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Abstract

Temozolomide (TMZ) increases the overall survival of patients with glioblastoma (GBM), but its 

role in the clinical management of diffuse low-grade gliomas (LGG) is still being defined. DNA 

hypermethylation of the O6-methylguanine-DNA methyltransferase (MGMT) promoter is 

associated with an improved response to TMZ treatment, while inactivation of the DNA mismatch 

repair (MMR) pathway is associated with therapeutic resistance and TMZ-induced mutagenesis. 

We previously demonstrated that TMZ treatment of LGG induces driver mutations in the RB and 

AKT-mTOR pathways, which may drive malignant progression to secondary GBM. To better 

understand the mechanisms underlying TMZ-induced mutagenesis and malignant progression, we 
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explored the evolution of MGMT methylation and genetic alterations affecting MMR genes in a 

cohort of 34 treatment naïve LGGs and their recurrences. Recurrences with TMZ-associated 

hypermutation had increased MGMT methylation compared to their untreated initial tumors and 

higher overall MGMT methylation compared to TMZ-treated non-hypermutated recurrences. A 

TMZ-associated mutation in one or more MMR genes was observed in five out of six TMZ 

treated, hypermutated recurrences. In two cases, pre-existing heterozygous deletions 

encompassing MGMT, or an MMR gene, were followed by TMZ-associated mutations in one of 

the genes of interest. These results suggest that tumor cells with methylated MGMT may undergo 

positive selection during TMZ treatment in the context of MMR deficiency.
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Introduction

Diffuse LGG are infiltrative brain tumors which include World Health Organization (WHO) 

grade II astrocytomas, oligodendrogliomas, and oligoastrocytomas [33]. Surgical resection 

is the primary therapeutic intervention, though LGG recur and may undergo malignant 

progression to a higher histological grade including grade IV secondary GBM. Therefore, in 

patients with clinical risk factors [42, 51], postoperative adjuvant treatment is often utilized. 

The addition of TMZ to postoperative radiotherapy prolongs progression free survival (PFS) 

and overall survival (OS) in high-risk LGG patients, and chemotherapy instead of irradiation 

might be as effective [3, 46] and defers the risk of late radiation-induced cognitive 

deterioration [14]. Moreover, postoperative TMZ or irradiation of LGG has been associated 

with improved quality of life, better seizure control, and longer progression-free survival [6, 

30, 38, 43, 49].

TMZ is an alkylating agent that methylates the O6 position of guanine. The DNA repair 

protein MGMT removes O6-methyl groups induced by TMZ. Initial studies assaying DNA 

methylation in the MGMT gene body rather than promoter showed a direct correlation 

between MGMT methylation and expression [19, 41]. When the MGMT promoter is 

hypermethylated however, MGMT expression is decreased and TMZ-induced DNA damage 

persists [12, 13, 27]. O6-methylguanine pairs with thymine instead of cytosine during DNA 

replication. MMR can recognize and repair these mismatches through MutS and MutL 

complexes. MSH2 and MSH6 form the MutSα complex, which identifies base-base 

mismatches and small insertion-deletion-loops (IDLs). MSH2 and MSH3 form the MutSβ 

complex which identifies large IDLs. MutS complexes directly with MutL, an MLH1/PMS2 

dimer, to the site of DNA damage [20;21]. Removal of the thymine that is base paired with 

O6-methylguanine is followed by repair synthesis that reinserts thymine, leading to repeated 

attempts to repair the same base. This futile cycling of repair has been linked to DNA double 

strand breaks and apoptosis, the apparent mechanism of TMZ-induced cytotoxicity [16].

Inactivation of the MMR pathway is a mechanism of resistance to TMZ in primary GBMs 

and also leads to TMZinduced mutagenesis [8, 18, 26, 63]. In MMR deficient cells, the base 
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pairing of O6-methylguanine with thymine persists, and upon DNA replication results in 

nucleotide transitions from guanine to adenine. TMZ-associated hypermutation has been 

observed in GBM [9–12], in cells treated with TMZ in vitro [8] and in unpaired 

posttreatment tissue samples [1, 5, 15, 16, 26]. In contrast to MMR, the impact of MGMT 

activity on the relative amount of cytotoxicity versus mutagenicity is much less clear. 

Furthermore, while MGMT methylation is associated with longer overall survival in GBM 

patients treated with TMZ [25], it is unclear whether this biomarker has the same prognostic 

value in patients with IDH1 mutated LGG [17, 54, 59].

We recently identified hypermutation in a subset of TMZ-treated recurrent GBMs that arose 

from IDH1-mutant astrocytic LGG [29]. Post-TMZ recurrences had a 39–133 fold increase 

in the mutation rate relative to their treatment naïve initial LGG, more than 98% of which 

C>T/G>A mutations which are associated with TMZ-induced mutagenesis (Supplementary 

Table S1) [5]. TMZ-associated mutations resulted in deregulation of RB mediated cell cycle 

control and hyperactivated AKT-mTOR signaling, suggesting TMZ-induced hypermutation 

may drive malignant progression. However, it is unclear why hypermutation developed in 

only six of the ten LGG treated with TMZ. To better understand the mechanism of 

hypermutation, here we examined the stepwise development of DNA repair deficiency and 

subsequent TMZ-associated hypermutation using a cohort of 34 initial LGG and their 

patient-matched recurrence, including 23 pairs for which exome sequencing data was 

available. Because TMZ-induced hypermutation in LGG was associated exclusively with 

GBM recurrence, this study is important to understanding and ultimately avoiding TMZ-

associated hypermutation and malignant progression.

Methods

Sample acquisition

Patient inclusion in this cohort was dependent upon 1) an initial diagnosis of WHO grade II 

diffuse astrocytoma, oligodendroglioma, or oligoastrocytoma; 2) available tumor tissue from 

an initial tumor and a subsequent recurrence; 3) information on post-surgical treatment. A 

majority of the samples have been used in previous studies (Supplementary Table S2)[29, 

56]. Tumor samples were fresh-frozen or formalin fixed paraffin embedded (FFPE) tissues. 

Sample use was approved by the Committee on Human Research at UCSF; the Ethics 

Committee of the University of Tokyo; and the Medical Ethics Committees of the Dutch 

hospitals VU University Medical Center Amsterdam, Radboud University Medical Center 

Nijmegen, Isala Klinieken Zwolle and Erasmus Medical Center Rotterdam, and the 

Linköping University Hospital, Sweden.

DNA isolation

Genomic DNA from tumor and normal tissue samples of patients 01–38 was extracted with 

either the QIAGEN FFPE DNA extraction kit (Qiagen, Valencia, CA) following the 

manufacturer’s instructions or isolated by a standard phenol chloroform extraction as 

previously described [29]. FFPE blocks of initial tumor and recurrences of patients 90–302 

were cut into sections of 3–5 µm thickness for pathological evaluation on hematoxylin and 

eosin stained slides. For each sample, an area was delineated that contained >60% tumor 
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cells. The corresponding area on subsequent sections of 10 µm was used for DNA isolation 

extracted with the QIAGEN FFPE DNA extraction kit[56].

Bisulfite treatment, PCR, cloning and sequencing of MGMT

MGMT methylation status was assessed for all patients (Fig. 1a and Fig. S1) [24]. DNA 

(>100ng) was bisulfite-treated for 2.5 hours with the EZ DNA methylation Gold kit (Zymo 

Research, Irvine, California) according to the manufacturer’s instructions. Bisulfite-

converted DNA was amplified by PCR using the following primers corresponding to the 

MGMT promoter: forward GGATATGTTGGGATAGTT and reverse 

ATCGTTAATAAGTCAAGCTC. Gel extraction of the amplified DNA was performed with 

the QIAEXII gel extraction Kit (Qiagen, Germantown, Maryland). Four to six microliters of 

PCR product was cloned using a pCR2.1/TOPO TA sequencing kit (Invitrogen, Carlsbad, 

California). Individual bacterial clones were subjected to PCR using vector-specific primers 

and a minimum of 9 individual PCR clones were sequenced per tumor sample. Bisulfite 

sequence data of the MGMT promoter were analyzed with BISMA [27, 48]. The bisulfite 

conversion rate was monitored in all reactions at non-CpG cytosines, which are typically 

unmethylated and converted. For comparison, the methylation status of the MGMT promoter 

in bisulfite-treated DNA was also determined in a subset of the samples by standard, non-

quantitative methylation-specific PCR (MSP) [16].

Identification of somatic mutations and copy number aberrations in MGMT and MMR 
genes

The identification of MMR pathway alterations was limited to those for which sufficient 

tumor DNA and matched normal DNA was available for exome sequencing. The mutational 

and copy number status of MGMT as well as the key MMR pathway genes MLH1, MLH3, 

MSH2, MSH3, MSH5, MSH6, PMS1, and PMS2 [28] were assessed from the exome 

sequencing data. For patients 01–24, somatic mutations and copy number aberrations in 

genes of interest were identified as previously described [29]. Nine new exome sequencing 

datasets were also generated for this study using the Agilent SureSelect Target Enrichment 

System Protocol (Version 1.0 September 2009) with the SureSelect Human All Exon 50Mb 

kit (Agilent Technologies) according to the manufacturer's instructions. Paired-end reads of 

76bp or 100bp in length were generated from Illumina HiSeq 2000 or 2500 instrumentation. 

Paired-end sequencing data from exome capture libraries were aligned to the reference 

human genome (build hg19) with the Burrows-Wheeler Aligner (BWA) 0.5.10 [32]. Single-

nucleotide variants (SNVs) were detected with MuTect [11], and indels were detected with 

Pindel [62], followed by custom filters to remove false positives [29]. All candidate 

mutations were subsequently validated with PCR amplification of the target region from 

tumor and matched normal genomic DNA followed by conventional Sanger sequencing. 

Copy number segmentation was performed with an adaptation of circular binary 

segmentation (CBS) [29, 57]. We identified germline heterozygous SNPs from the matched 

normal exome of each patient tumor using the UnifiedGenotyper [35]. From only those 

SNPs present in dbSNP (Build ID: 132) (http://www.ncbi.nlm.nih.gov/SNP/) and with a 

coverage level of 10 or more reads, we calculated their minor allele frequency in all exomes 

of each patient (initial tumor, recurrence, and patient-matched normal) and used these to 

infer genomic regions with loss of heterozygosity (LOH). Regions of LOH were then 
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correlated with DNA copy-number alterations. For patients 171–296 copy number 

aberrations at genes of interest were identified from low-coverage whole genome 

sequencing as previously described [50, 56]. Copy number segmentation was performed by 

CBS [29] and gains and losses were identified using CGHcall [55].

Significance tests

For differences in methylation, the initial comparison between subgroups was done using the 

Kruskal-Wallis test (the nonparametric alternative to ANOVA), followed by subsequent post 

hoc testing using the Wilcoxon rank-sum or signed-rank test (on data from tumor pairs) for 

two group analyses. P values below 0.05 were considered statistically significant.

Results

Histological features and disease course of the cohort

Clinical and genomic data for many of the paired initial and recurrent tumor samples used in 

this study have been described previously [29, 56]. In total, we studied 87 samples from 34 

LGG patients. Samples from spatially distinct regions of the tumor were available for six 

surgeries. Ten of the 34 patients received adjuvant TMZ. Accordingly, we divided the 

cohort into three groups based on the clinical and exome sequencing data; patients with 

recurrent tumors displaying a TMZ-associated hypermutator phenotype (TMZ-HM, n=6), 

TMZ-treated patients without a TMZ-associated hypermutator phenotype (TMZ-non-HM, 

n=4) and patients not treated with TMZ (non-TMZ, n=24) (Supplementary Table S2). While 

the overall size of the cohort is relatively modest, very few studies have reported genomic 

and epigenomic evolution in similarly sized cohorts of paired initial LGG and recurrent 

tumors [58]. In the TMZ-HM group, all six tumors recurred with GBM histology. Relative 

to the TMZ-HM group, the number of recurrent tumors with GBM histology was variable in 

the TMZ-non-HM group and non-TMZ group, (ANOVA, p-value 0.013) (Fig. 1b).

MGMT methylation level is similar across assays, technical replicates and spatially distinct 
samples

Methyl specific-PCR (MSP) is used in clinical tests for MGMT methylation status and yields 

a low-resolution, non-quantitative binary call of methylated or unmethylated. MGMT 

methylation levels in tumors span a full range from unmethylated to fully methylated at each 

CpG however. We therefore compared MSP to a more quantitative, single-CpG resolution 

method involving bisulfite treatment, PCR, cloning and sequencing in 18 samples. The 

genomic region assessed by the bisulfite sequencing approach assesses methylation level at 

each of 23 CpG sites in the MGMT promoter and enhancer, including the region covered by 

the MSP assay which spans CpG sites 10 to 16 [2, 34], a previously reported differentially 

methylated region 2 (DMR2) covered by CpGs 3 to 20 [34], and CpG site 13 which has 

prognostic value in GBMs [2] (Fig. 1a). In eight samples classified as MGMT-unmethylated 

by MSP, median methylation level was 25.4% (range 1.6–28.6%), and in 10 samples that 

were methylated according to MSP, median methylation level was 37.4% (range 6.5–98.6%) 

(Fig. 1c). To test the reproducibility of bisulfite sequencing approach, experiments of seven 

samples were repeated on independent aliquots from the same genomic DNA isolation. Very 

little variation in methylation level was observed between replicate experiments (Fig. 1d). 
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An analysis of spatially distinct regions in samples obtained from the same surgery revealed 

that there was also very little variation in MGMT methylation levels within a tumor at a 

given time point (Fig. 1e). This limited intratumoral heterogeneity of MGMT methylation 

level provided evidence that the result of a single sample was likely to be representative for 

LGG, as previously shown in GBM [15, 21, 23].

Increase in MGMT methylation level associated with temozolomide-induced hypermutation

MGMT methylation levels varied widely between patients. Across the whole cohort, the 

median methylation level of initial tumors was 29.7% (range 6.1–70.9%) and the median 

methylation level of recurrent tumors was also 29.7% (range 3.9–79.1%), (p value 0.49) 

(Supplementary Material). Between the three subgroups, median methylation levels in initial 

tumors were not significantly different (TMZ-HM 38.3% vs. TMZ-non-HM 17.8%, p value 

0.15; TMZ-HM vs. non-TMZ 33%, p value 0.33), while overall methylation level in 

recurrent tumors of the TMZ-HM group (median 55%) was significantly higher compared to 

recurrent tumors of the TMZ-non-HM (median 20%) and non-TMZ (median 28%) groups (p 

value 0.013 and 0.03 respectively) (Fig. 2). Patient 24 was not included in this analysis, as 

methylation data were confounded by low tumor purity in the initial and first recurrent 

tumor, complicating the interpretation.

We explored how methylation levels changed over time by performing paired analysis in 

initial and recurrent tumors of the three subgroups TMZ-HM, TMZ-non-HM, non-TMZ. 

The change in methylation level from initial to recurrence in the TMZ-HM group was non-

significant but showed a trend (p value 0.063). This is supported by the consistent increase 

in methylation level in this subgroup. This pattern was significantly different from the 

variable patterns of change over time in the TMZ-non-HM and non-TMZ groups (TMZ-HM 

vs. TMZ-non-HM p value 0.050; TMZ-HM vs. non-TMZ p value 0.005) (Fig. 2). Eleven of 

23 individual CpGs were significantly more methylated in the recurrent tumors of the 

subgroups TMZ-HM vs. TMZ-non-HM (CpGs 1–6, 8–10, 12 and 13, p values 0.012–0.044).

Evolution of DNA repair deficiency in the TMZ-HM group

In the initial tumors of the TMZ-HM group (n=6) no MMR gene mutations were detected, 

however DNA repair may have been impaired by the heterozygous loss of MGMT in patient 

01 and MLH1 in patient 10. In contrast, five of the six TMZ-HM GBMs contained a TMZ-

associated mutation in one of the MMR genes, concurrent with deletion of the other allele or 

deletion encompassing another MMR gene or MGMT (Fig. 3a and b, Fig. S2). We also 

identified a clonal TMZ-associated mutation in MGMT of unknown significance in the 

recurrent tumor of patient 18. In the initial and recurrent tumors of the TMZ-non-HM (n=4) 

patients, MMR pathway genes were intact, but heterozygous loss of MGMT was detected in 

the initial tumor of patient 11 and the recurrent tumor of patient 17. Interestingly, the 

recurrent tumor of patient 11 grew out from an earlier cell that retained both alleles of 

MGMT, while the recurrent tumor of patient 17 had decreased levels of DNA methylation at 

MGMT (initial 28.3%, recurrence 12.7%), indicating that in both cases MGMT levels may 

not have been impaired during TMZ treatment and recurrence. In the non-TMZ group 

(n=24), mutational analysis was performed in patients of which sufficient DNA from 

matched normal and initial and recurrent tumor was available (n=7). In these seven cases 
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only one MMR mutation was detected, an MSH3 mutation in the initial tumor but not in the 

recurrent tumor of patient 07. DNA copy number status of MGMT and MMR genes was 

available for 21 of 24 patients in the non-TMZ subgroup. Genomic loss affecting the MGMT 

region was detected in five initial and seven recurrent tumors of the non-TMZ subgroup. 

Similarly, deletion encompassing an MMR gene was shared between the initial and 

recurrent tumors of five cases, while four patients acquired a deletion encompassing a MMR 

gene at recurrence (Supplementary Table S3). As these patients did not receive TMZ, it is 

not known how TMZ treatment may have affected MGMT methylation levels at recurrence, 

or if the identified genetic alterations to MGMT and MMR genes may indicate a 

susceptibility to hypermutation.

Discussion

We compared spontaneous and treatment-associated evolution of DNA repair deficiency in a 

cohort of 34 initial LGG and their patient-matched recurrences. Our data suggest MGMT 

and MMR mediated DNA repair may be compromised by sequential and coincident loss of 

heterozygosity, methylation [45], and TMZ-associated mutation, although repair activity 

could not be tested directly. Considering prior studies of TMZ-treated GBM patients [1, 8, 

26, 63] and cells treated with TMZ in vitro [5], our results suggest that TMZ-induced 

hypermutation is the consequence of a TMZ resistance mechanism in LGG. This putative 

mechanism is not fully understood, but may be induced directly by the mutagenic action of 

TMZ on DNA repair genes, in combination with pre-existing and concurrent copy number 

alterations in cells with a higher level of MGMT methylation. The resistance mechanism 

appears to involve a switch from toxicity to tolerance of TMZ-induced DNA damage. The 

sequential acquisition of genetic and epigenetic change in MGMT and MMR genes in the 

TMZ-HM group differs notably from the patterns in patients that did not receive TMZ, and 

in TMZ-treated but not hypermutated patients.

We observed a consistent increase over time in MGMT methylation level, which was not 

detected in LGG patients without a TMZ-associated hypermutator phenotype. The apparent 

positive selection of MGMT hypermethylated cells and a corresponding decrease in MGMT 

expression may predispose a cell to persistent 0–6-methylguanine lesions and acquisition of 

MMR gene mutation, enabling hypermutation from subsequent rounds of TMZ treatment 

(Fig. 4). MGMT activity also may be decreased by TMZ treatment itself, as the MGMT 

protein is not regenerated following repair [53].

Other studies have addressed temporal changes of MGMT methylation in smaller cohorts of 

grade II astrocytomas [22, 31, 36] and GBMs [7, 9, 39] with MSP only, and without 

mutational and copy number analysis. In the present study, bisulfite sequencing of the 

MGMT promoter in 34 paired initial and recurrent tumors enabled detailed, quantitative 

analysis of temporal evolution in individual patients. Given the sample size, a meaningful 

comparison of MGMT methylation change was not possible for GBM recurrences that were 

HM (n=6) versus GBM recurrences in the TMZ-non-HM subgroup (n=1). We observed a 

distinct pattern of increased MGMT methylation level between initial and patient-matched, 

TMZ treated and hypermutated recurrences.
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Exposure of cells to a mutagen such as TMZ will result in a different set of mutations in 

each cell within the population. However, our detection of somatic mutations in MMR-

related genes in hypermutated DNA derived from bulk samples strongly suggests that these 

recurrences are derived from clonal expansion from a very small number of hypermutated 

cells [26]. The mutations are predominantly C>T/G>A transitions, the type of mutation 

known to be induced by TMZ treatment. Literature on the functionality of these mutations 

varies, for example somatic mutations MLH1 P648L and P640S in the TMZ-treated 

recurrent tumors of patients 01 and 10 also occur in the germline of families with hereditary 

nonpolyposis colon cancer, significantly affect MLH1 protein function, and are predicted to 

be pathogenic [10, 20, 44, 52]. The splice site mutation in MSH3 of patient 18 leads to a 

single nucleotide shift of the splice acceptor site, resulting in an out-of-frame transcript and 

premature truncation of the protein. However, the role of MSH3 in cancer is less clearly 

defined [40]. In MMR deficient cells, futile cycling of MMR repair does not occur, enabling 

this type of mutation. The C>T/G>A mutation also occurs spontaneously, however the 

extreme number of new mutations, the strong bias towards C>T/G>A versus other 

mutations, and the occurrence of hypermutation after TMZ treatment but not in patient-

matched pre-treatment samples suggests TMZ is the predominant source. The proportion of 

tumors developing a hypermutation profile after TMZ treatment in our series is 60% (6 out 

of 10). This cohort and others [1, 26] are too small to determine the actual incidence of 

hypermutated diffuse gliomas after alkylating agent chemotherapy.

Biomarkers of susceptibility to TMZ-associated hypermutation could have significant 

clinical value. Rare germline and somatic MSH6 mutations that might affect how cells 

respond to TMZ have been detected in patients with untreated anaplastic 

oligodendrogliomas and GBMs [37, 47]. Within our small cohort, we found that loss of 

heterozygosity spanning MMR genes was unique to the TMZ-HM group relative to TMZ-

non-HM group. In three TMZ-HM patients the initial tumor showed deletion of MGMT or 

an MMR gene. The copy number data of two of the other initial tumors from the TMZ-HM 

group was ambiguous. In a study of MMR protein expression assessed by 

immunohistochemistry decreased expression was observed for MLH1, MSH2 and MSH6 in 

a subset of initial low- and high-grade astrocytomas, but DNA copy number status and 

paired recurrences were not assessed [47]. A larger cohort of paired samples will be needed 

to determine if loss of heterozygosity of MGMT and/or MMR genes in initial tumors has 

predictive or prognostic value. Contrary to primary GBM, where copy number loss of the 

entire chromosome 10 is a frequent event [4], we observed variability in the size of the 

region lost in initial LGG and secondary GBM in our cohorts [56]. MGMT hypermethylation 

and corresponding impaired MGMT activity prior to TMZ treatment could also be a 

predisposing factor, but we did not detect statistically significant differences when analyzing 

MGMT methylation level alone between the initial tumors of the TMZ-HM and TMZ-non-

HM subgroups. An alternative hypothesis is that, because TMZ-HM tumors appear to derive 

from a very limited number of cells, MGMT methylation in a small number of cells in the 

initial tumor may allow positive selection and hypermutation. Other studies with variable 

designs, and predominantly examining HGGs, were also unable to identify a correlation 

between MGMT methylation and MMR status [18, 37]. Similar to GBM [15, 21, 23], 

variation in MGMT methylation levels among multiple regions of the initial LGG of our 
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patients was negligible, suggesting that single samples of the initial and recurrent tumor may 

be sufficient to elucidate temporal patterns. However, because the TMZ-HM group had an 

increased level of MGMT methylation relative to more variable patterns in the other groups, 

recurrences in the TMZ-HM group may exhibit greater intratumoral heterogeneity if the 

initial tumor resection was incomplete and sampling at recurrence included hypermutated 

and non-hypermutated regions.

The results presented here and in prior studies [1, 5], along with the well-established 

mechanisms of DNA repair by MMR and MGMT, further suggest that compromised DNA 

repair contributes to the onset of hypermutation and subsequent malignant transformation. 

Taken together, the data suggest a working model in which a hypermutated tumor arises 

through clonal expansion of cells with high levels of MGMT methylation, pre-existing loss 

of heterozygosity of a key MMR gene and/or MGMT, and TMZ-associated mutation in 

MMR genes. Tumor tissue and clinical data from LGG patients participating in clinical trials 

with TMZ treatment will be required to follow-up these initial findings [60, 61] and to 

assess the clinical relevance of the TMZ-associated hypermutator phenotype.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Comparison of MGMT methylation in different assays and across tumor regions. a Position 

of the MGMT bisulfite amplicon (light blue) encompassing the 23 CpGs assessed in this 

study, the position of the MGMT CpG island (green), and the enhancer region encompassing 

CpGs 10–16 (dark blue). TSS= transcription start site. b Distribution of histological 

subtypes and grades of the recurrent tumors in the three groups. c Comparison of the binary 

outcome of MSP (x-axis) to MGMT methylation level of CpGs 10 to 16 determined by 

bisulfite, PCR and sequencing of 10 or more independent clones (y-axis). d The degree of 
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variation in methylation levels was determined in replicate experiments from independent 

aliquots of the same genomic DNA isolation (y-axis) with bisulfite and sequencing of the 

MGMT promoter in individual samples (x-axis). e MGMT methylation levels (y-axis) in 

spatially distinct regions of individual tumors (x-axis). Sample designations are the patient 

(p) number followed by .1 for initial tumor and .2 for the recurrent tumor.

van Thuijl et al. Page 16

Acta Neuropathol. Author manuscript; available in PMC 2015 June 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Significantly elevated MGMT methylation in TMZ-associated hypermutated recurrent 

tumors that arise from LGG. MGMT methylation levels in initial (green) and recurrent 

(yellow) tumors of three patient subgroups; non-TMZ= patients not treated with TMZ, 

TMZ-non-HM= patients treated with TMZ without a hypermutated recurrent tumor, TMZ-

HM= patients treated with TMZ with a hypermutated recurrent tumor.
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Fig. 3. 
Sequential acquisition of DNA repair deficiency exclusively in LGG patients that were 

treated with TMZ and had a hypermutated recurrence. a Exome derived copy number status 

and germ-line variant allele frequency across chromosome 2 encompassing MSH2 and 

MSH6 in the initial and recurrent tumor of patient 18. b Methylation level of MGMT, 

mutations and copy number status of MGMT and MMR-related genes in initial LGG and 

paired recurrent tumors. The panel includes patients for whom exome sequencing data was 

available, * indicates samples with a proportion of tumor cells lower than 50%.
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Fig. 4. 
A working model of the effect of an impaired MMR system on clonal outgrowth of MGMT 

methylated cells during acquisition of the TMZ-associated hypermutator phenotype and 

TMZ-associated malignant progression. Left: When MMR is intact, TMZ treatment induces 

cell death in MGMT methylated cells. The histology of the recurrent tumor is variable. 

Right: When MMR is deficient, TMZ treatment fails to induce cell death and MGMT 
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methylated tumor cells may expand, become hypermutated, and undergo malignant 

progression to GBM.
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