24 49% 15 47%  --- --- --- --- --- --- 

Total 
attri. 

390 100% 236 100% 154 100%  120 100% 49 100% 71 100%  81 100% 49 100% 32 100%  50 100% 27 100% 23 100% 

Note. Asp = aspiration, BCNS = blue-collar non-STEM, BCS = Blue-collar STEM, WCNS = white-collar non-STEM, WCS = white-collar 

STEM.  
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Table 1.11 
Frequencies of Entry Trajectories  

 Occupations at age 25 

Entry trajectory Non-STEM STEM 
Health 
STEM 

Physics 
STEM 

Blue-collar 
non-STEM 

Blue-
collar 
STEM 

White-
collar non-

STEM 

White-collar 
STEM 

Enter after age 21: n-n-n-y 72 (32%) 37 (35%) 6 (24%) 56 (51%) 181 (61%) 51 (52%) 18 (26%) 17 (40%) 

Enter after age 18: n-n-y-y 37 (17%) 29 (28%) 8 (32%) 28 (26%) 46 (15%) 20 (20%) 10 (14%) 10 (24%) 

Enter after age 13: n-y-y-y 93 (42%) 30 (28%) 10 (40%) 18 (17%) 38 (13%) 17 (17%) 34 (49%) 14 (33%) 

Recursive: n-y-n-y 21 (9%) 9 (9%) 1 (4%) 7 (6%) 34 (11%) 10 (10%) 7 (10%) 1 (2%) 

Total attrition 223 (100%) 105 (100%) 25 (100%) 109 (100%) 299 (100%) 98 (100%) 69 (100%) 42 (100%) 

Note. Each letter in career path represents one time point (Age 13 – age 18 – age 21 – age 25). Y = choice in the field of each column, n = 
choice in other fields.  
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Table 1.12 
Gender Composition of Entry Trajectories 

 
Occupations at age 25 

(frequency in cell, percentage of women in parentheses) 

Entry trajectory 
Non-

STEM 
STEM 

Health 
STEM 

Physics 
STEM 

Blue-collar 
non-

STEM 

Blue-collar 
STEM 

White-
collar non-

STEM 

White-collar 
STEM 

Enter after age 21: n-n-n-y 72 (54%) 37 (32%) 6 (17%-) 56 (45%) 181 (65%) 51 (31%) 18 (56%) 17 (59%) 

Enter after age 18: n-n-y-y 37 (49%) 29 (55%) 8 (100%+) 28 (36%) 46 (59%) 20 (40%) 10 (60%) 10 (70%) 

Enter after age 13: n-y-y-y 93 (56%) 30 (47%) 10 (60%) 18 (33%) 38 (47%-) 17 (59%) 34 (76%+) 14 (29%-) 

Recursive: n-y-n-y 21 (57%) 9 (44%) 1 (0%) 7 (29%) 34 (68%) 10 (40%) 7 (14%-) 1 (100%) 

Total entry 223 (54%) 105 (44%) 25 (60%) 109 (39%) 299 (62%) 98 (39%) 69 (62%) 42 (52%) 

Test statistics Chi-square Test of Association Between Gender and Trajectory Group Membership in Each Field 

χ2 0.64 3.57 -- 1.42 4.65 4.07 -- -- 

df 3 3 -- 3 3 3 -- -- 

n 223 105 -- 109 299 98 -- -- 

p value .89 .31 .004▲ .70 .20 .25 .02▲ .11▲ 

Note. Each letter in career path represents one time point (age 13 – age 18 – age 21 – age 25). Y = choice in the field of each column, n = 
choice in other fields.  +/- indicates over-/under-representation of women with standardized adjusted residual no less than 1.96 or no 
greater than -1.96.  ▲ Fisher’s exact test (two-tailed) was used, instead of Chi-square test of independence, because of small cell sizes.  
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Table 1.13 
Frequency of Trajectories Leading to STEM Employment at Age 25 

  Employment at age 25 

Number of 
prior 

aspirations 
Trajectory 

Non-
STEM 

STEM 
Health 
STEM 

Physics 
STEM 

Blue-collar 
non- 

STEM 

Blue-collar 
STEM 

White-
collar non- 

STEM 

White-
collar 
STEM 

0 n-n-n-y 72 (12%) 37 (18%) 6 (10%) 56 (36%) 181 (37%) 51 (39%) 18 (15%) 17 (21%) 

1 y-n-n-y 71 (12%) 15 (7%) 1 (2%) 10 (6%) 85 (18%) 6 (5%) 6 (5%) 9 (11%) 

 n-y-n-y 21 (4%) 9 (4%) 1 (2%) 7 (5%) 34 (7%) 10 (8%) 7 (6%) 1 (1%) 

 n-n-y-y 37 (6%) 29 (14%) 8 (14%) 28 (18%) 46 (9%) 20 (15%) 10 (8%) 10 (12%) 

 Subtotal 129 (22%) 53 (25%) 10 (18%) 45 (29%) 165 (35%) 36 (27%) 23 (19%) 20 (24%) 

2 y-y-n-y 60 (10%) 13 (6%) 3 (5%) 8 (5%) 34 (7%) 3 (2%) 2 (2%) 6 (7%) 

 y-n-y-y 48 (8%) 19 (9%) 4 (7%) 8 (5%) 27 (6%) 7 (6%) 6 (5%) 9 (11%) 

 n-y-y-y 93 (15%) 30 (14%) 10 (18%) 18 (12%) 38 (8%) 17 (13%) 34 (29%) 14 (17%) 

 Subtotal 201 (33%) 62 (29%) 17 (30%) 34 (22%) 99 (20%) 27 (21%) 42 (36%) 29 (36%) 

3 y-y-y-y 200 (33%) 60 (28%) 24 (42%) 20 (13%) 38 (8%) 17 (13%) 36 (30%) 15 (19%) 

 Total 
602 

(100%) 
212 

(100%) 
57 (100%) 

155 
(100%) 

483 
(100%) 

131 
(100%) 

119 
(100%) 

81 (100%) 

Note. Each letter in career path represents one time point (age 13 – age 18 – age 21 – age 25). Y = aspiration in the field of each column, n 

= aspiration in other fields.   
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Table 1.14 
Gender Differences in the Trajectories Leading to Employment at Age 25 

 Employment at Age 25 
(Total frequency in cell, percentage of women in parentheses) 

Number of prior 
aspirations 

Non-STEM STEM Health STEM 
Physics 
STEM 

Blue-collar 
non-STEM 

Blue-collar 
STEM 

White-collar 
non-STEM 

White-collar 
STEM 

0 72 (54%) 37 (32%) 6 (17%-) 56 (45%+) 181 (65%+) 51 (31%) 18 (56%) 17 (59%) 

1 129 (54%) 53 (45%) 10 (90%) 45 (27%) 165 (57%) 36 (39%) 23 (43%-) 20 (50%) 

2 201 (60%) 62 (39%) 17 (65%) 34 (21%) 99 (46%-) 27 (48%) 42 (79%) 29 (31%-) 

3 200 (64%) 60 (55%+) 24 (100%+) 20 (20%) 38 (45%) 17 (65%+) 36 (83%+) 15 (67%) 

Total 602 (59%) 212 (44%) 57 (79%) 155 (31%) 483 (57%) 131 (41%) 119 (70%) 81 (48%) 

Test statistics Chi-square Test of Association Between Gender and Trajectory Group Membership in Each Field 

χ2 3.99 5.70 23.21 8.13 11.09 6.53 13.94 6.27 

df 3 

n 602 212 57 155 483 131 119 81 

p value .26 .13 < .001 .04 .01 .09 .003 .10 

Note. Each letter in career path represents one time point (Age 13 – Age 18 – Age 21 – Age 25). Y = choice in the field of each column, n = 
choice in other fields.  +/- indicates over-/under-representation of women with standardized adjusted residual greater than 1.96 or less than -
1.96.  



 

98 
 

 

 

Figure 1.1. Age of participants in related waves of CDS and TAS.  
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(A)  

 

(B)  

 
 

Figure 1.2. LLCA Three-class Solutions Shown in Category Probabilities for Three-wave 
Trajectories. 

Graph (A) shows the class solution when aspirations were grouped by non-STEM, health STEM, 
or physics STEM. The group size of each class from left to right is 116 (12% of sample), 555 
(57%) and 307 (31%). Graph (B) shows the class solution when aspirations were grouped by 
blue-/white-collar non-STEM/STEM. The group size of each class from left to right is 243 (25% 
of sample), 279 (29%) and 456 (46%). 
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Figure 1.3. LLCA Four-class Solutions Shown in Category Probabilities for Four-wave 
Trajectories.  

Graph (A) shows the class solution when aspirations were grouped by non-STEM, health STEM, 
or physics STEM. The group size of each class from left to right is 209 (26% of sample), 72 
(9%), 418 (51%) and 115 (14%). Graph (B) shows the class solution when aspirations were 
grouped by blue-/white-collar non-STEM/STEM. The group size of each class from left to right 
is 315 (39% of sample), 146 (18%), 155 (19%) and 198 (24%). 

  

0%

20%

40%

60%

80%

100%

Age
13

Age
18

Age
21

Age
25

Age
13

Age
18

Age
21

Age
25

Age
13

Age
18

Age
21

Age
25

Age
13

Age
18

Age
21

Age
25

non-STEM health STEM physics STEM

0%

20%

40%

60%

80%

100%

Age
13

Age
18

Age
21

Age
25

Age
13

Age
18

Age
21

Age
25

Age
13

Age
18

Age
21

Age
25

Age
13

Age
18

Age
21

Age
25

blue-collar non-STEM blue-collar STEM white-collar non-STEM white-collar STEM



 

101 
 

(A)   

 
(B) 

 
(C) 

 
(D) 



 

102 
 

 
(E) 

 
(F) 



 

103 
 

 
(G) 



 

104 
 

 
 

Figure 1.4. Career paths between career aspirations at age 13 and employment at age 25. 

Trajectories (N = 1026) of aspirations were grouped by (A) STEM vs Non-STEM among (B) 
boys and (C) girls, by (D) non-STEM, health STEM or physics STEM among (E) boys and (F) 
girls and by (G) blue-collar non-STEM, blue-collar STEM, white-collar non-STEM or white-
collar STEM. Participants with missing data were excluded. Each column represents one time 
point, and the height of branch indicates the size of subgroups. 
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Figure 1.5. Career paths between career aspirations at age 13 and age 19 and employment at age 
25.  

Trajectories (N = 978) of aspirations were grouped by (A) STEM vs Non-STEM among (B) boys 
and (C) girls, by (D) non-STEM, health STEM or physics STEM among (E) boys and (F) girls, 
and by (G) blue-collar non-STEM, blue-collar STEM, white-collar non-STEM or white-collar 
STEM. Participants with missing data were excluded. Each column represents one time point, 
and the height of branch indicates the size of subgroups. 
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Figure 1.6. Trajectories of adolescent aspiration at age 13, age 18, age 21, and employment at 

age 25.  

Trajectories (N = 814) of aspirations were grouped by (A) Non-STEM vs STEM among (B) boys 

and (C) girls, by (D) non-STEM, health STEM or physics STEM among (E) boys and (F) girls, 

and by (G) blue-collar non-STEM, blue-collar STEM, white-collar non-STEM or white-collar 

STEM. Participants with missing data were excluded. Each column represents one time point, 

and the height of branch shows the size of subgroups 
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CHAPTER 2 

The Sociodemographic, Achievement and Motivational Predictors of STEM Attrition and 

Entry from the Perspective of the Situated Expectancy-Value Theory and the Dimensional 

Comparison Theory 

Reducing STEM attrition has been at the center of efforts to increase the number of 

STEM college graduates and expand STEM labor supply. The attrition rate in STEM majors 

ranges from 40 to 80 percent in two-year and four-year colleges (Chen & Soldner, 2013), 

highlighting abundant room to improve STEM retention. Why do individuals change their career 

path? The Situated Expectancy-Value Theory (SEVT, Eccles & Wigfield, 2020) states that 

motivational beliefs are a major influence on individuals ’achievement choices, such as choice of 

major and occupations. Individuals are more likely to choose a career if they can see themselves 

succeeding in it and think it is highly valuable to them (Eccles & Wigfield, 2020; Eccles et al., 

1983). At the same time, the Dimensional Comparison Theory (DCT, Möller & Marsh, 2013) 

focuses on the way that individuals compare their performance in and attitudes about various 

domains to form their hierarchy of expectancies and subjective task values (STVs). Prior studies 

found that higher performance in the language domain predicts lower expectancy in the math 

domain (Wolff et al., 2019). Taken together, these theoretical frameworks point to the key 

process of the within-person comparison between different options for career decision-making. 

STEM persistence results from the decision of whether to stay in the STEM field or to switch to 

a non-STEM field, so it involves the comparison between the two fields. However, there lacks 

evidence on the extent to which the cross-domain comparisons influence long-term career 

outcomes, such as changes in career paths. In this study, I will address this gap in the literature 

by examining this question.  
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Findings on STEM career trajectories also suggest that individuals also switch from non-

STEM fields into the STEM field (Ma, 2011; Xie & Shauman, 2003; also see results in Chapter 

2). Increasing the entrance into STEM occupations is an untapped solution to expanding the 

STEM labor supply. Understanding students ’motivation for this choice is an important step to 

encourage more entrants. Similar to the persistence decision, the entry into STEM field is 

another example of changes in career path that involve the intra-personal comparison of 

motivational beliefs for forming the choice. Therefore, I will investigate the motivational factors 

both STEM entry and attrition choices as two examples of the same topic of STEM career 

changes.  

Theoretical Framework 

The Situated Expectancy-Value Theory 

The Situated Expectancy-Value Theory (SEVT) delineates why individuals choose their 

careers as they do. Beliefs about one’s ability to do well in a given career, namely expectancy, 

and the subjective task values of a career option are proximal psychological determinants of 

individual career choices (Eccles et al., 1983; Wigfield & Eccles, 2000). Individuals are more 

likely to take a career that they believe they can do well in, and that they deem as valuable and 

important to them. The expectancy and subjective task value beliefs are formed based on the 

individual’s unique characteristics (e.g., gender, race/ethnicity, birth order, temperament) and 

through the person’s socialization experiences in their sociocultural context over time.  

In SEVT, Eccles and Wigfield (2020) specified the inherent comparison among career 

options in the process of career choices. Among the career options that are available to the 

individual at a particular time point, the person evaluates each option, with some options 

affording higher expectancy for success and subjective task values overall than other options. As 
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a result, various career options differ in their likelihood of being chosen based on individuals’ 

relative expectancy for success and subjective task values. This comparison process is embedded 

in the decision-making process of selecting a career path. When multiple career options are 

available, the within-person comparison will give rise to a hierarchy of career choices based on 

the individual’s hierarchy of expectancies and STVs for each option. The person might not 

always create a neatly differentiated ranking in their mind, but they are probably able to report 

their most and least favored options. When considering whether to change career paths, the 

choice is between continuing the original career versus switching into a different path.  

The Dimensional Comparison Theory 

The Dimensional Comparison Theory (DCT, Marsh, 1986; Möller & Marsh, 2013) states 

that the formation of domain-specific competence beliefs is shaped by a within-person 

comparison of performances across different domains. An individual will have higher 

expectancy about their ability in domain A if they perceive themselves doing better in domain A 

than domain B. As a result, the cross-domain comparison reinforces the relative advantage in 

domain A and thus leads to the differentiation of the person’s expectancy in different domains. 

Comparison between domains that are similar to each other strengthens the competence beliefs 

in these domains, where the competence beliefs of dissimilar domains are formed in competition 

with one another. Prior findings show that physics performance is positively associated with 

math expectancy, and vice versa, whereas reading performance is unrelated or negatively 

associated with math expectancy (Gaspard et al., 2018; Marsh et al., 2015). Therefore, 

differential attitudes about physics and math subjects might lead individuals to switch careers 

within the STEM field, but the contrast between math and reading may involve changes between 

STEM and non-STEM fields.  
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 DCT is originally developed to explain the formation of competence-related beliefs. 

Recent studies have shown some effects on STVs. Math performance negatively relates to 

reading values, and reading performance negatively relates to math values (Gaspard et al., 2018; 

Guo et al., 2017; Lazarides & Lauermann, 2019). Individuals knowing that they can do well in a 

domain are likely to enjoy activities in the domain. Individuals considering a domain important, 

enjoyable or useful to them are likely to have decent performance in the domain. A handful of 

studies in recent years aim to bridge SEVT and the DCT by showing that the cross-domain 

comparison of expectancy and STVs affect career choices (Guo et al., 2017; Lauermann et al., 

2015; Nagy et al., 2006). This study extends such investigations to career trajectories.  

Math-Reading Comparisons of Achievement and EV Beliefs and Their Influences on 

STEM choices 

Analyses on the implications of the within-person, cross-domain comparison on career 

choices has accumulated in recent years. Yet, the research is in its beginning stage.  

Math and reading achievement 

Math performance has been established as an important predictor of STEM course 

enrollment, major selection, degree attainment, career choices and persistence in numerous 

studies (Ackerman et al., 2013; Crisp et al., 2009; Crombie et al., 2005; Gottlieb, 2018; Wang, 

2013; Watt et al., 2017). Between math and language domains, researchers found that from 10th 

to 12th grade in high school, higher reading achievement predicted lower intentions to choose 

math-intensive majors in college and less enrollment in advanced math courses (Nagy et al., 

2008; Parker et al., 2012). In contrast, higher math achievement predicted lower likelihood of 

enrolling in advanced language course (Nagy et al., 2008).  



 

126 
 

One study (Wang et al., 2013) on the latent profiles of math and reading achievement 

showed that reading achievement moderated the influence of math achievement on STEM career 

choices. High school students who achieved high performance in both math and language 

subjects were less likely to work in STEM occupations at age 33 than their peers who had high 

math achievement and moderate language achievement (Wang et al., 2013), indicating the 

interactive effect of math and reading achievement on STEM career outcomes. Specifically, the 

comparative achievement advantage in math relative to that in language domain might be more 

influential than high math achievement per se for STEM choices. In this study, I extended this 

strand of literature by examining the relation between math and reading achievement and STEM 

career trajectories. Specifically, I tested both the unique and interactive effects of math and 

reading performance and STEM attrition and STEM entry.   

Math and reading expectancy 

Math competence-related beliefs, such as math self-efficacy, math self-concept of ability, 

math expectancy, have been consistently found to associate with STEM achievement and career 

choices (e.g., Eccles & Wang, 2016; Parker et al., 2012; Sax et al., 2015; Simpkins et al., 2006). 

Evidence for the importance of math expectancy on STEM persistence has also been reported. 

Individuals with greater math expectancy were more likely to carry on STEM careers over time 

(Ackerman et al., 2013; Dika & D’Amico, 2016; Maltese & Tai, 2011).  

 Studies based on DCT with expectancy beliefs in math and reading supported the cross-

domain effect of math and reading expectancy on STEM career choices. Higher language 

expectancy predicted lower intention and likelihood to take advanced math courses in high 

school (Jansen et al., 2021; Nagy et al., 2008). In terms of the choice of college major, higher 

math expectancy predicts lower likelihood of enrolling in verbal-intensive major in college 
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(Parker et al., 2012). The cross-domain interaction effect of expectancy beliefs has also been 

documented. Lauermann and colleges (2015) showed that math expectancy positively related to 

high school students ’plans to take on math-intensive career, whereas the relation was negative 

between reading expectancy and the career plans. Moreover, they found a negative interaction 

effect of math expectancy and reading expectancy on math-intensive career plans, such that the 

effect of math expectancy on math-intensive career plans was weaker if the students had high 

reading expectancy. No interactive effect was found for the choices of verbal-intensive career 

plans. In the present study, I examined whether findings above about the cross-domain effect of 

math and reading expectancy can be extended to STEM trajectories, in form of both the main 

effect and interactive effect.  

Math and reading values 

Math values directly influence STEM major selection and career plans. Students who are 

interested in studying math take more math courses in high school and are more likely to choose 

STEM majors in college (Maltese & Tai, 2011; Simpkins et al., 2006; Toh & Watt, 2022). Other 

value components, such as math utility value and math attainment value, have also been found 

predictive of STEM career choices (Crombie et al., 2005; Watt et al., 2017).  

 The effect of cross-domain comparison of values on career outcomes has been found in 

only a handful of studies. Across math and language domains, higher interest in language 

predicted less enrollment in advanced math courses (Nagy et al., 2008). Between math and 

biology, higher interest in Biology predicted less advanced math course enrollment (Nagy et al., 

2006). English STV was negatively related to math-intensive career plans (Lauermann et al., 

2015). However, findings on the differential effect of subjective task value on STEM career 

choices are not rare. One study on the association between language STVs and later math course 



 

128 
 

enrollment did not find evidence of a negative association as hypothesized (Jansen et al., 2021). 

In another study, Lazarides and Lauermann (2019) used cross-lagged models to examine the 

within and across time association between math utility value and STEM career plans. They only 

found the cross-domain comparison effect within time (i.e., cross-sectional correlation) but not 

over time (i.e., longitudinal prediction). Lazarides and Lauermann (2019) also tested the 

association between interest and STEM career plans, but they did not find any cross-domain 

effect of interest.  

 In sum, performances and expectancies in math and reading domains has been found to 

negatively impact career choices in the other domain. Evidence has also suggested that the 

influence of math performance or expectancy on STEM career choices would be weakened by 

high reading performance or expectancy. These findings have been extended to math and reading 

STVs recently with mixed results. In this study, I used the rationale of this strand of literature to 

examine the effect of dimensional comparison of math and reading performance and 

motivational beliefs on movements into and out of STEM careers.  

Sociodemographic differences in STEM entry and persistence 

Sociodemographic characteristics, such as gender, underrepresented minority (URM) 

status, and family socioeconomic status (SES), are related to the likelihood of entering or leaving 

the STEM field.  

Gender 

Although consistent evidence suggests that women are underrepresented in many STEM 

fields (e.g., Ceci et al., 2014), less agreement has been reached about to what extent women 

leave STEM more often than men. One national study on U.S. college students in both two-year 

and four-year postsecondary institutions showed that a higher proportion of women who declared 
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a STEM major in their first year graduated with non-STEM degrees than men who initially 

declared a STEM major did (Chen & Soldner, 2013). In another national study on high school 

students, girls who intended to major in STEM fields more often switched to non-STEM fields in 

college than boys with the same STEM major plan did (Shaw & Barbuti, 2010). The similar 

gender differences were observed in boys ’and girls ’STEM career aspirations during high school 

(Saw et al., 2018). However, some researchers found the lack of such gender differences in 

persistence. In one national longitudinal study, Ma (2011) found that college women were just as 

likely to persist in STEM majors as men did after declaring STEM majors in their first year.  

Similarly, another national study on college STEM students showed gender similarity in STEM 

persistence rate (Chen, 2009).  

Furthermore, investigations on how much of the gender differences in STEM attrition, 

when present, could be explained by differences in achievement and motivation has generated 

mixed findings too. Some studies supported a lack of gender differences after prior math 

achievement and expectancy were taken into account (e.g., Ackerman et al., 2013; Chen & 

Soldner, 2013), whereas others provided contradictory evidence (e.g., Ellis et al., 2016; Ma, 

2011; Mau, 2003). Therefore, more evidence is necessary to clarify whether men and women 

differ in STEM persistence, and if they do, to what extent the difference exists net of students ’

prior performance and motivation. One limitation of these explanatory studies on gender 

differences in persistence is that math STV has been overlooked. Most of the studies only used 

math achievement and math competence-related beliefs (e.g., math self-efficacy, confidence in 

math abilities) to predict STEM persistence, leaving out the important motivational factor of how 

valuable math is to the individuals as theorized in SEVT (Eccles & Wigfield, 2020; Eccles et al., 

1983). Another limitation is that the reading domain has been rarely taken into account. When 
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STEM attrition is conceptualized in the individual context of the student based on the SEVT and 

the DCT (Eccles & Wigfield, 2020; Möller & Marsh, 2013), the change in career path involves 

comparing other career options with those in STEM. Previous findings suggested that girls were 

more likely than boys to be competent in both math and reading domains (Wang et al., 2013), so 

performance and motivation in language domain may be particularly influential to explain the 

potential gender differences in STEM attrition.  

URM 

Nationally, White and Asian students have been proportionally over-represented in STEM 

college graduates (National Center for Education Statistics, 2019). Hispanic and Black students 

leave STEM majors more often than their White and Asian peers (Chen, 2009; Chen & Soldner, 

2013; Saw et al., 2018; Shaw & Barbuti, 2010). Disparities in academic preparedness and family 

SES can explain a substantial amount of the racial/ethnic gap in STEM persistence (Chen & 

Soldner, 2013). Riegle-Crumb and King (2010) showed that with the same amount of STEM 

courses and test scores in high school, Black boys would have been twice likely as White boys to 

choose a Physics/Engineering major in college, and Black girls would have been equally likely 

as White girls to major in these fields. Similarly, Ma and Liu (2017) found that the racial gap in 

STEM degree attainment would have been flipped with Black men most likely to earn STEM 

degrees had they had the same level of family SES and academic preparation as Asian men. One 

limitation of these studies is the focus on college students. As a result, the findings may be 

limited to the selected group of students in universities and the process of choosing a college 

major. In addition, because Black and Hispanic students have a lower college enrollment rate 

(National Center for Educational Statistics, 2013), the URM students and the non-URM students 

in a college sample may not be equivalent. To address this issue, I used career aspirations in early 
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adolescence and occupation in mid-20s to obtain a more inclusive sample. Moreover, most of the 

studies pertained to the selection of STEM majors rather than persistence. In this study, I tested 

the racial/ethnic differences in STEM career persistence to expand the literature.  

Family SES 

Family SES is profoundly intertwined with race/ethnicity in the US, so distinguishing the 

two sociodemographic characteristics in analyses is key to clarifying race/ethnicity differences. 

More importantly, family SES affects STEM career choices directly or indirectly. National 

studies showed that students from families of lower SES were less likely than their peers from 

families of higher SES to choose and graduate in STEM majors (Chen, 2009; Niu, 2017). The 

SES-based disadvantages manifest in the limited provision of resources and experience that 

cultivate STEM interest, competence-related beliefs, and achievement (MacPhee et al., 2013; 

Miller & Kimmel, 2012). Adolescents from disadvantaged backgrounds seldom see STEM 

careers as a tangible path for their future (Archer et al., 2012). Studies showed that students from 

families of lower SES were less likely to maintain STEM career aspirations in high school (Saw 

et al., 2018). In college, first-generation college students switched out of STEM majors more 

often than continuing-generation college students did (Shaw & Barbuti, 2010). It remains unclear 

to what extent these differences exist after controlling for students ’STEM motivation and 

achievement. I aimed to answer this question by testing the unique influence of family SES on 

STEM persistence in this study.  

In sum, the influences of gender, URM status, and family SES on STEM career paths 

have been supported in previous studies, but more information is needed to understand the ways 

in which these characteristics influence changes in STEM paths. Some evidence has shown that 

these sociodemographic characteristics affect STEM attrition in ways additional to their indirect 
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influence on students’ STEM achievement and motivation, but findings are mixed. Furthermore, 

research on STEM entry is still   in its early stages. Understanding this trajectory can help 

expand an understudied career paths into STEM and support students on their way to realizing 

their STEM career goals.   

The Present Study 

In the present study, I investigate the sociodemographic, achievement and motivational 

predictors of changes in STEM career paths from age 13 to age 25. I focused on the association 

of these predictors with STEM entry and with STEM attrition. I aim to answer two research 

questions with my analyses:  

RQ1: To what extent do sociodemographic characteristics (i.e., gender, URM status and 

parent education), math and reading performances, and math and reading expectancies 

and STVs relate to STEM entry?  

RQ1a: To what extent do individuals taking the STEM entry path differ from individuals 

taking the non-STEM path, regarding their sociodemographic characteristics (i.e., 

gender, URM status and parent education), math and reading performances, and math 

and reading expectancies and STVs?  

RQ1b: To what extent does each of the sociodemographic characteristics (i.e., gender, 

URM status and parent education), math and reading performances, and math and 

reading expectancies and STVs uniquely predict STEM entry relative to a non-STEM 

path?  

RQ2: To what extent do sociodemographic characteristics (i.e., gender, URM status and 

parent education), math and reading performances, and math and reading expectancies 

and STVs relate to STEM attrition?  
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RQ2a: To what extent do individuals taking the STEM attrition path differ from 

individuals taking the STEM persistence path, regarding their sociodemographic 

characteristics (i.e., gender, URM status and parent education), math and reading 

performances, and math and reading expectancies and STVs?  

RQ2b: To what extent does each of the sociodemographic characteristics (i.e., gender, 

URM status and parent education), math and reading performances, and math and 

reading expectancies and STVs uniquely predict STEM attrition relative to STEM 

persistence?  

Hypotheses 

Based on studies by Chen and Soldner (2013) and Shaw and Barbuti (2010), I 

hypothesize that men, non-URM individuals, and individuals from families of higher SES are 

more likely to persist in and enter STEM than women, URM individuals, and individuals from 

families of lower SES. However, I hypothesize that these differences will disappear after taking 

into account of individuals ’performance, expectancy and STV beliefs in math and reading 

domains, according to the studies by Ackerman and colleagues (2013), by MacPhee and 

colleagues (2013), and by Riegle-Crumb and King (2010).  

Regarding the cross-domain comparisons of performance and motivation, I hypothesize 

the predictors in math and reading will affect STEM attrition and STEM entry uniquely and 

interactively. Specifically, I hypothesize that math performance, expectancy, and STV would 

predict higher likelihood of STEM entry and lower likelihood of STEM attrition, and that 

reading performance, expectancy and STV will predict lower likelihood of STEM entry and 

higher likelihood of STEM attrition, based on the studies by Nagy and colleagues (2008), by 

Simpkins and colleagues (2006) and by Watt and colleagues (2012). In addition, I hypothesize 
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the cross-domain interaction terms between math and reading performance, between math and 

reading expectancy, and between math and reading STVs respectively, will weaken the positive 

effect of math performance and motivation on STEM persistence and entry, based on the findings 

of Lauermann and colleagues (2015) and of Wang and colleagues (2013). That is, these 

interaction terms will negatively predict the likelihood of STEM entry and positively predict the 

likelihood of STEM attrition.  

Methods 

Participants 

The same sample in chapter 2 was used in this study. Participants are 1026 adolescents in 

the original cohort of the Child Development Supplement (CDS) of the Panel Study of Income 

Dynamics (PSID) launched in 1997 (54% girls; 47% White, 42% Black, 7% Latino, 1% Asian, 

3% other; average age in 2002 = 13.08 years old [SD = 1.94]).  

Measures 

Variables used in logistic regression models include STEM career trajectories, 

participants ’sociodemographic background, prior achievement, expectancy and STV in math 

and reading domains.  

STEM career trajectories 

A myriad of STEM career trajectories between age 13 and age 25 were found in Chapter 

2. Two pairs of trajectories were chosen for the purpose of this study. To investigate the decision 

to enter the STEM field, the trajectory of a non-STEM career aspiration at age 13 followed by a 

non-STEM employment at age 25 (“no STEM”) and the trajectory of a non-STEM career 

aspiration followed by a STEM employment (“STEM entry”) were used. To investigate the 

decision to leave the STEM field, the trajectory of a STEM career aspiration followed by a 
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STEM employment (“STEM persistence”) and the trajectory of a STEM career aspiration 

followed by a non-STEM employment (“STEM attrition”) were used. The two trajectories in 

each pair shared the same starting point at age 13, making them developmentally comparable at 

the beginning of their career paths and thus strengthening the conclusions about predictors of 

changes in STEM career paths.  

Expectancy and STV beliefs 

Adolescents’ expectancy-value beliefs in math and reading domains were used. They 

were measured at age 13 at the same time as the career aspirations. Both the expectancy and the 

STVs were measured with 7-point Likert scale items. Measurements included 6 items on 

expectancy (e.g., “Compared to most of your other school subjects, how good are you at math?”) 

and 4 items on STVs (e.g., “How much do you like doing math?”). The instruments for math and 

reading domains matched on their items and response scales. These items were developed by 

scholars theorizing the SEVT and the Dimensional Comparison theory (Eccles et al., 1993; 

Marsh, 1990), so the operationalization was closely aligned with the conceptualization of the 

competence belief and STV constructs (Eccles & Wigfield, 1995; Wigfield & Eccles, 1992). 

These items have been used in SEVT studies (Lazarides et al., 2021; Simpkins et al., 2006; Watt 

et al., 2012) as well as the DCT studies (Lazarides & Lauermann, 2019; Wolff et al., 2019) to 

examine the developmental trajectories of EV beliefs and their association with achievement 

choice outcomes. The Cronbach’s alpha of math expectancy, math STV, reading expectancy and 

reading STV scales ranged from .69 to .84, indicating satisfactory inter-item reliability of all the 

scales.  

Prior achievement 
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Adolescents ’achievement in math and reading domains was assessed by the Woodcock-

Johnson Test in 1997, five years prior to the measurement of career aspirations and motivational 

beliefs. The Woodcock-Johnson Test is a set of standardized tests to measure the normative 

development of children’s cognitive abilities and academic achievement (Woodcock et al., 

1989). The reading domain consisted of the sections of Letter-Word Identification and Passage 

Comprehension, and the math domain consisted of the sections of Calculation and Applied 

Problems. A score for each of the math and reading domains was given based on the number of 

correct items completed. The scores were standardized with a national average of 100 with a 

standard deviation of 15. Children’s age at the time of testing was taken into account in the 

scoring protocol. Thus, these measures provide an indication of each child’s competence relative 

to their age mates at that point in time. Evidence from a variety of studies has demonstrated very 

high across time stability in these assessments (Bornstein et al., 2014; ShullUSenn et al., 1995). 

Sociodemographic background 

Sociodemographic background measures included gender, URM status, parent education 

and age. Gender and race/ethnicity were reported in 1997, at the same time as achievement was 

measured. Age and parent education were collected in 2002, at the same time when adolescents ’

first career choice was measured. Gender was a binary variable (0 = male, 1 = female). URM 

status (0 = non-URM, 1 = URM) was created based on adolescents ’race/ethnicity, with “White”, 

“Asian and Pacific Islander” coded as non-URM, and “Black”, “Hispanic”, “American Indian”, 

“Alaska Native” and “Other” coded as URM. Parent education was measured as the number of 

years of formal schooling that adolescents ’parents received. When information of both parents 

was available, the higher number between the parents was used.  
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Analyses 

 Descriptive analyses were conducted as the first step. Group differences in 

sociodemographic compositions, achievement and motivation between two pairs of trajectories 

were examined. The first pair included non-STEM and STEM entry trajectories, and the second 

pair included STEM attrition and STEM persistence paths. Independent t-tests were used for 

continuous variables, and Chi-square Test of Independence was used for categorical variables.  

Logistic regressions were used to test the association between sociodemographic 

background, achievement and motivation predictors and STEM career trajectories. Two pairs of 

trajectories were contrasted as the outcome. In the first pair, the STEM entrance trajectory (coded 

as 1) was contrasted with the “no STEM” trajectory (coded as 0) to examine to what extent 

sociodemographic, achievement or motivational factors predicted the entrance into the STEM 

field. In the second pair, the STEM attrition trajectory (coded as 1) was contrasted with the 

STEM persistence trajectory (coded as 0) to examine factors predicting attritions from the STEM 

field.  

Seven models were tested for each contrast. Model 1 comprised of sociodemographic 

variables and domain-specific performance. Model 2 added expectancy beliefs in math and 

reading domains. Model 3 substituted expectancy beliefs with STV beliefs in both domains. 

Model 4 to 6 tested the cross-domain interaction terms. Model 4 was built on Model 1, with the 

addition of the interaction between math and reading performance. Model 5 was built on Model 

2, with the addition of the interaction between math and reading expectancy. Model 6 was built 

on Model 3, adding the interaction between math and reading STV. Model 7 included all 

predictors, which were sociodemographic background, achievement, expectancy and subjective 

task value in both domains, and the three cross-domain interaction terms. Participants ’age was 
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included in all of the models to control for the multiple cohorts in the original study. Continuous 

predictors were mean centered before being entered into regression models. Cross-domain 

interaction terms for achievement, expectancy and subjective task values were created with the 

centered terms. Multiple imputations and following regression analyses were conducted in Stata 

14 SE. 

Multiple Imputations 

The amount of missing data on predictor variables ranged from 0 to 16 percent of the 

sample size. As a result of the sample selection criteria of the study in chapter 2, everyone in the 

sample had a non-missing value on the outcome indicators of STEM career trajectory. Two state-

of-art strategies to handle missing data are multiple imputations, and the Full Information 

Maximum Likelihood (FIML) estimates. Although FIML can be automatically executed in 

Mplus software when missing values are present in exogenous variables, the combination of 

binary outcomes and continuous predictors in this study does not fulfill the assumption of 

multivariate normal distribution of exogenous variables of FIML (Enders, 2001). As an 

alternative, FIML with Bayesian statistics, which does not require such assumption, was 

explored. However, model convergence was not reached in several attempts, meaning that the 

estimates were not reliable. Therefore, FIML was ruled out from consideration. 

Variables with missing data were URM status, math and reading achievement, math and 

reading expectancy and math STV. Two later waves of math and reading achievement, an earlier 

wave and a later wave of math and reading expectancy-value beliefs, family income and school 

aspiration (i.e., highest level of schooling/degree desired to have) at age 13 were selected to 

impute missing values on predictor variables. MI by chained equations was selected compared to 
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MI with multivariate normal distribution for its accommodation of categorical variables in the 

model. Diagnostic parameters suggest MI yielded high quality estimates.  

Results 

 Four trajectory groups are shown in Figure 2.1. At age 13, 612 adolescents aspired to 

non-STEM occupations: 79 percent of them worked in non-STEM jobs by age 25 (“non-STEM 

path”, n = 484) and 21 percent switched to work in STEM jobs (“STEM entry” trajectory, n = 

128). A total of 414 adolescents aspired to STEM occupations at age 13: 69 percent left STEM 

and worked in non-STEM jobs by age 25 (“STEM attrition”, n = 287) and 31 percent continued 

to work in STEM field (“STEM persistence”, n = 127).  

Group differences in sociodemographic characteristics, achievement and motivation 

Descriptive statistics of each trajectory were shown in Table 2.1. Pairwise correlations 

were shown in Table 2.2.  

Non-STEM vs STEM entry 

Chi-square Test of Independence (Table 2.1) showed group differences in the gender, χ2 

(1, N = 612) = 9.06, p = .003, Cramer’s V = .12, and URM composition, χ2 (1, N = 611) = 9.63, p 

= .002, Cramer’s V = .13. More women and more URM appeared in the non-STEM group than 

expected by chance, and these groups were underrepresented in the STEM entry trajectory. The 

STEM entry group had higher levels of parent education, t(582) = 2.45, p = .02, Cohen’s d = .25 

(non-STEM: M = 13.18, SD = 2.56; STEM entry: M = 13.81, SD = 2.59), math performance, 

t(529) = 2.96, p = .003, Cohen’s d = .32 (non-STEM: M = 101.58, SD = 16.46; STEM entry: M = 

106.84, SD = 17.42), and lower math STV, t(610) = 2.39, p = .02, Cohen’s d = .24 (non-STEM: 

M = 4.67, SD = 1.22; STEM entry: M = 4.38, SD = 1.27), than the non-STEM group.  

STEM attrition vs STEM persistence 
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As shown in Table 2.1, STEM attrition group differed from the STEM persistence group 

in gender, χ2 (1, N = 414) = 3.91, p = .05, Cramer’s V = .10, and URM composition, χ2 (1, N = 

412) = 18.00, p < .001, Cramer’s V = .21. More women and more URM were present in the 

STEM attrition group, and they were underrepresented in the STEM persistence group. The 

STEM attrition group had lower levels of parent education, t(384) = 2.49, p = .01, Cohen’s d 

= .28 (STEM attrition: M = 13.17, SD = 2.45; STEM persistence: M = 13.83, SD = 2.14), and 

math performance, t(336) = 2.47, p = .02, Cohen’s d = .29 (STEM attrition: M = 103.54, SD = 

17.53; STEM persistence: M = 108.47, SD = 15.48). The STEM attrition group also had higher 

levels of math STV, t(411) = 2.80, p = .005, Cohen’s d = .30 (STEM attrition: M = 4.93, SD = 

1.21; STEM persistence: M = 4.56, SD = 1.26), and reading STV, t(412) = 3.91, p < .001, 

Cohen’s d = .42 (STEM attrition: M = 5.33, SD = 1.10; STEM persistence: M = 4.85, SD = 1.25), 

than the STEM persistence group.  

Logistic regressions predicting STEM entry 

 Consistent across models, gender and URM status were associated with STEM entry 

relative to a non-STEM path (Table 2.3). Men were nearly two times more likely than women to 

enter STEM occupations relative to staying in non-STEM field, with other sociodemographic 

factors, math and English performance, and EV beliefs in math and reading domains held equal. 

Similarly, with other factors being equal, URM were approximately half as likely as non-URM to 

enter STEM field. In model 3 and model 6, math STV at age 13 was negatively associated with 

the likelihood to enter STEM. One-point increase in math STV score predicted 0.19 (1 – 0.81) 

times decrease of the likelihood to enter STEM. None of the cross-domain interaction terms in 

performance or EV beliefs were statistically significant.  



 

141 
 

Logistic regressions predicting STEM attrition 

 Across models (Table 2.4), URM status was consistently associated with the likelihood of 

STEM attrition. When sociodemographic characteristics, performance and motivational beliefs 

were held constant in the model, URM individuals were more than twice as likely as non-URM 

to leave their STEM aspirations for non-STEM occupations. No achievement, motivational or 

other sociodemographic factors were statistically significant predictors of STEM attrition.  

Inspections into the negative association between math STV and STEM entry 

The negative association between math STV and STEM entry, indicating that the more 

valuable math is to the participants at age 13 the less likely it is for them to switch into STEM 

field by age 25, contradicted my hypothesis based on the SEVT. The possibility of data error was 

ruled out after careful examination. Considering that the membership in the STEM entry group is 

associated with gender and URM status, questions were asked whether gender or URM status 

can help explain the unexpected pattern. To examine this possibility, the original logistic 

regression model was run in separate gender and URM status groups with a total of four models, 

one each for men and women (Table 2.5), for URMs and non-URMs (Table 2.6). The cross-

domain interaction term of math and reading STV was omitted from this step of analysis because 

it was not found to predict the outcome in the original model. The results for gender and URM 

status subgroups are displayed in Table 3.5 and Table 3.6. Gender subgroup analyses models 

yield discrepancy in more predictors than expected (Table 2.5). Among women, math STV was 

not related to the entry into STEM at age 25, but parent education became predictive with 

marginal statistical significance. The parameter indicates that among women, one year increase 

in their parents ’education level predicted 1.14 times increase in the likelihood of entering STEM 

field than staying out of STEM. The pattern is different among men. Math STV was negatively 
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predictive at marginal significance, such that higher math STV at age 13 predicted lower 

likelihood of entering STEM by age 25. At the same time, URM status became predictive, such 

that being an URM was associated with less likelihood of entering STEM. Because of these 

gender discrepancies, a third model with a gender by math STV interaction term was tested. The 

result showed that math STV was not related to STEM entry, suggesting that the interaction term 

accounted for some of the covariance between math STV and the outcome.  

The same analyses were carried out for URM status subgroups (Table 2.6). The result 

showed that among URM individuals, math STV was still negatively associated with the 

likelihood of entering STEM; this association was not found among non-URM people. For non-

URM group, gender was predictive such that relative to women, men were twice as likely to 

enter STEM compared to staying out of STEM. An interaction term between URM and math 

STV was added to the model, and this term accounted for some of the covariance between math 

STV and STEM entry.  

Although these results suggest that the negative association between math STV and 

STEM entry did not hold true for everyone, the direction of the association remained negative 

when it existed. One possibility is the long lag between the math STV measure at age 13 and the 

differences of job field at age 25. Participants ’math STV might have changed enough over the 

years so that it did not align with the job outcome a decade later. To examine this possibility, a 

follow-up wave of math STV measure was used for comparing the means between the non-

STEM group and the STEM entry group. The variable was a repeated measure of the math STV 

items 5 years later when participants reached 18 years of age on average. The group means and 

the results of the independent t-test within each wave were displayed in Table 2.7. Because of the 

gender and URM variation found in the logistic regressions, the mean level comparisons were 
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carried out for each of the subgroup as well. Among the whole sample, math STV at age 13 

differed between two trajectory groups, such that the non-STEM group (M = 4.67, SD = 1.22) 

reported higher math STV than the STEM entry group (M = 4.38, SD = 1.27) at age 13. 

However, this difference did not exist five years later, with two groups having similar level of 

math STV at age 18 (non-STEM: M = 4.43, SD = 1.35, STEM entry: M = 4.54, SD = 1.35). This 

result suggests a trend among adolescents in the non-STEM group to lower their math STV over 

time, and a trend among adolescents in the STEM entry group to increase their math STV over 

time. The same pattern was found among men and URMs but not among women or non-URMs, 

corresponding to the group variation in the finding of the negative association between math 

STV and STEM entry in the logistic regressions.   

Discussion 

In this study, I aimed to answer “Why do individuals change their career path” through 

the lens of SEVT and DCT. Based on these theories, I conceptualized changes in STEM career 

paths, namely STEM attrition and STEM entry, as the result of cross-domain comparisons of 

achievement, expectancy and STV in math and language domains. These motivational factors are 

powerful predictors of career choices, which may explain the gender, URM status and family 

SES related differences in STEM persistence. From my analyses, I found gender, URM status 

and family SES related differences in STEM attrition and entry as hypothesized. Contrary to my 

hypotheses, gender and URM status uniquely predicted STEM entry, and URM status uniquely 

predicted STEM persistence after controlling for the influence of parent education, performance, 

expectancy and STVs in math and reading domains. Math performance differed between STEM 

attrition and STEM persistence groups, and between non-STEM and STEM entry groups, but it 

did not uniquely predict STEM entry or attrition. Contrary to my hypotheses, neither math 
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expectancy nor reading expectancy related to changes in STEM paths. Math STV related to both 

types of changes in STEM paths but in the opposite direction to my hypotheses. At the same 

time, reading STV related to but did not uniquely predict STEM persistence. Lastly, none of the 

cross-domain interactions were predictive of changes in STEM career paths.  

Why Some Gender and URM Status Differences Remained Unexplained? 

 Contrary to my hypotheses, the gender and URM status related differences in STEM 

attrition and entry were not entirely accounted for by prior performance, expectancy and STV in 

math and reading domains. Given the same levels of math and reading performances, 

expectancies and STVs, women and URM individuals were less likely to enter STEM 

occupations than men and non-URM individuals. Why was this the case considering that two 

most explanatory motivational factors of career choices, namely expectancy and STV in relevant 

domains, were taken into consideration? One explanation might be job-specific considerations. 

The destination of STEM career paths in this study was employment at age 25. Individuals may 

consider specific aspects of a job that were more detailed than at a domain level when choosing 

their occupation, and these considerations may vary by gender and URM status. For example, the 

desire for a flexible work schedule and perceived high time demand were found to predict 

women’s withdrawal from pursuing careers in men-dominated fields from age 18 to age 25 

(Frome et al., 2006). Considering that many STEM fields are men-dominated (Ceci et al., 2014), 

this type of job-specific factors may be related to women’s higher likelihood to discontinue their 

STEM career paths or lower likelihood to switch into the STEM fields. Another possible 

explanation might be the barriers that women and URM individuals perceived for pursuing 

STEM careers. When asked about career aspirations at age 13, participants thought about the job 

they most like to have. The barriers to attaining the career in reality might have been set aside or 
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not foreseen at that time but come into effect in actual job search. The lack of resources and 

opportunities to get involved in STEM research, others’ explicit discouragement from pursuing 

STEM careers, and the mismatch between women’s or URMs’ personal beliefs and the cultural 

values in STEM are examples of such barriers (Guy & Boards, 2019; Strayhorn et al., 2013). 

Using measures of expectancy and STV measures, with the addition of the cost construct, closer 

in time to the outcome of employment is one way to study these barriers.  

The Limited Influence of Math Performance and Expectancy on STEM Career Changes 

 In this study, neither math nor reading expectancies related to changes in STEM career 

paths. Math performance differed between trajectories but did not uniquely predict STEM 

attrition or entry. Reading performance was not related to any changes in STEM careers. Some 

prior studies showed that academic expectancy did relate to changes in college-required career 

aspirations (Gao & Eccles, 2020), and various contextual factors are influential predictors of 

adolescent’s college-related educational trajectory (Messersmith & Schulenberg, 2008). These 

findings, together with results in this study, may indicate the limited direct influence of 

expectancy on changes in career path. One possibility might be that expectancy could predict 

changes in career path without controlling for the effect of performance and STVs. Previous 

findings on career choices at one point in time showed that STVs was more strongly associated 

with career choices than expectancy, when tested in separate models (Bong, 2001; Lazarides & 

Lauermann, 2019; Meece et al., 1990). Considering that prior performance and expectancy were 

highly correlated (citation), the unique effect of expectancy may be limited after prior 

performance was controlled for. Regarding changes in career paths, expectancy might play a 

bigger role in differentiating the starting point and less in later trajectories. In this study, 

individuals who chose STEM careers at age 13 (i.e., the STEM attrition and the STEM 
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persistence groups) seemed to have higher math expectancy than their peers choosing non-STEM 

careers at that time (i.e., the non-STEM and the STEM entry group). Therefore, a sufficient level 

of math expectancy might be necessary for individuals to enter the STEM field but may not 

guarantee the continuance in the path. The lack of unique predictive power of expectancies might 

also be due to the insufficient differentiation of the beliefs, as suggested by the weak correlation 

between the expectancy and performance in the same domain. More studies are needed to 

replicate the analysis to clarify the role of expectancy in career persistence.  

The lack of association between math performance might suggest that prior achievement 

did not affect changes in STEM career paths directly. As theorized in SEVT (Eccles & Wigfield, 

2020; Wigfield & Eccles, 2000), previous achievement influences individuals ’affective 

experience and general self-schemata, which further influences expectancy and STV beliefs. 

Individuals may have adjusted their perception of their math and reading abilities based on their 

performances in these domains, and thus the direct performance on career trajectories was 

minimal. 

The Competent, Resourceful Late Entrants 

 Contrary to my hypothesis, a negative association between math STV and STEM entry 

was found. Individuals who switched into the STEM field reported lower math STV at age 13 

than individuals who stayed in non-STEM over time. This association held true in the regression 

analysis. Post hoc inspections into a following wave of math STV pointed to the possibility of 

changes in math STV over time. Over the period of five years, a trend was found that the math 

STV seemed to increase among the STEM entry group whereas the math STV seemed to 

decrease among the non-STEM group. By age 18, the two groups had a similar level of math 

STV. If this trend continued, the STEM entry group might have higher math STV than the non-
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STEM, thus aligning with their choice of occupations by age 25. However, limited by the study 

design, the sample size of the math STV at age 18 shrank considerably compared to that at age 

13. Follow-up studies are necessary to test the conjecture above.  

 At the same time, the negative association between math STV and STEM entry might 

shed light on the motivational process of this particular trajectory. Individuals in the STEM entry 

group seemed to have a comparably high level of parent education and math performance as the 

STEM persistence group. Thus, the late entry might potentially be due to choices instead of the 

lack of ability or resources. Follow-up analyses showed a trend of increase in math STV in the 

STEM entry group, possibly indicating the development of math STVs in the following years. 

Explorations and specializations of career interest might underlie this delayed increase in valuing 

of their future career domain. In a previous study, adolescents with late aspirations to college-

associated careers similarly had relatively high family SES and academic performance (Gao & 

Eccles, 2020). More research is called for to further understand this particular career path, and 

yet the evidence so far suggests choices rather than the lack of choices as the possible 

explanations. As found in study 1, women who worked in STEM occupations by age 25 were 

more likely to take the late entry path than expected by chance. Considering that girls were more 

likely to have high achievement in both language and math domains (Wang et al., 2013), the 

delayed entry into STEM might just be the time women need before they become motivated to 

choose the STEM field.  

Changes in Career Paths Based on DCT and SEVT 

 I found that the reading STV differed between STEM attrition and STEM persistence 

groups, and that the STEM persistence group had lower valuing of reading domains than the 

attrition group. This finding matches the result of a cross-domain comparison of values between 
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the math and reading domain. However, neither reading STV nor the interaction between math 

and reading STVs predicted the probability of STEM attrition as hypothesized. One difference 

between this study and previous studies on the dimensional comparison of motivational belief is 

the use of regression or SEM approaches. The SEM models, when set up with performances as 

antecedents, motivational beliefs as mediators and career choices as outcomes (Lazarides & 

Lauermann, 2019), may be better suited for testing the theorized relationship between constructs, 

as both the indirect and the direct effects were estimated. The lack of cross-domain association 

between performance or motivational beliefs and career outcomes might also suggest the limited 

implications of cross-domain comparison on career outcomes. The cross-domain comparison 

reflects the use of internal frame of reference to form one’s self-concept (Marsh, 1986). This 

mechanism might be particularly influential for abstract, ambiguous self-perceptions like the 

self-concept of ability and less pronounced for specific, tangible decisions, such as career 

choices. Two studies testing the cross-domain influence of motivational beliefs on career 

outcomes showed null or minimal negative associations (Guo et al., 2017; Lazarides & 

Lauermann, 2019). More research is needed to examine the implications of cross-domain 

comparisons on career outcomes.  

 Why do individuals change their career paths? Findings of this study indicate the changes 

were made by people in their individual sociocultural contexts. The STEM entry group and the 

STEM attrition group had different sociodemographic, achievement and motivational profiles. 

The STEM entry group had one of the highest math performances across the sample, but their 

math subjective task values were among the lowest. That is, they did not math value as highly as 

they performed in it, indicating adjustment in their math values in following years. At the same 

time, the late entry group had high parent education. Taken together, the late entry into STEM 
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domains might signal their explorations of career interest over time. In comparison, the STEM 

attrition valued math more highly than they performed in the field. Thus, switching out of STEM 

might result from experiencing setbacks and barriers in STEM domains. How would the changes 

influence the individuals? How adaptive the changes are to the individual in their context? Prior 

research shows the failure to meet achievement-related goals during the school-to-work 

transition was related to higher risk of mental health problem (Nurmi & Salmela-Aro, 2002), 

underscoring the need to support adolescents and young adults’ coping and adaptation when their 

goals are not met. More research is needed to further understand the implications of these 

changes on the person’s motivation and career outcomes and the precursors to these changes.  

 The finding also showed that there was a mismatch between performance and STV in the 

math domain in early adolescence across the four trajectory groups. Looking at how the math 

performance and STV of each group compared to other groups in the sample, we can see that the 

non-STEM group and the STEM attrition group valued math more highly than they relatively 

achieved, and that the STEM entry group and the STEM persistence group performed more 

highly than they relatively value math. Overall, the correlation between performance and STV in 

each domain of math and reading was null to small at age 13. In the long run, the career paths 

seemed to align more with individuals ’relative achievement level. How did the alignment 

happen? Based on SEVT (Eccles & Wigfield, 2020), individuals ’STV would be likely to 

become more intertwined with performance and consequently affect the occupational outcomes 

by age 25. However, more data are needed to understand how the transformation occurs and its 

implication as STVs involve key beliefs to a person’s identity. In particular, the two groups who 

valued math more highly than they achieved featured an overrepresentation of women and URM 

individuals, suggesting additional questions of exactly how the precursors and results of the 
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alignment between performance and STVs involve gender- and racial/ethnic- specific factors. 

This study is the first step in revealing this phenomenon; more research is needed to investigate it 

in detail.  

Limitation and Future Directions 

 One limitation of the study is the aggregation of STEM careers into one broad categories. 

The distinction between the health STEM and physics-related STEM careers in Chapter 2 should 

have been extended to examine to what extent the predictors relate to different STEM domains. 

The small number of people persisting in health STEM and physics-related STEM careers, less 

than 40 and 60 respectively, were likely to lead to biased estimates of odds ratio (Bujang et al., 

2018; Nemes et al., 2009). In future studies, researchers can use larger samples to study the 

STEM career trajectories in these fields.  

 The inspections into the negative association between math subjective task values and 

STEM entry indicated a cross-over developmental trend of math subjective task values of 

individuals in the non-STEM career paths and the STEM entry paths. This result underscore the 

need to use the motivational beliefs in evolvement to understand the changes in career choices. 

One direction is to identify heterogeneous developmental trajectories of motivational beliefs 

using techniques such as the mixture growth curve modeling and to test the association between 

different motivational trajectories and changes in career paths. Due to the limit of our sample, 

there lacked following measures on math and reading expectancy-value beliefs. In future studies, 

researchers can expand our research to test this possibility.  

Conclusion 

In this study, we aimed to answer why people change their STEM career paths by 

examining the sociodemographic, achievement and motivational precursors of the divergence in 
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STEM career trajectories. Findings suggest limited influence of math performance and 

expectancy on changes in STEM career paths, and points to STVs, and potentially STVs in 

transformation, as the main predictors of late STEM entry. Gender and URM status predicted 

STEM entry and attrition above and beyond the influence of performance and motivation in math 

and reading domains, indicating job-specific considerations and potential barriers in fulfilling 

STEM career goals. Our results revealed the unique achievement and motivational profiles of 

STEM entrants, indicating a following increase in their math subjective task values to match 

with their high math performance. More research is needed to understand the process in which 

this development unraveled and the influential factors of this process. Our finding suggests the 

limited influence of dimensional comparison in early math and reading achievement and 

motivation on later changes in career paths. The influence of early expectancy-value beliefs was 

also limited when sociodemographic factors and achievement was held constant. This result may 

indicate the need to account for motivational beliefs in its development as the antecedents of 

changes in career paths.  
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Table 2.1  
Group differences in sociodemographic composition, achievement and motivation 

 n Women URM 
Parent edu 
(M[SD]) 

MPerf 
(M[SD]) 

RPerf 
(M[SD]) 

MExp 
(M[SD]) 

RExp 
(M[SD]) 

MSTV  
(M[SD]) 

RSTV 
(M[SD]) 

Non-STEM 
path 

484 
291 

(60%)+ 
278 

(58%)+ 
13.18 
(2.56)a 

101.58 
(16.46)a 

104.75 
(17.35) 

4.74 (1.07) 5.27 (1.09) 
4.67 

(1.22)a 
5.24 

(1.21) 

STEM entry 128 
58 

(45%)- 
54 

(42%)- 
13.81 
(2.59)b 

106.84 
(17.42)b 

106.55 
(16.62) 

4.68 (1.22) 5.21 (1.08) 
4.38 

(1.27)b 
5.10 

(1.14) 

Cramer’s V -- .12 .13 -- -- -- -- -- -- -- 

Cohen’s d -- -- -- .25 .32 -- -- -- .24 -- 

           

STEM 
attrition 

287 
150 

(52%)+ 
161 

(56%)+ 
13.17 
(2.45)a 

103.54 
(17.53)a 

106.11 
(17.42) 

4.88 (1.08) 5.30 (1.10) 
4.93 

(1.21)a 
5.33 

(1.10)a 
STEM 
persistence 

127 
53 

(42%)- 
43 

(34%)- 
13.83 
(2.14)b 

108.47 
(15.48)b 

107.28 
(15.95) 

4.96 (1.11) 5.09 (1.08) 
4.56 

(1.26)b 
4.85 

(1.25)b 

Cramer’s V -- .10 .21 -- -- -- -- -- -- -- 

Cohen’s d -- -- -- .28 .29 -- -- -- .30 .42 

Note:  URM = underrepresented racial/ethnic minorities. Parent edu = parent education. MPerf = math performance. RPerf. = reading 
performance. MExp = math expectancy. RExp = reading expectancy. MSTV = math subjective task values. RSTV = reading 
subjective task values. +/− denotes over-/under-representation based on adjusted standardized residual greater than 1.96 or less than  
-1.96. a/b denote a statistically significant group mean differences based on Scheffe post hoc test at .05 level.  
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Table 2.2  
Bivariate correlations and descriptive statistics of predictors  

 Age Parent edu MPerf RPerf MExp MSTV RExp RSTV 

Age 1        

Parent edu .02 1       

MPerf .02 .34*** 1      

RPerf .03 .34*** .66*** 1     

MExp  -.16*** .13*** .26*** .10** 1    

MSTV -.25*** -.11** -.05 -.15*** .51*** 1   

RExp .06 .06 .05 .27*** -.20*** -.08* 1  

RSTV .01 -.02 -.08* .10** -.09** .22*** .61*** 1 

Cronbach’s alpha -- -- -- -- .82 .70 .84 .69 

M 13.08 13.33 103.6 105.65 4.8 4.69 5.25 5.2 

SD 1.94 2.5 16.92 17.11 1.1 1.24 1.09 1.18 

Note. * p < .05, ** p < .01, *** p < .001. Parent edu = parent education. MPerf = math performance. RPerf. = reading performance. 
MExp = math expectancy. RExp = reading expectancy. MSTV = math subjective task values. RSTV = reading subjective task values. 
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Table 2.3  
Estimates of predictors of STEM entry (versus non-STEM path) in a stepwise logistic regression 

 Model 1  Model 2  Model 3  Model 4  Model 5  Model 6  Model 7 

Predictors OR SE  OR SE  OR SE  OR SE  OR SE  OR SE  OR SE 

Man 1.91* 0.41  1.99* 0.43  1.99* 0.43  1.91* 0.41  2.00* 0.43  1.98* 0.43  2.00* 0.44 

Age 0.98 0.05  0.96 0.05  0.94 0.05  0.98 0.05  0.97 0.05  0.94 0.05  0.95 0.05 

Parent edu 1.06 0.05  1.07 0.05  1.06 0.05  1.06 0.05  1.06 0.05  1.06 0.05  1.06 0.05 

URM 0.56* 0.13  0.55* 0.13  0.60* 0.15  0.56* 0.13  0.55* 0.13  0.60* 0.15  0.59* 0.15 

RPerf 0.99 0.01  0.99 0.01  0.99 0.01  0.99 0.01  0.99 0.01  0.99 0.01  0.99 0.01 

MPerf 1.01 0.01  1.01 0.01  1.01 0.01  1.01 0.01  1.01 0.01  1.01 0.01  1.01 0.01 

MExp    0.86 0.09        0.86 0.09     0.96 0.12 

RExp    1.05 0.11        1.06 0.11     1.02 0.13 

MSTV       0.81* 0.08        0.81* 0.08  0.83 0.10 

RSTV       1.09 0.10        1.07 0.11  1.04 0.13 

MPerf * RPerf          1.00 < .001        1.00 < .001 

MExp * RExp             1.05 0.09     1.07 0.10 

MSTV * 
RSTV 

               0.98 0.07  0.95 0.07 

Note. In the outcome, STEM entry was coded as 1, and non-STEM path was coded as 0. * p < .05, ** p < .01, *** p < .001. Parent 
edu = parent education. MPerf = math performance. RPerf. = reading performance. MExp = math expectancy. RExp = reading 
expectancy. MSTV = math subjective task values. RSTV = reading subjective task values. 
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Table 2.4  
Estimates of predictors of STEM attrition (versus STEM persistence) in a stepwise logistic regression 

 Model 1  Model 2  Model 3  Model 4  Model 5  Model 6  Model 7 

Predictors OR SE  OR SE  OR SE  OR SE  OR SE  OR SE  OR SE 

Man 0.68 0.16  0.69 0.16  0.74 0.18  0.66 0.15  0.68 0.16  0.74 0.18  0.72 0.18 

Age 0.82* 0.05  0.82* 0.05  0.83* 0.05  0.82* 0.05  0.82* 0.05  0.84* 0.05  0.84* 0.05 

Parent edu 0.97 0.05  0.97 0.05  0.97 0.05  0.96 0.05  0.97 0.06  0.96 0.05  0.96 0.06 

URM 2.59* 0.67  2.52* 0.67  2.12* 0.59  2.61* 0.68  2.53* 0.68  2.11* 0.59  2.13* 0.60 

RPerf 1.01 0.01  1.01 0.01  1.01 0.01  1.01 0.01  1.01 0.01  1.01 0.01  1.01 0.01 

MPerf 0.99 0.01  0.99 0.01  0.99 0.01  0.98 0.01  0.99 0.01  0.99 0.01  0.99 0.01 

MExp    0.98 0.11        0.98 0.11     0.90 0.12 

RExp    1.05 0.12        1.04 0.12     0.92 0.14 

MSTV       1.09 0.11        1.11 0.11  1.15 0.14 

RSTV       1.18 0.13        1.22 0.14  1.23 0.18 

MPerf * RPerf          1.00 < .001        1.00 < .001 

MExp * RExp             1.03 0.09     1.00 0.10 

MSTV * 
RSTV 

               1.05 0.07  1.04 0.08 

Note. In the outcome, STEM attrition was coded as 1, and STEM persistence was coded as 0. * p < .05, ** p < .01, *** p < .001. 
Parent edu = parent education. MPerf = math performance. RPerf. = reading performance. MExp = math expectancy. RExp = reading 
expectancy. MSTV = math subjective task values. RSTV = reading subjective task values. 
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Table 2.5  
Diagnostic analysis of the association between math subjective task value and STEM entry by gender 

 Original model  Women (N = 349)  Men (N = 263)  
Gender*MSTV 

Interaction 
 OR SE p  OR SE p  OR SE p  OR SE p 

Man 1.99 0.43 .002          3.43 2.66 .112 

Age 0.94 0.05 .301  0.92 0.07 .284  0.99 0.08 .855  0.94 0.05 .289 

Parent edu 1.06 0.05 .232  1.14† 0.09 .094  1.00 0.07 .976  1.06 0.05 .233 

URM 0.60* 0.15 .044  0.84 0.30 .629  0.40* 0.15 .012  0.59* 0.15 .039 

RPerf 0.99 0.01 .217  0.98 0.01 .166  1.00 0.01 .761  0.99 0.01 .222 

MPerf 1.01 0.01 .281  1.02 0.01 .142  1.00 0.01 .921  1.01 0.01 .289 

MExp                

RExp                

MSTV 0.81* 0.08 .025  0.83 0.11 .167  0.79† 0.11 .077  0.86 0.11 .219 

RSTV 1.09 0.10 .376  1.02 0.15 .888  1.14 0.14 .290  1.09 0.10 .372 

Men*MSTV             0.89 0.15 .462 

Note. In the outcome, STEM entry was coded as 1, and non-STEM path was coded as 0. † p < .10, * p < .05, ** p < .01, *** p < .001. 
Parent edu = parent education. MPerf = math performance. RPerf. = reading performance. MExp = math expectancy. RExp = reading 
expectancy. MSTV = math subjective task values. RSTV = reading subjective task values. 
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Table 2.6 
Diagnostic analysis of the association between math subjective task value and STEM entry by URM status 

 Original model  URM (N = 332)  non-URM (N = 279)  
URM*MSTV 

Interaction 
 OR SE p  OR SE p  OR SE p  OR SE p 

Man 1.99 0.43 .002  1.65 0.52 .112  2.14* 0.65 .012  1.94* 0.42 .002 

Age 0.94 0.05 .301  0.93 0.08 .365  0.97 0.08 .667  0.95 0.05 .339 

Parent edu 1.06 0.05 .232  1.06 0.07 .363  1.06 0.08 .397  1.06 0.05 .227 

URM 0.60* 0.15 .044          0.54* 0.14 .020 

RPerf 0.99 0.01 .217  0.99 0.01 .552  0.99 0.01 .264  0.99 0.01 .250 

MPerf 1.01 0.01 .281  1.00 0.01 .898  1.02 0.01 .166  1.01 0.01 .280 

MExp                

RExp                

MSTV 0.81* 0.08 .025  0.69* 0.10 .012  0.90 0.11 .393  0.90 0.11 .388 

RSTV 1.09 0.10 .376  1.07 0.15 .633  1.10 0.14 .451  1.08 0.10 .389 

URM*MSTV             0.77 0.13 .130 

Note. In the outcome, STEM entry was coded as 1, and non-STEM path was coded as 0. * p < .05, ** p < .01, *** p < .001. Parent 
edu = parent education. MPerf = math performance. RPerf. = reading performance. MExp = math expectancy. RExp = reading 
expectancy. MSTV = math subjective task values. RSTV = reading subjective task values. 
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Table 2.7  
Math STV at age 13 and age 18 of the non-STEM group and the STEM entry group 

Table A. Comparisons within gender subgroups 

 Everyone  Women  Men 

 Age 13  Age 18  Age 13  Age 18  Age 13  Age 18 

 N M (SD)  N M (SD)  N M (SD)  N M (SD)  N M (SD)  N M (SD) 

non-STEM path 484 4.67 (1.22)  92 4.43 (1.35)  291 4.60 (1.26)  54 4.23 (1.32)  193 4.77 (1.15)  38 4.72 (1.36) 

STEM entry 128 4.38 (1.27)  29 4.54 (1.35)  58 4.33 (1.29)  12 4.46 (1.28)  70 4.42 (1.26)  17 4.60 (1.43) 

Independent  
T-test 

t(610) = 2.39,  
p = .02 

 
t(119) = -.40,  

p = .69 
 

t(347) = 1.49,  
p = .14 

 
t(64) = -.55,  

p = .58 
 

t(261) = 2.17,  
p = .03 

 
t(53) = .28,  

p = .78 

 

Table B. Comparisons within URM subgroups 

 Everyone  URM  non-URM 

 Age 13  Age 18  Age 13  Age 18  Age 13  Age 18 

 N M (SD)  N M (SD)  N M (SD)  N M (SD)  N M (SD)  N M (SD) 

non-STEM path 484 4.67 (1.22)  92 4.43 (1.35)  278 4.97 (1.09)  51 4.76 (1.21)  205 4.25 (1.25)  41 4.01 (1.42) 

STEM entry 128 4.38 (1.27)  29 4.54 (1.35)  54 4.56 (1.17)  12 4.92 (1.26)  74 4.24 (1.33)  17 4.28 (1.39) 

Independent  
T-test 

t(610) = 2.39,  
p = .02 

 
t(119) = -.40,  

p = .69 
 

t(330) = 2.49,  
p = .006 

 
t(61) = -.39,  

p = .70 
 

t(277) = .06,  
p = .96 

 
t(56) = -.66,  

p = .51 
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Figure 7 

 

Figure 2.1. STEM career trajectories from age 13 to age 25.  
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CHAPTER 3 

A Mixed-Method Examinations of Situated Expectancy-Value Theory in Students’ Open-

ended Explanations for STEM Major Plan Changes 

Why do students decide to leave or persist in STEM majors? The SEVT delineates the 

ways that expectancy and subjective task value (EV) beliefs give rise to achievement-related 

choices (Eccles & Wigfield, 2020; Eccles et al., 1983). Quantitative studies show that students 

are more likely to persist and have long-term STEM career plans in a field if they can see 

themselves succeed in the field and perceive STEM major or careers interesting, important, 

useful and worthwhile to them (Lauermann, Tsai, et al., 2017; Musu-Gillette et al., 2015). Less 

understood is how often these factors emerge in individuals’ decisions in a natural setting. In 

quantitative studies, participants are prompted to reflect on their EV beliefs with a set of 

predetermined descriptions. This confirmatory approach is advantageous for testing the theorized 

relationship between EV beliefs and career choices, but it is limited to understand the decision 

process. As persistence decisions are actively made by students, what students consider and how 

they make their decision is central to STEM attrition.  

To address this gap in the literature, I investigated why STEM college students want to 

change their majors using their open-ended explanations. I examined how often students attribute 

their decisions to various expectancy and subjective task value beliefs. If they do so frequently 

enough, I then tested whether EV beliefs are linked to students’ persistence decisions. 
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Considering the gendered pattern of STEM attrition (Ma & Liu, 2017; Shaw & Barbuti, 2010), I 

explored potential differences in men’s and women’s reasons for their major plan change.  

Qualitative Findings on Students’ Explanations for STEM Career Choices 

 Students’ perspective about their reasons to choose or persist in STEM careers has been 

examined in several qualitative studies. Both EV-related reasons and other reasons have been 

found. 

EV-related reasons 

Students’ confidence to succeed in STEM and the subjective values associated with 

STEM career choices emerge in students’ narratives. All of the EV constructs, expectancy, 

interest, utility value, attainment value, and cost, have emerged in students’ narratives.  

Expectancy. In an interview study (DuBow et al., 2016), talented high school girls in 

computer science field explain why they continue to study in the field in college. They point to 

their strong sense of competence that were cultivated in prior STEM activities. Similarly, female 

freshman students in STEM majors attributed their choice of major to their confidence about 

their math and science ability (Edzie, 2014). They believe they can succeed in their field of study 

despite challenges.  

Interest. Strong Interest, particularly passion, in STEM careers is a consistent theme 

across multiple studies. Interest in STEM major or careers guide students’ decision to continue 

studying STEM in college, persisting in STEM majors or entering STEM occupations 

(Appianing, 2017; Bieri Buschor et al., 2014; Fouad et al., 2011; Talley & Ortiz, 2017). When 
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explaining STEM attrition decisions, college students also point to changes in interest, such as 

being attracted by a non-STEM major or faded passion about their original path (Appianing, 

2017).  

Utility value. Future career perspectives were important factors of choosing to leave or 

stay in STEM majors. Students evaluated the extent to which the major affords abundant job 

opportunities that were stable and well-paid (Appianing, 2017; Bieri Buschor et al., 2014; Edzie, 

2014; Fouad et al., 2011). In one study, job-related advantages were the top reasons for female 

minority students to choose STEM majors in college (Talley & Ortiz, 2017). On average, STEM 

jobs paid 40% higher than non-STEM jobs (Fayer et al., 2017), so the instrumental value is a 

clear advantage of STEM majors.  

Attainment value. Individuals choose careers that are personally important to them. This 

value may be expressed as related to different aspects of a person’s identity for different 

individuals. Eccles (2009) argued that individuals, especially adolescents, guide their choices 

based on their perception of who they are and what kind of person they want to be. This self-

image entails various aspects, such as gender and racial/ethnic identities, one’s personality and 

characteristics, terminal values that a person holds central to them (e.g., altruism), things that the 

person believe they ought to do and or that are proper to do, etc. Attainment value is part of 

students’ decision-making based on prior studies. Many of the studies focused on women in 

STEM, so gender identity was frequently mentioned in women’s explanations. Female role 

models motivated college students to choose and persist in STEM majors, and the lack of such 
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figures drive female students to question their choices (Appianing, 2017; Bieri Buschor et al., 

2014). Among women working in engineering jobs, they experienced both gender-related proud 

as well as discrimination in their daily experience; both the positive and the negative side of their 

gender identity affected their choices by leading them to commit or question their career choices 

(Fouad et al., 2011). Some students expressed a strong commitment to their STEM careers, 

because they could not envision themselves working outside of the STEM field of their choice 

(DuBow et al., 2016; Munyaka, 2017). Their field of study was an integral part of their identity. 

Some students chose STEM because they see a fit between what the field required and their 

personality (Talley & Ortiz, 2017). Altruistic motive was common reason for women to pursue 

STEM. They mentioned that their STEM careers could allow them to help others in their 

profession (Edzie, 2014; Fouad et al., 2011; Talley & Ortiz, 2017). In this case, altruism was the 

terminal value that were indispensable to the individuals, for both who they were and who they 

would like to be. In sum, in previous qualitative studies of individuals’ STEM career choices, 

attainment value was frequently mentioned in various forms and aspects. Particularly, it seemed 

particularly salient and influential for women’s decisions.   

Cost. Eccles and colleagues (Eccles & Wigfield, 2020; Eccles et al., 1983) theorized that 

individuals weigh both what they gain and what they have to lose for choosing a career. The 

types of costs include financial cost, opportunity cost (i.e., the loss of valued alternatives because 

of choosing one option), effort cost, social cost, and emotional cost (Wigfield et al., 2017). In a 

focus group study, STEM college students reported the cost of giving up sleep, strenuous 
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emotional struggles, and large amount of effort cost (Zocher, 2020). The high workload of STEM 

majors cost students time, effort, and leisure (Munyaka, 2017). For women, the demand of 

caretaking obligations was a prominent aspect of cost (Appianing, 2017; Bieri Buschor et al., 

2014; Fouad et al., 2011). One college student explicitly explained that she did not think it was 

worthy to give up the chance to start a family for pursuing a STEM career (Appianing, 2017). 

For female engineers, caretaking responsibility was a big factor in their considerations of 

whether to stay in their position (Fouad et al., 2011).  

In sum, the findings above suggest that students explained their STEM choices with EV 

beliefs: their descriptions of the reasons clearly aligned with the theorization of EV constructs. 

All of EV constructs appeared in students’ narratives. However, these studies are not particularly 

focused on the SEVT, so investigations about how EV beliefs affect STEM persistence decisions 

were limited. For instance, it is unclear whether and how often a student considers multiple EV 

constructs. If students decide to leave STEM, is it caused by declining, rather than elevating, EV 

beliefs, as suggested by the positive relationship between EV beliefs and choices (Eccles & 

Wigfield, 2020)? I will address this gap by carrying out a more detailed examination of EV 

beliefs in persistence decisions, with investigations on the cooccurrence and changes of EV 

beliefs.  

Other reasons 
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In addition to psychological factors such as EV beliefs, a variety of contextual factors 

have been found. In previous studies, students mentioned academic and instructional support and 

social influence.  

Academic and instructional support 

Instructors are the forefront of students’ learning experience. The lack of good 

relationship with faculty, feeling nervous around intimidating professors, and poor teaching 

quality could drive STEM students away (Lancaster & Xu, 2017; Talley & Ortiz, 2017). In these 

studies, students expressed that they felt unsupported when instructors did not make themselves 

available; large class size and inexperienced teachers also negative affected students’ motivation.  

Social influence 

Influences from parents, family members and peers have been a common theme across 

studies. STEM students described that their parents motivated them to study STEM majors by 

creating a stimulating learning environment at home, providing freedom and encouragement for 

daughters to choose STEM and expecting students to take on lucrative jobs (Bieri Buschor et al., 

2014; Talley & Ortiz, 2017). Some students were motivated by the need to make their parents or 

family members to take pride in the students’ achievement (Talley & Ortiz, 2017). Parents could 

also discourage students from choosing or persisting in STEM, for instance, by explicitly 

dissuading their child to avoid a STEM major for its the heavy schoolwork (Bieri Buschor et al., 

2014), or through the absence of parents’ help with homework and exam preparation (Zocher, 

2020). Friends and peers can influence students’ STEM choices as well, particularly for students 
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from underrepresented racial/ethnic backgrounds. For these students, having a peer group to 

study together not only offered practical help with their homework and exams but also created a 

sense of community to keep them motivated (Lancaster & Xu, 2017; Palmer et al., 2011; Zocher, 

2020).  

 The contextual influence from close social networks can indirectly influence individuals’ 

motivational beliefs and career choices (Eccles et al., 1983; Wigfield & Eccles, 2000). Parents, 

teachers and peers are influential source of social influence on adolescents’ STEM motivation 

and engagement (Kracke, 2002; Lazarides et al., 2017), and participants often tracked the 

development of their STEM motivational beliefs to the influences from people around them. 

However, considering that these contextual influences were indirect influences and were not 

often mentioned in previous qualitative studies, we keep a general category of “other reasons” to 

accommodate any explanations involving these contextual factors.  

Varied reasons for different decisions 

Empirical and theoretical evidence suggests that attrition and persistence decisions may 

be caused by different reasons. In an interview with biology undergraduates, Rosenzweig and 

colleagues (2021) found that a substantial portion of them change their career plans due to 

disenchantment of their original path or attraction to a new path. In particular, disenchantment is 

more likely to be the reason if students want to switch to career plans requiring less education, 

and attraction is more likely to lead to changes to career plans requiring the same or more 

education. The finding indicates that the decision process for attrition or persistence might be 
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different. However, in an interview study (Appianing, 2017), the same factor, such as prior 

performance, seemed affect persistence and attrition decisions in the same way. In this study, we 

expand evidence in this field by comparing the reasons for moving into STEM majors with the 

reasons for leaving STEM majors.   

Motivation and Persistence in Introductory Chemistry and Physics Classes 

 Introductory STEM courses are an influential period and context for students’ motivation 

and persistence. It is the primary venue for students to learn about their major in college, 

especially regarding the content material, workload and learning style (Clark, 2005). Moreover, 

students get to know about their peers and build their social groups, which can considerably 

shape their understanding about their future careers and major plan choices (Le et al., 2014). The 

new academic adjustment in introductory courses often coincide with the transition to college, 

posing multiple developmental challenges to the students. Prior findings show that students’ EV 

beliefs tend to decline throughout introductory courses (Larose et al., 2006; Young et al., 2018), 

potentially signaling the influence of the adjustment on students’ motivation. Considering the 

impact of motivational beliefs on students’ choice of major (Eccles & Wigfield, 2002, 2020), it is 

likely that students opt to leave the STEM majors of their choice. In this case, it is particularly 

useful to understand why students make their choices to identify maladaptive decision-making 

and impactful practices for promoting persistence. I will focus on students’ explanations for the 

changes in their major plan in introductory courses in my study.  
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Although the period of introductory courses features the exploration of college majors (Stebleton 

& Diamond, 2018), the formation of career choices in progress is understudied compared to the 

finalized choices, such as the major declaration in official registrar records or course enrollment 

in later years of college (Ashford et al., 2016; Toh & Watt, 2022). If inquired about their major 

choices, some students in introductory courses might find their decisions premature for official 

declaration. To improve the fit of the construct operationalization with the particular stage of 

introductory courses, I measure students’ certainty about their major plan to capture STEM 

major choices in its development.   

Gender differences  

 Traditional gender role socialization lead men and women to consider different aspects 

for choosing their majors in college. Previous findings show that men college students are more 

concerned with the status and the financial prospective of their future career as a means to 

provide for their family (Cattaneo et al., 2017; Mullen, 2014). In qualitative studies, some men 

explicitly discuss their “breadwinning” obligations and the shame if they fail to fulfill this 

expectation (Mullen, 2014). On the other hand, women college students are found to choose their 

major out of interest more often and are less concerned with their future earnings (Mullen, 2014; 

Quadlin, 2020). However, some researchers reported the lack of such gender differences (Cech, 

2016). Considering that STEM occupations are generally better paid than non-STEM 

counterparts, students who choose to major in STEM might similarly be motivated by the utility 

value of STEM majors regardless of gender. Another potential gender difference is that women 
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are more likely to choose STEM because of the altruistic values. They perceive it an important 

terminal value and see health-related STEM careers aligning with this value (Bieri Buschor et al., 

2014; Dicke et al., 2019; Edzie, 2014; Talley & Ortiz, 2017). However, most of the findings were 

reported in quantitative studies with a confirmatory approach, so it is unclear whether the 

differences spontaneously emerge in students’ considerations. Furthermore, evidence is scarce 

regarding whether expectancy and value beliefs relate to career choices in different ways for men 

and women. Men and women might only differ in the values they consider with subjective task 

values similarly relate to persistence decisions. In this study, I will extend this strand of literature 

by examining the gender differences in the reasons for students’ STEM persistence decisions.  

The Present Study 

In this study, I analyzed students’ open-ended explanations for changes in their STEM 

major plans. The study sample consisted of thousands of students over several years to explore 

the prevalent and differentiated patterns in students’ responses. The analysis narrowed in on the 

change of certainty in introductory courses, for capturing the role of EV beliefs in the process of 

decision-making. The link of these changes to explanations were tested to examine the extent to 

which different decisions (e.g., thinking about joining in versus moving out) depended on 

different considerations. Lastly, I tested for gender differences in these findings.  

To address these gaps in the literature, I investigated the following research questions in this 

study:  

RQ1: What are students’ explanations for changes in STEM major plans? 
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RQ1a: Do students mention EV beliefs in their explanations? If so, how often do they 

do so? 

RQ1b: If EV reasons are mentioned, are decreases in EV beliefs mentioned more 

often than increases?  

RQ1c: How often do students mention expectancy and subjective task value 

constructs together? When cooccurring, do expectancy and value beliefs affect 

students’ decisions in a corroborating rather than conflicting way?  

RQ2: How many students change their major plans by the end of introductory STEM 

classes in chemistry and physics fields?  

RQ3: Are the reasons for persistence decisions and attrition decisions different?  

RQ4: Do findings above differ by gender? 

Hypotheses 

Based on the qualitative findings on students’ explanations for their STEM choices 

(Appianing, 2017; DuBow et al., 2016), I hypothesize that EV beliefs will appear in students ’

explanations for their STEM persistence decisions with all five EV constructs to be found. 

Contextual factors (i.e., social influence from instructors, family and peers) were found in 

previous qualitative studies when participants were further asked about the formation of their 

motivational beliefs. Considering that the data in this study was collected in online surveys, I 

anticipated that contextual factors would be mentioned in only a small number of responses if 

any.  
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Among EV-related reasons, I hypothesize that more decreases in EV beliefs will be found 

than increases, because of the decline of motivational beliefs in introductory STEM courses on 

the average level (Musu-Gillette et al., 2015). Considering the positive correlations between 

expectancy and subjective task values in quantitative studies (Lauermann, Tsai, et al., 2017), I 

hypothesize that expectancy and value beliefs will cooccur in student’ explanations and change 

in the same direction to affect persistence decisions. Taking into account of previous qualitative 

findings on the differentiated reasons in STEM career choices (Appianing, 2017; Rosenzweig et 

al., 2021), I hypothesize that students will give different reasons for changing versus keeping 

their choice of major.  

Methods 

Participants 

Participants were 6,072 undergraduates in introductory chemistry and physics classes in 

academic years 2017-2018 to 2020-2021 from a large public Hispanic- and Asian-serving (HSI-

designated) university in the southwestern U.S. (59% women; 13% European American/White, 

28% Latino/a, 25% East Asian, 7% South Asian [e.g., Indian, Pakistani], 25% Southeast 

Asian/other Asian [e.g., Vietnamese, Pilipino], 2% African America; 49% first-generation college 

students; Meanage = 18.84 years old [SD = 0.91]). Students were enrolled in introductory 

chemistry (N = 3,415) or physics (N = 2,657) course sequences that are required for a variety of 

natural and health science majors in the university. At the end of the classes, students in the 

classes received an invitation to an online questionnaire about their attitudes about the course, 
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their major and future careers in the field. A $5 gift card was offered for participation in each 

survey to encourage responses.  

Measures 

Change in Major Choices 

Students were asked “How has this course affected your major choice?” Students chose 

from three response options: “It made me less certain about my original major”, “It had no 

effect”, and “It made me less certain about my original major”.  

Explanations for Changes in Major Plan  

Students were asked “Have your major plans changed since the beginning of the 

quarter?” (0=no, 1=yes). If students answered yes, they were asked how and why their major 

plan has changed, with a text-entry box to enter open-ended explanations. This question with 

branching was used in academic years 2017-2018 and 2018-2019. In academic year 2019-2020 

and following years, the branching between the two questions was removed to increase question 

responses. Thus, students were asked an independent question of how and why their major plans 

has changed throughout the time of the quarter.  

Quantitative Measures of Expectancy-Value Beliefs 

 The quantitatively measured expectancy and subjective task value beliefs was used to test 

the replicability of the qualitatively reported beliefs in open-ended explanations. All of the items 

were measured on seven-point Likert scale (1 = Not at all true, 7 = Very true). The exact same 
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measures were used in the baseline and final surveys. Confirmatory factor analyses were carried 

out and confirmed that all items under a scale loaded onto one factor.  

Expectancy. Expectancy was measured by four items. A sample item was “I am 

confident that I will do well in this course”. The Cronbach’s α of the scale in the baseline and the 

final surveys were .86 and .91 respectively.  

 Interest. Interest was measured by ten items. Sample items include “I enjoy learning 

about chemistry/physics”, and “I think the field of chemistry is very interesting”. One negatively 

worded item was reversely coded before added to the scale. The Cronbach’s α was .91 and .93 in 

the baseline and final surveys.  

 Utility value. Utility value was measured by seven items. A sample item was “Chemistry 

can be useful in my everyday life.” The Cronbach’s α were .84 and .86 respectively on the 

baseline and final survey.  

 Attainment value. Attainment value was measured by four items. A sample item was 

“The study of chemistry is personally important to me.” The Cronbach’s α of the scale on the 

baseline and final survey was .87 and .89.  

Analyses 

To answer the first question, the frequency and percentage of change in major choices 

were counted. To examine whether gender was associated with different changes in major 

choices, a Chi-square Test of Independence was conducted. The standardized adjusted residuals 
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were calculated for each cell to indicate an over- or underrepresentation of a gender group in a 

given type of responses.  

To understand students ’explanations for their persistence decisions, the open-ended 

responses on the final survey were coded in a deductive manner, with a phenomenological 

approach to identify theoretical categories (Kuckartz, 2019). A coding scheme was developed 

with the definition of EV constructs (i.e., expectancy, interest, attainment value, utility value and 

cost) and other categories. Examples of responses for each category are listed in Table 3.1. The 

coding scheme was tested by a trained research assistant on a different dataset and revised after 

the pilot coding. Six categories of responses were finalized: 1) EV-related explanations, 2) other 

reasons, 3) vague reasons, 4) just describing the changes in major plan without giving 

explanations, 5) “I don’t know”, and 6) reporting no change in major. These categories are 

mutually exclusive.  

If EV constructs were mentioned, further differentiations were made to identify the kind 

of EV construct and its change. Coders mark whether expectancy, interest, attainment value, 

utility value or cost was mentioned. Considering that expectancy and subjective task values 

jointly influence career choices and that subjective task values have various components (Eccles 

& Wigfield, 2002), one response was allowed to be marked on more than one EV construct. The 

total number of value constructs (i.e., interest, utility value, attainment value and cost), as well as 

the total number of EV constructs, in each response were counted. For each EV concept that was 

mentioned, coders coded whether the belief was described as increasing or decreasing over time. 
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Based on the Internal/External Frame of References (Wolff et al., 2019), changes in an EV belief 

could result from temporal comparisons, comparing with the students’ own belief earlier in the 

quarter, from social comparisons, comparing with other students in the same subject, or from 

internal comparisons of available options, namely comparing with a different major that the 

student was considering about. For instance, a student realizing they could do better in the 

subject than they initially expected would be coded as an increase in expectancy because of 

temporal comparison. If a student mentioned they found another major more interesting to them, 

the interest value of their original major would be coded as decreasing. The change in subjective 

task value were synthesized across four value constructs. Changes in cost beliefs was reversely 

coded because it represents the sacrifices and burden that is attached to an option (Eccles & 

Wigfield, 2020). The change in all EV constructs were synthesized in the same way.   

The responses were coded by two undergraduate research assistants who were naïve to 

EV theories prior to this study.  I trained them based on a coding scheme with a sample coding 

sheet using responses from a pilot dataset. A total of 30 responses were randomly sampled for 

checking the quality of their coding. The inter-rater reliability is .87.  

To examine the association between changes in major choices and the explanations for 

change, a Chi-square Test of Independence, or the Fisher’s Exact Test when cell sizes were 

small, was used. The results could indicate whether students gave different explanations for 

different changes in major choices (i.e., whether they became more certain about their original 

major or became less certain about their original major). To test the gender differences in the 
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types of explanations, changes in EV beliefs, the types of combinations of EV beliefs and 

persistence decisions, a Chi-square Test of Independence was used for each association. A three-

way Chi-square Test was carried out to examine whether the relationship between students ’

explanations and persistence decisions varies between gender.  

Replicability Check of Qualitatively Reported EV Belief Changes 

The data collection of the project was part of a random control trial classroom 

intervention, with one additional survey sent out at the beginning of the classes. The combination 

of the baseline and the final survey provides a longitudinal measure of students ’motivational 

beliefs from the beginning to the end of introductory STEM courses. In the two questionnaires, 

EV beliefs were surveyed in form of repeated measures. They are traditional quantitative 

measures with Likert-scale items. Constructs included expectancy, interest, attainment value and 

utility value. This quantitative data provided an excellent opportunity to examine whether 

students’ qualitatively reported EV beliefs changed in the same way as measured by quantitative 

instruments. For example, did students who reported a decrease in their expectancy in the open-

ended responses have lower expectancy scores on the Likert-scale items at the end of the class 

than at the beginning? Mixed-model Analyses of Covariance (ANCOVA) were carried out to 

examine this question. Reporting decrease or increase of an EV construct was the between-

subject factor in the model, and time (i.e., the baseline and final survey measures) was the 

within-subject factor. Covariates were gender, intervention condition and subject.  

Missing Data 
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Students were voluntary to fill out the open-ended question about their reasons for 

changing their majors, so self-selection of participation is a major source of bias. To examine the 

extent of this bias, missing data analyses was carried out. Students who responded to the open-

ended question were compared with students who did not, with regard to their gender, ethnicity, 

first-generation college-going status, subject (chemistry or physics), treatment condition in a 

random control trial intervention, the EV beliefs measured by Likert scale items on the same 

survey. Independent sample T-test was carried out for continuous variables, and Chi-square Test 

of Independence was used for categorical variables. We found that students who responded to 

open-ended question to explain changes in their majors had lower scores on expectancy, interest, 

utility value and attainment value with small effect sizes than non-respondents (.09 ≤ Cohen’s d 

≤ .14, Table 3.2). Gender, ethnicity, first-generation college-going status or intervention 

condition were unrelated to question participation (Table 3.2). Nonetheless, course subject was 

related, such that more chemistry students than expected filled out the question, and fewer 

physics students than expected answered the question, χ2 = (1, N = 5975) = 5.60. However, this 

association was minimal, with a Cramer’s V of .03.  

Results 

Explanations for change in major plan 

 Regarding the first question, a total of 1309 students gave EV-related explanations, other 

reasons, vague explanations, or said “they don’t know”, reported no change in their major plans 

or just described the change of their major plans without explaining it (Figure 3.1). Sample 
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responses for each category was presented in Table 3.1. The most common responses were 

reporting no change in major plans (35%, e.g., “My major didn’t change”), providing EV-related 

explanations (34%, e.g., “I lost interest in engineering”, “I realize I can do more than I think I 

can”, “The road is long and the payoff is not that great”) and giving description-only responses 

(25%, e.g., “(I) took on a double major”). EV-related explanations comprised of nearly 90 

percent of responses with explanatory information (440 out of 502 responses), more common 

than other reasons or vague reasons.  

 Among 38 responses of other reasons, no responses pertained to social influence from 

instructors, family or peers. Instead, major declaration regulation related reasons was a common 

explanation. For instance, one student said “(I) can't get to needed class due to various major 

restrictions”. Similarly, a student said, “I didn’t pass chemistry so I have to retake”, and another 

student said “My gpa is too low”, indicating the requirement of course completion and grades for 

declaring in their originally intended major. Another type of responses pertained to the barrier to 

enroll in or complete major-required courses. For instance, a student said “(my major changed) 

From PH Science to PH Policy, b/c couldn't fit science classes into my second year”, and another 

student said “(I) Can't get to needed class due to various major restrictions”. These regulation-

related reasons appeared in nearly half of the “other reason” responses (17 out of 38 responses). 

Another eight responses related to the need to explore and know more about alternative major 

options, such as “I want to see what MSE is like”, and “I want to look for more options for 

myself”. Another five students explained that the decision changed because of changes in their 
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perspectives and understanding, such as “different perceptions on subjects” and “New 

Perspective on Life”. The rest of eight explanations related to individualized reasons, such as 

“financial issues”, or vague reasons, “The classes I will be taking in my future years at UCI”.  

 In a closer inspection of EV-related explanations, more decreases than increases were 

found on expectancy, interest, utility value and attainment value, and more increases than 

decreases were reported on cost beliefs (Figure 2).  

 Across the 440 EV-related explanations, 92 of them only pertained to expectancy, 323 

subjective task value(s), and 25 included both expectancy and value beliefs (Table 3.3). A 

predominant portion of EV-related responses contained one EV concept (86% of 440 responses). 

A total of 60 EV-related responses included multiple EV constructs: expectancy-value 

combination appeared in 25 of these responses, and multiple value constructs appeared in the rest 

35 responses. When the students mentioned expectancy and value constructs together, 24 

students reported that their EV beliefs changed in the concordant direction, e.g., both expectancy 

and subjective task values increasing (in 4 cases) or both decreasing (in 20 cases). One student 

reported their EV beliefs changing in different directions: the student had a growing interest in 

their major but found it more difficult than they expected.  

Changes in major plan and the association with explanations 

 By the end of the quarter, 56% students reported no change in their plan of college major. 

Among the rest of 44% of students, 25% became less certain about their major and 19% became 

more certain about their major.  
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 Chi-square Test of Independence suggested an association between the change in 

students’ major plan and their explanations for such change, χ2 (10, N = 439) = 57.41, Cramer’s 

V = .26. Adjusted standardized residuals suggested that students mentioned some reasons more 

often than expected by chance (Table 3.4). If a student became less certain about their major, 

decreases in expectancy and decreases in both expectancy and value were mentioned more often 

than expected by chance. Meanwhile, increases in values were less often the explanation than 

expected. If a student reported no change in their major plan, an increase in value(s) were more 

often the reason than expected; decreases in expectancy and value as well as decreases in 

expectancy were mentioned less often than expected. If a student became more certain in their 

choice of major, increases in values were attributed to more often than expected.  

Ruling Out Differences in Results by Course Subject 

In the missing data analyses, course subject was found to relate to whether a student responded 

to the open-ended question. To examine whether the content of students’ responses varied across 

subjects, Chi-square Tests of Independence were carried out to examine whether course subject 

was associated with the content of the open-ended responses or with the patterns of EV-related 

explanations. Results suggested that course subject was related to the content of open-ended 

responses, χ2 = (5, N = 1309) = 21.41. Among students who responded to the open-ended 

questions, more chemistry students than expected gave EV-related explanations, and more 

physics students than expected said that their major plan did not change. The effect size of this 

association is small, Cramer’s V = .13. Course subject was not related to students’ EV-related 
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explanations. Specifically, students in chemistry and physics classes did not differ in how many 

EV constructs they mentioned, χ2 = (2, N = 440) = 1.13, or the ways that their EV beliefs 

changed, χ2 = (5, N = 439) = 6.79. Therefore, no additional tables were used to present findings 

in chemistry and physics classes separately.  

Gender differences 

Gender Differences in the Content of Responses 

Findings discussed above varied between gender. Men and women gave different 

responses to explain changes in their major plans: the most common response among men is 

reporting no change in their major (40.0%), whereas the most common response among women 

is giving EV-related explanations (37.0%, Figure 3). Chi-square Test of Independence shows a 

statistically significant association between gender and the type of responses, χ2 (5, N = 1284) = 

22.45, p < .001, Cramer’s V = .13. Based on the adjusted standardized residuals, more men than 

expected gave other reasons, vague reasons or reported no change in their major(s), whereas 

more women than expected gave EV-related reasons.  

Among EV-related explanations, decreases in value(s) were mentioned the most frequently by 

both men and women (Table 3.5). Increases in one or multiple subjective task value beliefs were 

the second common type of responses among men, whereas the second common response type 

for women was decreases in expectancy, χ2 (5, N = 428) = 11.65, p = .04, Cramer’s V = .17. 

More men than expected reported increases in subjective task values, whereas fewer women than 
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expected did so. Men and women reported similar number of EV constructs χ2 (2, N = 429) = 

0.06, p = .97, Cramer’s V = .01.  

 Looking into each of the EV beliefs, men and women reported different changes in their 

expectancy, χ2 (1, N = 113) = 4.32, p = .04, Cramer’s V = .20, and cost, Fisher’s exact test, two-

tailed, p = .04 (Figure 4). More women than expected reported a decrease in their expectancy, 

whereas more men than expected reported an increase in their expectancy. In terms of cost, more 

women than expected perceived an increase in the cost of pursuing their majors, whereas more 

men than expected reported a decrease in their perceived cost of the major the change in interest, 

utility value and attainment value did not vary between men and women.  

Gender Differences in Changes in Certainty about Major Plan 

By the end of the introductory chemistry and physics classes, men and women had 

different thoughts about their original major, χ2 (2, N = 5369) = 80.02, p < .001, Cramer’s V 

= .12. More women than expected said they became less certain about their original major. 

Meanwhile, more men than expected reported no change in their certainty about their major plan. 

Gender Differences in the Association Between Explanations and Changes in Certainty about 

Major Plan 

Men and women gave different attributions for changes in their major plans, χ2 (10, N = 

439) = 54.71, p < .001, Cramer’s V = .25 (Table 3.6). Among those becoming less certain about 

their original major, women attributed it to decreases in their expectancy or decreases in both 

their expectancy and subjective task values more often than expected; in comparison, men tended 
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to attribute it to decreases in their expectancy only. Among students who perceived no change in 

their major plans, women explained they had higher subjective ask values about their original 

major more often than expected, whereas men explained they had higher values or higher 

expectancy. Among students who became more certain about their original major, men attributed 

to increases in subjective task values more often than expected, whereas no reasons were 

particularly more likely to be mentioned by women.   

Replicability Check of Qualitatively Reported EV Belief Changes 

 A mixed-model ANCOVA was carried out for each one of the expectancy, interest and 

utility value constructs because of sufficient group sizes at both levels of the between-subject 

factor (reporting increase or decrease of an EV belief). The assumption of homogeneity of 

variances, which states that the increase group and the decrease group had equal error variance, 

was tested by the Levene’s Test of Equality of Error Variances. Another assumption, which is 

homogeneity of the variance-covariance matrices, is unique to mixed-model 

ANOVA/ANCOVA. It assumes that the correlation between the within-subject measures is 

equivalent across the between-subject groups (Murrar & Brauer, 2018). For instance, the group 

reporting an increase in interest and the group reporting a decrease in interest should have an 

equal correlation between the baseline and the final measures of interest. The Box's Test of 

Equality of Covariance Matrices was used to examine whether this assumption was met. Results 

showed that both assumptions were satisfied for the three models.  
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 In each model, time was entered as the within-person factor, and group (describing 

increase or decrease of an EV belief in the qualitative response) was entered as the between-

person factor. The interaction effect between time and group was tested. In addition, three 

interaction effects were entered as control variables: the interaction between time and gender, 

between time and subject and between time and intervention condition.  

Results of the interaction effect between time and group are shown in Table 3.7, with estimated 

group means. A statistically significant interaction between group and time was found for 

expectancy, F(1, 91) = 4.84, p = .03, partial eta squared = .05, and interest, F(1, 153) = 6.00, p 

= .02, partial eta squared = .04, but not for utility value, F(1, 61) = 0.06, p = .80, partial eta 

squared = .001. The tests indicate that the way that expectancy or interest score changed on the 

Likert scale measures varied by whether the students reported an increase or decrease of the 

belief in open-ended responses. Inspection of estimated group means and confidence internals 

revealed the pattern of the differences. For expectancy, students who described a decline of 

expectancy in qualitative data had lower expectancy survey score at the end of the class (M = 

3.34, SD = 0.15) than at the beginning (M = 4.51, SD = 0.14). Students who described an 

increase of expectancy in qualitative responses did not have statistically significant changes in 

their expectancy score from the beginning (M = 4.63, SD = 0.36) to the end of the class (M = 

4.54, SD = 0.41). For the interest belief, students describing an increase in qualitative responses 

showed a trend of increasing interest on Likert scale measures (beginning of class: M = 4.71, SD 

= 0.21, end of class: M = 4.87, SD = 0.21), and students describing a decrease showed a trend of 
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decreasing interest on survey measures (beginning of class: M = 4.33, SD = 0.13, end of class: M 

= 3.97, SD = 0.13). However, the changes in the estimated group means were not statistically 

significant for either group indicated by overlapping confidence internals.  

Discussion 

 In this study, I investigated the reasons or STEM persistence decisions, using students’ 

own explanations for changes in their major plans. As hypothesized, changes in EV beliefs were 

the most common type of explanation among responses entailing explanatory information. 

Moreover, changes in subjective task values were mentioned more frequently than changes in 

expectancy. Major declaration regulations, the need to explore major options and becoming 

aware of new options were three most common other reasons, and social influences from 

instructors and family members rarely appeared in the sample. As hypothesized, students gave 

different explanations for how their major plans changed by the end of introductory STEM 

classes: students who became less certain tend to attribute their decisions to a decline in 

expectancy or declines in both expectancy and subjective task values, whereas students who 

became more certain tend to attribute their decisions to an increase in subjective task values.  

SEVT in Naturalistic Career Decision-Making 

My findings based on qualitative responses expanded quantitative results on STEM 

motivation and persistence during early years of college. Some results echo with prior 

quantitative findings. For example, in this study, subjective task value constructs were more 

frequent reasons for changes in college major plans than expectancy, suggesting that subjective 
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task values play a bigger role than expectancy when students evaluated their majors in 

considerations of switching or maintaining their major plans. This message is consistent with 

previous quantitative findings that career choices were more often associated with subjective task 

values than with expectancy (Bong, 2001; Lazarides & Lauermann, 2019; Meece et al., 1990).  

More importantly, my study yielded new findings. First of all, among subjective task value 

constructs, interest was the most frequently mentioned by students, followed by utility value and 

attainment value. This prevalence of interest replicates previous findings in qualitative studies 

(Bieri Buschor et al., 2014; Munyaka, 2017; Talley & Ortiz, 2017). Interest belief is not only 

intuitive to think of and its prevalence also reflects the predominant cultural ethos of “pursuing 

your passion” in U.S. universities (Stephens et al., 2012). Students are encouraged by the cultural 

context to explore and pursue fields of their interest. At the same time, the importance of utility 

value suggests that students also take into account of the practical value of their college 

education. The vast majority of utility value explanations pertained to future careers, so the 

planful alignment between the choice of major and long-term career goals may be potentially 

adaptive for entering the labor market. Identity-related reasons, which have been a frequent focus 

of many studies on STEM persistence and attrition (Dou & Cian, 2022; Kim et al., 2018), did not 

turn out to be a common reason that students in our sample considered. This result was 

particularly worth noting considering that our sample consisted of a sizable portion of 

underrepresented racial minority students and first-generation college students. One possible 

explanation might be students’ daily exposure to a diverse student body on campus and in their 
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majors. In this study, European American students took up less than 20 percent of the sample, 

with comparable portions of Latino students, East Asian students and Southeast Asian students. 

At the same time, first-generation college-going students comprised nearly half of the sample. 

Therefore, the reality might have assured underrepresented racial minority students and first-

generation students that their social groups are well-represented in STEM classrooms. In this 

case, the need to identify with a social group in the context (e.g., to identify as STEM students 

who fit in the STEM classrooms) may not be as strong as in a classroom with less diverse 

demographics. In addition, the campus bore a comparably diverse student body. As a result, 

identity-related factors may be present in other aspects of the students’ college life and thus less 

particular to STEM-related career choices. Secondly, I discovered that different EV factors are at 

play when students considered leaving versus persisting in their chosen major. I found that 

subjective task value explanations were particularly frequent when students considered entering 

or persisting in STEM majors, whereas expectancy was particularly mentioned when students 

considered leaving. Previous quantitative findings on the association between expectancy-value 

beliefs and career choices revealed uniform associations, such that choices of a particular field 

depended on the level, not the type, of motivational beliefs (Bong, 2001; Lazarides & 

Lauermann, 2019; Meece et al., 1990). Our results revealed the differential roles of expectancy 

and subjective task values in the decisions to leave and to move in/persist respectively. This 

finding might indicate different targets for efforts to reduce STEM attrition versus to promote 

STEM entry. If the goal is to attract more students to choose or persist in STEM majors, the 
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finding supports strategies to make the course more valuable to students, such as more 

interesting, useful, important and/or less costly. If the aim is to alleviate attrition, then the finding 

suggests maintaining students’ confidence to do well in the major. Yet, more research is needed 

to replicate this finding and explain the psychological mechanisms for this pattern. Another 

possible explanation for the finding is that individuals with different career trajectories might 

consider different factors for choosing a major. That is, the finding might pertain less to how one 

individual makes different decisions but how the subgroup intending to leave and the subgroup 

intending to persist make decisions. The students who became more certain about their majors 

might share certain characteristics that lead them to persist by the end of introductory courses 

and to attribute their choices to values. One such characteristics might be conscientiousness. 

Findings in counseling psychology showed that individuals with high level of conscientiousness 

tended to use planful problem-solving strategies to cope with non-interpersonal stresses 

(DeLongis & Holtzman, 2005). Therefore, conscientious students might be more likely to find 

out practical, adaptive solutions to handle academic and career-related challenges and thus stay 

on track with their original major plans. At the same time, higher level of conscientiousness was 

linked to stronger regulations of achievement behaviors with internal values and interest (Wilmot 

& Ones, 2019). Therefore, conscientious students might explain their choices with values more 

often. This explanation needs examination of the causal relationship, but it suggests that the 

varied explanations for different decisions might be due to between-person differences. This 

study is limited for distinguishing the within-person and the between-person factors, and more 
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generally, follow-up research is needed to clarify why expectancy and subjective task values 

differentially relate to in attrition versus persistence decisions.  

Major declaration policies, the need to explore major options, and awareness of new 

major options are other three common reasons. Explanations related to major declaration policies 

concerns with the time, course history and performance level required for choosing a major. It is 

worth noting that this policy-related factor appeared in this study but not in previous qualitative 

studies with participants’ retrospective reports. This factor might be regarded as too trivial to ask 

in interviews, compared with students’ motivation, instructional influence and social support. It 

is also possible that the major declaration policies affect edstudents’ on-going persistence 

decisions more strongly than when students look back on their decisions. Institutions may vary in 

their regulations about major selection and declaration, so this finding may be specific to our 

sample. Yet, our finding points to the regulatory power of institution policies on students’ 

changes in their major. The other two reasons reflect the particular stage of career decision-

making that students were at in introductory courses. The need to explore major options and the 

awareness of new major options suggest that the students were gathering information and 

examining majors that they previously had not known of or considered. They are the two sides of 

the same coin of career exploration. Based on theories of career development and identity 

development (Eccles & Wigfield, 2020, Gottfredson, 1981, Marcia, 1980), exploring a variety of 

career options before committing to a chosen path signals adaptive development. Universities 



 

199 
 

can promote the exploration by providing the time and resources through major declaration 

policies and career advising.  

Contrary to my hypothesis, influences from instructors, family and peers did not appear 

to be a frequent reason for students’ entry or withdrawal from their original major based on the 

open-ended responses. One explanation might be that the influence of these important socializers 

affected career decisions through students’ domain-specific beliefs, as Eccles theorized in SEVT 

(Eccles et al., 1983). The affective experience attached to the social interactions might have 

transformed into the positive and negative attitudes that students hold about an activity or an 

aspect of a field. In addition, due to the survey data collection method, students were not 

prompted to further elaborate on how and why their expectancy-value beliefs evolved throughout 

the course. As a result, the contextual influence did not come across as a common theme as in 

previous interview studies.  

In this study, responses were coded based on a predetermined coding scheme of EV 

constructs. The goal was to explore the role of motivational beliefs in persistence decisions in 

qualitative data. Findings about the EV-related explanations in this study are consistent with 

previous studies on SEVT using quantitative data. Among responses with specific explanations, 

EV-related reasons took up nearly ninety percent of the answers. The prevalence shows the 

substantial explanatory power of EV beliefs. In addition, the fact that EV beliefs could be 

frequently identified in students’ daily language suggests the robust ecological validity of these 

concepts. Students spontaneously described EV beliefs when they were asked to explain their 
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persistence decisions. It shows that the EV concepts were an integral part of career decision-

making in its naturalistic setting. These constructs were also identified in previous qualitative 

studies which did not bear the aim to identify EV concepts (e.g., Edzie, 2014; Fouad et al., 

2011). Therefore, it can be concluded that EV concepts substantially cover the beliefs that 

directly determine career persistence decisions.  

Gender differences in Response Pattern, Motivational Changes and Explanations 

Overall, women reported negative motivational changes in EV explanations and more 

withdrawal intention about their major plan than expected by chance. These findings converge 

with prior literature on gender differences in STEM motivation in introductory courses (Hardin 

& Longhurst, 2016). Meanwhile, some unexpected gender differences were found. When 

answering why their major plans changed, women gave more EV-related explanations than 

expected by chance, whereas men tended to report no change or give no or vague explanations. 

This difference might be due to women reflecting more often on their personal traits than men do 

and tend to communicate these thoughts (Belenky et al., 1986; Csank & Conway, 2004). Because 

EV attitudes are major-specific self-beliefs, women might be more inclined to connect their 

persistence decisions to these beliefs than men in our study. Data collection methods with more 

interactions with participants, such as interviews, could be used to prompt self-reflection with 

men and thus address some of this gender discrepancy in response behaviors.  

Men and women also showed nuanced differences in their EV-related explanations. 

Women reported more decreases in expectancy and more increases in cost than expected by 
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chance but not more decreases in other value constructs. This combination suggests that women 

found their majors important, interesting and useful as much as men did with similar 

developmental trends over time, but disproportionally more women became increasingly 

discouraged about their future success and found their majors increasingly costly during 

introductory courses. As a result, by the end of the course, the women might be likely to develop 

a motivational profile with high valuing and low expectancy relative to men. Based on prior 

findings, this profile was particularly linked to a high level of worry about future performance 

(Lauermann, Eccles, et al., 2017). Worries about academic performance related to lower 

academic achievement (Hong et al., 2015), which can further undercut motivation. On average, 

women experienced less positive affect and stronger withdrawal motivation than men in science 

classes (Moeller et al., 2015). Findings from this study points to the consequential link among 

EV motivational beliefs, academic emotion and persistence decisions.  

When women and men explain their persistence decisions with EV beliefs, expectancy 

appear to be more influential for men than women. When explaining why they wanted to change 

their original major, both men and women tended to point to expectancy with women 

additionally mentioning the combination of expectancy and subjective task values. Likewise, 

subjective task value was particularly mentioned when students perceived no change in their 

major plans, but men additionally mentioned expectancy more often than by chance. Men’s 

tendency to evaluate their future success in their field might be due to the quest for status and 

power. Men college students in liberal arts college expressed their struggle to find careers that 
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are both lucrative and intellectually fulfilling (Mullen, 2014). These men resolve this dilemma by 

discontinuing the pursuit of their intellectual interest in choosing major or employment. 

Researchers can examine the long-term consequences of men’s choice to conform to the 

“breadwinner” role in their career in future research.  

Cultural Specificity of Adaptive Career Motives 

More discussions have accumulated in recent years to question the generalizability of the 

common motives of career choices. Some scholars point out that exclusively prioritizing 

passions may lead to negative career outcomes for first-generation college students. Stebleton 

(2019) argued that these students are not equipped with the capital that helps to secure a lucrative 

job when their passion fails to support their living; at the same time, the students often face 

pressing need to provide for and support their families in various forms. Therefore, it is critical 

for academic and career advising services to help students make informed decisions to achieve a 

balance between various needs and motives. Cross-cultural studies between individualistic and 

collectivistic cultures indicate varied priorities that people place on passion and social 

obligations. Researchers found that passion was considered problematic and less endorsed by 

participants as a career motivation in a collectivistic culture, partially because of its conflict with 

fulfilling social obligations (O’Keefe et al., 2021). This pattern can be understood through the 

personal and social identities embedded in the attainment value (Eccles, 2009). The pursuit of 

passion might reflect more of an individualistic motive, which may not align with the person’s 

social roles and responsibilities from a collectivistic perspective. These findings suggests that 
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individuals’ career choices are situated in their cultural contexts, so what is considered as 

adaptive career motives may vary across the cultural backgrounds.  

Limitations of Qualitative Survey Responses 

 In about 25 percent of responses, students only described the ways that their major plans 

changed without explaining them. More information could have been gathered if these responses 

had been followed up to prompt explanations. This limitation is caused by the one-directional 

communication in survey data collection. In the future, researchers can use interviews to ask 

further questions through conversations. Another limitation of the current question prompt is that 

the question included both “how” and “why” major plans changed. It can be divided into 

separate questions to increase responses of explanations.  

 The response rate on the open-ended question is around 20 percent, causing the lack of 

representation of the respondent sample. Missing data analyses showed that the participants had 

lower scores on quantitative measures of expectancy, interest, attainment value and utility value 

by the end of the course than the non-participants. Therefore, our sample might over-represent 

students who were thinking about leaving their majors and underrepresent students who 

considered persisting. Negativity is a common bias in survey reports, such that individuals with 

negative opinions are more likely to respond to survey questions (Poncheri et al., 2008).  

Alternative data collection, such as follow-up surveys or interviews with purposive sampling 

method, can be used to address this limitation.  
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Conclusion 

 Using qualitative survey responses, this study provided useful insights about the ways 

that college students decided on persisting or switching their majors. The findings not only 

revealed what students considered, but also the inter-relations of these considerations, their 

relative importance in the decision-making, and their differentiated roles in attrition versus 

persistence choices. In addition, we showed expectancy beliefs played different roles in men’s 

and women’s decisions. Taken together, these results provide a more coherent understanding 

about the various aspects of why students choose to stay or leave STEM majors.   
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Table 3.1 

Sample responses of explanations 

Construct Example 

Expectancy 
“Not sure if I can do well in physics.” “I realized I can do 

more than I think I can.” 

Interest 
“I lost interest in engineering.” “I took the class this quarter 
and I really enjoyed the material more than any of my other 

courses!” 

Attainment value 
“I realized I didn't really fit in the health sciences” “I decided 

that is was not the path for me” 

Utility value 
“It seems to offer a lot more career opportunities” “I have 

decided to choose this major so that I can have a good 
science background to prepare me for medical school” 

Cost 
“The road is long and the payoff is not that great.” “the 

classes I’m taking are affecting my mental health.” 

Other reasons 
“I might not be able to declare into BME due to time 

restrictions of undeclared.” “I've had the opportunity to 
explore” 

Reason(s) vague 
“Realized I don’t want to be a bio major” “Because of 

Physics” 

Only describing major change 
“Changing to CsE (computer science engineering).” “Took 

on a double major” 

“I don’t know” “idk” “I am no longer sure of what I plan to study.” 

No change of major “It doesn’t change.” 
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Table 3.2 

Results of missing data analyses 

 Missing 
sample 

Analysis 
sample 

Test statistics p  Effect size 

 n n   Cramer's V 

Women 2731 761 
χ2(1, N=5877) = 

0.29 
.59 .01 

Race/ethnicity   χ2(5, N=5494) = 
4.89 

.43 .03 

White 561 145    

Latino 1175 339    

East Asian 1071 275    

Southeast 
Asian/other Asian 

1075 325    

South Asian 290 72    

Black 131 35    

First-generation 
college student 

2212 649 
χ2(1, N=5855) = 

1.24 
.27 .01 

Subject   
χ2(1, N=5975) = 

5.60 
.02 .03 

Chemistry 2623 792    

Physics 2032 528    

Intervention 
condition 

2334 655 
χ2(1, N=5902) = 

0.03 
.86 < .01 

EV belief scores Mean (SD) Mean (SD)   Cohen's d 

Expectancy 4.61 (1.48) 4.45 (1.52) t(5734)=3.35 < .001 .11 

Interest 4.36 (1.37) 4.24 (1.37) t(5733)=2.82 .005 .09 

Attainment value 4.59 (1.48) 4.39 (1.52) t(5508)=4.31 < .001 .14 

Utility value 4.91 (1.19) 4.79 (1.21) t(5629)=3.10 .002 .10 
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Table 3.3 

Frequency of various combinations of EV beliefs mentioned in EV-related explanations 

Content Frequency Percentage 

Only pertaining to E 92 21 

Decrease in E 79 18 

Increase in E 13 3 

Only pertaining to V  323 73 

Decrease in V 244 55 

Increase in V 79 18 

Pertaining to both E and V 25 6 

Decrease in E and V 21 4 

Increase in E and V 3 1 

Decrease in E and increase in V 1 1 

Including 1 construct 380 86 

Including 2 constructs 51 12 

Including 3 constructs 9 2 

Total 440 100 

Note. E = expectancy. V = subjective task values.  
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Table 3.4 

The distribution of EV-related explanations across different types of persistence decisions 

 

Decrease 
in E 

Increase  
in E 

Decrease 
in V 

Increase  
in V 

Decrease in  
E & V 

Increase in 
E & V 

Total 

Persistence decision 

Less certain about original major  61+ 6 134 23- 20+ 1 245 

No change 12- 7 89 43+ 0- 1 152 

More certain about original major 6 0 21 13+ 1 1 42 

Total 79 13 244 79 21 3 439 

Note. +/- denotes overrepresentation and underrepresentation of students in a specific cell, with an adjusted standardized residual score 

no less than 1.96 or no greater than -1.96.  
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Table 3.5 

Frequency of various combinations of EV beliefs mentioned in EV-related explanations 

Content Women Men 
Chi-square Test for 
gender differences 

Only pertaining to E 63 (22%) 27 (18%) 

χ2 (5, N=428) = 
11.65, p = .04, 

Cramer’s V = .17 

Decrease in E 57 (20%) 20 (13%) 

Increase in E 6 (2%) 7 (5%) 

Only pertaining to V  199 (71%) 117 (78%) 

Decrease in V 157 (56%) 82 (55%) 

Increase in V 42 (15%)- 35 (23%)+ 

Pertaining to both E and V 18 (7%) 5 (4%) 

Decrease in E and V 16 (6%) 3 (2%) 

Increase in E and V 2 (1%) 1 (1%) 

Decrease in E and increase in V* 0 (0%) 1 (1%) 

Including 1 construct 242 (87%) 130 (87%) 
χ2 (2, N=429) = 
0.06, p = .97, 

Cramer’s V = .01 
Including 2 constructs 32 (11%) 16 (11%) 

Including 3 constructs 6 (2%) 3 (2%) 

Total 280 (100%) 149 (100%)  

Note. +/- denotes overrepresentation and underrepresentation of students in a specific cell, with 

an adjusted standardized residual score no less than 1.96 or no greater than -1.96.  

 

 

                                                           

*
 Excluded from Chi-square test of gender differences because of limited cell frequency.  
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Table 3.6 

Associations Between EV Explanations and Persistence Decisions Across Gender 

A. Men’s EV-related explanations across different types of persistence decisions 

Persistence decision 

Decrease 
in E 

Increase  
in E 

Decrease 
in V 

Increase  
in V 

Decrease in  
E & V 

Increase in 
E & V 

Total 

Less certain about original major  18+ 1 40 9- 3 0 71 

No change 2- 6+ 37 21+ 0 1 67 

More certain about original major 0 0 5 5+ 0 0 10 

Total 20 7 82 35 3 1 148 

 

B. Women’s EV-related explanations across different types of persistence decisions 

Persistence decision 

Decrease 
in E 

Increase  
in E 

Decrease 
in V 

Increase  
in V 

Decrease in  
E & V 

Increase in 
E & V 

Total 

Less certain about original major  41+ 5 90 13- 15+ 1 165 

No change 10- 1 51 22+ 0- 0 84 

More certain about original major 6 0 16 7 1 1 31 

Total 57 6 157 42 16 2 280 
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Note. +/- denotes overrepresentation and underrepresentation of students in a specific cell, with an adjusted standardized residual score 

no less than 1.96 or no greater than -1.96. A three-way Chi-square Test of Independence suggested that the gendered pattern in the 

association between persistence reasons and EV-related explanations is statistically different.  
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Table 3.7 

Mixed-model ANCOVA of the differences in expectancy, interest and utility value between time and group 

Qualitatively 
described changes in 

EV beliefs 

Time 1 Score  Time 2 Score  
Interaction Effect in Mixed-model 

ANCOVA 

M (SD) 95% CI  M (SD) 95% CI  df F p 
Partial eta 
squared 

Expectancy       1 4.84 .03 .05 

Decrease 4.51 (0.14) [4.24, 4.78]  3.34 (0.15) [3.03, 3.64]      

Increase  4.63 (0.36) [3.90, 5.35]  4.54 (0.41) [3.72, 5.35]      

Interest       1 6.00 .02 .04 

Decrease 4.33 (0.13) [4.07, 4.59]  3.97 (0.13) [3.71, 4.23]      

Increase 4.71 (0.21) [4.30, 5.12]  4.87 (0.21) [4.45, 5.28]      

Utility value       1 0.06 .80 .001 

Decrease 5.25 (0.20) [4.85, 5.65]  4.99 (0.19) [4.61, 5.38]      

Increase 5.47 (0.24) [4.99, 5.96]  5.16 (0.23) [4.70, 5.63]      

Note. Time 1 score = survey scores measured at the beginning of course, Time 2 = survey scores measured at the end of course.  
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Figure 8 

 
Figure 3.1. Students’ responses to why their major plans changed. The total number of responses 

is 1309.  
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Figure 9 

 
Figure 3.2. EV-related explanations by types of changes. The constructs are not mutually 

exclusive, so multiple EV could appear together in one response.  
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Figure 10 

 

 

Figure 3.3. Women’s and men’s responses of why their major plans changed. More men than 
expected gave other reasons, vague reasons or reported no change in their major. More women 
than expected gave EV-related reasons.  
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Figure 11 

 

Figure 3.4. Men’s and women’s EV-related explanations by types of changes. The constructs are 
not mutually exclusive, so multiple EV could appear together in one response. The distribution 
of the changes in expectancy and cost differed between gender.  
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GENERAL DISCUSSION 

 STEM labor supply is the cornerstone of scientific innovations and advances. Research 

and policy efforts have been striving to increase the STEM labor supply by patching the “leaky 

pipeline” of STEM careers. Moreover, the gender differences in STEM participation and attrition 

have been a critical issue in expanding the STEM labor workforce (Chen & Soldner, 2013; Xie et 

al., 2015). Men’s and women’s different career motivation and choices are grounded in the 

sociocultural influence (Eagly & Steffen, 1984; Eccles, 2011; Simpkins et al., 2015), calling for a 

gender lens to understand STEM career trajectories. More recently, scholars contend that the 

“leaky pipeline” metaphor fails to accurately represent diverse STEM career trajectories and 

stigmatizes individuals leaving the STEM field (Cannady et al., 2014; Metcalf, 2010). This raises 

the questions of “what do STEM career trajectories look like?” and “why do people change their 

STEM career paths?”. In this dissertation, I aimed to provide evidence to answer these questions 

by carrying out three studies to describe STEM career paths with gender differences and to 

explain individual differences in STEM career paths.  

 Extensive research on STEM career paths exclusively focused on STEM persistence and 

attrition (e.g., Sadler et al., 2014; Shaw & Barbuti, 2010). Previous studies by Xie and Shauman 

(2003) shed light on STEM entry as individuals move into STEM careers from previous non-

STEM choices. Portraying all existing STEM career paths, including alternative paths leading to 

STEM occupation, not only reveals the whole picture of STEM career paths but also puts the 

ongoing discussions about STEM attrition and persistence into a context. For this purpose, in my 

first study, I described STEM career paths from age 13 and 25 in a national, longitudinal sample 

across STEM domains. To provide a more comprehensive view, I included the understudied 

differentiation in education requirement between blue-collar and white-collar STEM careers. 
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This study expands our understanding of existing STEM career paths and provides the 

foundation for investigating changes in STEM career choices. In study two and three, I used 

quantitative and qualitative data to investigate why individuals change their STEM career paths. 

I conceptualize STEM attrition and entry as changes in a person’s career choice and based my 

studies in the Situated Expectancy-Value Theory and the Internal/External Frame of Reference 

(Eccles & Wigfield, 2020; Möller et al., 2006; Möller & Marsh, 2013). These studies yielded 

useful results for the antecedents and motivation of career plan changes in STEM fields. I review 

the key findings from our three studies and discuss the implications on future research and 

practices.   

Review of Key Findings 

A STEM “Highway” With Frequent Exits and Entries Out and into STEM 

In study one, the key question we aimed to answer is “what does the STEM ‘pipeline’ 

look like?” Our findings indicate that STEM career trajectories resembled a busy highway with 

individuals entering STEM from various fields and leaving STEM for various destinations at 

various points in time. This conclusion is drawn from our examinations of four aspects of the 

STEM career paths: STEM attrition, STEM entry, changes in the size of STEM labor supplies 

over time, and paths leading to STEM careers. The “pipeline” metaphor highlights the high 

attrition rate in STEM fields (Chen & Soldner, 2013). Our results support this notion as we found 

that the attrition rates were higher among STEM careers than among non-STEM careers. 

However, we discovered that the high attrition rates in STEM did not necessarily associate with a 

shrinkage of labor supply. This conclusion is drawn from our comparisons between the number 

of people choosing STEM fields at age 13 with the number of people choosing STEM fields at 

age 25. There was no sample attritions or additions, so changes in the size of a field resulted 
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from movements of individuals across different fields, instead of leaving or entering the study. 

We found considerable shrinkage of labor supply in the health STEM and white-collar STEM 

careers, but a maintenance of size in physics-related STEM fields and an expansion of labor 

supply in the blue-collar STEM fields. More entry into the STEM field from other fields than 

attritions was the reason for the maintenance and expansion of physics-related STEM and blue-

collar STEM workforce. The prevalence of STEM entry did not support a one-directional, linear 

career path as implied by the “pipeline” metaphor. Lastly, we investigated the trajectories leading 

to STEM employment to examine to what extent more presence in a STEM field related to 

higher likelihood of attaining a STEM occupation. We found that the stereotypical “pipeline” 

trajectory, with an early commitment followed by persistent choices, was uncommon in most of 

STEM jobs. It was taken by less than 20 percent of workers in the physics-related STEM field, 

the blue-collar STEM field, and the white-collar STEM field. However, this trajectory was the 

most frequent path in the health STEM field, taken by over forty percent of workers. We 

conjecture that the familiarity of healthcare professions to adolescents and the educational and 

financial demand of medical school might be relevant to the prevalence of the committed and 

persistent trajectory unique to the health STEM careers.  

 From these findings, we conclude that the “pipeline” metaphor is an inaccurate and 

partial representation of STEM career paths. We found STEM career paths was an open 

“highway” with people joining the field halfway or returning to the field after a detour in a 

different field. A linear, one-directional path was infrequent in most STEM jobs. We showed that 

STEM entry was consequential for the size of labor supply, as much as attrition was. Our study 

provided a comprehensive picture of the STEM career trajectories to advance our understanding 
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about changes of the STEM workforce throughout the educational and vocational preparation 

stage.   

Gender Similarities in Attrition and Changes of Labor Supply 

 Gender disparity was at the center of research on STEM attrition and career choices 

(Eccles, 2011; Xie et al., 2015). Previous research showed that women are more likely than men 

to leave STEM (Sadler et al., 2012; Shaw & Barbuti, 2010), contributing to the 

underrepresentation of women in the STEM workforce. Our findings showed gender similarity in 

attrition rates as well as changes in the size of STEM labor supply. In particular, we found a 

higher attrition rate among women only in physics-related STEM careers, and a lower attrition 

rate among women in the health STEM careers. Furthermore, we demonstrated that the STEM 

labor supply did not shrink more among women. The labor supplies shrank to the similar extent 

among men and women in health STEM and white-collar STEM fields, expanded among women 

and shrank among men in the physics-related STEM field, and maintained its size among women 

in the blue-collar STEM field. Our findings showed that the problems of STEM attrition or 

shrinkage of STEM labor supply were more severe among women than among men.  

Evident Education-based Discrepancies between Blue-collar and White-Collar STEM 

 Our comparisons of the STEM career trajectories in the blue-collar and white-collar 

STME careers showed evident influence of educational requirement. The attrition rate and 

shrinkage of labor supply was higher among white-collar STEM careers than blue-collar STEM 

careers. At the same time, the entry rate was lower among white-collar STEM careers than blue-

collar ones. These findings did not vary between men and women, suggesting a clear influence of 

education requirement.  
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Different Sociodemographic, Achievement and Motivational Profiles Between non-STEM and 

STEM entrants, Between STEM Persisters and Leavers 

In study 2, we followed up on the findings in study 1 and compared individuals who 

changed their STEM career path with their peers who didn’t. Among everyone starting with a 

non-STEM aspiration, those entering the STEM field were less likely to be women, 

underrepresented racial minorities (URMs), with higher parent education and math performance 

and lower math subjective task values early on than those who continued in non-STEM careers. 

Among everyone starting with a STEM aspiration, those leaving the STEM field were more 

likely to be women, URMs, with lower parent education and math performance, and higher math 

and reading subjective task values early on than those who persisted in STEM. Early 

achievement and expectancy in math and reading domains were not uniquely predictive of 

changes in career path. Men and non-URM individuals were more likely to enter STEM fields 

given the same parent education, achievement and motivation in math and reading domains; 

URM individuals were more likely to leave STEM fields when these factors were accounted for. 

Our results indicate the need to consider job-specific considerations that might relate to the 

outcome of actual occupation more closely. In addition, our findings suggest shifts in 

motivational beliefs over the long timespan between the initial aspiration at age 13 and actual 

occupation at age 25, indicating the role of motivation-in-transformation in changes in career 

paths.  

Changes in Competence-related Beliefs and Subjective Task Values Explained Changes in 

College Major Plans 

In study 3, we coded college students’ own explanations for changes in their college 

major plans. We found that changes in expectancy-value beliefs were the main reasons, with 
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changes in subjective task values mentioned much more often than changes in expectancy. In 

particular, among students thinking about leaving their original major, disproportionally more 

students attributed the change to decreases in their expectancy or decreases in both their 

expectancy and subjective task values; disproportionally fewer students attributed it to increases 

in their subjective task values. Among students becoming more certain about their original major, 

disproportionally more students attributed it to increases in their subjective task values.  

Contextual and Stage-specific Reasons for Changes in College Major Plans 

Among students’ giving specific explanations, a small number of students mentioned the 

influence of major declaration related regulations in the university as main influence of changes 

in their major plans, highlighting the contextual influence on options that are and are not 

available to the students. Another type of responses pertained to the need to explore alternative 

options of major. Because most students in the study were in the first year of their college, they 

were in the particular stage to explore and learn more about which major they would like to 

study. Both aspects of these findings point to the situated nature of individuals’ career choices, in 

their external environment and their developmental stage. 

Research and Practice Implications 

An Updated Landscape of STEM Career Trajectories 

 Findings from our first and second studies provided an updated landscape of STEM 

career trajectories. We provided evidence against several aspects of the “leaky pipeline” 

metaphor, pointing out new directions for research and policy efforts to expand the STEM labor 

supply and improve the gender balance in STEM workforce. Firstly, we found gender similarity 

in STEM attrition, regarding the attrition rate, destination of attrition and the trajectory or timing 

or attrition. This similarity may be the result of decade-long efforts to reduce gender disparity in 
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STEM attrition. Our results provide substantive evidence for this accomplishment. Secondly, we 

quantified the changes in the size of the STEM labor supply and narrowed down specific areas in 

which the labor supply shrank. Namely, the workforce of health STEM careers and white-collar 

STEM careers shrank considerably from age 13 to 25. This result points out these two subfields 

needing more research and interventions to increase the STEM labor supply in the future. 

Thirdly, we found an expansion of women labor supply in physics-related STEM careers, 

demonstrating a promising ground to further improve women’s representation in these men-

dominant STEM fields. Fourthly, we suggest that the influential and sizable entry into various 

STEM fields is another venue through which STEM labor supply and gender imbalance in the 

workforce can be improved. In particular, the intricate gendered pattern in heath and physics-

related STEM field calls for more research to understand men and women’s entry and more 

broadly career development in these professions. Lastly, we identified health STEM as the field 

in which an early, persistent trajectory with increasingly less entry in later sections of the path 

was evident. Considering that we found considerable shrinkage of the health STEM labor supply, 

more investigation is needed regarding to what extent the “pipeline”-like trajectory is related to 

the shrinkage of the labor supply. Investigations into which aspects and characteristics of the 

health STEM career drive the shrinkage can also provide useful information for addressing the 

shrinkage.  

Understudied STEM Entry 

STEM entrants, people who work in STEM jobs without an early aspiration in the same 

field, comprised a considerable portion of STEM workers. The large portion of STEM workers 

suggests that this group are integral to the STEM labor supply as much as, if not more than, 
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STEM persistence. However, in my brief review of the literature, studies on STEM entry were 

rare compared with those on STEM attrition.  

Boosting STEM entry may be a promising way to increase the STEM labor supply. In 

study two, we found that STEM entrants typically achieved and valued math comparably highly 

as their STEM persisting peers. It indicates that despite the lack of early aspirations, individuals 

entering the STEM field at a later time point were competent in STEM field and motivated to 

pursue STEM careers. Compared with keeping people who are not motivated to pursue STEM 

careers to stay in the STEM fields, supporting individuals who are motivated in their transition 

into STEM fields and following career pursuits may be of greater benefit to the STEM entrants, 

the STEM “leavers” and policymakers. It provides opportunities and support for the STEM 

entrants as well as the STEM “leavers” to pursue the careers they desire. Currently, the entry into 

white-collar STEM were less often than entry into blue-collar STEM careers, and the entry into 

health STEM jobs were small for both genders, indicating challenges and barriers that 

prospective entrants encounter to transition into the much needed white-collar and health STEM 

workforce. For policy-making considerations, the alignment of resource and support with 

individuals’ career goals can lead to higher job performance and greater job satisfaction (Kieffer 

et al., 2004), benefiting the workforce and economy.  

Their high math performance and motivation, together with the family resources and 

support, might be the conducive factors supporting these youths to enter STEM despite the lack 

of early commitment. Then more questions arise: what makes the students decide to enter STEM 

at a later time point? The STEM entrants had one of the highest math performances across the 

four groups, but not the highest math subjective task values. What caused this misalignment? If 

the entry resulted from that the students later turned to value the math domain which they 
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performed well in, what made this happen? Can researchers and policymakers replicate this 

process to encourage more STEM-competent adolescents to pursue STEM careers? Answers to 

these questions can provide innovative perspectives on STEM career trajectories and useful 

insights for expanding the STEM labor supply.  

As discussed in Chapter 3, we believe the STEM entry provides a valuable alternative 

path to the traditional “pipeline” as successful pathways into STEM. The prevalence of STEM 

entry provides evidence against the “cumulative advantage” of early STEM career choices (Lent 

et al., 1994). If STEM career aspirations at age 13 were not necessary for obtaining a STEM 

career in mid-20s, what is the necessity for successfully entering the STEM field later on? The 

prevalence of STEM entry among STEM workers indicates much more is to be learned about.  

Beyond Women in STEM: Diverse Workforce, Diverse Trajectories 

Our findings provide evidence for the limitation of the “cumulative disadvantage” 

perspective on STEM career trajectories. We showed that a sizable portion of individuals 

successfully entered STEM careers despite a lack of earlier choices, and that most workers did 

not take a persistent trajectory to attain their STEM occupation except in health STEM careers. 

Our findings suggest that the “cumulative disadvantage”, perhaps the “cumulative advantage”, 

may be a useful explanation for why people find it easier to continue doing what they have been 

doing, but the absence of the initial “advantage” does not necessarily set off the negative cycle 

for people to avoid participating in field. Our findings showed the prevalence of pathways into 

STEM careers despite the lack of early aspirations. We would like to underscore two important 

implications form our results.  

Firstly, our finding questions the existence and extent of the “disadvantage” or 

“advantage” between individuals choosing STEM and those choosing non-STEM from early 
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one. Results from the study 2 showed the lack of differences in math competence between 

individuals choosing STEM and persisted over time and individuals who entered STEM at a later 

timepoint. This result moved beyond findings on gender similarity in math performance (Hyde & 

Mertz, 2009) to suggest that the lack of competence not only may not be the reason for the 

individual differences in STEM career choices at one point in time, but also may not be the 

reason for the delayed entry or participation in STEM careers. Our finding on the value-driven 

considerations and contextual influences on students’ change of major plans in study 3 supports 

the multifaceted, and situated framework like the Situated Expectancy-Value Theory (SEVT, 

Eccles & Wigfield, 2020; Eccles et al., 1983). This perspective points to a shift in the 

methodological approach beyond a regression-based analysis to test the influence of earlier 

STEM participation or performance on later participation or choices. Competitive factors, such 

as change in domain-specific beliefs and values, as well as contextual factors, should be added to 

the model to specify the scope of each type of factors and compare the size of their influence 

relative to each other. Moreover, prior participation contains the variation in the domain-specific 

values and contextual factors at an earlier time, and thus interpreting it as the result of these 

factors is useful for preventing the oversimplified understanding of the “cumulative 

disadvantage/disadvantage”. The goal of explaining as much as variance in the outcome variable 

of later STEM participation may lead to mistaking the phenomenon for its cause.  

Secondly, our findings questions to what extent promoting a persistent STEM career path 

is beneficial for expanding the STEM labor workforce. Our findings suggest that the persistent 

trajectory was found on only a small portion of STEM workers, and paths into STEM careers are 

very diverse and eclectic. Our findings from the study 2 and 3 suggests that individuals differ in 

their contextual and developmental coordinate in career developmental trajectories. When some 
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college students were committed to their career choices, other students might have been learning 

about available options. The discrepancy reflects their differences in prior experience and social 

constraints (Ek et al., 2021; Stephen et al., 1992), including but not limited to family 

socioeconomic status, underrepresented racial minority status, etc (Dika & D’Amico, 2016; 

Perry et al., 2009). Promoting knowledge about STEM careers and providing career exploration 

resources and activities may benefit everyone in their explorations of career goals, and the 

advantage of these types of support may be maximized when matched with the developmental 

stage or individual situation (Eccles et al., 1997; Eccles & Roeser, 2009). Thus, perhaps the best 

way to expand the STEM labor supply is to provide support for individuals at various stages of 

career development to follow their career path in their own pace and trajectory.  

Using the SEVT and Internal/External Frame of Reference to Understand Career Trajectories 

 Findings from our study 2 and 3 showed the potential to extend the SEVT and the 

Dimensional Comparison Theory from career choices at one point in time to career trajectories 

over time. In study 3, we found that students’ attributed changes in their college major plan to 

expectancy-value concepts. These concepts appeared in most of responses that contained specific 

explanations, indicating the relevance of the concepts to the decision to change or maintain 

career choices. Moreover, we found results parallel to previous findings on expectancy-value 

beliefs in career choices. For instance, our finding that increases in expectancy or subjective task 

values about the original major were related with students’ greater certainty about their original 

choices of major resembled the positive correlation between expectancy-value beliefs with career 

choices at one point in time (Simpkins et al., 2006). We also found applicability of the 

Internal/External Frame of Reference when students described changes in their expectancy-value 

beliefs. For instance, we noticed the internal comparison among several major options. This is 
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also the within-person comparison described in the SEVT. A major became less desirable to a 

student when the student became attracted by another major. Thus, the original major shifted to a 

lower level in the student’s hierarchy of available major options. Temporal comparisons of 

expectancy-value beliefs also appeared in our study, as students mentioned their implicit 

comparison of their expectancy-value beliefs at the end of the introductory class with those at the 

beginning of the class. These mechanisms that are relevant to career choices at one point in time 

were found to involve in decisions about persistence or changes in college major.  

 At the same time, findings from our second study indicates the need to take into account 

of the evolvement of expectancy-value beliefs as antecedents of changes in STEM career paths. 

In our comparison between individuals persisting in STEM and individuals leaving STEM, we 

found that the non-STEM group had higher math subjective task value than STEM entrants at 

age 13. Relatedly, we discovered a negative association between math subjective task value and 

likelihood of switching into STEM careers. Our follow-up inspections suggested that the 

subjective task value beliefs of the two groups might have developed in a cross-over trend. As 

adolescents went through school transitions and school to work transitions, their self-perceptions 

about their domain-specific identity were likely to transform (Jacobs et al., 2002; Wigfield et al., 

1991). Therefore, future studies could investigate the developmental trajectories of expectancy-

value beliefs using techniques such as growth mixture modeling and test the association between 

different trajectories of motivational beliefs and changes in career choices. One relevant issue 

may be the time frame in which expectancy-value beliefs are measured. Studies using the 

experience sampling method showed that motivational beliefs can be volatile across short 

periods of time. Therefore, more research is needed to explore at which time scale expectancy-

value beliefs should be measured in order to find influences on career outcomes.  
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Strengths and Contributions of Person-centered Approach to Discover Diverse Career 

Trajectories 

In study 1, we used two person-centered approaches to describe trajectories of STEM 

career choices and found the STEM entry paths which were relatively understudied. In fact, we 

learned more about the STEM entry in our analysis with individual career trajectories than from 

the longitudinal latent class analysis. The latter technique, which extracts numerically 

representative patterns, was able to find entry into blue-collar STEM careers that were more 

common but did not show entry into health STEM careers that were of a small quantity. In a 

special issue of the Journal of Social Issues, Feinstein and Peck (2008) discussed the value of 

finding the “off-diagonal” trajectories. The “off-diagonal” approaches, in contrast to the 

numerically common trajectories, such as STEM persistence and attrition in the case of our first 

study, can provide innovative understanding about the protective/risk factors of the development 

of a specific behavior. As we demonstrated and discussed in study 2, the STEM entry showed the 

exceptions or limit of the influence of prior STEM career choices on later choices. These 

exceptions are useful examples to put existing understanding about STEM career trajectories into 

a perspective and shed some optimistic light on how people beat the odds. A shift in perspective 

and even paradigm is thus possible from a “deficit view” to a diversity view. Researchers have 

cautioned that these exceptions may be idiosyncratic and endogenous (Duncan, 2008). The “off-

diagonal” groups may be limited for drawing causal inferences but like case studies and 

interviews, they can provide useful information on unique and common factors of career 

development.   

Performance-driven, Inflexible Breadwinners 
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If the gender role socialization discourages some women to pursue their intended 

physics-related STEM careers, how does it affect men’s STEM career? My findings suggest two 

folds of consequences. The first consequence may be the lack of choices in non-STEM careers. 

In study two, I found that more men than expected were present in the persistence trajectory in 

the broad STEM field. This group featured high math performance and low valuing for English. 

Over time, the lower valuing for English might lead to less participation in language domain 

(Durik et al., 2006), leading to differentiated math and English performances. The differentiation 

might have limited restrictions on a man’s likelihood to find a well-paid job, such as those in the 

STEM field, but it may restrict the person’s flexibility to adjust to changes in the job market. The 

findings of Wang and colleagues (2013) showed that adolescents who did well in both math and 

reading have lower chance of working in STEM fields in adulthood than adolescents who did 

well in math and moderately in reading, suggesting that the latter group of adolescents might 

choose STEM because of the lack of choices. Traditional gender role beliefs that men should be 

the breadwinner may be another reason of the choice. Individuals who endorse such beliefs were 

more likely to work in STEM jobs in adulthood compared with individuals with equivalent 

educational attainment (Dicke et al., 2019). Taken these two pieces together, a subgroup of men 

in the STEM fields might work in a STEM job because it’s well paid and does not require strong 

language skills. Jobs in the manufacturing and transportation industries are examples. These 

industries might be those at the forefront of the influence of economic fluctuations and 

technological innovation. The recent COVID pandemic and the competition from the rising 

technology of automated driving are examples of the impact on the transportation industry. If a 

family relies on men in these fields as the breadwinner, the impact of an unemployment on 

income, psychological and physical well-being will be magnified. For instance, researchers 
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pointed to increased male unemployment as one factor for the rise of domestic violence during 

the COVID pandemic (Krishnakumar & Verma, 2021; Leslie & Wilson, 2020).  

The second fold of the consequence is the value conflicts in career choices. Literature 

documented that men in college face a dilemma between the need to find lucrative jobs to 

provide for families and their personal interest (Mullen, 2014). Men who prioritize the 

breadwinner role may enter jobs that do not fit their vocational interest. Such mismatch 

undermines a person’s job satisfaction, job performance and work quality (Earl, 2015; Kieffer et 

al., 2004), which hinders the fulfillment of the breadwinner role.  

In a nutshell, from a few pieces of finding in my study, I believe that the gender role 

socialization harms career outcomes of men as well. The socialization of gender role beliefs is 

aimed to fit an individual into a rigid, probably unrepresentative, frame of what a man or women 

should be like. The benefit of the social influence remains unclear, yet the substantial cost on 

career outcomes and other aspects falls on every person.  
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Appendix A 

Missing Data and Participant Exclusion Information. 

Reasons for Missing/Exclusion Frequency 

Total participants in CDS 2002’ 2907 

 Not eligible for child interview (i.e., under age 8)  253 

Interview incomplete  472 

Total interview respondents in CDS 2002’ 2182 

Not eligible for career aspiration questions (i.e., under age 12) 872 

“Don't know” 52 

Refuse to answer questions 8 

Total participants with concrete responses 1250 

Did not participate in data collection at age 25 118 

Unemployed at age25 (e.g., disability, housewife/husband, student) 53 

No employment information collected due to study design 53 

Total participants in Two-wave Sample (age 13 – age 25) 1026 

Did not participate in data collection in 2007 or 2009 1 

Did not answer career aspiration question in 2007 or 2009 25 

Refuse to answer question, “don't know” 21 

Data entry error 1 

Total Participant in Three-wave Sample (age 13 – age 19 – age 25) 978 

No answer for career aspiration in 2005’ or 2007’ 100 

Don't know/refuse on question in 2005’ or 2007’  10 

No answer for career aspiration in 2009’ or 2011’ 32 

Don't know/refuse on question in 2009’ or 2011’ 20 

No answer career aspiration in 2005’, 2007’, 2009’ and 2011’ 4 

Total Participant in Four-wave Sample (Age 13 – Age 18 – Age 21 – 
Age 25) 

812 
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Appendix B 

List of Occupations Present in Reponses with STEM Domain Classifications 

2000 

Census 

code 

Census occupation title Category 

1 Chief Executives non-STEM 

2 General and Operations Managers physics STEM 

3 Legislators non-STEM 

4 Advertising and Promotions Managers non-STEM 

5 Marketing and Sales Managers non-STEM 

6 Public Relations Managers non-STEM 

9  data entry error 

11 Computer and Information Systems Managers physics STEM 

12 Financial Managers physics STEM 

13 Human Resources Managers non-STEM 

14 Industrial Production Managers non-STEM 

15 Purchasing Managers physics STEM 

16 Transportation, Storage, and Distribution Managers non-STEM 

20 Farm, Ranch, and Other Agricultural Managers health STEM 

21 Farmers and Ranchers physics STEM 

22 Construction Managers physics STEM 

23 Education Administrators non-STEM 

30 Engineering Managers physics STEM 

31 Food Service Managers non-STEM 

32 Funeral Directors non-STEM 

34 Lodging Managers physics STEM 

35 Medical and Health Services Managers non-STEM 

36 Natural Sciences Managers non-STEM 

41 Property, Real Estate, and Community Association Managers physics STEM 

42 Social and Community Service Managers non-STEM 

43 Managers, All Other non-STEM 

50 
Agents and Business Managers of Artists, Performers, and 

Athletes 
non-STEM 

52 Wholesale and Retail Buyers, Except Farm Products non-STEM 

53 
Purchasing Agents, Except Wholesale, Retail, and Farm 

Products 
physics STEM 

54 Claims Adjusters, Appraisers, Examiners, and Investigators non-STEM 

56 
Compliance Officers, Except Agriculture, Construction, Health 

and 
Safety, and Transportation 

non-STEM 

58  data entry error 
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59  data entry error 

60 Cost Estimators physics STEM 

62 Human Resources, Training, and Labor Relations Specialists non-STEM 

70 Logisticians non-STEM 

71 Management Analysts non-STEM 

72 Meeting and Convention Planners non-STEM 

73 Other Business Operations Specialists non-STEM 

80 Accountants and Auditors physics STEM 

81 Appraisers and Assessors of Real Estate non-STEM 

82 Budget Analysts physics STEM 

84 Financial Analysts physics STEM 

85 Personal Financial Advisors physics STEM 

88  data entry error 

91 Loan Counselors and Officers physics STEM 

93 Tax Examiners, Collectors, and Revenue Agents physics STEM 

94 Tax Preparers physics STEM 

95 Financial Specialists, All Other physics STEM 

100 Computer Scientists and Systems Analysts physics STEM 

101 Computer Programmers physics STEM 

102 Computer Software Engineers physics STEM 

104 Computer Support Specialists physics STEM 

106 Database Administrators physics STEM 

110 Network and Computer Systems Administrators physics STEM 

111 Network Systems and Data Communications Analysts physics STEM 

120 Actuaries physics STEM 

121 Mathematicians physics STEM 

122 Operations Research Analysts physics STEM 

130 Architects, Except Naval non-STEM 

131 Surveyors, Cartographers, and Photogrammetrists physics STEM 

132 Aerospace Engineers physics STEM 

133 Agricultural Engineers physics STEM 

134 Biomedical Engineers physics STEM 

135 Chemical Engineers physics STEM 

136 Civil Engineers physics STEM 

140 Computer Hardware Engineers physics STEM 

141 Electrical and Electronics Engineers physics STEM 

142 Environmental Engineers physics STEM 

143 Industrial Engineers, Including Health and Safety physics STEM 

144 Marine Engineers and Naval Architects physics STEM 

145 Materials Engineers physics STEM 

146 Mechanical Engineers physics STEM 

150 
Mining and Geological Engineers, Including Mining Safety  

Engineers 
physics STEM 
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151 Nuclear Engineers physics STEM 

152 Petroleum Engineers physics STEM 

153 Engineers, All Other physics STEM 

154 Drafters physics STEM 

155 Engineering Technicians, Except Drafters physics STEM 

156 Surveying and Mapping Technicians physics STEM 

160 Agricultural and Food Scientists health STEM 

161 Biological Scientists health STEM 

164 Conservation Scientists and Foresters health STEM 

165 Medical Scientists health STEM 

170 Astronomers and Physicists physics STEM 

171 Atmospheric and Space Scientists physics STEM 

172 Chemists and Materials Scientists physics STEM 

174 Environmental Scientists and Geoscientists physics STEM 

176 Physical Scientists, All Other physics STEM 

180 Economists physics STEM 

181 Market and Survey Researchers physics STEM 

182 Psychologists non-STEM 

183 Sociologists non-STEM 

184 Urban and Regional Planners non-STEM 

186 Miscellaneous Social Scientists and Related Workers non-STEM 

191 Biological Technicians health STEM 

192 Chemical Technicians physics STEM 

193 Geological and Petroleum Technicians physics STEM 

196 Other Life, Physical, and Social Science Technicians physics STEM 

200 Counselors non-STEM 

201 Social Workers non-STEM 

202 Miscellaneous Community and Social Service Specialists non-STEM 

204 Clergy non-STEM 

205 Directors, Religious Activities and Education non-STEM 

206 Religious Workers, All Other non-STEM 

210 Lawyers non-STEM 

211 Judges, Magistrates, and Other Judicial Workers non-STEM 

214 Paralegals and Legal Assistants non-STEM 

215 Miscellaneous Legal Support Workers non-STEM 

220 Postsecondary Teachers non-STEM 

230 Preschool and Kindergarten Teachers non-STEM 

231 Elementary and Middle School Teachers non-STEM 

232 Secondary School Teachers non-STEM 

233 Special Education Teachers non-STEM 

234 Other Teachers and Instructors non-STEM 

240 Archivists, Curators, and Museum Technicians non-STEM 

243 Librarians non-STEM 
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244 Library Technicians non-STEM 

254 Teacher Assistants non-STEM 

255 Other Education, Training, and Library Workers non-STEM 

260 Artists and Related Workers physics STEM 

263 Designers non-STEM 

270 Actors non-STEM 

271 Producers and Directors physics STEM 

272 Athletes, Coaches, Umpires, and Related Workers non-STEM 

274 Dancers and Choreographers non-STEM 

275 Musicians, Singers, and Related Workers non-STEM 

276 
Entertainers and Performers, Sports and Related Workers, All 

Other 
non-STEM 

280 Announcers physics STEM 

281 News Analysts, Reporters and Correspondents non-STEM 

282 Public Relations Specialists non-STEM 

283 Editors non-STEM 

284 Technical Writers physics STEM 

285 Writers and Authors non-STEM 

286 Miscellaneous Media and Communication Workers non-STEM 

290 
Broadcast and Sound Engineering Technicians and Radio 

Operators 
physics STEM 

291 Photographers non-STEM 

292 
Television, Video, and Motion Picture Camera Operators and 

Editors 
physics STEM 

296 Media and Communication Equipment Workers, All Other physics STEM 

300 Chiropractors health STEM 

301 Dentists health STEM 

303 Dietitians and Nutritionists health STEM 

304 Optometrists health STEM 

305 Pharmacists health STEM 

306 Physicians and Surgeons health STEM 

311 Physician Assistants health STEM 

313 Registered Nurses health STEM 

314 Audiologists non-STEM 

315 Occupational Therapists health STEM 

316 Physical Therapists health STEM 

320 Radiation Therapists health STEM 

322 Respiratory Therapists health STEM 

323 Speech-Language Pathologists non-STEM 

324 Therapists, All Other health STEM 

325 Veterinarians health STEM 

326 Health Diagnosing and Treating Practitioners, All Other health STEM 

330 Clinical Laboratory Technologists and Technicians health STEM 
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331 Dental Hygienists health STEM 

332 Diagnostic Related Technologists and Technicians non-STEM 

340 Emergency Medical Technicians and Paramedics health STEM 

341 
Health Diagnosing and Treating Practitioner Support 

Technicians 
health STEM 

350 Licensed Practical and Licensed Vocational Nurses health STEM 

351 Medical Records and Health Information Technicians non-STEM 

353 Miscellaneous Health Technologists and Technicians health STEM 

354 Other Healthcare Practitioners and Technical Occupations health STEM 

360 Nursing, Psychiatric, and Home Health Aides non-STEM 

362 Physical Therapist Assistants and Aides health STEM 

363 Massage Therapists non-STEM 

364 Dental Assistants health STEM 

365 Medical Assistants and Other Healthcare Support Occupations health STEM 

370 First-Line Supervisors/Managers of Correctional Officers non-STEM 

371 First-Line Supervisors/Managers of Police and Detectives non-STEM 

372 
First-Line Supervisors/Managers of Fire Fighting and Prevention 

Workers 
non-STEM 

373 Supervisors, Protective Service Workers, All Other non-STEM 

374 Fire Fighters health STEM 

375 Fire Inspectors non-STEM 

380 Bailiffs, Correctional Officers, and Jailers non-STEM 

382 Detectives and Criminal Investigators non-STEM 

383 Fish and Game Wardens health STEM 

385 Police and Sheriff's Patrol Officers non-STEM 

386 Transit and Railroad Police non-STEM 

390 Animal Control Workers non-STEM 

391 Private Detectives and Investigators non-STEM 

392 Security Guards and Gaming Surveillance Officers physics STEM 

395 Lifeguards and Other Protective Service Workers non-STEM 

400 Chefs and Head Cooks non-STEM 

401 
First-Line Supervisors/Managers of Food Preparation and 

Serving 
Workers 

non-STEM 

402 Cooks non-STEM 

403 Food Preparation Workers non-STEM 

404 Bartenders non-STEM 

405 
Combined Food Preparation and Serving Workers, Including 

Fast Food 
non-STEM 

406 
Counter Attendants, Cafeteria, Food Concession, and Coffee 

Shop 
non-STEM 

411 Waiters and Waitresses non-STEM 

412 Food Servers, Nonrestaurant non-STEM 

413 Dining Room and Cafeteria Attendants and Bartender Helpers non-STEM 
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414 Dishwashers non-STEM 

415 Hosts and Hostesses, Restaurant, Lounge, and Coffee Shop non-STEM 

416 Food Preparation and Serving Related Workers, All Other non-STEM 

420 
First-Line Supervisors/Managers of Housekeeping and Janitorial 

Workers 
non-STEM 

421 
First-Line Supervisors/Managers of Landscaping, Lawn Service, 

and 
Groundskeeping Workers 

non-STEM 

422 Janitors and Building Cleaners non-STEM 

423 Maids and Housekeeping Cleaners non-STEM 

424 Pest Control Workers non-STEM 

425 Grounds Maintenance Workers non-STEM 

430 First-Line Supervisors/Managers of Gaming Workers physics STEM 

432 First-Line Supervisors/Managers of Personal Service Workers non-STEM 

434 Animal Trainers non-STEM 

435 Nonfarm Animal Caretakers non-STEM 

440 Gaming Service Workers non-STEM 

443 Miscellaneous Entertainment Attendants and Related Workers non-STEM 

446 Funeral Service Workers non-STEM 

450 Barbers non-STEM 

451 Hairdressers, Hairstylists, and Cosmetologists non-STEM 

452 Miscellaneous Personal Appearance Workers non-STEM 

453 Baggage Porters, Bellhops, and Concierges non-STEM 

454 Tour and Travel Guides non-STEM 

455 Transportation Attendants non-STEM 

460 Child Care Workers non-STEM 

461 Personal and Home Care Aides non-STEM 

462 Recreation and Fitness Workers non-STEM 

464 Residential Advisors non-STEM 

465 Personal Care and Service Workers, All Other non-STEM 

470 First-Line Supervisors/Managers of Retail Sales Workers non-STEM 

471 First-Line Supervisors/Managers of Non-Retail Sales Workers non-STEM 

472 Cashiers non-STEM 

474 Counter and Rental Clerks non-STEM 

475 Parts Salespersons non-STEM 

476 Retail Salespersons non-STEM 

480 Advertising Sales Agents non-STEM 

481 Insurance Sales Agents physics STEM 

482 Securities, Commodities, and Financial Services Sales Agents physics STEM 

483 Travel Agents non-STEM 

484 Sales Representatives, Services, All Other non-STEM 

485 Sales Representatives, Wholesale and Manufacturing non-STEM 

490 Models, Demonstrators, and Product Promoters non-STEM 
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492 Real Estate Brokers and Sales Agents non-STEM 

494 Telemarketers non-STEM 

495 
Door-To-Door Sales Workers, News and Street Vendors, and 

Related Workers 
non-STEM 

496 Sales and Related Workers, All Other non-STEM 

500 
First-Line Supervisors/Managers of Office and Administrative 

Support 
Workers 

non-STEM 

501 Switchboard Operators, Including Answering Service non-STEM 

502 Telephone Operators non-STEM 

510 Bill and Account Collectors non-STEM 

511 Billing and Posting Clerks and Machine Operators non-STEM 

512 Bookkeeping, Accounting, and Auditing Clerks non-STEM 

513 Gaming Cage Workers physics STEM 

514 Payroll and Timekeeping Clerks non-STEM 

515 Procurement Clerks non-STEM 

516 Tellers non-STEM 

520 Brokerage Clerks non-STEM 

522 Court, Municipal, and License Clerks non-STEM 

524 Customer Service Representatives non-STEM 

525 Eligibility Interviewers, Government Programs non-STEM 

526 File Clerks non-STEM 

530 Hotel, Motel, and Resort Desk Clerks non-STEM 

531 Interviewers, Except Eligibility and Loan non-STEM 

532 Library Assistants, Clerical non-STEM 

533 Loan Interviewers and Clerks non-STEM 

534 New Accounts Clerks non-STEM 

536 Human Resources Assistants, Except Payroll and Timekeeping non-STEM 

540 Receptionists and Information Clerks non-STEM 

541 Reservation and Transportation Ticket Agents and Travel Clerks physics STEM 

542 Information and Record Clerks, All Other non-STEM 

550 Cargo and Freight Agents non-STEM 

551 Couriers and Messengers non-STEM 

552 Dispatchers non-STEM 

553 Meter Readers, Utilities non-STEM 

554 Postal Service Clerks non-STEM 

555 Postal Service Mail Carriers non-STEM 

556 
Postal Service Mail Sorters, Processors, and Processing Machine 

Operators 
non-STEM 

560 Production, Planning, and Expediting Clerks non-STEM 

561 Shipping, Receiving, and Traffic Clerks non-STEM 

562 Stock Clerks and Order Fillers non-STEM 

563 Weighers, Measurers, Checkers, and Samplers, Recordkeeping non-STEM 
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570 Secretaries and Administrative Assistants physics STEM 

579  data entry error 

580 Computer Operators physics STEM 

581 Data Entry Keyers non-STEM 

582 Word Processors and Typists non-STEM 

584 Insurance Claims and Policy Processing Clerks non-STEM 

585 Mail Clerks and Mail Machine Operators, Except Postal Service non-STEM 

586 Office Clerks, General non-STEM 

590 Office Machine Operators, Except Computer non-STEM 

591 Proofreaders and Copy Markers non-STEM 

593 Office and Administrative Support Workers, All Other non-STEM 

600 
First-Line Supervisors/Managers of Farming, Fishing, and 

Forestry Workers 45-1010 
non-STEM 

602 Animal Breeders non-STEM 

605 Miscellaneous Agricultural Workers health STEM 

610 Fishers and Related Fishing Workers non-STEM 

612 Forest and Conservation Workers non-STEM 

613 Logging Workers physics STEM 

620 
First-Line Supervisors/Managers of Construction Trades and 

Extraction Workers 
physics STEM 

622 Brickmasons, Blockmasons, and Stonemasons non-STEM 

623 Carpenters physics STEM 

624 Carpet, Floor, and Tile Installers and Finishers physics STEM 

625 Cement Masons, Concrete Finishers, and Terrazzo Workers non-STEM 

626 Construction Laborers physics STEM 

630 Paving, Surfacing, and Tamping Equipment Operators non-STEM 

632 
Operating Engineers and Other Construction Equipment 

Operators 
non-STEM 

633 Drywall Installers, Ceiling Tile Installers, and Tapers non-STEM 

635 Electricians physics STEM 

636 Glaziers non-STEM 

640 Insulation Workers non-STEM 

642 Painters, Construction and Maintenance non-STEM 

644 Pipelayers, Plumbers, Pipefitters, and Steamfitters physics STEM 

648  data entry error 

651 Roofers non-STEM 

652 Sheet Metal Workers physics STEM 

653 Structural Iron and Steel Workers physics STEM 

660 Helpers, Construction Trades non-STEM 

673 Highway Maintenance Workers non-STEM 

674 Rail-Track Laying and Maintenance Equipment Operators physics STEM 

676 Miscellaneous Construction and Related Workers physics STEM 

682 Earth Drillers, Except Oil and Gas physics STEM 
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684 Mining Machine Operators physics STEM 

700 
First-Line Supervisors/Managers of Mechanics, Installers, and 

Repairers 
physics STEM 

701 Computer, Automated Teller, and Office Machine Repairers physics STEM 

702 
Radio and Telecommunications Equipment Installers and 

Repairers 
physics STEM 

703 Avionics Technicians physics STEM 

704 Electric Motor, Power Tool, and Related Repairers physics STEM 

710 Electrical and Electronics Repairers, Industrial and Utility physics STEM 

711 Electronic Equipment Installers and Repairers, Motor Vehicles physics STEM 

712 
Electronic Home Entertainment Equipment Installers and 

Repairers 
physics STEM 

713 Security and Fire Alarm Systems Installers physics STEM 

714 Aircraft Mechanics and Service Technicians physics STEM 

715 Automotive Body and Related Repairers physics STEM 

720 Automotive Service Technicians and Mechanics physics STEM 

721 Bus and Truck Mechanics and Diesel Engine Specialists physics STEM 

722 
Heavy Vehicle and Mobile Equipment Service Technicians and 

Mechanics 
physics STEM 

724 Small Engine Mechanics physics STEM 

726 
Miscellaneous Vehicle and Mobile Equipment Mechanics, 

Installers, and Repairers 
physics STEM 

731 
Heating, Air Conditioning, and Refrigeration Mechanics and 

Installers 
physics STEM 

733 Industrial and Refractory Machinery Mechanics physics STEM 

734 Maintenance and Repair Workers, General physics STEM 

735 Maintenance Workers, Machinery physics STEM 

742 Telecommunications Line Installers and Repairers non-STEM 

752 Commercial Drivers physics STEM 

754 Locksmiths and Safe Repairers physics STEM 

761 Helpers--Installation, Maintenance, and Repair Workers physics STEM 

762 Other Installation, Maintenance, and Repair Workers physics STEM 

770 
First-Line Supervisors/Managers of Production and Operating 

Workers 
physics STEM 

771 Aircraft Structure, Surfaces, Rigging, and Systems Assemblers physics STEM 

772 Electrical, Electronics, and Electromechanical Assemblers non-STEM 

773 Engine and Other Machine Assemblers physics STEM 

774 Structural Metal Fabricators and Fitters physics STEM 

775 Miscellaneous Assemblers and Fabricators non-STEM 

780 Bakers non-STEM 

781 Butchers and Other Meat, Poultry, and Fish Processing Workers non-STEM 

783 
Food and Tobacco Roasting, Baking, and Drying Machine 

Operators and Tenders 
non-STEM 

784 Food Batchmakers non-STEM 
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785 Food Cooking Machine Operators and Tenders non-STEM 

790 Computer Control Programmers and Operators physics STEM 

792 
Extruding and Drawing Machine Setters, Operators, and 

Tenders, Metal and Plastic 
physics STEM 

795 
Cutting, Punching, and Press Machine Setters, Operators, and 

Tenders, Metal and Plastic 
physics STEM 

796 
Drilling and Boring Machine Tool Setters, Operators, and 

Tenders, Metal and Plastic 
physics STEM 

800 
Grinding, Lapping, Polishing, and Buffing Machine Tool Setters, 

Operators, and Tenders, Metal and Plastic 
non-STEM 

801 
Lathe and Turning Machine Tool Setters, Operators, and 

Tenders, Metal and Plastic 
physics STEM 

803 Machinists physics STEM 

804 Metal Furnace and Kiln Operators and Tenders physics STEM 

810 
Molders and Molding Machine Setters, Operators, and Tenders, 

Metal 
and Plastic 

non-STEM 

814 Welding, Soldering, and Brazing Workers non-STEM 

815 
Heat Treating Equipment Setters, Operators, and Tenders, Metal 

and Plastic 
non-STEM 

820 
Plating and Coating Machine Setters, Operators, and Tenders, 

Metal 
and Plastic 

physics STEM 

822 Metalworkers and Plastic Workers, All Other physics STEM 

823 Bookbinders and Bindery Workers non-STEM 

825 Prepress Technicians and Workers physics STEM 

826 Printing Machine Operators non-STEM 

830 Laundry and Dry-Cleaning Workers non-STEM 

831 Pressers, Textile, Garment, and Related Materials non-STEM 

832 Sewing Machine Operators non-STEM 

835 Tailors, Dressmakers, and Sewers non-STEM 

843 
Extruding and Forming Machine Setters, Operators, and 

Tenders, Synthetic and Glass Fibers 
non-STEM 

853 Sawing Machine Setters, Operators, and Tenders, Wood non-STEM 

854 
Woodworking Machine Setters, Operators, and Tenders, Except 

Sawing 
non-STEM 

855 Woodworkers, All Other non-STEM 

860 Power Plant Operators, Distributors, and Dispatchers non-STEM 

861 Stationary Engineers and Boiler Operators physics STEM 

862 Water and Liquid Waste Treatment Plant and System Operators health STEM 

863 Miscellaneous Plant and System Operators non-STEM 

865 Crushing, Grinding, Polishing, Mixing, and Blending Workers non-STEM 

871 Cutting Workers non-STEM 

872 
Extruding, Forming, Pressing, and Compacting Machine Setters, 

Operators, and Tenders 
non-STEM 
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873 Furnace, Kiln, Oven, Drier, and Kettle Operators and Tenders physics STEM 

874 Inspectors, Testers, Sorters, Samplers, and Weighers non-STEM 

875 Jewelers and Precious Stone and Metal Workers non-STEM 

876 Medical, Dental, and Ophthalmic Laboratory Technicians non-STEM 

880 Packaging and Filling Machine Operators and Tenders non-STEM 

881 Painting Workers non-STEM 

883 
Photographic Process Workers and Processing Machine 

Operators 
non-STEM 

886 
Cleaning, Washing, and Metal Pickling Equipment Operators 

and Tenders 
non-STEM 

892 Molders, Shapers, and Casters, Except Metal and Plastic non-STEM 

893 Paper Goods Machine Setters, Operators, and Tenders physics STEM 

895 Helpers--Production Workers non-STEM 

896 Production Workers, All Other non-STEM 

900 Supervisors, Transportation and Material Moving Workers non-STEM 

903 Aircraft Pilots and Flight Engineers physics STEM 

911 
Ambulance Drivers and Attendants, Except Emergency Medical 

Technicians 
non-STEM 

912 Bus Drivers non-STEM 

913 Driver/Sales Workers and Truck Drivers non-STEM 

914 Taxi Drivers and Chauffeurs non-STEM 

915 Motor Vehicle Operators, All Other non-STEM 

926 Subway, Streetcar, and Other Rail Transportation Workers non-STEM 

930 Sailors and Marine Oilers non-STEM 

931 Ship and Boat Captains and Operators non-STEM 

933 Ship Engineers physics STEM 

935 Parking Lot Attendants non-STEM 

936 Service Station Attendants non-STEM 

951 Crane and Tower Operators physics STEM 

952 Dredge, Excavating, and Loading Machine Operators physics STEM 

956 Hoist and Winch Operators non-STEM 

960 Industrial Truck and Tractor Operators non-STEM 

961 Cleaners of Vehicles and Equipment non-STEM 

962 Laborers and Freight, Stock, and Material Movers, Hand non-STEM 

963 Machine Feeders and Offbearers non-STEM 

964 Packers and Packagers, Hand non-STEM 

965 Pumping Station Operators physics STEM 

972 Refuse and Recyclable Material Collectors non-STEM 

974 Tank Car, Truck, and Ship Loaders non-STEM 

975 Material Moving Workers, All Other non-STEM 

980 
Military Officer Special and Tactical Operations 

Leaders/Managers 
non-STEM 

981 First-Line Enlisted Military Supervisors/Managers non-STEM 
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982 
Military Enlisted Tactical Operations and Air/Weapons 

Specialists and Crew Members 
physics STEM 

983 Military, Rank Not Specified non-STEM 
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Appendix C 

Model Fit Indices of LLCA 

Table C1 

Longitudinal Latent Class Analysis Model Fit Indices for Three-wave Trajectories 

Index 2 classes 3 classes 4 classes 5 classes 6 classes 7 classes 

 STEM/health STEM/physics STEM 

Entropy 0.644 0.579 0.537 0.73 0.564 --- 

BIC 5084.449 5063.289 5105.746 5152.31 5200.142 --- 

Adjusted BIC 5043.161 4999.768 5109.994 5044.326 5069.926 --- 

LMR (p value) .0009 .0001 .1303 .9517 1 --- 

BLRT (p value) < .0001 < .0001 . 6667 .375 1 --- 

 blue-/white-collar STEM/non-STEM 

Entropy 0.548 0.538 0.589 0.554 --- --- 

BIC 7345.869 7348.982 7383.073 7444.262 --- --- 

Adjusted BIC 7285.525 7256.877 7259.208 7288.637 --- --- 

LMR (p value) .0001 .0654 .1986 .9019 --- --- 

BLRT (p value) .0001 < .0001 < .0001 1 --- --- 
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Table C2 

Longitudinal Latent Class Analysis Model Fit Indices for Four-wave Trajectories.  

Index 2 classes 3 classes 4 classes 5 classes 6 classes 7 classes 

 STEM/health STEM/physics STEM 

Entropy 0.795 0.695 0.79 0.828 0.787 0.838 

BIC 5669.007 5542.241 5568.541 5606.589 5660.288 5711.647 

Adjusted BIC 5615.022 5459.675 5457.395 5466.863 5491.982 5514.76 

LMR (p value) < .0001 < .0001 .0001 .8778 1 1 

BLRT (p value) < .0001 < .0001 < .0001 < .0001 1 1 

 blue-/white-collar STEM/non-STEM 

Entropy 0.682 0.739 0.678 0.693 0.691 --- 

BIC 8205.834 8120.426 8107.638 8166.861 8230.818 --- 

Adjusted BIC 8126.444 7999.753 7945.682 7963.623 7986.297 --- 

LMR (p value) < .0001 < .0001 .0016 .3513 1 --- 

BLRT (p value) < .0001 < .0001 < .0001 .0882 1 --- 

 

 

 




