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Abstract 

This study investigates the relationship between sentence 
prominence and the predictability of word-specific statistical 
descriptors of prosody. We extend from an earlier word-
invariant model by studying a model that marks words as 
prominent if the acoustic prosodic features differ from their 
expected values during the lexemes. To test the approach, the 
most common acoustic features associated with the perception 
of prominence are extracted and several lexeme-specific 
statistical measures are computed for each feature. 
Simulations are conducted on a corpus of continuous English 
speech and the algorithm output is compared to manually 
assigned prominence labels. The results show that the deviant 
prosodic descriptors of the words correlate with the 
perception of prominence. However, this effect is much 
smaller than that obtained by modeling the prosodic 
predictability at the utterance level, suggesting that context-
independent lexeme-specific models are unable to capture 
relevant aspects of sentence prominence. 

Keywords: Sentence prominence; prosody; statistical 
learning; predictability; attention 

Introduction 
Sentence prominence or stress is an important characteristic 
of spoken language that can be defined as an accentuation of 
syllables within words or of words within sentences (Cutler, 
Dahan, & van Donselaar, 1997). Prominence has an impact 
on the perceptual processing of the listener, where, however, 
little is known about the actual mechanism or process that 
drives the perception of prominence. This study extends our 
earlier work where we examined how the temporal 
unpredictability of F0 affects the perception of prominence 
and was agnostic to the lexical content of the utterances 
(Kakouros & Räsänen, 2014a). Here, the aim is to 
investigate whether there are interactions between the 
lexical and prosodic coding of each word through the 
investigation of the most common acoustic correlates of 
prominence that occur during the words. 

The perception of prominence is largely determined by 
contrastive changes in prosodic features estimated over 
temporally defined segments such as those of a word, 
sentence or of longer utterances (Werner & Keller, 1994). 
Recent studies have also associated prominence with the 
function of attention as the mechanism enabling the shift of 
focus to specific words in an utterance (see, e.g., Cole, Yo, 
& Hasegawa-Johnson, 2010; Kalinli & Narayanan, 2009). 

For instance, Cole et al. (2010) concluded that attention and 
prominence might share a common basis where a word may 
attract the listener’s attention either as a response to acoustic 
modulation (signal-based acoustic salience) or due to its 
relative unpredictability requiring extra processing resources 
(expectation-based). Therefore, in this regard, attention can 
be roughly divided into a bottom-up and top-down 
component (see also Mancas, Beul, Riche, & Siebert, 2012).  

Bottom-up is a rapid, saliency-driven component while 
top-down is a task-dependent process that involves high-
level cognitive processes (see, e.g., Mancas et al., 2012, for 
more details) and is considered to use prior knowledge and 
past expertise (see also Kalinli & Narayanan, 2009). Both 
attentional components are assumed to interact and, 
according to Itti and Baldi (2009), one way to characterize 
attention is by the unexpectedness or novelty of stimulus 
that can be converted into a probabilistic interpretation 
under a statistical learning framework. One such 
formulation is that of a low likelihood data observation 
taking place in an otherwise predictable temporally defined 
context. For instance, assuming a series of data observations 
Ot during [t1, tN], with P(Ot) their corresponding likelihood, 
the observation Om that would provide the lowest 
probability given the past learned expectations 
(Om=min{P(Ot1),P(Ot2),…,P(OtN)}) would be the one 
characterized as novel. This can be extended to identifying 
multiple novel observations by selecting local minima or 
through the use of a probabilistic threshold. An analogy to 
speech can be found in the prosodic features where the 
acoustic information can be statistically modeled and 
evaluated over different temporal segments such as those of 
individual words, therefore combining top-down (lexical) 
and bottom-up (prosodic) processing. 

The relationship between language, acoustic features of 
speech, and predictability has been also examined earlier. 
For instance, works such as that of Calhoun (2007, 2010) 
point to the importance of predictability of the linguistic 
elements (such as syntactic and semantic) in determining 
focus in speech. Cole et al. (2010) also examined the role of 
expectations, reporting the importance of word 
unpredictability in the perception of prosodic prominence. 
Finally, another related work is that of Aylett and Turk’s 
(2004) smooth signal redundancy hypothesis. The 
hypothesis is based on the relationship between syllable 
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reduction (through durational shortening) and linguistic 
predictability and proposes that prosodic prominence is 
employed in order to manage unpredictable elements in 
speech  (see also Turk, 2010, for a similar study on words; 
Pan & Hirschberg, 2000, for a study using only the lexical 
context; Aylett & Bull, 1998). Therefore studying the 
potential interactions between the acoustic and language 
content is particularly important. 

The acoustic realization of prosodic prominence is 
typically associated with the acoustic features corresponding 
to signal energy, fundamental frequency (F0), and duration 
(see, e.g., Lieberman, 1960; Terken, 1991; Kochanski, 
Grabe, Coleman, & Rosner, 2005; Wagner, 2005; 
Rosenberg & Hirschberg, 2009). Few studies give evidence 
of the importance of spectral tilt (see, e.g., Sluijter & van 
Heuven, 1996) with, however, experimental findings, not 
being able, thus far, to confirm its role across languages 
(Ortega-Llebaria & Prieto, 2010). When it comes to 
computational modeling of sentence prominence, the 
majority of the earlier work has focused on supervised (see, 
e.g., Imoto, Tsubota, Raux, Kawahara, & Dantsuji, 2002; 
Minematsu, Kobashikawa, Hirose, & Erickson, 2002) and 
unsupervised approaches (see, e.g., Kalinli & Narayanan, 
2009; Wang & Narayanan, 2007; Tamburini & Caini, 
2005). Supervised approaches have been primarily studied 
by examining the co-occurrence statistics of combinations 
of the typical prosodic features and the perception of 
prominence (see e.g., Imoto et al., 2002; Minematsu et al., 
2002). This typically requires the availability of manually 
annotated prominence labels, which is an overall expensive 
process. Instead of using a priori linguistic information, 
unsupervised methods typically extract acoustic features 
directly from the speech signal and compute, for instance, 
prominence scores using different feature combinations 
(see, e.g., Tamburini & Caini, 2005). 

In Kakouros & Räsänen (2014a) it was proposed that the 
unpredictability of temporally evolving prosodic features 
could be sufficient for generating a perception of 
prominence in speech, therefore making prominence 
perception learnable using generic statistical learning 
mechanisms. In the current paper, we investigate the idea of 
predictability-based prominence perception further by 
combining lexical information to the unpredictability 
framework. The basic assumption is that typical (high 
probability) prosodic feature values during a specific lexeme 
would correspond to a non-prominent word whereas deviant 
(low probability) values would be surprising to the listener 
and therefore constitute a potentially prominent word.  

Methods 
The vocabulary-based acoustic parameters (VAP) approach 
is centered on a dictionary of words where the prosodic 
characteristics of each word are described with a number of 
statistical descriptors (see Fig. 1). Although unrealistic for 
large-vocabulary languages, the approach enables a 
controlled way to study the expectations of prosodic 
features using data that has multiple occurrences of each 
word. Each descriptor is modeled using a parametric and a  
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Figure 1: Overview of the processing steps during training 
and testing for the proposed algorithm. 

non-parametric distribution in order to infer typicality of the 
word realization in the data, and thereby to detect 
potentially prominent words based on their atypical prosodic 
characteristics. These are further described below, starting 
with the prosodic features estimation. 
Features and their statistical descriptors 
Four features descriptive of prominence were used in the 
data analysis, namely: (i) signal energy (EN), (ii) F0, (iii) 
spectral tilt (ST), and (iv) duration (D). 

Energy, F0, and spectral tilt The speech data were first 
downsampled to 8 kHz. For the voiced segments, F0 
contours were extracted for each utterance using the 
YAAPT-algorithm (Zahorian & Hu, 2008) with 25 ms 
window length and 10 ms frame shift. Signal energy was 
calculated using the same window size and frame shift 
based on Eq. (1):  

EN = x[n] 2
n=n1

n2

∑       (1) 

Spectral tilt was computed using the same windowing 
parameters and by taking the first Mel-frequency cepstral 
coefficient (MFCC) of each window (see, e.g., Tsiakoulis, 
Potamianos, & Dimitriadis, 2010). 

Before calculating the statistical descriptors for each 
feature, a normalization process was applied in order to 
ensure comparability across talkers and utterances. Energy 
and spectral tilt were min-max normalized per utterance 
according to Eq. (2): 

fψ '(t) =
fψ (t)−min( fψ )

max( fψ )−min( fψ )
    (2) 

where fψ(t) represents the value of feature ψ at time t and the 
min and max are computed across the entire utterance (see 
also Imoto et al., 2002). F0 contours were semitone 
normalized based on the minimum F0 during the utterance, 
according to Eq. (3): 

F0'(t) =12 ⋅ log2
F0(t)
min(F0)

   (3)  

where F0(t) represents the value of the F0 at time t. Finally, 
word- and syllable-level durations were modeled in their 
original form. 

Word- and syllable-level duration Duration in the data 
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was examined both at the word and syllable level. Word 
duration (Dw) was computed from the time-aligned word-
level information extracted from the transcriptions of the 
speech corpus. Specifically, given the temporal boundaries 
of each word in the utterances, t1 (word start) and t2 (word 
end), duration was calculated as Dw = t2 - t1. 

Syllable duration (Ds) was computed by dividing the word 
duration Dw by the number of syllabic nuclei ν detected for 
that word (Ds = Dw / ν). In order to estimate the number of 
syllabic nuclei in each word (or per time unit), the amplitude 
envelope was used to segment the speech signal into 
subsequent syllables. For the envelope computation, the 
absolute value of the speech signal sampled at 1000 Hz was 
taken first followed by a low-pass filtering with a 48-ms 
moving average filter. The resulting signal was then scaled 
in order to have a maximum value of one across its length.  

The boundaries of the syllables were then computed from 
the resulting envelope by minima detection: Any local 
minimum preceded by an amplitude difference larger than 
δ=0.015 was considered a syllable boundary. In the case 
where two or more boundaries were closer than 80-ms to 
each other, a single boundary was considered at the 
midpoint. Finally, the syllabic nucleus was marked at the 
local maximum in the envelope between the detected 
syllable boundaries (see also Räsänen, Doyle, & Frank, 
submitted, for a comparison with other methods). 

Statistical descriptors The main statistical parameters that 
were used in the analysis of the data were calculated over 
the duration of each individual word (see, e.g., Chen, Robb, 
Gilbert, & Lerman, 2001).  According to the literature, the 
most common acoustic descriptors are the mean, median, 
and variance of the features (see, e.g., Rosenberg, & 
Hirschberg, 2009; Chen et al., 2001; Eriksson, Barbosa, & 
Akesson, 2013; Zhang, Nissen, & Francis, 2008). 
Furthermore, the examination of the maximum and feature 
change might also provide meaningful information (see, 
e.g., Terken, 1991). All these measures were calculated over 
all features in order to gain an understanding of their 
behavior. Therefore we included the following in the 
analysis: (i) feature change computed according to Eq. (4), 
(ii) maximum feature value during the word, (iii) mean 
during the word, and (iv) variation calculated as the 
standard deviation of the feature during the word (see also 
Table 1). 
f chψ =max fψ '(t){ }−min fψ '(t){ }, t ∈ [t1, t2 ]    (4) 

Statistical models 
After the computation of the statistical parameters, each 
word in the vocabulary has a set of descriptors defining the 
typical behavior of the prosodic features for that word. Each 
descriptor was then modeled using a normal distribution and 
a histogram-based probability distribution. While the former 
provides a first approximation of the typicality of the feature 
values, the latter can account for any arbitrary-shaped 
distribution given our present data set with a large number 
of samples for each word (see experiments). 

Table 1: Overview of the statistical parameters used in the 
experiments.
Features used Description Features used Description

F0_AV F0 mean ST_AV Spectral tilt mean

F0_SD F0 standard deviation ST_SD Spectral tilt standard deviation

F0_CH F0 change ST_CH Spectral tilt change

F0_MX F0 max ST_MX Spectral tilt max

EN_AV Energy mean DU_W Word duration

EN_SD Energy standard deviation DU_S Syllable duration

EN_CH Energy change

EN_MX Energy max  
 

The normal distribution (N(µ,σ2)) for lexeme L is defined as:  

φL ( fψ,κ ,µψ,κ ,σψ,κ ) =
1

σψ,κ 2π
e
−
( fψ,κ −µψ,κ )

2

2(σψ,κ )
2

  (5) 

where κ denotes the statistical parameter, ψ the acoustic 
feature, µ the mean value, and σ the standard deviation of 
the descriptor in the training data. Therefore, for each word 
L in the vocabulary there are a total of 14 models. It is 
important to note that, the assumption of normality of the 
parameters might not necessarily hold for all the examined 
descriptors, but it is a simple first approach in demonstrating 
the perceptual effect of deviant features. 

During the testing stage, the score for the j:th word token 
wij in utterance i for features ψ and descriptors κ was then 
determined according to Eq. (6): 

S(wij ) = log10 φL ( fψ,κ ,i, j,µψ,κ ,σψ,κ )!
"

#
$

ψ,κ
∑   (6) 

where f denotes the computed feature parameter and L is the 
known identity of the word. This formulation assumes 
statistical independence of the feature descriptors in order to 
combine the individual descriptors and study potential 
interactions. 

The histogram-based distribution model was generated by 
dividing the descriptor values of the training data into Q 
uniformly spaced bins across the entire value range. Then 
each bin was assigned with a probability by taking the 
proportion of data points that end up in each bin. During 
testing, the probability of a given feature value was simply 
the probability of the bin that it was assigned to, while 
combination of multiple descriptors was performed as a sum 
of logarithms similarly to the normal distribution in Eq. (6).  

The prominence classification H(wi,j) for each word j in 
utterance i was then determined based on whether the word-
level score S (wi,j) falls below a threshold ri:  

H (wij ) =
1, S(wij )< ri ,
0, S(wij ) ≥ ri ,
"
#
$

   (7) 

where the threshold was defined at the utterance level as: 

 ri = µi −σ iλ    (8) 

and where hyperparameter λ controls the sensitivity of the 
prominence detector. 
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Experiments 
The performance of VAP was tested on continuous English 
speech. To evaluate algorithmic output, a corpus with hand 
labeled prosodic labels was used (see, Altosaar et al., 2010; 
Kakouros & Räsänen, 2014b). The annotations were 
compared against the prominence hypotheses generated by 
the VAP algorithm. Overall system performance was 
evaluated using standard measures for accuracy and inter-
rater agreement that are further described below. 
Material 
The CAREGIVER Y2 UK corpus (Altosaar et al., 2010) 
was used in the experiments reported in this work. The style 
of speech in CAREGIVER is acted infant-directed speech 
(IDS) spoken in continuous UK English, simulating a 
situation where a caregiver is talking to a child and recorded 
in high-quality within a noise-free anechoic room. The 
talkers were not separately instructed on the use of prosody 
or prominence (see Altosaar et al., 2010, for details).  

In overall, CAREGIVER Y2 UK contains 2397 sentences 
from each main talker (approximately 1.8 hours of acoustic 
data per speaker). Prominence labels were available for a 
certain part of the corpus (see Kakouros & Räsänen, 2014b, 
for more information), and therefore, the whole annotated 
subset of 300 unique utterances was chosen for the purpose 
of this experiment from one male and female talker 
(Speakers 3 and 4), yielding a total of 600 utterances. The 
database also contains orthographic transcriptions 
corresponding to each utterance with time-aligned 
information at the word level.   

All single-word utterances were excluded from the data, 
leading to an average of 5.9 words per sentence. This set of 
utterances is referred to as the test set, as it was used to 
probe the performance of the studied VAP model. 

Regarding the training of the statistical model, 2000 
sentences per talker were used (i.e., 4000 in total) yielding 
an average of 348 data points per lexeme (SD = 274, median 
= 212) to estimate the features. None of the utterances in the 
training set were present in the above test set. 
Evaluation 
Two standard evaluation approaches were used in order to 
measure the performance of the VAP: (i) inter-annotator 
agreement rates and (ii) relevance measures. Specifically, to 
measure the inter-annotator agreement between the test set 
and the algorithmic output the standard Fleiss kappa (FK) 
(Fleiss, 1971) measure was used. FK measures the degree of 
agreement between two or more annotators on a nominal 
scale of [-1,1] by taking into account the distribution of the 
ratings. Therefore, FK yields zero in the case when the 
distribution is what would be expected if all raters made 
their judgments completely randomly. In the current work, 
FK was measured on the word-level. The overall agreement 
rate on the words in the test set was then used as the primary 
measure in the analysis. As the prominent labels were 
available per word from thirteen annotators, a single 
reference was constructed yielding 1 for prominent and 0 for 
non-prominent words where a prominence marking was 

generated for the majority agreement (≥6 votes). FK was 
then computed between the reference and the prominence 
hypotheses generated by the algorithm. 

For the relevance measures, precision (PRC), recall 
(RCL), their harmonic mean (F-value), and accuracy (ACC) 
were used and were defined as: 
    

€ 

RCL = tp /(tp + fn)     (9) 
    

€ 

PRC = tp /(tp + fp)     (10) 
  

€ 

F = (2× PRC× RCL)/(PRC+ RCL)    (11) 
    

€ 

ACC = (tp + tn)/(tp + fp + fn + tn)    (12) 
where tp denotes the true positives, tn the true negatives, fp 
the false positives, and fn the false negatives. 

Finally, we compare the current approach with the earlier 
model based on the temporal unpredictability of the feature 
trajectories. In the feature trajectory model (FTM) 
(Kakouros & Räsänen, 2014a), the raw acoustic feature of 
interest (e.g., F0) is first quantized into a finite number of 
discrete states. An n-gram model is then used to model the 
typical behavior of these state-sequences over time similarly 
to language models in speech recognition. Whenever the 
probability of the prosodic trajectory during an underlying 
word falls below a pre-defined threshold, it is hypothesized 
that the word is prominent. In contrast to the present work, 
the model does not use word information during training, 
but simply decodes probability information in word-sized 
temporal chunks during the testing stage (see Kakouros & 
Räsänen, 2014a, for details). 
Experimental setup 
The experiment was run by populating the dictionary with 
all the words and their descriptors available in the training 
set of 4000 utterances and computing their corresponding 
statistical models. Next, the proposed VAP approach was 
tested on 600 novel utterances (test set) where the algorithm 
selected the words with the most deviant descriptors in each 
utterance and marked them as prominent. The 
hyperparameter λ was used in order to control the sensitivity 
of the algorithm and was set to the range of λ ∈ [-0.5,1]. 

Results 
The experiment was performed for all 14 individual 
statistical descriptors and also for several combinations and 
separately for the standard Gaussian (SG) and the histogram 
(HS) models. Here, only five combinations are considered 
(see Table 2), as there were many potential feature 
groupings that would require a more extensive presentation 
but did not show notable differences from those shown here. 
The selected subset of the combined descriptors represented 
two main cases: (i) combination of all feature level 
descriptors (e.g., all energy descriptors – EN_ALL) and (ii) 
combination of best performing descriptors – F0_CH, 
EN_CH, DU_W).  

Using the SG, it can be seen (Table 2) that the best 
performing features were those of duration, energy, and F0 
(in decreasing order of performance).  Specifically, deviant 
word durations seemed to be the most descriptive of 
prominence with FKSG=0.34 and 76% accuracy (for λ=0).  
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Table 2: Results for the individual features and feature 
combinations for the standard Gaussian (SG – λ=0) and 
histogram model (HS – Q=3, λ=-0.1). 

Features FKSG ACCSG FKHS ACCHS Features FKSG ACCSG FKHS ACCHS

F0_AV -0.16 0.64 0.12 0.71 ST_CH -0.17 0.64 0.03 0.69

F0_SD 0.05 0.69 0.15 0.73 ST_MX -0.27 0.62 -0.24 0.63

F0_CH 0.17 0.71 0.15 0.72 DU_W 0.34 0.76 0.30 0.76

F0_MX -0.10 0.65 0.12 0.71 DU_S 0.20 0.72 0.10 0.71

EN_AV -0.08 0.66 0.31 0.76 EN_ALL 0.14 0.71 0.31 0.75

EN_SD 0.08 0.70 0.32 0.75 F0_ALL 0.06 0.69 0.17 0.73

EN_CH 0.21 0.72 0.25 0.74 ST_ALL -0.29 0.62 -0.05 0.66

EN_MX 0.19 0.72 0.24 0.73 DU_ALL 0.29 0.74 0.25 0.74

ST_AV -0.22 0.63 0.01 0.67 F0_CH,EN_CH,

ST_SD -0.23 0.63 0.17 0.72 DU_W
0.740.31 0.75 0.26
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Figure 2: Results for word duration for different values of λ. 
Left panel: standard Gaussian model. Right panel: 
histogram-based model. Blue solid line: F-score for deviant 
DU_W, blue dashed line: FK for deviant DU_W, red solid 
line: F-score for most expected DU_W, red dashed line: FK 
for most expected DU_W. 

Also, the accuracy level is close to that of a similar study in 
prominence detection (80%, see Tamburini & Caini, 2005), 
where, however, a direct comparison is not possible due to 
the use of different speech corpora. In order to further 
evaluate VAP, we reversed the conditions in the setup and 
probed the algorithm to select the words with the most 
expected descriptors as prominent (highest probability). The 
results for word duration can be seen in Fig. 2 where it is 
evident that deviant durations have an effect on prominence 
perception with FKSG=0.34 (FSG=62%) as opposed to 
FKSG=-0.48 (FSG=4.6%) for non-deviants.  

Next, we run the HS approach for a number of different 
bin partitions ranging from 2 until 100 in order to find the 
optimal partition of the probability space. Interestingly, the 
best partition was obtained for Q=3 and the results are 
presented in Table 2. In this case, energy seemed to be the 
best performing feature (FKHS=0.32) followed by word 
duration (FKHS=0.3) and F0 (FKHS=0.15). Finally, we also 
run the earlier proposed FTM approach on the same set of 
data (for 2-grams) that produced FKFTM,W_DUR=0.58 as 
opposed to FKVAP,SG,W_DUR =0.34 for word duration, 
FKFTM,F0=0.60 as opposed to FKVAP,SG,F0_CH=0.17 for F0 and 
F0 change respectively and FKFTM,EN=0.65 as opposed to 
FKVAP,SG,EN_CH=0.21 for energy and energy change 
respectively. 

Since the histogram model was overall much better than 
the Gaussian model (mean FK 0.16 vs. 0.03), we tested for 

the normality of the descriptor distributions using the 
Kolmogorov-Smirnov test. The results showed that the 
majority of the feature descriptors do not follow a normal 
distribution, confirming that a model consisting of a single 
Gaussian distribution is simply not suitable for capturing the 
expectations of prosodic features during words. In contrast, 
the histogram-based results should be consistent due to the 
large number of tokens for each word. 

In all, the present results are somewhat surprising, 
suggesting that the lexeme-level predictability of prosodic 
features does not seem to have a clear function in the 
perception of sentence prominence as the agreement levels 
are notably below those obtained using the FTM model. 

Discussion and conclusions 
The goal of the present study was to investigate whether the 
predictability of the acoustic correlates of prosody at the 
level of individual lexemes carries information regarding 
sentence prominence. Given the earlier finding that sentence 
level prominence is driven by the unpredictability of 
prosodic features (see Kakouros & Räsänen, 2014a, for a 
model on F0), it was of interest whether information 
regarding the identity of the underlying lexeme would 
improve from the earlier model by providing more accurate 
characterization of typical and atypical prosody during the 
words. The results show that prosodic unpredictability, 
when conditioned by the lexical content, provides some 
cues for sentence prominence (see also Aylett & Bull, 1998,  
for a study using only durational information) but the 
agreement rates are substantially lower than those produced 
when using a model that measures (un)predictability of the 
feature trajectories at the utterance level. Therefore the 
present results do not show substantial benefits for the role 
of lexical identity in prominence perception within the 
predictability framework. 

One plausible explanation for this negative finding is that 
prominence is an utterance level process, and therefore 
investigating characteristics of individual words in isolation 
of their sentential context is not meaningful. While the more 
successful but word-agnostic FTM model (Kakouros & 
Räsänen, 2014a) analyzes probabilities of prosodic 
trajectories in a sentential context, the present investigation 
only looked at word-level aggregate statistics. Moreover, 
the presently used statistical descriptors were computed 
across the entire word tokens and this may lose some of the 
microprosodic information that is not removed in the FTM.  

However, it is not presently possible to conclude that 
lexical information would be irrelevant since there is the 
possibility that our models simply do not capture the 
relevant information from the signals. In future work, it 
would be of interest to find more effective ways of 
combining lexical knowledge to the predictability 
framework, possibly augmenting the temporally evolving 
FTM model instead of directly looking at lexeme-specific 
statistics. In addition, the present findings should be verified 
with more sophisticated statistical models such as using 
Gaussian Mixture Models. Finally, different criteria for 
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aggregating statistics across word tokens could be used, 
such as part-of-speech (POS) tags, word positions, or 
syllables rather than the position-invariant lexemes used in 
the present study. 
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