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The properties of excitons, or correlated electron–hole pairs, are of paramount
importance to optoelectronic applications of materials. A central component of
exciton physics is the electron–hole interaction, which is commonly treated as
screened solely by electrons within a material. However, nuclear motion can screen
this Coulomb interaction as well, with several recent studies developing model
approaches for approximating the phonon screening of excitonic properties. While
these model approaches tend to improve agreement with experiment, they rely on
several approximations that restrict their applicability to a wide range of materials, and
thus far they have neglected the effect of finite temperatures. Here, we develop a fully
first-principles, parameter-free approach to compute the temperature-dependent effects
of phonon screening within the ab initio GW -Bethe–Salpeter equation framework.
We recover previously proposed models of phonon screening as well-defined limits
of our general framework, and discuss their validity by comparing them against our
first-principles results. We develop an efficient computational workflow and apply it
to a diverse set of semiconductors, specifically AlN, CdS, GaN, MgO, and SrTiO3.
We demonstrate under different physical scenarios how excitons may be screened by
multiple polar optical or acoustic phonons, how their binding energies can exhibit
strong temperature dependence, and the ultrafast timescales on which they dissociate
into free electron–hole pairs.

excitons | phonons | phonon screening | Bethe–Salpeter equation

Excitons, correlated electron–hole pairs often generated upon photoexcitation, are critical
to semiconductor optoelectronic applications. The dissociation of bound excitons into
free charge carriers is central to photovoltaics (1, 2), while their ability to recombine
and emit light underpins applications such as light-emitting diodes (3, 4). Capturing
the materials-specific many-body interactions of electrons and holes in solids requires
careful theoretical descriptions of screening and scattering mechanisms, and constitutes a
major challenge for first-principles approaches. The state-of-the-art ab initio framework
to describe excitons within many-body perturbation theory is based on the GW
approximation (5, 6) and Bethe–Salpeter equation (BSE) (7–10) (GW +BSE), where G
is the one-particle Green’s function and W is the screened Coulomb interaction. A key
ingredient responsible for the formation of bound excitons is the frequency-dependent
(!) screened Coulomb interaction (9–11)

W (r, r′,!) =
∫

dr′′�−1(r, r′′,!)v(r′′, r′), [1]

where v is the bare Coulomb interaction and �(r, r′′,!) is the frequency-dependent,
nonlocal dielectric function. Most commonly, � is obtained within the random-phase
approximation (RPA) (12) and describes screening only originating from the perturbation
of the electron density in the limit of clamped ions, the electronic screening.

However, exciton binding energies computed within the standard ab initio GW +BSE
framework can overestimate experiments, by up to a factor of three in certain heteropolar
crystals (13), a discrepancy attributed to the screening of Coulomb interactions due to
polar ionic vibrations (13–18), normally neglected in standard approaches. The phonon
contribution to the low-frequency (static) dielectric constant, �0, in addition to the
high-frequency (optical) counterpart, �∞, sets the scale of the screening originating
from ionic vibrations, namely �o − �∞. This raises the question of which dielectric
constant more appropriately describes the screening of weakly interacting electrons and
holes (i.e., with a binding energy comparable to phonon energies), with several studies
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proposing an intermediate ad hoc “effective” dielectric constant
with a value between these two limits �o and �∞ (19–21),
in an effort to account for screening from both electrons and
phonons and to capture experimental trends. An alternative
approach is to modify the dielectric function of Eq. 1 so that
it includes the contributions from polar phonons (15, 22).
Several model approaches have been reported that include
phonon contributions W ph to the screened Coulomb interaction
to complement the standard clamped-ion electronic screening
W = W el (19, 23–25). The results from such approaches
can vary significantly depending on approximations that are
used; they are limited to the description of screening from
polar zone-center phonons; and they do not yield detailed
microscopic insights into these effects relative to electronic
screening. A rigorous, fully first-principles, description of both
electronic and phonon screening of excitons on equal footing
is therefore necessary to develop truly predictive accuracy for
exciton properties in diverse materials, and to reach a deeper
understanding of factors affecting the relative importance and
interplay of these two effects.

Within many-body perturbation theory and to the lowest order
in the electron–phonon interaction, the lattice contribution to
the screened Coulomb interaction is given by (26–28)

W ph(r, r′,!) =
∑
q,�

Dq,�(!)gq,�(r)g∗q,�(r
′), [2]

where Dq,�(!) is the propagator of a phonon with branch index
� at wavevector q, and gq,� is the electron–phonon vertex. We
refer to Eq. 2 as the phonon-screened Coulomb interaction, as
the screening in this term arises from phonons. Ref. 25 used
this expression to derive a 0 K correction to the electron–hole
interaction term in the ab initio BSE due to phonon screening,
subsequently approximating it for “hydrogenic” excitons and
long range polar electron–phonon interactions described by the
Fröhlich model. For a number of systems where these approxi-
mations are well justified, this notably improved agreement with
experiment for exciton binding energies.

Here, we generalize the approach in ref. 25 to finite
temperatures and implement it within a fully ab initio BSE
framework, accounting for the effects of phonon screening
to lowest order in the electron–phonon interaction, at the
level of phonon exchange. Ref. 25 is one of several recent
papers (14, 22) that, building on pioneering work of Hedin
and Lundqvist (29) and Strinati (11) decades earlier, include
the effects of phonon screening on exciton properties, within
ab initio many-body perturbation theory. Closely related recent
works treat general exciton–phonon interactions in a modern
first-principles context, and using cumulants (30), using two-
particle Green’s functions (31) and using a linear-response real-
time framework (32), have derived phonon-renormalized exciton
properties in terms of the exciton–phonon vertex, analogous
to the one used in the seminal work of Toyozawa (33). Some
recent ab initio calculations of exciton–phonon interactions in
solids capture phenomena such as phonon-assisted absorption
and luminescence (34–36), temperature-dependent exciton lo-
calization (37) and shifts of the exciton energy (38), and report
exciton–exciton scattering rates (39–41). However, a fully first-
principles framework for capturing finite temperature dynamical
screening of excitons due to phonons, and the impact of these
effects on the binding energy and dynamics of excitons, is thus far
missing. Here, starting from Eq. 2, we develop and implement
a temperature-dependent complex correction to the standard

clamped-ion BSE kernel, referred to in what follows as the
phonon kernel, Kph, that captures dynamical phonon screening
to lowest order. Although it is possible to recover or go beyond
the exciton–phonon self-energy of ref. 31 starting from Wph by
including other higher-order diagrams in the BSE (30), here we
retain only the phonon exchange diagram of ref. 31 (equivalently
Eq. 2), a judicious, computationally efficient, and physical low-
order approximation for semiconductor systems (ref. 24) that
rigorously includes phonon screening and for which free electron-
and hole-polaron radii (as described by Fan-Migdal diagrams) are
on the same order as exciton radii (19, 42). As we show in what
follows, within the limits of perturbation theory, the real part
of Kph in the exciton basis provides a quantitative prediction of
the temperature-dependent renormalization of exciton (binding)
energies via phonon screening and the imaginary part can lead
to a quantitative rate of dissociation of an exciton into free
electron and holes through absorption of a phonon within the
approximations made here.

Computing the temperature-dependent effect of phonon
screening on excitons in a select set of semiconductors, we
predict that phonons are responsible for a 50% reduction of
the exciton binding energy of CdS at room temperature, with
acoustic phonons having a substantial contribution. Moreover,
we predict that phonon absorption by excitons in GaN contribute
to their ultrafast dissociation into free charge carriers with a
timescale that is consistent with experimental measurements for
similar materials. In SrTiO3, we find multiple polar phonons
can contribute to the screening of excitons at once, leading to
a significant overall reduction of the exciton binding energy.
Finally, we show how approximations to our first-principles
results lead to models that are commonly used in the literature,
such as the Haken potential (23, 24), and we discuss the validity
of these models for different systems.

The structure of this paper is as follows. We first present
the theoretical background of our work and summarize the
derivation of the first-principles phonon screening correction to
the BSE kernel at finite temperatures, discussing both the real
and imaginary parts of this kernel, and the observables that may
be extracted from these quantities. We then examine different
approximations to this phonon kernel, and connect our work to
model results from the literature. We then proceed to present
the bulk of our computational results. Specifically, we start by
presenting our first-principles results at 0 K for a range of systems,
and compare these to the predictions of various models of phonon
screening, also discussing the origin of observed differences. We
then present an in-depth application of our ab initio workflow
to selected materials and their temperature-dependent phonon
screening and exciton dissociation properties. Finally, we provide
a discussion and outlook for our work.

First-Principles Phonon Kernel

The BSE within the Tamm–Dancoff approximation for zero-
momentum excitons in reciprocal space is written as (10)

(Eck − Evk)AScvk +
∑
c′v′k′
〈cvk|K eh

|c′v′k′〉ASc′v′k′

= ΩSAScvk, [3]

where Eck and Evk are the quasiparticle energies of conduction
and valence bands, respectively. The BSE of Eq. 3 describes
excited states accounting only for electronic screening effects, and
will hence be referred to as the “bare” BSE, to distinguish it from
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the case where phonon screening is included. The coefficients
AScvk describe the corresponding excited state S with excitation
energy ΩS as a linear combination of free electron–hole pair wave
functions [|cvk〉, typically obtained from a density functional
theory (DFT) calculation], namely

|S〉 =
∑
cvk

AScvk|cvk〉. [4]

The kernelK eh describes the interaction between electrons and
holes and consists of direct (d) and exchange (x) contributions,
K eh = K d + K x . The repulsive exchange term K x depends on
the bare Coulomb interactions and is frequency-independent. In
the absence of spin–orbit coupling, this term is only nonzero
for excitons of zero spin, and is responsible for the different
properties of singlet and triplet excitons (10). On the other hand,
the direct term is attractive, frequency-dependent, and involves
the screened Coulomb interactionW . This term can be written as

K d
cvk,c′v′k′(Ω) = −

〈
cvk

∣∣∣∣ i
2�

∫
d!e−i!�W (r, r′,!)

×

[
1

Ω− !− Δc′k′vk + i�

+
1

Ω + !− Δckv′k′ + i�

]∣∣∣∣ c′v′k′〉 , [5]

where � is a small real and positive number and we have
introduced the notation Δckvk = Eck − Evk. This kernel term
is usually computed in the clamped-ion limit including only
electronic screening, i.e., W = W el (9, 10). While W el is
fully frequency-dependent in principle, since exciton binding
energies are much smaller than the band gaps and the plasmon
energies in many insulators, the dynamical properties of W el

are often neglected for weakly bound excitons (10), namely
K el
cvk,c′v′k′(ΩS) = 〈cvk|W el (r, r′,! = 0)|c′v′k′〉. Dynamical

effects can be important in some cases, for example in order to ac-
count for free carrier screening from acoustic plasmons (43–45).

We now include the contribution of phonon screening to the
kernel, taking W = W el + W ph, which will yield a correction
K ph to the direct kernel of Eq. 5. To obtain this phonon kernel
K ph, we introduce the phonon screening of Eq. 2 into Eq. 5,
with the phonon propagator appearing in Eq. 2 written as (46)

Dq,�(!) =
1

!− !q,� + i�
−

1
!+ !q,� − i�

. [6]

Therefore, as in ref. 25, we arrive to the following expression
for the phonon kernel

K ph
cvk,c′v′k′(Ω) = −

∑
q,�

gcc′�(k′, q)g∗vv′�(k
′, q)

×

[
1

Ω− Δckv′k′ − !q,� + i�

+
1

Ω− Δc′k′vk − !q,� + i�

]
, [7]

where � is a small real and positive number. Here, q = k−k′ and
gnm�(k′, q) = 〈nk′ + q|gq� |mk′〉, which can be computed, for
example, via density functional perturbation theory (DFPT) (47)
or beyond, via GW perturbation theory (GWPT) (48).

The result of Eq. 7 is only valid at zero temperature.
We extend the phonon kernel to finite temperatures via the
Matsubara formalism. Here, the integral of Eq. 5 is analytically
continued into the complex plane and evaluated at imaginary
bosonic Matsubara frequencies. Following this well-established
procedure (46), we obtain the following expression for the
temperature-dependent phonon contribution to the kernel

K ph
cvk,c′v′k′(Ω, T ) = −

∑
q,�

gcc′�(k′, q)g∗vv′�(k
′, q)

×

[
NB(!q,� , T ) + 1 + NB(Δckv′k′ , T )

Ω− Δckv′k′ − !q,� + i�

+
NB(!q,� , T ) + 1 + NB(Δc′k′vk, T )

Ω− Δc′k′vk − !q,� + i�

+
NB(!q,� , T )− NB(Δckv′k′ , T )

Ω− Δckv′k′ + !q,� + i�

+
NB(!q,� , T )− NB(Δc′k′vk, T )

Ω− Δc′k′vk + !q,� + i�

]
, [8]

where NB is the Bose–Einstein occupation factor at temperature
T . A detailed derivation of Eq. 8 is given in SI Appendix,
section S3. As we are concerned with temperatures near room
temperature and materials with band gaps that are large compared
to phonon energies, we use the fact that NB(Δckvk, T ) �
NB(!q,� , T ) moving forward.

The first two terms within the bracket of Eq. 8 describe the
contribution of phonon emission to the kernel, and these terms
are finite even at 0 K. The last two terms within the bracket of
Eq. 8 are due to the absorption of phonons, and are only nonzero
at temperatures greater than zero. In this work, we implement
the ab initio phonon kernel (as a matrix) rewritten in the bare or
unperturbed exciton basis as

K ph
S,S′(Ω, T ) = −

∑
cvkc′v′k′�

AS∗cvkgcc′�(k
′, q)g∗vv′�(k

′, q)AS
′

c′v′k′

×

[
NB(!q,� , T ) + 1

Ω− Δckv′k′ − !q,� + i�

+
NB(!q,� , T ) + 1

Ω− Δc′k′vk − !q,� + i�

+
NB(!q,� , T )

Ω− Δckv′k′ + !q,� + i�

+
NB(!q,� , T )

Ω− Δc′k′vk + !q,� + i�

]
, [9]

where the off-diagonal matrix elements of K ph
S,S′ describe the

extent to which the exciton–phonon scattering significantly
changes the character of the excited state S. It should also be noted
that since here we work within many-body perturbation theory,
this scheme might lead to poorer descriptions of system with
strong nonperturbative electron–phonon coupling. Moreover,
multiphonon processes, which are not captured here, can become
significant near room temperature for certain systems (49).

Converging phonon screening properties requires the sum
of Eq. 9 to be computed on a dense grid in reciprocal space.
Wannier-Fourier interpolation can be utilized to facilitate the
calculation of electron–phonon matrix elements g on a dense
grid, by interpolating their values obtained via DFPT on a
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coarse grid (50). However, Wannier interpolation introduces an
additional phase factor to the electron–phonon matrix elements,
which is not present in the wavefunctions used to compute
the BSE kernel on a fine grid. This inevitably leads to a
gauge inconsistency between the values of g and the exciton
coefficients, and for this reason, it has not so far been possible
to take advantage of Wannier-based techniques to compute
exciton–phonon interactions from first-principles, restricting
previous calculations to a limited number of systems with
exciton properties that are converged with relatively coarse
k-grid samplings (39, 40, 51, 52). Yet the vast majority
of bulk semiconductors require an ultrafine sampling of the
Brillouin zone to obtain converged exciton properties (53), which
consequently necessitates an ultradense sampling for capturing
their exciton–phonon interactions. It is therefore imperative to
employ Wannier interpolation techniques to obtain meaningful
results on the exciton–phonon interactions of general bulk
semiconductors, making the gauge inconsistency that these
introduce one of the main limiting factors toward this goal. To
address this challenge, we use the strategy of computing the exact
same set of Wannier-interpolated wavefunctions from DFT on
a fine k-grid, and use their plane-wave basis representation to
perform BSE calculations with the BerkeleyGW code (54), and
their Wannier basis representation to obtain electron–phonon
matrix elements on the same fine k-grid from DFPT using the
EPW code (55). Consequently, the gauge consistency is naturally
guaranteed. This functionality is included in the wannier2bgw.py
utility of the BerkeleyGW code, which will also be the subject of a
separate work. Additional discussion on this issue is provided in SI
Appendix, section S1. Our work combines Wannier interpolation
methods for electron-phonon and electron-hole interactions
from first principles, hence not only greatly accelerating our
calculations, but also giving us access to the study of systems
such as SrTiO3 and the nitrides GaN and AlN, which would
otherwise be computationally prohibitive.

Overall, inclusion of phonon screening in Eq. 3 leads to the
following generalized BSE

(Eck − Evk)A
S,ph
cvk +

∑
c′v′k′
〈cvk|K eh + K ph(!, T )|c′v′k′〉AS,phc′v′k′

= ΩS,phAS,phcvk . [10]

The superscript in the eigenvalues and eigenvectorsΩS,ph, AS,ph
highlights that the excited states S arising from the solution of
Eq. 10 now include the effect of phonon screening. While one
can diagonalize the combined kernel K = K eh + K ph to find
the solutions of Eq. 10, for the systems considered in this work
it is an excellent approximation to consider the effect of phonon
screening as a small perturbation. We will therefore obtain the
effect of phonon screening on excited states within first-order
perturbation theory in this work, as discussed in the following
Section.

Real Part of the Phonon Kernel. For nondegenerate excitons of
energyΩS , the correction to their energies from phonon screening
within first-order perturbation theory is

ΔΩS = Re
[
〈S|K ph(ΩS)|S〉

]
. [11]

For a subspace of degenerate excitons with dimension NS , the
phonon screening correction to the exciton energies is taken
to be equal to the normalized trace of the NS × NS K ph

matrix, calculated as ΔΩS = 1
NS

Tr[K ph(ΩS)], which is gauge-
invariant. More rigorously, corrections to the exciton energy due
to phonon screening at the level of Eq. 2 require a sum over
several exciton states; however, here we find these corrections to
be unimportant, since these are proportional to the off-diagonal
matrix elements of K ph

S,S′ , which for the systems studied here are
of the order of 10−3 to 10−2 meV. In SI Appendix, section S10,
we demonstrate the convergence of phonon screening with the
number of excited states included in the phonon kernel for two of
the studied materials, CdS and MgO. When considering a sum
over hundreds of exciton states, the second-order correction to
the exciton binding energy was found to be smaller than 0.1 meV,
and can therefore be safely neglected. For the same reason, first-
order corrections to exciton wavefunctions are negligible for the
systems studied here, and we therefore focus in what follows on
computing the correction of Eq. 11 to the exciton energies.

We note here that in principle the effect of phonon screening
could also be included in the GW self-energy, yielding a
correction iGW ph to the quasiparticle band structure, and
Eck, Evk in Eq. 10. This frequency- and temperature-dependent
correction is equivalent to the one described by the so-called Fan-
Migdal self-energy (30), ΣFM , the real part of which captures
low-order energy renormalization and mass enhancement due
to electron–phonon interactions (50). Therefore, if one were to
include the effect of phonon screening both in the GW self-
energy and in the BSE kernel this would generalize the BSE of
Eq. 10 so that the bare electron and hole energies are substituted
by the respective polaron energies Ẽck = Eck + ΣFM

c (!, T ) and
Ẽvk = Evk + ΣFM

v (!, T ). Ref. 56 included such a temperature
dependence for the quasiparticle energies, but did not account
for the contribution of phonon screening to excitons.

The exciton–phonon interaction was described in ref. 31 as
the sum of three distinct contributions to the self-energy: the
dynamical Fan-Migdal term, the dynamical phonon exchange
term, and the frequency-independent Debye-Waller term. An
equivalent self-energy for the exciton was derived in ref. 30 within
a cumulant approach. We note that the phonon exchange term
in ref. 31 is equivalent to Eq. 8 and that the Debye-Waller term
does not affect the exciton binding energy. Thus, inclusion of the
phonon kernel and the Fan-Migdal term in the BSE would be,
strictly speaking, consistent with ref. 31. Our approach is distinct
from that of ref. 32, which presented an alternative derivation
of the exciton–phonon self-energy, based on a BSE in which
an optical response function is defined as the variation of the
electronic density with respect to the total potential (rather than
only the external potential, as in ref. 31); the use of this alternative
approach was reported to lead to small differences in computed
exciton linewidths for monolayer MoS2 and MoSe2 (32). While a
deeper comparison of the distinct approaches of refs. 31 and 32 is
reserved for future work, we expect that, quantitatively, changes
to the exciton–phonon interaction originating from different
formulations of the BSE will be small compared with the effects
of phonon screening, given our ab initio results presented below,
and the results in ref. 32. Moreover, we note that the exciton–
phonon self-energy of ref. 32 also contains a phonon exchange
diagram that is equivalent to that of ref. 31 and central to our
work here, which focuses on phonon screening.

The Fan-Migdal term of the exciton–phonon self-energy
physically describes the induced lattice polarization around the
exciton’s constituent electron and hole as if the two particles were
independent, i.e., it describes the formation of an independent
electron-polaron and hole-polaron, without accounting for any
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modifications of the lattice polarization when the electron and
hole are bound together. However, as noted recently in refs. 57
and 58, the formation of an exciton results in at least a
partial cancelation of the lattice distortion associated with the
independent electron- and hole-polarons, due to the mutual
Coulomb attraction of these leading to a cancelation of the
electron and hole charge densities. This picture is in agreement
with what was noted originally in refs. 19 and 42 and reiterated
recently in ref. 25, that is that the lattice polarization associated
with the polarons may interfere significantly, and even possibly
cancel each other. This so-called polaronic interference effect
was described in ref. 19 and subsequently in ref. 42 through a
higher-order phonon vertex correction to the exciton binding
energy, in addition to the Fan–Migdal and phonon exchange
contributions. Moreover, ref. 19 reported that depending on the
relative exciton and electron (hole) polaron radii, this term can
partly, or in some cases even completely, cancel out with the Fan-
Migdal term, as expected from the intuitive picture discussed
above and also found in refs. 57 and 58. This cancelation of
the Fan-Migdal term with higher-order exciton–phonon vertex
corrections is reminiscent of an analogous cancelation that has
been reported in the electronic case (59).

Therefore, in the absence of including polaronic interference
effects through higher-order corrections, neglecting the Fan-
Migdal term of the exciton–phonon self-energy (31, 32) in
constructingKph is an acceptable approximation here, particularly
given the focus on phonon screening. Indeed, for several
semiconductors, including those studied in this work, exciton
and electron (hole) polaron radii have similar estimated values
(SI Appendix, section S2), strongly suggesting that naive inclusion
of the Fan-Migdal term at lowest order while ignoring interfer-
ence effects that enter at higher order will lead to significant errors.
We therefore restrict our focus to phonon exchange and phonon
screening, and reserve a more rigorous treatment of polaronic
mass enhancement and interference effects (19, 42) for future
work. Thus, in what follows, the phonon screening shift of the
lowest bound exciton energy, ΔΩS , as obtained through Eq. 11,
is given by the reduction of the exciton binding energy of the
same magnitude, i.e., ΔEB = −ΔΩS .

Imaginary Part of the Phonon Kernel. The phonon kernel of
Eq. 9 is a complex quantity. For phonon emission and for ! =
ΩS , the imaginary part of the phonon kernel is proportional to

�[ΩS−!q,�−(Eck′−Evk)]+�[ΩS−!q,�−(Eck−Evk′)], [12]

while for absorption it is proportional to

�[ΩS+!q,�−(Eck′−Evk)]+�[ΩS+!q,�−(Eck−Evk′)]. [13]

For excitons of zero momentum, the conservation of energy
condition, ΩS − !q,� = Eck′ − Evk, which must be met for
the emission channel to make nonzero contributions to the
imaginary part of the phonon kernel, may only be satisfied
for so-called “resonant” excitons with energies greater than the
quasiparticle band gap. This could occur for indirect band gap
materials with resonant excitons above the fundamental gap, e.g.,
silver-pnictogen halide double perovskites (60). Alternatively,
this condition may be satisfied for higher-lying exciton states
in the continuum, the analysis of which is beyond the scope
of the present study. On the other hand, phonon absorption,
ΩS + !q,� = Eck′ − Evk, can occur if the energy of an exciton
which has absorbed a phonon matches that of a free electron–
hole pair, as schematically depicted in Fig. 1 for the example of

x
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ΩS

Εg

ΩS+ωLO

+
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-
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phonon 
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bound exciton

electron-hole/phonon momentum (|q|)

Fig. 1. Schematic of an exciton dissociation process into free electron–hole
states, described by Eq. 16 when a material with a band gap of Eg and exciton
energy ΩS absorbs a longitudinal optical (LO) phonon of frequency !LO, and
the condition ΩS + !LO > Eg is satisfied.

a LO phonon with frequency !LO. Specifically, this condition is
only satisfied in a single-phonon process if the absorbed phonon
has a greater or equal frequency than the exciton binding energy,
i.e., !q,� ≥ EB.

The imaginary part of the exciton–phonon self-energy contains
information about the lifetime of excitons due to scattering from
phonons into other excitons or free electron–hole pairs (31). As
motivated in Fig. 1, the phonon kernel describes scattering from
an initial exciton state to a final free electron–hole pair, primarily
due to phonon absorption. This process can be formally described
within many-body perturbation theory and scattering theory by
an S-matrix of the following form (46, 61)

S = 2�i�[ΩS + !q,� − (Eck − Evk′)]

× 〈(ck, vk′), NB|K ph
|S, NB + 1〉. [14]

The rate �−1
S of this scattering process described by the S-

matrix of Eq. 14 is obtained by taking the time derivative of the
square magnitude of this expression. Using the fact that �2[ΩS +
!q,�− (Eck−Evk′)] = limt→∞

t
2� �[ΩS +!q,�− (Eck−Evk′)],

we arrive at

�−1
S ≈ 2�

∑
ckvk′

�[ΩS + !q,� − (Eck − Evk′)]

× |〈(ck, vk′), NB|K ph
|S, NB + 1〉|2, [15]

in atomic units, where the approximately equal symbol is used
because of making the Born approximation, as detailed in
SI Appendix, section S4. Eq. 15 is the same expression as that
obtained through the application of Fermi’s golden rule for
exciton dissociation, from an initial bound exciton (|S, NB + 1〉)
to a final free electron–hole (|(ck, vk′), NB〉) state. This is
analogous to the elementary treatment of the photoelectric effect
in the hydrogen atom (62).

Defining this scattering process through the S-matrix of Eq.
14 generally requires the initial and final states to be orthogonal
to each other (63). We can ensure this is the case within the Born
approximation using the theory of rearrangement collisions (64–
67), as discussed in more detail in SI Appendix, section S4 and
also to be presented as a part of a separate work (67). Employing
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the optical theorem for the S-matrix of Eq. 14, the quantity
Im[K ph

SS (ΩS , T )] can be shown to be equivalent to the rate of the
exciton dissociation process depicted in Fig. 1, i.e.

2|Im[K ph
SS (ΩS , T )]| ≈ �−1

S (T ). [16]

Thus, our framework enables the ab initio calculation of
exciton dissociation timescales for this particular channel where
the products are a free electron and a free hole, for cases in
which phonons with !q,� > EB dominate. In this regime,
!q,� > EB exciton dissociation via this channel competes with
phonon-mediated exciton–exciton scattering, while exciton–
exciton scattering dominates when !q,� < EB. In what follows
below, we will discuss GaN, a system with ultrafast exciton
dissociation.

Approximations to the Real Part of the Phonon
Kernel

Having established our first-principles formalism to compute the
phonon kernel associated with phonon screening, we now explore
several common approximations to the real part of this quantity,
i.e., the perturbative correction ΔEB to the exciton binding
energy due to phonon screening, at T = 0 K. The discussion
of these approximations to ΔEB reveals key physical intuition
and connects our work to previous studies. Since for this analysis
we restrict ourselves to zero temperatures, we only describe the
effect of phonon emission on exciton binding energies.

Fröhlich Electron–Phonon Coupling and Hydrogenic Excitons.
Several semiconductors of interest for optoelectronics, such
as halide perovskites (25), exhibit electron–phonon coupling
dominated by long-range interactions with polar ionic vibrations,
which can be described within the Fröhlich model by the
operator (68)

gFq (r) =
i
|q|

[
4�
NV

!LO

2

(
1
�∞
−

1
�0

)] 1
2

eiq·r, [17]

where N is the number of unit cells and V the unit cell volume.
Additionally, excitons of a wide class of materials behave in

a hydrogenic manner according to the Wannier–Mott limit
(69, 70), with the reciprocal space wavefunction of their first
excited state (1s) expressed as

Ak =
(2ao)3/2

�
·

1
(1 + a2

ok2)2 , [18]

where ao = 1/(2EB�)1/2 the exciton Bohr radius (in atomic
units), k the wavevector, and � the exciton effective mass 1/� =
1/me + 1/mh, with me and mh the effective mass of the electron
and hole, respectively. Defining the exciton binding energy as
EB = Eg−ΩS , where Eg is the direct fundamental gap, assuming
dispersive parabolic bands for the conduction and valence states,
and ignoring the dispersion of the LO phonon, we arrive at the
expression (25):

ΔEB = −
8a3

o
�2

∑
kq

|gq� |2

[1 + a2
ok2]2[1 + a2

o |k + q|2]2

×

 1

EB + k2

2me
+ |k+q|2

2mh
+ !LO

+
1

EB + |k+q|2
2me

+ k2

2mh
+ !LO

 . [19]

In what follows, we compute this expression numerically
for several systems on a grid of k-/q-points and we term the
corresponding correction as ΔEF-H

B (due to using the Fröhlich
and hydrogenic approximations), in order to differentiate it from
the full ab initio calculation.

A way to further simplify Eq. 19, and derive analytic
expressions for ΔEB, is to take the limits k/q → 0. We now
proceed to explore these limits.

The k → 0 Limit and the Haken Potential. Following
Strinati (11), for excitons that are highly localized around k = 0,
we can consider the k→ 0 limit of Eq. 19 and obtain

ΔEB = 〈1s|VGH (r)|1s〉, [20]

where |1s〉 is the hydrogenic wavefunction and the potential VGH
is given by

VGH (r) = v(r)
!LO

2�∗(!LO + EB)
(e−r/r̃e + e−r/r̃h), [21]

with v(r) the bare Coulomb potential and 1
�∗ = ( 1

�∞ −
1
�0

).
The subscript of the potential term VGH indicates this is a
generalized Haken potential, having the same form of the so-
called Haken potential (23, 24), with the exception that VGH
retains the exciton binding energy, which is considered negligible
in the derivation presented in ref. 11. We have defined the
modified polaron radii for the electron and hole, compared to
the usual definition (20), as r̃e,h = 1√

2me,h(!LO+EB)
, retaining

the exciton binding energy. Therefore, the Haken potential is
trivially recovered as an approximation of our ab initio phonon
screening expression, via a simplification of Eq. 19.

With the additional approximation me = mh, the expectation
value for the shift of the exciton energy due to phonon screening
can be expressed in this limit as

ΔEk→0
B = −

2!LO

(
1− �∞

�0

)
(

1 + !LO
EB

)(
1 + 1

√
2

√
1 + !LO

EB

)2 . [22]

The q → 0 Limit. While the Haken potential is based on
taking k → 0 with the justification of a highly localized
exciton in reciprocal space, ref. 25 instead retained the k
dependence and considered the limit q → 0 for the potential
term in the expectation value of Eq. 19 for the shift of the
exciton binding energy. This is more justified in materials with
highly dispersive electronic bands, where setting the electronic
momentum to zero can constitute an oversimplification. For
such systems, the momentum q of a phonon may be considered
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negligible compared to that of an electron or a hole. Using this
approximation we obtain

ΔEB = 〈1s|V q→0(r)|1s〉, [23]

where

V q→0(r) = v(r)
a2
o!LO

�∗(!LO + EB)

·

[
1

a2
o − b2

o
−

1
r
·

2aob2
o

(a2
o − b2

o )2

(
1− e−( 1

bo−
1
ao )r
)]

,

[24]

with ao the exciton Bohr radius and bo =
√

1
2�(!LO+EB)

. By
setting me = mh, the expectation value of Eq. 23 is found to be

ΔEq→0
B = −2!LO

(
1−

�∞
�0

) √
1 + !LO

EB + 3(
1 +

√
1 + !LO

EB

)3 , [25]

the result derived in ref. 25. We will see when discussing our
computational results that this limit yields results which are
generally significantly closer to the full ab initio value for the
shift of the exciton energy compared to the generalized Haken
(k→ 0) case.

Ab Initio Results for Select Systems

Comparison between Ab Initio and Limiting Cases at 0 K. We
start with the ab initio phonon screening correction to the
exciton binding energy at 0 K, and the values predicted through
the various approximations outlined previously. The results for
the different systems studied in this work are summarized in
Table 1. Details on the structure of the studied materials as well
as computational details are given in SI Appendix, section S1,
with the convergence properties of the phonon kernel discussed
in more detail in SI Appendix, section S5. We note that while
here we focus on spin-singlet excitons, our formalism could also
be applied to triplets.

Firstly, we note that for all studied systems, the ab initio
value for the shift of the exciton binding energy due to phonon
screening (as given by Eq. 11) falls between the values of the
two limiting cases ΔEk→0

B and ΔEq→0
B . The former of these

limits, which corresponds to the well-known Haken potential,
consistently underestimates ΔEab initio

B , while the q → 0 limit
leads to a small overestimation. As introduced by Haken (23, 24)

and also elaborated by Strinati (11), exciton coefficients in several
semiconductors, are highly localized around k = 0 in reciprocal
space, motivating the k → 0 approximation. However, this
approximation also suggests that one may neglect the dispersion
of electronic bands, only retaining the finite dispersion of the LO
phonon. In materials such as the ones studied here, Ak assume
appreciable nonzero values away from Γ, and this approximation
is no longer valid, leading to the observed poor agreement
between ΔEk→0

B and ΔEab initio
B . For the systems investigated

in this work, considering the momentum of phonons to be
negligible compared to that of the electrons, i.e., taking the
q → 0 in the energy denominators of Eq. 19 and leading to
the expression of Eq. 25, is physically better justified, leading to
better agreement with first-principles calculations.

Moreover, the correction ΔEF-H
B , obtained through numerical

integration of Eq. 19, which only assumes hydrogenic excitons
and an electron–phonon interaction governed by the Fröhlich
vertex, is in excellent agreement with the first-principles results,
for all systems but SrTiO3, for reasons discussed in detail
below. For the remaining systems studied here, the hydrogenic
and Fröhlich approximation are well justified, as discussed in
ref. 25, leading to the excellent agreement between ΔEF-H

B and
ΔEab initio

B . The effective masses entering Eq. 19 are given in SI
Appendix, section S2. Two of the studied materials, AlN and GaN
are in their wurtzite phase and hence anisotropic, we therefore use
effective masses averaged across the three crystallographic axes.

First-Principles Calculations of Finite Temperature Exciton
Binding Energies and Dissociation Timescales. In what follows,
we will employ the fully first-principles phonon kernel and
focus on temperature-dependent effects of phonon screening
on excitons, in three of the materials selected from Table 1.
Specifically, we focus on CdS, the material with the lowest LO
phonon frequency, which indicates the potential of this ma-
terial for exhibiting substantial temperature-dependent phonon
screening. Additionally, GaN is the only system studied here
with !LO > EB; thus, the absorption of an LO phonon from
the exciton may lead to dissociation of the electron–hole pair,
according to Eq. 16. Finally, we discuss the effects of phonon
screening on the cubic perovskite phase of SrTiO3, which has
a very large �0 value, and is the only material in this work
showing significant deviations between the ab initio and ΔEF-H

B
corrections to the exciton binding energy at 0 K. In SI Appendix,
section S6, we estimate the effects of thermal expansion on the
phonon screening of excitons, which we generally find to be
small. As also discussed in SI Appendix, section S6, thermal
expansion can cause a modest reduction of the exciton binding
energy, additional to that caused by phonon screening, leading
to overall improved agreement with experiment. Nevertheless,

Table 1. Comparison of the shift of the exciton binding energy at 0 K due to phonon screening in the different
studied systems

System EB !LO �∞ �0 ΔEab initio
B ΔEk→0

B (Eq. 22) ΔEq→0
B (Eq. 25) ΔEF-H

B (Eq. 19)

GaN 65 87 5.9 10.8 −15 −6 −22 −15
AlN 143 110 4.5 8.7 −29 −16 −36 −29
MgO 327 84 3.3 11.3 −46 −26 −52 −48
CdS 39 34 6.2 10.4 −6 −3 −9 −6
SrTiO3 122 98 6.2 409 −44 −25 −65 −51

All energy values are given in meV. For reference, the computed value of the exciton binding energy EB as obtained from the solution of the bare BSE (without phonon effects) is given
here, alongside the values computed within DFPT for the LO phonon frequency and the high-/low-frequency dielectric constants �∞,o .
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Fig. 2. Calculated shift of the exciton binding energy of CdS due to phonon
screening, as a function of temperature.

phonon screening remains the dominant effect that determines
the temperature dependence of exciton binding energies.
CdS. In Fig. 2, we find that the correction of the exciton binding
energy of CdS due to phonon screening is strongly temperature-
dependent. The low-temperature correction is equal to almost
−6 meV, and becomes more significant at room temperature,
where it reaches a value of −22 meV. This suggests that the
bare, clamped-ion exciton binding energy of CdS of 39 meV as
computed from BSE (Table 1), will be renormalized by more
than 50%, to 17 meV at 300 K, due to phonon screening. The
experimental value for the exciton binding energy has been
reported at low temperatures to be 28 to 30 meV (71–73), in good
agreement with our low-temperature result of a corrected exciton
binding energy of 33 meV. Experimental temperature-dependent
studies of CdS excitons assume the exciton binding energy to be
temperature-independent (73), and extract it as the activation
energy of a fit of photoluminescence data. Our results show that
through the phonon modification of the BSE kernel, the ex-
citonic interactions become themselves temperature-dependent,
resulting in the strong temperature dependence of the exciton
binding energy of CdS shown in Fig. 2.

It is instructive to decompose the computed phonon-induced
screening correction to the exciton binding energy into con-
tributions from different phonon branches of CdS. As seen in
Fig. 3, unsurprisingly the vast majority of this effect is driven
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Fig. 3. Contribution of different phonon modes to the exciton binding
energy shift of CdS due to phonon screening, as a function of temperature.
Here,

〈
!q
〉
denotes the average frequency of a particular phonon branch.

by the LO phonon with an average frequency of 34 meV across
the Brillouin zone. The contribution of this phonon to ΔEB
increases substantially with temperature, due to its low frequency
and high thermal activation. Interestingly, we also find that
at finite temperatures there is a nonnegligible contribution of
acoustic phonons to the screening, which is strongly temperature-
dependent due to the large thermal occupation factors of these
modes. This contribution of acoustic modes to the phonon
screening of excitons is generally present in piezoelectric materials
such as CdS, as we discuss in more detail in SI Appendix,
section S7. Moreover, Eq. 9 allows us to identify the separate
contributions of phonon absorption and emission to the phonon
kernel. As shown in SI Appendix, section S8, phonon emission
is already active at low temperatures, while phonon absorption
only provides a minor contribution. As the temperature increases,
the contribution of phonon absorption to the screening of
the exciton becomes more substantial, and eventually emission
and absorption contribute equally. Moreover, in SI Appendix,
section S8, and specifically SI Appendix, Figs. S6–S9, we show
the dependence of the mode-resolved contributions to ΔEB on
the phonon wavevector |q|, and the dominant contribution of the
LO phonons follows a Fröhlich-like 1/|q|2 dependence.
GaN. The value ofΔEB for GaN only shows weak temperature de-
pendence as seen in Fig. 4, since the frequency of its LO phonon
has a value of 84 meV, significantly above room temperature. As
for CdS, ΔEB is dominated by the LO phonon (Fig. 5), while
here too, there is a small but nonnegligible contribution from
acoustic phonons, due to GaN being a piezoelectric material; see
SI Appendix, section S7.

Solution of the bare BSE gives an exciton binding energy of
EB = 65 meV for GaN, and by including the correction due
to phonon screening we predict it will decrease to 46 meV at
300 K. The experimental values for the exciton binding energy of
GaN are within the range of 20 to 28 meV (74, 75), with some
studies measuring this quantity at room temperature (75) and
others at cryogenic temperatures (74). We were not able to find
a systematic experimental study on the temperature dependence
of the exciton binding energy; however, it is clear that while
inclusion of phonon screening effects leads to better agreement
with experiment, we still overestimate the exciton binding energy,
similar to the case of the halide perovskites (25). This result could
be attributed to the fact that the magnitude of electron–phonon
interaction within DFPT might be underestimated compared to
using higher-level theories (48, 76, 77), as well as to the fact that
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Fig. 4. Calculated shift of the exciton binding energy of GaN due to phonon
screening, as a function of temperature.
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Fig. 5. Contribution of different phonon modes to the exciton binding
energy shift of GaN due to phonon screening, as a function of temperature.
Here,

〈
!q
〉

denotes the average frequency of a particular phonon branch
across the studied patch of the Brillouin zone.

we do not account for polaronic interference effects as discussed
previously.

Among the systems studied in this work, GaN is the only one
for which !LO > EB, making it a case where the absorption of
a single LO phonon by the exciton might lead to its dissociation
into a free electron–hole pair. The fact that !LO > EB manifests
as a finite value of Im[K ph

SS (ΩS , T )], as shown in Fig. 6A. The
value of � in Eq. 9 represents a small arbitrary broadening we
introduce to the energy levels appearing in the denominator, in
order to resolve the crossing between an exciton that has absorbed
a phonon, and the free electron–hole pair, as schematically shown
in Fig. 1. Given the fine grid we are employing here (100×100×
100), we find that values of � within the range of 0.5 to 2 meV
are sufficient to satisfy this energy conservation condition. In
Fig. 6A, we plot Im[K ph

SS (ΩS , T )] for a range of � values within
that window and find that the change in the result is minor.
Our values for Im[K ph

SS (ΩS , T )] are similar to the imaginary part
of the self-energy of a model system (31), representing phonon-
mediated exciton–exciton scattering, indicating that these effects
are directly competing.

In Fig. 6B we plot the exciton dissociation timescale for the
lowest singlet exciton of GaN using Eq. 16, as a function

of temperature and for different values of �. This exciton
dissociation process is entirely due to the absorption of LO
phonons by the exciton, as no other phonons contribute to the
imaginary part of the phonon kernel (Fig. 7). We see from Fig. 6B
that at low temperatures, the exciton dissociation timescale varies
significantly with changes in the value of �. This is due to the fact
that the imaginary part of the phonon kernel for temperatures
up to approximately 150 K assumes very small values of less
than 0.5 meV, making even small changes in � significant for its
inverse in Eq. 16. Nevertheless, the exciton dissociation timescale
� becomes more stable with respect to changes in the value of � at
higher temperatures, as also highlighted in the inset of Fig. 6B. At
300 K we find � = 111 fs. While we have not found experimental
studies on time-resolved exciton dissociation in GaN to compare
against, it is encouraging that recent experiments employing
ultrafast 2D electronic spectroscopy report exciton dissociation
timescales that are similar to what we compute here, for semicon-
ductors with comparable exciton binding energies. Specifically,
for GaSe an exciton dissociation timescale of 112 fs at room tem-
perature has been reported (78), while for CH3NH3PbI3, an exci-
ton dissociation timescale of approximately 50 fs (79) was found.

It is also worth pointing out that the finite exciton lifetime
described by the imaginary part of the phonon kernel, will
manifest as a finite linewidth in absorption and emission
spectra. However, exciton dissociation will only be one of several
scattering processes contributing to the overall linewidth observed
in experiment, with phonon-mediated exciton–exciton scatter-
ing (40), Auger recombination (80), and more, all contributing
to the total linewidth. It is therefore no surprise that our value of
approximately 3 meV for the imaginary part of the phonon kernel
of GaN at 300 K is substantially smaller than the experimental
linewidth of approximately 20 meV at the same temperature (81).
SrTiO3. Among the systems of Table 1, SrTiO3 is the only one
for which we find a substantial difference in the value of ΔEF-H

B
at 0 K as predicted from the numerical integration of Eq. 19, and
the full ab initio correction ΔEab initio

B to the exciton binding
energy, following Eq. 9. Moreover, this is a system with a
very large value for the low-frequency dielectric constant �0,
indicating a potentially very large contribution of phonons to the
screened Coulomb interaction, making it particularly interesting
for further study.

In Fig. 8, we visualize the temperature-dependent correction
ΔEB to the exciton binding energy for this system, which we
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η = 1.0 meV
η = 1.5 meV
η = 2.0 meV
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Fig. 6. Imaginary part of the phonon kernel matrix elements between the 1s exciton basis states (A) and associated calculated timescale for exciton dissociation
(B) as a function of temperature and the � parameter for GaN. The Inset of panel B provides a closer view of the range of temperatures around 300 K.
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Fig. 7. Contribution of different phonon modes to the imaginary part of the
phonon kernel of GaN, as a function of temperature and for � = 1 meV. Here,〈
!q
〉
denotes the average frequency of a particular phonon branch across the

studied patch of the Brillouin zone.

find to be equal to −52 meV at 300 K, renormalizing the bare
clamped-ion exciton binding energy as computed within BSE by
43%, from 122 meV to 70 meV. By decomposing this correction
to the effect of individual phonons in Fig. 9, we find that while
phonon screening in this system is dominated by the LO mode
with a frequency of 98 meV (henceforth referred to as LO-1),
there is a substantial contribution from an LO phonon with a
lower frequency of 57 meV (henceforth referred to as LO-2),
which has been discussed previously to also exhibit Fröhlich-like
coupling (82).

The reason behind the disagreement of the ab initio and
ΔEF-H

B results for the correction to the exciton binding energy
is that SrTiO3 has multiple phonon modes contributing to
the phonon screening and the static dielectric constant �0. In
these cases, the Fröhlich model, which is used in the numerical
integration of Eq. 19, breaks down, and one needs to instead use
the generalized Fröhlich vertex of ref. 83. For a phonon �, this is
written as

gq,� = i
4�
V

∑
j

(
1

2NMj!q,�

)1/2
·
q · Zj · ej,�(q)
q · �∞ · q

, [26]

in atomic units. For atom j, Zj is its Born effective charge tensor
and Mj its mass, while V the unit cell volume, N the number
of unit cells, and ej,�(q) the phonon eigenvectors. In Table 2,
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Fig. 8. Calculated shift of the exciton binding energy of SrTiO3 due to
phonon screening, as a function of temperature.
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Here,

〈
!q
〉

denotes the average frequency of a particular phonon branch
across the studied patch of the Brillouin zone.

we show that employing this generalized Fröhlich vertex in the
numerical integration of Eq. 19 gives excellent agreement with
the ab initio result for the correction to the exciton binding
energy of SrTiO3 due to its LO-1 and LO-2 phonons. On the
other hand, numerically integrating Eq. 19 for the LO-1 and
LO-2 phonons using the standard Fröhlich vertex of Eq. 17
leads to significant discrepancies with the ab initio results. The
comparison between the case where we use the Fröhlich and
hydrogenic approximations, and the ab initio result, is discussed
in more detail in SI Appendix, section S9.

Discussion, Conclusions, and Outlook

In this work, we have developed an ab initio framework for
computing the temperature-dependent phonon kernel of semi-
conductors and insulators associated with phonon screening,
according to Eq. 9. We show how approximations to the phonon
kernel lead to the model expressions of Eqs. 19, 22, and 25, some
of which have been widely discussed in the literature. Compared
to utilizing these model expressions, our ab initio approach does
not rely on any restrictive approximations, treating the effect
of all phonon modes on equal footing in phonon screening,
without any assumption about the nature of their coupling
to electrons. It also allows us to extend our results to finite
temperatures in a straightforward manner, and to go beyond
the Wannier–Mott model, which will be critical in systems
where excitons are not hydrogenic in nature (60). Additionally,
the imaginary part of the phonon kernel in the exciton basis
allows us to extract information about temperature-dependent
exciton dissociation processes to free electrons and holes in certain
limits. Overall, having access to the full, temperature-dependent
complex phonon kernel enhances our ability to predict excitonic
properties including phonon screening, while providing physical

Table 2. Phonon-resolved screening of the exciton
binding energy of SrTiO3 by the two LO modes of this
material at 0 K (in meV)
Phonon mode ΔEF-H

B ΔEF-H
B,gen. ΔEab initio

B

LO-1 −51 −38 −36
LO-2 −34 −8 −8

We compare full ab initio level theory (ΔEab initio
B ), the numerical integration of Eq. 19 using

the standard Fröhlich vertex for each phonon (ΔEF-H
B ), as well as the numerical integration

of Eq. 19 employing the generalized Fröhlich vertex (ΔEF-H
B,gen.).
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insights, with some of the ones obtained in this work summarized
below.

Firstly, we found that for bulk CdS, phonon screening reduces
the bare BSE exciton binding energy by more than 50% at
room temperature, demonstrating that the effect of phonon
screening on excitons can be very strong and highly temperature-
dependent. Our theoretical framework provides a temperature-
dependent correction to the BSE kernel and therefore to
the excitonic interactions. Indeed, experimental studies in the
1970s and 1980s found indications of strongly temperature-
dependent excitonic interactions, but were unable to quantify
this effect (84–86). These modified interactions can lead to
strongly temperature-dependent exciton binding energies, as
recent experimental studies have found (87, 88), and at odds with
the common assumption of a temperature-independent exciton
binding energy (73, 81).

Our formalism describes the screening of the exciton due to
both processes of emission and absorption of phonons, which
contribute equally to the reduction of the exciton binding energy
at 300 K, while phonon emission processes entirely dominate
at low temperatures. Additionally, we found an important
reduction of the exciton binding energy due to screening from
acoustic phonons, which is present in piezoelectric materials. This
important reduction of the exciton binding energy due to phonon
screening, a nonadiabatic effect, demonstrates that approaches
based on trajectory-based adiabatic methods may underestimate
the effect of ionic screening on exciton binding energies (13),
similar to how the adiabatic approximation can lead to significant
errors in computed band gap renormalizations (89).

Importantly, having access to the imaginary part of the phonon
kernel allows us to compute exciton dissociation rates via single-
phonon emission and absorption processes entirely from first
principles. For the case of GaN where EB < !LO, the absorption
of a LO phonon is sufficient to dissociate the exciton and generate
a free electron–hole pair. Our computed exciton dissociation
timescale for this system is approximately 111 fs at 300 K. While
we have not found experimental exciton dissociation timescales
for GaN to compare against, it is encouraging that our predicted
value is reasonably close to experimental values obtained in
semiconductors with comparable exciton binding energies, such
as GaSe with an exciton dissociation timescale of 112 fs (78),
and CH3NH3PbI3 with an exciton dissociation timescale of
approximately 50 fs (79).

Moving forward, our first-principles approach could be ex-
tended in multiple ways. For example, one could re-solve the BSE
nonperturbatively upon correction of the electronic BSE kernel,
which might substantially change the exciton wavefunction and
computed absorption spectra for systems where the phonon ker-
nel in the bare exciton basis has large off-diagonal entries. Here,
we have used the harmonic approximation within DFPT, which
is justified for the studied systems, given that phonon screening is
dominated by higher frequency LO phonons, which are generally
harmonic. However, one could incorporate anharmonic effects
into phonon screening calculations, which can be important
for screening from low-frequency phonons (82). Furthermore,
one could consider the interplay of phonon screening with the
effects of polaronic mass enhancement and polaron interference

on excitons (19, 20) by incorporating the Fan-Migdal term
and higher-order diagrams into this approach. Our approach
for ensuring gauge consistency between interpolated electron–
phonon matrix elements and exciton coefficients could be
extended to account for the effects of phonon screening and
other diagrams on finite-momentum excitons (31), by utilizing
recent schemes for exciton Wannier functions (90). While in
this work we have studied some representative semiconducting
materials, we hope our first-principles approach will be widely
adopted and used to study the effect of phonons on dissociating
and screening excitons in diverse materials of interest for a variety
of technological applications, such as heterostructures of two-
dimensional semiconductors, quantum wells, or doped systems.

Materials and Methods

Computational details for all DFT and GW -BSE calculations on the studied
systems, as well as details on the convergence of phonon screening with respect
to the k-point grid and the number of exciton states accounted for in the
phonon kernel, are provided in SI Appendix. Moreover, SI Appendix includes
the estimated exciton and polaron radii of the systems studied here, as well
as extended derivations of the finite-temperature expression Eq. 9 within the
Matsubara formalism, and of the exciton dissociation scattering rate described by
the imaginary part of Kph. An extended discussion is also provided on the effect
of thermal expansion on the exciton binding energies and on phonon screening,
on the role of acoustic modes in screening the excitons of piezoelectric materials,
the wavevector dependence of phonon screening, the relative contribution of
phonon emission and phonon absorption to screening of excitons, as well as an
extended discussion of phonon screening in SrTiO3, and the reasons underlying
the failure of the different model approaches in this system to reproduce the full
first-principles result.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix.
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