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Spatially Homogeneous Dynamic Textures

Gianfranco Doretto, Eagle Jones, and Stefano Soatto

UCLA Computer Science Department
Los Angeles, CA 90095-1596

{doretto, eagle, soatto}@cs.ucla.edu

Abstract. We address the problem of modeling the spatial and tempo-
ral second-order statistics of video sequences that exhibit both spatial
and temporal regularity, intended in a statistical sense. We model such
sequences as dynamic multiscale autoregressive models, and introduce an
efficient algorithm to learn the model parameters. We then show how the
model can be used to synthesize novel sequences that extend the original
ones in both space and time, and illustrate the power, and limitations,
of the models we propose with a number of real image sequences.

1 Introduction

Modeling dynamic visual processes is a fundamental step in a variety of applica-
tions ranging from video compression/transmission to video segmentation, and
ultimately recognition. In this paper we address a small but important compo-
nent of the modeling process, one that is restricted to scenes (or portions of
scenes) that exhibit both spatial and temporal regularity, intended in a statis-
tical sense. Modeling visually complex dynamic scenes will require higher-level
segmentation processes, which we do not discuss here, but having an efficient
and general model of the spatio-temporal statistics at the low level is important
in its own right.

While it has been observed that the distribution of intensity levels in natural
images is far from Gaussian [1,2], the highly kurtotic nature of such a distribu-
tion is due to the presence of occlusions or boundaries delimiting statistically
homogeneous regions. Therefore, within such regions it makes sense to employ
the simplest possible model that can capture at least the second-order statis-
tics. As far as capturing the temporal statistics, it has also been shown that
linear Gaussian models of high enough order produce synthetic sequences that
are perceptually indistinguishable from the originals, for sequences of natural
phenomena that are well-approximated by stationary processes [3,4].

In this work, therefore, we seek to jointly model the spatio-temporal statistics
of sequences of images that exhibit both spatial and temporal regularity using
a simple class of dynamic multiscale autoregressive (MAR) models. We show
how model parameters can be efficiently learned (iteratively, if the maximum
likelihood solution is sought, or in closed-form if one can live with a sub-optimal
estimate), and how they can be employed to synthesize sequences that extend in
both space and time the original ones. This work builds on a number of existing
contributions, which we summarize below.
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1.1 Relation to previous work

While extensive research has been focused on 2D texture analysis, we bypass
this literature and focus only on that work which models textures in time. Such
dynamic textures were first explored by Nelson and Polana [5], who extract
spatial and temporal features from regions of a scene characterized by complex,
non-rigid motion.

Szummer and Picard [6] use a spatio-temporal autoregressive model that
creates local models of individual pixels based on causal neighbors in space and
time. Bar-Joseph [7] employs multiresolution analysis of the spatial structure of
2D textures, and extends the idea to dynamic textures. Multiresolution trees are
constructed for dynamic textures using a 3D wavelet transform; mutliple trees
from the input are statistically merged to generate new outputs. This technique
is unable to generate an infinite length sequence, however, as the trees span the
temporal axis.

Video textures were developed by Schödl et al. [8], in which a transition model
for frames of the original sequence is developed, alowing the original frames to be
looped in a manner that is minimally noticeable to the viewer. Wei and Levoy [9]
developed a technique in which pixels are generated by searching for a matching
neighborhood in the original sequence.

In [3,4] we propose a simplified system identification algorithm for efficient
learning of the temporal statistics, but no explicit model of the spatial statistics.
Temporal statistics is also exploited by Fitzgibbon [10] to estimate camera mo-
tion in dynamic scenes. Recent work in texture synthesis includes a 2D and 3D
patch-based approach by Kwatra et al. [11], using graph cuts to piece together
new images and sequences. Wang et al. employ Gabor and Fourier decomposi-
tions of images, defining “movetons” [12], combined with statistical analysis of
motion.

Our work aims at developing models of both the spatial and temporal statis-
tics of a sequence that exploit statistical regularity in both domains. We seek the
simplest class of models that achieve the task of capturing arbitrary second-order
statistics, in the spirit of [4]. We achieve the goal within the MAR framework,
and provide an efficient, closed-form learning algorithm to estimate the param-
eters of the model. We show this approach to be effective in capturing a wide
variety of phenomena, allowing efficient description, compression, and synthesis.

2 Image representation

In this section we introduce the class of multiscale stochastic models to be used
in this paper, and describe how an image, that we model as a random field, can
be represented in the multiscale framework. It has been shown that this frame-
work can capture a very rich class of phenomena, ranging from one-dimensional
Markov processes to 1/f -like processes [13] and Markov random fields (MRFs)
[14].
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2.1 Multiscale autoregressive processes

The processes of interest are defined on a tree T ; we denote the nodes of T
with an abstract index s. We define an upward shift operator γ such that sγ is
the parent node of s. We consider regular trees where each node has q children,
and define a downward shift operator α, such that the children of s are indexed
by sα1, . . . , sαq (see Fig. 1(a)). The nodes of the tree are organized in scales
enumerated from 0 to M . The root node, s = 0, is the coarsest scale, while the
finest scale consists of qM nodes. We indicate the scale of node s with d(s).

A multiscale autoregressive process x(s) ∈ Rn(s), s ∈ T , is described via the
scale-recursive dynamic model:

x(s) = A(s)x(sγ) + B(s)v(s) , (1)

under the assumptions that x(0) ∼ N (0, P0), and v(s) ∼ N (0, I), where v(s) ∈
Rk(s) and A(s) and B(s) are matrices of appropriate size. The state variable
x(0) provides an initial condition for the recursion, while the driving noise v(s)
is white and independent of the initial condition.

Notice that model (1) is Markov from scale-to-scale. More importantly, any
node s on the q-adic tree can be viewed as a boundary between q + 1 subsets
of nodes (corresponding to paths leading towards the parent and the q offspring
nodes). If we denote with Υ1(s), . . . , Υq(s), Υq+1(s), the corresponding q +1 sub-
sets of states, the following property holds:

p(Υ1(s), . . . , Υq(s), Υq+1(s)|x(s)) = p(Υ1(s)|x(s)) · · · p(Υq+1(s)|x(s)) . (2)

This property implies that there are extremely efficient and highly parallelizable
algorithms for statistical inference [15], which can be applied to noisy measure-
ments y(s) ∈ Rm(s) of the process given by:

y(s) = C(s)x(s) + w(s) , (3)

where w(s) ∼ N (0, R(s)) represents the measurement noise, and C(s) is a matrix
of appropriate size, specifying the nature of the process observations as a function
of spatial location and scale.

2.2 Multiscale representation of images

We now describe how a Markov random field may be exactly represented in a
multiscale framework. A thorough development of the material in this section
may be found in [14].

Let us consider a regular discrete lattice Ω ∈ Z2. The essence of the definition
of a MRF y(x), x ∈ Ω is that there exists a neighborhood set Γx, such that [16]

p(y(x)|{y(z)|z 6= x}) = p(y(x)|{y(z)|z ∈ Γx}) . (4)

For example, the first-order neighborhood of a lattice point consists of its four
nearest neighbors, and the second-order neighborhood consists of its eight nearest
neighbors.
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Fig. 1. (a) The state vector in a multiscale stochastic model is indexed by the
nodes of a q-adic tree. The tree is a set of connected nodes rooted at 0. For a given
node s, sγ indexes the parent node of s, while sα1, . . . , sαq index its children.
Finally, d(s) indicates the scale of the node s. (b) The shaded region depicts the
set Γ (0) corresponding to the root of the tree for a 16× 16 lattice. (c) To build
the next level of the quad-tree for the multiscale representation, one proceeds
recursively, defining Γ (0αi), i ∈ {NW,NE,SE, SW}, where the subscripts refer
to the spatial location (northwest, northeast, southeast, or southwest) of the
particular child node.

We wish to use the multiscale framework to represent processes y(x), x ∈ Ω
that are MRFs under second-order neighbors. If Ω is a lattice of 2M+2 × 2M+2

points, a state at node s on the d-th level of the tree is representative of the
values of the MRF at 16(2M−d+1 − 1) points. We denote this set of points as
Γ (s). The shaded region in Fig. 1(b) depicts the set Γ (0) corresponding to the
root of the tree of a 16 × 16 lattice. Moreover, each set Γ (s) can be thought of
as the union of four mutually exclusive subsets of 4(2M−d+1 − 1) points, and
we denote these subsets as Γi(s), i ∈ {NW,NE, SE, SW}, where the subscripts
refer to the spatial location of the subset. In Fig. 1(b), Γ (0) is the union of the
boundaries of four squares of 8 × 8 points, located in the northwest, northeast,
southeast, and southwest quadrants of Ω. To build the next level of the quad-
tree for the multiscale representation, we proceed recursively, defining Γ (0αi),
i ∈ {NW,NE, SE, SW}. The points corresponding to the four nodes at depth
d = 1 are shown in Fig. 1(c).

If we define y(s) = {y(x)|x ∈ Γ (s)}, and yi(s) = {y(x)|x ∈ Γi(s)}, i ∈
{NW,NE,SE, SW}, from (4) it follows that

p(y(sαNW ), y(sαNE), y(sαSE), y(sαSW )|y(s)) =
p(y(sαNW )|y(s)) · · · p(y(sαSW )|y(s)) =
p(y(sαNW )|yNW (s)) · · · p(y(sαSW )|ySW (s)) , (5)

and, given (2), it is straightforward that the MRF can be modelled as a multiscale
stochastic process, and, in the Gaussian case, this leads to MAR models, given
by equations (1) and (3).
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3 A representation for space- and time-stationary
dynamic textures

We seek a model that can capture the spatial and temporal “homogeneity” of
video sequences that can also be used for extrapolation or prediction in both
space and time. We remind the reader at this stage that our work, unlike [8,4],
cannot capture scenes with complex layouts, due to the assumption of stationar-
ity in space and time. In the experimental sections we show examples of sequences
that obey the assumptions, as well as one that violates them.

We first observe that, depending on the modeling goals, a sequence of im-
ages {y(x, t)|t = 1, . . . , τ, x ∈ Ω}, can be viewed as any of the following: (a) a
collection of τ realizations of a stochastic process defined on Ω; (b) a realiza-
tion of a stochastic process defined in time; or (c) a realization of a stochastic
process defined in both space and time. Let us consider the statistical descrip-
tion (for simplicity up to second-order), of y(x, t), and define the mean of the
process my(x, t) .= E[y(x, t)], and the correlation function ry(x1, x2, t1, t2)

.=
E[y(x2, t2)yT (x1, t1)]. If in model (a) above we assume my(x, t) = my ∀ x, t,
ry(x1, x2, t1, t2) = ry(x2 − x1) ∀ x1, x2, t1, t2, then the images are realizations
from a stochastic process that is stationary in space; statistical models for such
processes correspond to models for what are commonly known as planar 2D tex-
tures. If instead we take (b) and make the assumptions my(x, t) = my(x) ∀ t,
ry(x1, x2, t1, t2) = ry(x1, x2, t2 − t1) ∀ t1, t2, then the sequence of images is a
realization of a stochastic process that is stationary in time. There are statisti-
cal models that aim to capture the time stationarity of video sequences, such as
[4,12]. If in (c) we make the following assumptions:

my(x, t) = my ∀ t,x, ry(x1,x2, t1, t2) = ry(x2 − x1, t2 − t1) ∀ t1, t2, x1, x2,
(6)

then the sequence of images is a realization from a stochastic process that is
stationary in time and space. Equation (6) represents the working conditions of
this paper.

In order to model the second-order spatial statistics we consider the images
y(x, t), t = 1, . . . , τ , as realizations from a single stationary Gaussian MRF,
which can be represented as the output of a MAR model. That is,

{
x(s, t) = A(s)x(sγ, t) + B(s)v(s, t)
y(s, t) = C(s)x(s, t) + w(s, t) ,

(7)

where x(0, t) ∼ N (0, P0), v(s, t) ∼ N (0, I), w(s, t) ∼ N (0, R(s)). Notice that,
since the process is stationary in space, we have A(s1) = A(s2), B(s1) = B(s2),
C(s1) = C(s2), R(s1) = R(s2) ∀ s1, s2 ∈ T , such that d(s1) = d(s2). Therefore,
with a slight abuse of notation, we now index every parameter previously indexed
by s, with d(s). For instance, A(d(s)) .= A(s).

Employing model (7), an image at time t is synthesized by independently
drawing samples from the following random sources: x(0, t) at the root of T ,
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and v(s, t), for s ∈ T − {0}. Since subsequent images of a video sequence ex-
hibit strong correlation in time that is reflected as a temporal correlation of the
random sources, we model x(0, t) and v(s, t) as the output of an autoregressive
model. This means that, if we write x(0, t) = B(0)v(0, t), v(0, t) ∼ N (0, I), then
the sources v(s, t), s ∈ T , evolve according to v(s, t+1) = F (s, t)v(s, t)+u(s, t),
where u(s, t) ∼ N (0, Q(s, t)) is a white process. Also, since we model sequences
that are stationary in time, we have F (s, t) = F (s), and Q(s, t) = Q(s), ∀t.

Finally, given a sequence of images {y(x, t)|t = 1, . . . , τ, x ∈ Ω}, satisfying
conditions (6), we write the complete generative model as





v(s, t + 1) = F (s)v(s, t) + u(s, t)
x(0, t) = B(0)v(0, t)
x(s, t) = A(s)x(sγ, t) + B(s)v(s, t)
y(s, t) = C(s)x(s, t) + w(s, t) ,

(8)

where y(s, t) ∈ Rm(s), x(s, t) ∈ Rn(s), v(s) ∈ Rk(s), v(s, 0) ∼ N (0, I); the driving
noise u(s, t) ∼ N (0, Q(s)) and measurement noise w(s, t) ∼ N (0, R(s)) are in-
dependent across time and nodes of T ; and A(s), B(s), C(s), F (s), Q(s), R(s)
are matrices of appropriate size.

4 Learning model parameters

Given a sequence of noisy images {y(x, t)|t = 1, . . . , τ, x ∈ Ω}, we wish to learn
the model parameters A(·), B(·), C(·), F (·), along with the noise matrices Q(·)
and R(·). This is a system identification problem [17] that can be posed as: given
y(x, 1), . . . , y(x, τ), find

Â(·), B̂(·), Ĉ(·), F̂ (·), Q̂(·), R̂(·) = arg max
A(·),B(·),C(·),
F (·),Q(·),R(·)

p(y(1), . . . , y(τ)) (9)

subject to (8). Problem (9) corresponds to the estimation of model parameters by
maximizing the total likelihood of the measurements, and can be solved using
an expectation-maximization (EM) procedure [18]. Note that the solution of
problem (9) is not unique; in fact, once we choose the dimensions n(s) and k(s)
of the hidden states x(s, t) and v(s, t), there is an equivalence class of models
that maximizes the total likelihood. This class corresponds to the ensemble of
every possible choice of basis for the states. Since we are interested in making
broad use of model (8), while retaining its potential for recognition, we look for a
learning procedure that selects one particular model from the equivalence class.
To this end, we have designed a sub-optimal closed-form learning procedure,
outlined in the following section.

4.1 A closed-form solution

In this section we outline a procedure to choose a particular representative from
the equivalence class of models that explains the measurements {y(x, t)|t =
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1, . . . , τ, x ∈ Ω}. Since describing the details of the procedure would require
introduction of tedious notation, we retain only the most important ideas.

We first recall that y(s, t) = {y(x, t)|x ∈ Γ (s)}, and define the set YD .=
{y(s, t)|d(s) = D}, where D = 0, . . . , M , and Ω is a regular lattice of 2M+2 ×
2M+2 points. We will indicate with YD a matrix that contains in each column
one element y(s, t) of the set YD. For a given t the measurements y(s, t) are
assumed to be lexicographically ordered in a column vector of YD ∈ Rm(s)×4Dτ ,
and we assume that the columns are suitably ordered in time. If we build the
matrices XD and WD using x(s, t) and w(s, t), as we did with YD, we note that
YD = C(s)XD + WD ∀ s, such that d(s) = D.

Since we work with images, we are interested in reducing the dimensionality
of our data set, and we assume that m(s) > n(s). Moreover, we seek a matrix
C(s) such that

C(s)T C(s) = I . (10)

These two assumptions allow us to fix the basis of the state space where x(s, t) is
defined, and eliminate the first source of ambiguity in the learning process. To see
this, let us consider the estimation problem Ĉ(s), X̂D = arg minC(s),XD ‖WD‖F ,
subject to (10). Take YD = UΣV T as the singular value decomposition (SVD)
of YD, where U and V are unitary matrices (UT U = I and V T V = I). From
the fixed rank approximation property of the SVD [19], the solution to our
estimation problem is given by Ĉ(s) = Un(s), and X̂D = Σn(s)V

T
n(s), where Un(s)

and Vn(s) indicate the first n(s) columns of matrices U and V , while Σn(s) is
a square matrix obtained by taking the first n(s) elements of each of the first
n(s) columns of Σ. At this stage, if desired, it is also possible to estimate the
covariance of the measurement noise. If ŴD = YD − Ĉ(s)X̂D, then the sample
covariance is given by R̂(s) = ŴT

D ŴD/(4Dτ).
Now suppose that we are given XD ∈ Rn(s)×4Dτ and XD+1 ∈ Rn(s)×4D+1τ ;

we are interested in learning A(s), such that d(s) = D. Note that the number of
columns in XD+1 is four times the number of columns in XD, and the columns
of XD+1 can be reorganized such that XD+1 = [XNW,D+1 XNE,D+1 XSE,D+1

XSW,D+1], where Xi,D+1, i ∈ {NW,NE, SE, SW}, represents the values of
the state of the i-th quadrant. (For the remainder of this section we omit
the specification of i in the set {NW,NE,SE, SW}.) In this simplified ver-
sion of the learning algorithm the rest of model parameters are actually sets
of four matrices. In fact, A(s) consists of a set of four matrices {Ai(S)}, that
can easily be estimated in the sense of Frobenius by solving the linear esti-
mation problem Âi(s) = arg minAi(s) ‖Xi,D+1 − Ai(s)XD‖F . The closed-form
solution can be computed immediately using the estimates X̂D and X̂i,D+1 as:
Âi(s) = X̂i,D+1X̂

T
D(X̂DX̂T

D)−1.
Once we know Ai(s), we can estimate Bi(s). In order to further reduce the

dimensionality of the model, we assume that

n(s) > k(s) , E[vi(s, t)vi(s, t)T ] = I . (11)

These hypotheses allow us to fix the second source of ambiguity in the estima-
tion of model parameters by choosing a particular basis for the state space where
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vi(s, t) is defined. Let us consider the SVD Xi,D+1−Ai(s)Xi,D = UvΣvV T
v , where

Uv, and Vv are unitary matrices. We seek B̂i(s), V̂i,D = arg minBi(s),Vi,D ‖Xi,D+1−
Ai(s)Xi,D−Bi(s)Vi,D‖F , subject to (11), where Vi,D can be interpreted as Xi,D.
Again, from the fixed rank approximation property of the SVD [19], the solu-
tion follows immediately as: B̂i(s) = Uv,k(s)Sv,k(s)/2D, V̂i,D = 2DV T

v,k(s), where
Uv,k(s) and Vv,k(s) indicate the first k(s) columns of the matrices Uv and Vv,
while Σv(s) is a square matrix obtained by taking the first k(s) elements of each
of the first k(s) columns of Σv.

Once we have Vi,D, we generate two matrices, V1,i,D ∈ Rk(s)×4D(τ−1) and
V2,i,D ∈ Rk(s)×4D(τ−1), with a suitable selection and ordering of the columns
of Vi,D such that V2,i,D = Fi(s)V1,i,D + Ui,D and Ui,D has in its columns
the values of ui(s, t). Then Fi(s) can be determined uniquely, in the sense of
Frobenius, by the solution to F̂i(s) = arg minFi(s) ‖Ui,D‖F , given by F̂i(s) =
V̂2,i,DV̂ T

1,i,D(V̂1,i,DV̂ T
1,i,D)−1. Finally, from the estimate Ûi,D = V̂2,i,D−F̂i(s)V̂1,i,D,

we learn the covariance of the driving noise ui(s, t): Q̂i(s) = Ui,DUT
i,D/4D(τ−1).

5 A model for extrapolation in space

While extrapolation or prediction in time is naturally embedded in the first
equation of model (8), extrapolation in space outside the domain Ω is not implied
because of the lack of the notion of space causality. Nevertheless, given that
model (8) captures both the spatial and temporal stationarity properties of the
measurements, the question of whether it is possible to extrapolate in space also
becomes natural.

Given yi(0, t), i ∈ {NW,NE, SE, SW}, with the parameters of model (8),
we can synthesize the random field inside Γi(0). In the same way, if from the
values taken by the MRF on Ω, we predict the values ya(0, t) on the boundaries
of the square a (see Fig. 2(a)), then we are able to fill it in. Using this idea we
could tile the whole 2D space. Since we already have a model for the spatial and
temporal statistics of a single tile, we need only a model for the spatio-temporal
prediction of the borders of the tiles. The model that we propose is very similar
to model (8) when s = 0, and for the square a it can be written as:





va(0, t + 1) = Fa(0)va(0, t) + ua(0, t)
xa(0, t) = Aa(0)xΩ(0, t) + Ba(0)va(0, t)
ya(0, t) = Ca(0)xa(0, t) + wa(0, t) ,

(12)

where the first and the last equations of the model, along with their parameters,
have exactly the same meaning as the corresponding equations and parameters
in model (8). The only difference is in the second equations of (8) and (12).
While the meaning of Ba(0) is the same as B(0), (12) has an additional term
Aa(0)xΩ(0, t). With reference to Fig. 2(b), we take square a as an example case.
If we know the values taken by the MRF on the shaded half-plane, then from
the properties of the MRF, only the values on the boundary (the vertical line)
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Fig. 2. Extrapolation in space. (a) Patches surrounding the original lattice Ω
can be synthesized, if their borders can be inferred from the original data. (b)
ya(0, t), the border of patch a, can be inferred from xΩ(0, t), the portion of the
original lattice which borders patch a. (c) The eight different ways in which
borders must be inferred for a complete tiling of the 2D plane.

affect ya(0, t). In model (12) we make the further approximation that ya(0, t) is
dependent only on the part of the boundary attached to it. Therefore, xΩ(0, t) is
a state space representation of the bolded piece of the vertical line in Fig. 2(b).
The matrix Aa(0) can be learned from the training set in closed-form, in the
sense of Frobenius, similarly to the manner in which we learned A(s); the same
is valid for the other parameters of the model. Fig. 2(c) represents the eight
cases that need to be handled in order to construct a tiling of the 2D space in
all directions.

6 Experiments

We implemented the closed-form learning procedure in Matlabr and tested it
with a number of sequences. Figures 3(a)-(e) contain five samples from a dataset
we created (boiling water, smoke, ocean waves, fountain, and waterfall). All the
sequences have τ = 150 RGB frames, and each frame is 128 × 128 pixels, so
M = 5. These sequences exhibit good temporal and spatial stationarity prop-
erties. To improve robustness, we normalize the mean and variance of each se-
quence before running the algorithm. Fig. 3(f) depicts a sequence of fire from
the MIT Temporal Texture database. This sequence has τ = 100 RGB frames,
with the same dimensions as the other sequences. These images are highly non-
Gaussian, and, more importantly, exhibit poor stationarity properties in space.
This sequence has been included to “push the envelope” and show what hap-
pens when conditions (6) are only marginally satisfied. For the sequences just
described, the closed-form algorithm takes less than one minute to generate the
model on a high-end (2 GHz) PC.

So far we have made the unspoken assumption that the order of the model
{n(s), k(s), s ∈ T } was given. In practice, we need to solve a model selec-
tion problem based on the training set. The problem can be tackled by using
information-theoretic or minimum description length criteria [20,21]. Following
[22], we automate the selection by looking at the normalized energy encoded in
the singular values of Σ and Σv, and choose n(s) and k(s) so that we retain a
given percentage of energy.
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6.1 Synthesis
Using model (8) to extrapolate in time, jointly with model (12) to extrapolate in
space, we synthesized new sequences that are 300 frames long, with each frame
256× 256 pixels. Synthesis is performed by drawing random vectors u(s, t) from
Gaussian distributions, updating the states v(s, t) and x(s, t) and computing the
pixel values. The process is implemented simply as matrix multiplications, and a
256× 256 RGB image1 takes as little as five seconds to synthesize. This compu-
tational complexity is relatively low, especially compared with MRF models that
require the use of the Gibbs sampler. Besides being far less computationally ex-
pensive than such techniques, our algorithm does not suffer from the convergence
issues associated with them.

Figures 3(a)-(e) show the synthesis results for five sequences. Our model
captures the spatial stationarity (homogeneity) and the temporal stationarity
of the training sequences2. We stress the fact that the training sequences are,
of course, not perfectly stationary, and the model infers the “average” spatial
structure of the original sequence.

Fig. 3(f) shows the synthesis results for a fire sequence. Since the spatial sta-
tionarity assumption is strongly violated, the model captures a “homogenized”
spatial structure that generates rather different images from those of the training
sequence2. Moreover, since the learning procedure factorizes the training set by
first learning the spatial parameters (C(s) and A(s)), and relies on the estimated
state to infer the temporal parameters (B(s) and F (s)), the temporal statistics
(temporal correlation) appear corrupted if compared with the original sequence.

Finally, we bring the reader’s attention to the ability of this model to com-
press the data set. To this end, we compare it with the classic dynamic texture
model proposed in [4]. To a certain extent, this comparison is “unfair”, because
the classic dynamic texture model does not make any stationarity assumption
in space. By making this assumption, however, we do expect to see substantial
gains in compression. We generated the classic dynamic texture model, along
with our model, for each training sequence, retaining the same percentage of
energy in the model order selection step. We found that the ratio between the
number of parameters in the classic model and our model ranged from 50 to 80.

7 Conclusion

We have presented a novel technique which integrates spatial and temporal mod-
eling of dynamic textures, along with algorithms to perform learning from train-
ing data and generate synthetic sequences. Experimental results show that our
method is quite effective at describing sequences which demonstrate temporal
and spatial regularity. Our model provides for extension in time and space, and
the implementation for both learning and synthesis is computationally inexpen-
sive. Potential applications include compression, video synthesis, segmentation,
and recognition.
1 Multiple color channels are handled in the same manner as [4].
2 Movies available on-line at http://www.cs.ucla.edu/∼doretto/projects/homogeneous-

dynamic-textures.html

http://www.cs.ucla.edu/~doretto/projects/homogeneous-dynamic-textures.html�
http://www.cs.ucla.edu/~doretto/projects/homogeneous-dynamic-textures.html�
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(a) (b) (c)

(d) (e) (f)

Fig. 3. (a)-(e) frames from five sequences which exhibit strong spatial and
temporal regularity. Two frames of 128 × 128 pixels from the original se-
quences are shown on the bottom, and two synthesized frames (extended to
256 × 256 pixels using our spatial model) are shown on the top. Starting from
top: (a) boiling water, (b) smoke, (c) ocean waves, (d) fountain, and (e) wa-
terfall. (f) frames from a fire sequence with poor spatial regularity and non-
Gaussian statistics. The frames synthesized by our technique correspond to
a spatially “homogenized” version of the original sequence. All the data are
available on-line at http://www.cs.ucla.edu/∼doretto/projects/homogeneous-
dynamic-textures.html.

http://www.cs.ucla.edu/~doretto/projects/homogeneous-dynamic-textures.html�
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