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Logical and Diagrammatic Reasoning: the Complexity of Conceptual Space

Oliver Lemon (LEMONOJ@CS.MAN.AC.UK)
Ian Pratt (IPRATT@CS.MAN.AC.UK)
Department of Computer Science, University of Manchester
Oxford Road, Manchester M13 9PL, UK

Abstract

Researchers currently seek to explain the observed tractability
of diagrammatic reasoning (DR) via the notions of “limited ab-
straction” and inexpressivity (Stenning and Oberlander, 1995;
Stenning and Inder, 1995). We point out that these explana-
tions are inadequate, in that they assume that each structure
to be represented (i.e. each model) has a corresponding dia-
gram. We show that inefficacy (in the sense of incorrectness)
arises in DR because some (logically possible) models fail to
have corresponding diagrams, due to non-trivial spatial con-
straints. Further, there are good explanations of why certain
restricted languages are tractable, and we look to complex-
ity theory to establish such results. The idea is that graphi-
cal representation systems may be fruitfully analysed as cer-
tain restricted quantifier fragments of first-order logic, similar
to modal logics and vivid knowledge bases (Levesque, 1986;
Levesque, 1988). This focus raises some problems for the ex-
pressive power of graphical systems, related to their topologi-
cal and geometrical properties. A simple case study is carried
out, which pinpoints the inexpressiveness of Euler's Circles
and its variants. We conclude that there is little mileage in
spatial (i.e. diagrammatic) approaches to abstract reasoning,
except perhaps in relation to studies of human performance.
Moreover, these results have ramifications for certain claims
about mental representations, and the recent trend in cognitive
semantics, where “meanings” and “concepts™ are to be expli-
cated spatially. We show that there should be combinations of
“concepts” or “meanings” which are prohibited by the struc-
ture of the spaces they supposedly inhabit. The formal results
thus suggest an empirical programme.

Introduction

Recent years have seen much effort in the explication
of human information processing which employs diagram-
matic representations (see Glasgow, Narayanan and Chan-
drasekaran (1995) for example). The much-lauded efficacy
(Larkin and Simon, 1987) of reasoning with diagrammatic
representations (DRs) has been explored both experimentally
and theoretically (Stenning and Oberlander, 1995; Stenning
and Inder, 1995), but there are as yet few formal results con-
cerning the efficiency and expressive power of diagrammatic
representation schemes. Further, recent logical analyses of
diagrammatic representations, eg: (Hammer, 1995), do not
account for the ways in which spatial relations are employed
in representation. For example, overlap between regions may
be used to represent set intersection, relative size of points
may represent relative populations of cities, and so on. As
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we shall show, neglecting the analysis of spatial representing
relations leads to serious misapprehensions about the effec-
tiveness of DR. In fact, we shall be careful to distinguish two
types of efficacy of diagrammatic reasoning: representational
efficacy (can the system represent all that it is required to?)
and computational efficacy (what is the complexity of infer-
ence with the diagrams?)

Indeed, it is argued that current formal analyses fail on two
counts (Lemon, 1997; Stenning and Lemon, 1997);
(a) to do justice to the rich representational behaviour of DRs
(in particular, their exploitation of spatial and mereological
relations permitted by a medium of representation),
(b) to account for their efficacy in computational terms.

We propose to remedy this situation as follows: first we
consider some natural diagrammatic systems for logical rea-
soning, and some topological restrictions on them. The re-
sulting lack of expressive power, and its potential computa-
tional pay-offs. are then explored. All in all, we shall con-
sider three classes of language and their inter-relationships:
the language S of set-inclusion and intersection statements,
the diagrammatic system £C of Euler's Circles (and some
weaker variants), and relational fragments of first-order logic.

Reasoning with convex regions

Suppose, then, that as in £C a reasoner solves logical prob-
lems in the monadic predicate calculus by drawing regions of
the plane representing the extensions of various predicates.
For the present, let us suppose that these “blobs™ representing
the atomic properties are convex, and hence connected (but
not necessarily circular). The idea is that n such blobs di-
vide the plane into (at most 2™) regions, and that each region
represents a possible type of individual.

Determining whether a finite set of formulae in the
monadic predicate calculus is consistent (which is of course
equivalent to determining whether one formula follows from
a finite set of formulae) can then be seen as a matter of deter-
mining whether there is an arrangement of convex regions in
which all of these formulae come out true. Drawing “blobs”
is a natural way to reason about combinations of properties.
But there is just one snag;: it doesn’t work, in general. To see
this, consider the following reasoning task.

The examinations problem: A number of university stu-
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Figure 1: The Helly constraint for two dimensions

dents have enrolled for end-of-term examinations in var-
ious combinations of subjects. There is no limit to the
number of examinations a single student may enrol for.
Four of the examination subjects are A(lgebra), B(iology).
C(hemistry) and D(ivinity). Some students have enrolled
for (at least) A, B and C: some students have enrolled for
(at least) B, C and D; some students have enrolled for (at
least) A, C and D; and some students have enrolled for (at
least) A, B and D. (In other words, any trio of subjects is
taken by some students.) What follows?

Answer: not much. Trivially, some students take A and B;
some students take A, and so on. But it should be clear that
nothing else of substance follows. However, that is not the
answer that you would get if you represented the state of af-
fairs by drawing convex regions on paper. And the reason for
this is the following standard result:

Theorem 1 (Helly’s theorem) Let X,,...,Xn be convex
regions in n-dimensional Euclidean space, N > n + 1, such
that any n + 1-membered collection of the X,,..., Xy has
a nonempty intersection. Then Xy, ..., X has a nonempty
intersection.

For instance, let N = 4 (for the 4 regions A, B, C, D), and
since the regions are plane, n = 2. Then if every trio of the
regions has an intersection, all four of them must intersect
too. See figure 1, where there is no way to add a new convex
region (eg: the dotted ellipse) overlapping each pairwise in-
tersection (the regions denoted by “X”) of the others, without
also producing a quadruple intersection (in the region marked
“0"). Regarding the above examinations problem, then, no
matter how you draw the blobs, provided they are convex,
the intersection of A, B, C and D will unavoidably turn out
non-empty. This forces any would-be diagrammatic reasoner
to draw the unwarranted conclusion that some students take
all four examinations. The upshot of the examinations prob-
lem is that spatial representations isomorphic to convex blobs
would be a bad idea for reasoning in the monadic predicate

calculus', even if that reasoning were restricted to relatively
simple problems involving up to four terms. (For three or
more dimensions, note that increasing the number of exami-
nations leads to analogous errors.)

The important point to notice about the examinations prob-
lem is the extent to which it relies on the spatial nature of
the representations involved. Helly’s theorem is non-trivial
where n > N + 1. That is, it identifies a constraint on the
representational system of convex blobs which does not arise
from logic alone. That is why this representation scheme is
bound to yield incorrect inferences, because it cannot repre-
sent some logically possible situations. In other words. as
we have seen above, the spatial representation scheme may
“force” representations which are geometrically, rather than
logically, necessary. The representation scheme is “over-
specific” or “information enforcing” to use the terminology
of Shimojima (1996) or Stenning and Inder (1995). If peo-
ple really reasoned by drawing something like “pictures in
their heads”, the inference that some students take all exam-
inations is just the sort of error one would expect. Far from
being merely an intuitive characterisation of representational
inefficacy (as is common in the DR literature) we can show
in this instance precisely where “mistakes” with DR might
spring from. Before beginning an analysis of the expres-
sive power and complexity of certain diagrammatic systems,
we shall consider some other topological constraints on dia-
grams.

Reasoning with connected (non-convex) regions

To obviate the problem described above, a spatial represen-
tation scheme for the monadic predicate calculus must use at
least non-convex blobs. Again, the system using non-convex
connected plane regions is a less constrained version of the
convex “Euler regions” system presented above (which itself
is a less constrained version of Euler’s Circles). Thus the re-
sults derived for non-circular and non-convex plane regions
certainly apply to the standard system £C.

Let us suppose that the blobs representing the atomic prop-
erties are connected (i.e. “‘one piece” regions). Otherwise, let
their interpretation be as for the convex regions. But might
not a similar problem arise here? Might there not be a non-
trivial property of connected regions in 2D which renders
them similarly unsuitable as a representation scheme? Again,
the use of connected plane regions to reason about properties
strikes one as quite natural. And again, it doesn’t work, in
general. To see this, consider the following reasoning task.

The musicians problem: Nine musicians, A(lison), B(rian),
C(ornelia), . ..and I(an) play various pieces of music in all
sorts of combinations. Some pieces involve at least the fol-
lowing players (possibly others as well):

ABC, DEF, GHI, ADG, BEH, CF, CI, FL.
In addition, no pieces involve any two musicians not
grouped together in the above list. (For example, A and

"There is a suggestion that an analogous result exists, due to Mar-
tin Gardner, though as yet we have been unable to confirm it.
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I are not grouped together, so no pieces involved both Ali-
son and Ian.) What follows?

Again, not much, apart from the trivial inferences that some
pieces involved both Alison and Brian, no pieces involved Al-
ison, Brian and lan, and so on. But that is not the answer that
you would get if you represented the state of affairs by draw-
ing connected (but not necessarily convex) blobs on paper. It
turns out to be impossible to realize the above arrangement so
as to make C, F and I overlap, corresponding to the conclu-
sion that no piece involved Cornelia, Fiona and Ian. Again,
this conclusion is unwarranted, because there could have been
six trios ABC, DEF, GHI, ADG, BEH, CFI, consistent with
the statement of the problem.

The reason for this is that the situation describes a non-
planar graph (Kuratowski, 1930), if the relation of playing-
music-together is represented as overlap of regions. We shall
see this property of limited representability for overlap rela-
tion in the plane work out in detail in the proof of theorem 2
below.

Complexity of fragments of FOL

The primary motivation for investigating diagrammatic lan-
guages as spatially restricted logical languages, is computa-
tional. We wish to establish the noted computational efficacy
(meaning tractability) of DRs by way of the complexity prop-
erties of the logics to which they correspond.

It is well known that certain fragments of FOL are decid-
able, and enjoy polynomial satisfiability. For example, satis-
fiability of the Horn fragment of FOL is in P (Papadimitriou,
1994). Other interesting fragments include the purely uni-
versal fragment, the purely existential fragment, the monadic
predicate fragment, and restricted quantifier fragments (cor-
responding to modal logics). In connection with spatial log-
ics, Bennett’s intuitionistic logic (Bennett, 1994) for quali-
tative spatial reasoning has been shown to be a polynomial
time fragment (Nebel, 1995) (actually, it is in NC,; efficiently
solvable on parallel machines). We shall begin to ask similar
questions about logical fragments which correspond to dia-
grammatic systems,

Constraints and expressive power
Here we consider the simple diagrammatic language of non-
convex connected regions of the plane for representing and
reasoning about S, the language of set inclusion and inter-
section. This example illustrates the proposed analysis of di-
agrammatic efficacy in terms of expressive power and com-
plexity theory.

Consider the simple diagrammatic language where con-
nected regions of the plane are interpreted as sets. Set s prop-
erly includes set s’ if and only if the connected region 7,
representing set s’ is entirely contained in the region r, rep-
resenting set s. Similarly, set s has a non-empty intersection
with set s’ if and only if the region r, representing set s’
overlaps the region r, representing set s. Thus, the diagram-
matic system allows us to express facts about set inclusion
and intersection.

Indeed it is trivial to note that the system exhibits self-
consistency: every diagram may be interpreted as consistent
set of set-inclusion and intersection statements. This consis-
tency is guaranteed simply by the properties of regions of the
plane; inclusion of regions is transitive (as is set inclusion),
overlap of regions is symmetric (as is set intersection), and
so on. However, although the structural restrictions (transitiv-
ity, symmetry) on the set-theoretic operations are preserved in
the spatial restrictions on inclusion and overlap of connected
plane regions, it turns out that this relation of overlap obeys
more constraints than that of set intersection.

Constraint mis-matching

“Counstraints”, to use the terminology of Barwise and Shimo-
jima (1995) and Shimojima (1996), are the restrictions inher-
ent in a class of structures (for example, that collections of
convex regions obey Helly's theorem, or that set intersection
is symmetric.) Problems of representational efficacy in DR
arise when there is a mis-match between the constraints of
the diagrammatic system. and those of the system it is sup-
posed to represent.

Consider the systems above. The set-inclusion relation forms
a strict partial order. Similarly, the diagrammatic relation of
one region being inside another also forms a strict partial
order. However, set infersection relations form a symmet-
ric structure, while overlap relations in £C form a symmetric
structure in the plane. Thus, in some cases, £C is more con-
strained than §. In fact, we may identify these problematic
cases as those corresponding to the non-planar graphs, lead-
ing to the following result.

Limited representability of £C: non-planarity

Let full representability of a diagrammatic language G with
respect to a set of models M be the property that every model
m € M may be represented by a diagram of G. Thus, for the
full representability of £C, we need to show that any logi-
cally possible collection of sets may be drawn as a diagram
of that system. Sadly, as we shall show, this is not generally
true. Just as it is impossible to use £C to represent a contra-
diction, it turns out to be impossible for £C to represent some
logically possible models too.

Theorem 2 There are consistent sets of set intersection state-
ments which cannot be represented by any diagram of EC.

Proof: Consider the system where sets are represented by
(non-convex) connected regions of the plane. Let there be 5
sets vy ...vs, and 10 sets e;;,1 < i < j < 5, such that the
following constraints hold;

L viNe; #0

2. v;Ney #9

3.e5Nep; =0ifi #i' or j# 7'
4 viNu; =0ifi#j

5. ucNey; =0ifk#i and k #j
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This situation is logically possible, but this is not the conclu-
sion you would reach if you were to represent the sets by way
of connected regions of the plane. To see why, let the sets
be regions of the plane. Since regions v; are connected and
Vj #1i,e; Nv; # 0, wecan create nodes V; € v; and 17 «
v; Ne;;, and edges (V;, V;;) which intersect only at ;. Now
add edges (Vi;,Vji) forall 1 < i < j < 5, drawn en-
tirely within e;;, since the e;; are connected. The resulting
graph is I's, which is non-planar (Kuratowski. 1930). Thus
the £C representation forces there to be an overlap violating
the above constraints. As regards the “musician’s problem”
(stated above); it relies on the fact that a similar construction
may be carried out for the non-planar graph I's 3, using 9 re-
gions.

Obviously, if we restrict the number of sets which we wish
to reason about, so that the planarity problems cannot arise,
then the (non-convex) diagrammatic system exhibits full rep-
resentability of the restricted problem domain. To summa-
rize, the following restrictions apply, for full representability,
in the sense that (as far as we know) spatial difficulties do not
arise if restricted to reasoning about the following numbers of
regions.

Convex 2D £C: 3 sets.
Convex 3D £C: 4 sets.
Non-convex connected 2D £C: 8 sets.

Constraints for convex regions arise from the Helly prop-
erty, and those for connected plane regions arise from pla-
narity considerations. As far as we know, there are no restric-
tions on representability for representation systems which
employ 3D non-convex representations, or for those which
employ non-connected regions. However, such systems, al-
though perhaps nominally spatial, are so unconstrained as to
fail to be diagrammatic in any contentful sense.

Given that effective diagrammatic systems exploit spatial
properties of the medium, how might a logical analysis pro-
ceed? We now describe a class of first-order languages which
allow us to investigate diagrammatic systems more formally.

Logics and Diagrammatic systems

We identify a certain class of languages, defined over £, =
{A,~,=,Cons, P}, where Cons is a set of distinct con-
stants, P is a set of distinguished predicates, and negation
only applies to atomic formulae. These fragments of FOL
are further constrained to exhibit only restricted quantifica-
tion for their distinguished predicates (in the sense used in
correspondence theory for modal logics), are implication-free
and disjunction-free, and thus avoid expressing indetermi-
nacy. We propose that some DR systems exhibit a formal
correspondence to certain of these language , where distinct
constants stand for distinct connected regions of the plane,
and relations between constants are constrained so as to cap-
ture the structure of these plane regions. Further, the lan-
guages in £, operate under the following conditions;

1. (Unique Names/Specificity)
all constants are non-identical (ie: regions are distinct).
Ve, o) € Cons, ifi # j, thene; # ¢;

2. (Closed World Assumption)
For all consistent sets of sentences 7' C L,
THdg=>TF ¢

Note that these languages are similar to Levesque’s notion of
a vivid knowledge base (Levesque, 1986; Levesque, 1988); a
first-order language which contains only ground atomic sen-
tences, inequalities between all constants, universally quan-
tified sentences over the domain, and whose predicates obey
the closed-world assumption. Determining entailment in such
knowledge bases is known to be tractable. Indeed, Levesque
speculates further that,

“ perhaps the main source of vividly represented knowl-
edge is pictorial information.” (Levesque, 1986).

Similar claims may be found in literature on the logical form
of pictures as mental representations (Howell, 1976; Sober,
1976).

Complexity of spatial inference

Recall our motivation for investigating diagrammatic lan-
guages as spatially restricted logical languages. We wish to
establish the computational efficacy of DRs by way of the
complexity properties of the logics which they embody. We
have seen that reasoning with £C (and its variants) is only
correct for a small number of sets. When restricted in this
way, reasoning with £C is clearly polynomial (it reduces to
table look-up).

Two cheers for DR?

But what of the complexity of the unrestricted systems (where
non-planar representations may occur)? We know that this
version of £C is incorrect for set-theory, and worse still, that
its complexity is that of reasoning about overlap and inclu-
sion for connected regions of the plane - recently shown to
be NP hard (Grigni et al., 1995). Furthermore, the use of
circles (as opposed to simply connected regions) may impose
even more geometrical constraints on the representations than
those which we have considered.

More positively, note that although the spatial restrictions
on possible diagrammatic representations lead to incorrect in-
ferences in the cases presented here, they are effective in the
representation of similarly constrained structures (most obvi-
ously, those which themselves obey spatial constraints). This
fact, for example, makes cartography a successful venture.

Such considerations point to the conclusion that there is
little mileage in spatial (i.e. diagrammatic) approaches to ab-
stract reasoning, unless one is fortunate enough to be able to
prove that the problem domain obeys all the (topological and
geometrical) restrictions inherent in the chosen diagrammatic
system. Of course, this leaves open the possibility that dia-
grammatic reasoning is interesting from the point of view of
a model of human performance.
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Implications for spatial modelling
We conclude with some wider considerations for cognitive
scientists generally, who might be tempted to use spatial
structures in their cognitive models,

Some mileage has been found. in recent years, in the claim
that there is a spatial structure to concepts and word mean-
ings. eg: (Giardenfors, 1996; Girdenfors. 1995). Cognitive
semantics often employs the idea that meanings and con-
cepts have a spatial nature; that our mechanisms for reasoning
about and representing space are also made use of in our rep-
resentations of other, more abstract, properties, entities, and
relations. Thus, categories or concepts, as well as word mean-
ings, are supposed to have a spatial structure?. The spatial
version of the idea that meanings are mental entities holds that
they exist as positions or regions within “‘conceptual spaces”™.
In particular. it seems that an analysis of metaphor and of spa-
fial prepositions have given rise to this view. For example:

“What characterizes a metaphor is that it expresses a
similarity in topological or metrical structure between
different quality dimensions.” (Gérdenfors, 1995)

Thus a conceptual space is taken to be determined by a
number of quality dimensions. Regions of conceptual space
are then to be understood as spatial entities, with respect to
the topology and metric of that space. For example, we might
talk of the “opposition” of colours red and green, or of politi-
cal parties, of “lengths” of time, and so on. These are not just
ways of speaking, it is claimed, but they rely on the structure
of “conceptual spaces” which really do have some particular
spatial structure and properties.

As we have seen above, such spatial representational struc-
tures must be constrained in important ways (i.e. their topolo-
gies and metrics must be specified), or else they are structures
of some other sort, and “spatial” in name only. If internal
representations are to be interestingly spatial they must sat-
isfy some particular structural properties. So we ask how se-
riously this “spatial turn” in cognitive science can be taken.
The results presented above show that topology and geometry
must constrain possible spatial representations - that “con-
ceptual spaces” cannot represent every combination of their
constituents. That means that certain combinations of con-
cepts or meanings should be impossible in certain conceptual
spaces. These “impossible representations” should be empiri-
cally detectable. Perhaps this is the kind of evidence cognitive
semanticists should seek. Otherwise the claims of the “‘con-
ceptual space” version of cognitive semantics are in danger
of being unfalsifiable.

An Empirical Programme

Regarding the formal results presented above, we currently
have only informal evidence that people typically do not
make the kinds of inferential mistakes that the results pre-
dict for the use of convex or connected 2D regions. For in-
stance, given the examinations problem, subjects typically do

“This structure is argued to support non-monotonicity and
metaphor.

not make the inference that some student takes all four ex-
aminations, but this is the mistake that they would be forced
to make (via Helly’s theorem) if they happened to represent
the problem by way of convex plane regions in £C. Simi-
larly, we found that subjects are not tempted to make mis-
takes predicted by the planarity constraints in the musician’s
problem. However, since 9 regions are involved in this prob-
lem, it seems unlikely that any would-be diagrammatic rea-
soner would attempt the problem without pencil and paper.
So it may be that “diagrams in-the-head” are only used where
small numbers of regions are required. Again. experimental
work remains to be done on these issues.

The general empirical issue arising is that of to what ex-
tent the “spatial” structures posited in cognitive science meet
requirements on interestingly spatial representations. If they
do not obey contentful spatial constraints, we claim that they
are merely structural descriptions, as “spatial” as any other
theory. The concern is that this spatial metaphor, as it stands
in cognitive science, may be an empty one. Our proposal is
that, empirically and formally, “spatial”” hypotheses in cogni-
tive science ought to be investigated by way of the structural
constraints imposed by the use of space as a representational
medium, and its potential computational payoffs.

For example, by the topological results applied above,
there ought to be configurations of regions in every “concep-
tual space” which are not possible within that space: that is,
combinations of representations (“concepts” or “meanings”)
which are prohibited by the structure of the space they in-
habit. There could be empirical studies exploring such phe-
nomena, as well as formal results establishing the the compu-
tational properties of such spatially restricted representation
languages. But we are unaware of any such studies to date.

Conclusion

The representational power of diagrammatic systems such as
Euler's Circles is investigated with respect to their use in solv-
ing simple logical conundrums in set theory. Topological re-
sults expressing constraints on possible diagrams are used to
show that certain logically possible configurations (models)
cannot be represented diagrammatically (or, in general, spa-
tially). We conclude that diagrammatic reasoning is only ef-
fective for a certain tightly constrained set of problems, and is
only interesting as a potential model of human performance.
Even there we are unaware of any study which investigates
the impact of spatial constraints on possible representation
and reasoning strategies.

It is proposed that the efficacy (representational and com-
putational) of diagrammatic systems be explicated via the ex-
pressive power and computational properties of the restricted
languages of which they make use. We believe that the com-
putational properties of language fragments may be used to
explain the efficiency of diagrammatic reasoning in more de-
tail than the “limited abstraction” hypothesis of (Stenning
and Oberlander, 1995). We identify an interesting class of
(restricted first-order) languages in this regard. This first at-
tempt to apply the concepts of complexity theory to systems
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of diagrammatic representation is a necessity in the evalua-
tion of non-psychological claims about their tractability. Fur-
thermore, ramifications of these results for a current “spatial”
trend in certain branches of cognitive science. are discussed.

A potentially fruitful ground for collaboration has been
prepared; that between spatial logic, formal semantics, com-
plexity theory, and the analysis of diagrammatic representa-
tion systems.
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