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A Numerical Study of Kelvin-Helmholtz Instability 

by the Point Vortex Method 

Robert Krasny 

Abstract 
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Rosenhead's classical point vortex numerical method for studying the 

evolution of a vortex sheet from analytic initial data (Kelvin-Helmholtz insta­

bility) is examined using the discrete Fourier analysis techniques of Sulem, 

Sulem & Frisch. One cause for the "chaotic" motion previously observed in 

computations using a large number of vortices is that short wavelength per­

turbations are introduced spuriously by finite precision arithmetic and 

become amplified by the model's dynamics. Methods for controlling this 

source of error are given and the results confirm the formation of a singu­

larity in a finite time which was previously found by Moore and Meiron, Baker 

& Orszag using different techniques of analysis. A cusp forms in the vortex 

sheet strength at the critical time, explaining the onset of erratic particle 

motion in applications of the numerical methods of Van de Vooren and Fink 

& Soh to this problem. Unlike those methods, the point vortex approxima­

tion remains consistent at the critical time and we present the results of a 

long time calculation. The singularity is interpreted physically as a discon­

tinuity in the strain rate along the vortex sheet and also as the start of roll 

up ona small scale. We numerically study some aspects of the dependence 

of the solution on the initial condition and find agreement with Moore's 

asymptotic relation between the initial amplitude and the critical time. For 

large initial amplitudes, two cusps form in the sheet strength, correspond­

iI1lg to double roll up. We explain why the Poincare recurrence theorem does 

n(J)t imply that the sheet will eventually unroll. Our results suggest that 
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beyond the critical time, the vortex sheet becomes a spiral with infinite 

arclength although we have doubts about the approximation's accuracy in 

that regime. 
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O. Introduction 

In this paper we study the vortex sheet model 'for the instability of a 

parallel shear flow. We consider the nonlinear temporal instability to ana-

·lytic perturbations of the following weak solution; with shear. of the Euler 

equations: 

l-U 
u{x.y) = U 

ify>O. 
v{x.y) = O. (0.1) 

ify<O. 

where (u.v) are the Cartesian components of the velocity and U is a positive 

constant. The effects of density stratification. compressibility. body forces. 

surface tension. viscosity. boundaries and three dimensionality will be 

ignored. 

The interface separating the two fluid regions is a vortex sheet and the 

classical point of view (Prandtl & Tietjens 1934). based on experimental 

observation. was that a sinusoidally perturbed sheet rolls up smoothly into 

local concentrations of vorticity as in figure 0.1 . A vortex sheet can be 

described by a curve in the complex plane: 

z{r.t) =X(r.t) +iY(r.t), 

where t.is time and r is.a Lagrangian parameter which measures the circula­

tion between a base point r = 0 and an arbitrary point along the sheet (Bir­

khoff 1962). The vortex sheet strength a( r. t ) is the tangential jump in velo-

city across the sheet and is determined up to sign by: 

a( r f t ) = I Zr I -1 
. (JZ 

Zr= -ar 

Consider a vortex sheet for which Z (r • t) - r / 2U is periodiC in r with 

period 2UA. It follows that Z(r+2UA,t) =Z(r.t) +A so that A is the 

wavelength in the x direction. Define dimensionless variables (primed) by: 
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r = 2U>..r' t = 2Ut' / >.. z = >..Z' . 

The initial value problem for the vortex sheet in nondimensional form (drop-

ping the primes) is: 

az 1 It '" . '" 
Ft-<r,t) = 2i Jocot1T( Z{r.t} - Z(r,t}} dr, (0.2a) 

z{r.a) = r + p(r.a). (0.2b) 

The bar on the left side of (0.2a) denotes complex conjugate and the slash on 

the integral sign denotes a Cauchy principal value. 

Equation (0.2a) • the kinematical condition that the vortex sheet be a 

free surface. is a special case of the Biot-Savart law relating vorticity aml 

velocity in incompressible fiow. The dynamical requirement that circulation 

around material curves be preserved is implicitly contained in the under-

standing that r is a Lagrangian variable. The vortex sheet may be written as 

the sum: 

z (r . t ) = r + P{ r. t ) . 

where P{ r. t ) is a periodic perturbation of the fiat. constant strength vor­

tex sheet corresponding to the equilibrium flow (0.1). For each wavenumber 

k; the linearized problem admits two solutions having exponential growth 

and decay rates kU. the well known linear Kelvin-Helmholtz instability 

(Batchelor 1968). These linear modes are given nondimensionally by : 

Z( r. t ) = r + a e 2"'& (1 - i ) sin 21Tr . (0.3a) 

z ( r. t ) = r + a e -2m (1 + i ) sin 21Tr . (0.3b) 

and are displayed in figure 0.2 . In this paper, the initial perturbation 

P( r, 0) will be a linear combination of at most two such linear theory modes 

of small amplitude. In particular. the initial perturbations will be analytic 

functions, a crucial assumption for the viability of the vortex sheet model. 

~ .. 
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Birkhoff {1962} conjectured that a solution of equations {0.2} which is 

initially analytic remains so for at least a finite time. A proof of this conjec­

ture has recently been advanced by Sulem, Sulem, Bardos & Frisch {1981}. 

Noting that linear theory predicts faster growth rates for shorter wavelength 

perturbations and assuming that nonlinear interactions will perturb all 

wavelengths, one may suspect that a singularity forms in a finite time even 

for analytic initial data. Indeed. Birkhoff conjectured that this would Occur 

in the absence of surface tension and viscosity .. Moore {1979} performed an 

asymptotic analysis whicn suggested that a curvature singularity does form 

a~ a critical time which depends upon the initial perturbation amplitude. 

Using Taylor series in time Meiron. Baker & Orszag (1982) have obtain~d 

numerical results in, agreement with Moore's asymptotics. They found that 

at the critical time the vortex sheet strength has a cusp although the inter­

face is only slightly distorted and possesses none of the features associated 

,with roll up {as previously noted by Moore}. Both Moore and Meiron. Baker & 

Orszag viewed the formation of this singularity as a possible restriction on 

the validity of the vortex sheet model., 

With these recent papers there is eII;lerging a consistent picture of the 

nonlinear Kelvin-Helmholtz instability. This contrasts with the confusion 

aroused by the failure of standard numerical methods to solve equations 

reliably (0.2). We will now briefly survey the large literature on these 

methods; see also Pullin (1982). Moore (1981) and SafIman & Baker (1979). 

The classical approach to the numerical solution of (0.2). introduced by 

Rosenhead (1931). is to replace the curve Z{I\ t ) at a fixed time by a finite 

number of particles corresponding to a uniform r-mesh. Thus 

(Z;{t); j = 1. " , . N ~ approximates !Z( r; • t ) ; j = 1. ' , , . N ~ where 

r; = (j -l)~r. N ~r = 1 and N is the number of particles per wavelength. The 

integral on the right side of (0.2a) is approximated by trapezoidal quadra-
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ture and the infinite contribution due to the integrand's singularity is 

ignored. This gives a system of ordinary differential equations for the parti-

cle paths: 

(OAa) 

Zj(O) = rj + P( r j, 0) . (OAb) 

Equation (0.4a) also describes the evolution of N periodic rows of equal 

strength point vortices. In this interpretation the omission k "F-j 

corresponds to the fact that a point vortex (and more generally a periodic 

row of point vortices) has zero self induced velocity. The dynamical require-

rnent that the strength of each point vortex does not change in time il:! impli­

cit. A related fact, implicit in the discretization of Z ( r, t ), is that the point 

vortices are·· ordered by continuity in r. This ordering doesn't change in 

time and allows the points to be connected by a curve which approximates 

the exact interface. 

We remark that a discrete system of equal strength point vortices, 

equally spaced on a straight line, is linearly unstable in a fashion which 

closely mimics the linear Kelvin-Helmholtz instability of a continuous vortex 

sheet (Lamb 1932). The fastest growing mode of this discrete linear instabil-

ity is an interaction between pairs of adjacent vortices. 

For future reference, we record that the point vortex equations (004) 

form a finite dimensional Hamiltonian system with Hamiltonian: 

-1 N Ii. . .. 
HN(t) = ~~ ~ In I sinrr(Z,,(t) -Zk(t» I . 

2rrlV- j=U:=l 
k"'i 

(0.5) 

The continuous system (0.2) has an analogous conserved quantity (Van de 

Vooren 1965, pub. 1980): 
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Rosenhead integrated the real and imaginary parts of (0.4) by Euler's 

method. The initial condition was a transverse sinusoidal perturbation of 

the flat constant strength vortex sheet. A copy of these calculations, per­

formed on desk machines with N = 12, is shown in figure 0.3. The interpolat­

ing curve that was drawn through the point vortices indicates a: smooth roll 

up. 

These calculations were accepted as support for Prandtl's conception of 

Kelvin-Helmholtz instability until challenged by Birkhoff (1962). He viewed 

. Rosenhead's work as inconclusive since convergence of the method had not 

been demonstrated. Birkhoff also gave the folloWing reasons for doubting 

the validity of PrandU' s speculations: 

(1) the greater instability of perturbations of short'wavelength, 

(2) the reversibility and {presumed} asymptotic tendency towards random-

ness of conserVative dynamical systems. 

These .doubts were reinforced by computer calculations (Birkhoff & Fisher 

(1959» using N=20 and fourth order Runge-Kulla time integration. Some of 

these results are reproduced in figure 0.4. In all c.ases the evolution eventu­

ally exhibited irregular and apparently random motion of the point vortices. 

Birkhoff discounted the effect of truncation and roundoff errors and con­

cluded that the smooth roll up observed physically depends on the influence 

of viscosity. 

Since then, Rosenhead's method has fallen into disrepute. Investigators 

have focussed C?n repairing the presumed defect in the point vortex approxi­

mation, namely the fact that close to a point vortex the induced singular 

velocity field poorly approximates the tangential velocity jump of ~ vortex 

sheet. Two general approaches to this issue have emerged: 
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(1) an analytic approach which seeks to account for the velocity contribu­

tion of the portion of the sheet neglected in (O.4a). 

(2) a vortex blob approach in which the singular velocity field is smoothed 

by convolution with a cutoff function. 

In the analytic approach. advanced by Van de Vooren (1965. pub. 1980). 

the Cauchy principal value integral in (0.2a) is replaced by an equivalent 

integral whose integrand has a removable singularity. The trapezoidal rule 

is then applied yielding a system of equations which differs from (0.4a) only 

in the addition of a correction term to the right side: 

dZ; __ 1_ N . _ _1 _[ Zrr 1 
dt - 2iN k'f1 cot 1f(Z, Zk) + 41fiN zF j' 

kfl'; 

(0.7) 

where the last term is evaluated at rj (Moore 1981). Van de Vooren used a 

numerical differentiation rule exact for eighth degree polynomials to 

approximate these derivatives. Calculations using N = 40. 80 led to irregu­

larities sooner in some cases than with the uncorrected equation (O.4a). Van 

de Vooren attributed this to instability and roundoff error although no evi-

dence was presented to support such claims. A pseudo spectral method for 

calculating Zr and Zrr. proposed by Conte & Sherman (1979). also led to 

irregularities. 

Other work in this vein was done by Fink & Soh (1978). Baker (1979). 

Pullin (1982). and Bromilow & Clements (1983) among others. One trend has 

been to include physical effects which stabilize aspects of the linear problem 

(e.g. stable density stratification and surface tension (Chandresekhar 

1965». Different numerical techniques have been tried (predictor-corrector 

ODE solvers. numerical differentiation of interpolating splines. resetting the 

particles at each time step to be equidistant in chordlength. ad-hoc numeri­

cal smoothing). While acheiving success in a variety of fiow situations these 
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methods have all run agroun.d on Kelvin-Helmholtz instability. For the 

related prclblem of Rayleigh-Taylor im;tability, it has been noted that using 

large numbers of computational elements causes the computation's reliabil­

ity to deteriorate (Baker, Meiron & Orszag 1980). 

Moore (1981) has shown that, for point vortex approximation of a circu­

lar vortex sheet of constant strength, chaotic motion is caused by growth of 

numerical errors due to linear Kelvin-Helmholtz instability. He demon­

st~ated that the onset of this chaotic motion could be delayed by the linear 

smoothing formUla of Longuet-Higgins & Cokelet (i976) and by the reposi­

tioning technique of Fink & Soh (1978). Moore also advocated abandoning 

the vortex sheet m6delln favor of a vortex layer of finite thickness for which 

short wavelength perturbations are linearly stable. 

Chorin & Bernard (1973) introduced the vortex blob method to study 

the vortex sheet shed by an elliptically load~d wing. La:terwork using vortex 

blobS has eotlcentraled on boundary layers and smooth vorticity distribu­

tions with little direct relation to the instability of a free vortex sheet (Cho­

rin (1978), Hald (1979), Beale & Majda (1982». Acton (1976), Ashurst (1979) 

and Nakamurma, Leonard & Spalart (1982) have used the blob method to 

study vortex layers of finite thickness and Anderson(1983) has extended t~e 

blob method to treat the roll up of an interface separating fluids of different 

densities. To my knowledge, no vortex blob calculations for a periodically 

perturbed vortex sheet have been published. 

The aim of this paper is to resolve some of the issues surrounding ~revi­

ous numerical studies of Kelvin-Helmholtz instability with analytic initial 

perturbations. We will use discrete Fourier analysis to examine results com­

puted by Rosenhead'spoint vortex approximation. Our numerical experi­

mentsshow that the irregular vortex motion previously observed has several 

distinct causes: 
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(1) amplification, due to linear Kelvin .. Belmholtz instability, of shortwave 

perturbations introduced by roundoff error, 

(2) improper balance between time and spatial truncation errors, 

(3) loss of analyticity in finite time which causes the correction term in 

(0.7) to become undefined, 

(4) misinterpretation of numerical results for certain initial conditions. 

The first phenomenon is an effect of the computer's finite precision 

arithmetic and may be abated by methods discussed in section 1. High 

resolution results (N=100) far into the nonlinear regime are presented 

which show a smooth roll up similar to PrandU's picture. Point (2) is related 

to the often overlooked finding of Chorin & Bernard (1973) that for a: certain 

choice of time step, point vortices and vortex blobs gave similar results. We 

present results using Euler's method with several different ratios of'" = ~~ 

which show irregularities for small'" although a complete understanding of 

this issue is lacking. 

The third phenomenon is precisely the singularity formation discovered 

by Moore (1979) and Meiron, Baker & Orszag (1982). In section 2 Rosenhead's 

method is used to confirm some of their results. For the choice I:!.t == ~ 

using Euler's method, we demonstrate convergence of the point vortex 

approximation at the critical time. A physical interpretation of the singular­

ity formation, in terms of the strain rate along the sheet, is given in section 

3 along with a description of the velocity field. Section 4 presents results 

showing an unexpected double roll up for certain initial conditions. We 

study the effect of changing the initial amplitude and present point vortex 

results in agreement with Moore's asymptotic relation for the critical time .. 

Various issues are discussed in section 5. We assert, in contrast to the pre­

vious investigators' conclusion, that the formation of the singularity does 
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not necessarily invalidate the vortex sheet ,model. However, it does raise 

theoretical questions about the validity, possibly in a weak sense, of a nona­

nalytic vortex sheet. It 'also explains the failure of those numerical methods 

for the present problem which were based on the sheet's presumed analyti-

city. 

: . . 

Our work explains some of the previous negative numerical results for 

Kelvin-Helmholtz instability ~th analytic initial da.ta and restores credibility 

"to the poi~t vortex approximation. This should not be taken as' an endorse-
" " 

ment of point vortices either for other vortex sheets or for more general 

problems of vortex dynamics. 



10 

1. The Role of Roundoff Error 

k3 explained in the Introduction. the point vortex positions 

~ Zj (t ) , j = 1. . . . ,N J may be viewed as approximately interpolating the exact 

vortex sheet z(r, t) at points The perturbation, 

P( r , t ) = Z (r , t ) - r, is periodic in r with period 1 and it is therefore 

natural to consider PN ( r, t), the trigonometric polynomial of degree N-1 

which interpolates ~Pj(t}=Zj(t}-ri~ at r = rj for j=l, ... ,N. A discrete 

Fourier transform is required in general to obtain the coefficients, P;(k ,t }. 

of PN(r,t}: 

PN(k, t) = f Pj (t)e 21rikrj 

j =1 

N N 
k =-2"" ., 2""-1. 

However, in our problem, the fast Fourier transform (FFT) (IMSL 1982) can 

be used since the ~rj~ are equally spaced on [0,1]' We expect that PN(r,t), 

given explicitly by: 

approximates the exact perturbation for all values o~r~ 1. Similar formu-

lae are available when N is an odd integer. The vortices will be connected by 

plotting the interpolating curve PN (r , t ) + r as a function of r. 

A solution to the point vortex equations (0.4) with N=100 was obtained 

by Euler's method using 6t=0·01. The initial condition was .a discretized 

linear theory growing mode of amplitude a =0'01 and wavelength 1 (see 

(O.3a» 

z(rj ,0) = rj + a ( 1-i ) sin21l'rj rj = (j -' 1 )/ N . (1.1) 

This computation was performed in double precision on a VAX 11/780 com-

puter giving 14 digits of precision. 

.. 
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The right side of figure 1.1 shows the vortex positions at successive 

times and the left side shows the corresponding interpolating curves. The 

vortices tend to form pairs and larger clusters which exhibit irregular small 

scale motion similar to that seen by many numerical investigations of 

Kelvin-Helmholtz instability after Rosenhead's. The resulting vortex sheet 

quickly tangles and the computation's reliability dc;3teriorates. 

Figure 1.2 displays linear-log plots of the computed Fourier coefficients' 

amplitudes I P N{ k , t ) I. as a function of wavenumber k, for O~ t ~ 0-5 in 

steps of 0·05 and at t = 1. All of the initial conditions considered in this 

paper will satisfy p(-r, 0) = -P{ r, 0). a property that is preserved under 

evolution arid discretization. This implies that P N( -k , t ) = -P N( k , t ) and 

therefore only Fourier coefficient amplitudes for O~k ~kmax' kmax = ~ -1 

appear in our spectral plots. The perturbation in initial condition (1.1) has, 

for O~k ~kmBX' only one nonzero discrete Fourier coefficient, 

P H( k = 1, t = 0) = a ( 1 -i). Figure 1.2 shows the computed initial spec­

trum which contains the spike at Ie = 1 and small amplitude numerical noise 

(RllO-H1) in all the higher modes. This is not surprising and is due to 

roundoff error in setting up the initial condition and in the FFr. A horizontal 

line drawn at amplitude In 10-13 Rl -30 bounds the noise level of the compu­

tation. 

As time progresses, the spike spreads out in frequency space and the 

higher modes grow in amplitude. For t ~ 0-1. the logarithmic amplitudes 

decrease linearly with increasing wavenumber until they fall below and 

remain bounded by the noise level out to k max. This accords with the com­

mon notion of nonlinear excitation of frequencies. 

By t =0,15 something unexpected has happened. The previous 

behaviour is repeated for k < 25 while a wiggly tail of amplitudes has 



12 

emerged just above the noise level for 25 < k < k max' The highest 

wavenumber modes grow fastest out of the noise, recalling the dispersion 

relation of linear Kelvin-Helmholtz instability. For 0'2~ t ~0'45 the spec­

trum has a low wavenumber band with monotone decreasing amplitudes and 

a high wavenumber band with roughly .. increasing amplitudes. This 

behaviour in the spectrum's tail indicates a nonanalytic solution. It appears 

that before the highest modes are amplified by nonlinearity, they are sub­

ject to linear Kelvin-Helmholtz instability. The roundoff error supplies a per­

turbation to all modes which conspires with linear instability to amplify the 

high wavenumber modes above the noise level. For O' 2 ~ t ~ O' 45 these 

modes grow in time at a uniform rate, presumably due to finite amplitude 

effects, leading to the irregular vortex motion of figure 1.1 . 

To understand what would happen if kmax were smaller, i.e. using fewer 

point vortices, draw a vertical line in figure 1.2 and ignore everything to its 

right. If the line is drawn to the left of k = 25, the premature growth of high 

wavenumoer modes does not occur. This is because nonlinearity reaches 

this lower kmax before linear instability can amplify PN(kmax,t) above the 

noise level. We have observed this in computations using kmax = 20 which 

produce a smooth roll up similar to Rosenhead's. If kmax is increased, linear 

instability acts on higher wavenumber modes causing them to grow more 

rapidly. Thus the increasingly "chaotic" small scale behavior previously 

observed as more vortices were used is a numerical phenomenon which ori­

ginates in finite precision arithmetic. 

This assertion is consistent with Moore's (19B1) finding for the circular 

vortex sheet. Instead of seeking ways to dampen the short wave instability, 

as he did, we prefer to focus attention on reducing the amplitude of the 

numerical noise. We believe that for arbitary values of N and any consistent 

time integration scheme, approximate solutions to the point vortex equa-
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lions (0.4) with initial condition (1.1), will not exhibit this "chaotic" motion if 

the arithmetic is sufficiently precise. 

One way to test this conjecture is to compute with more digits of accu­

racy. Before presenting these results, an alternative procedure for control­

ling the spurious perturbing of the higher modes will be described. 

From the noise level of the computed initial condition seen in figure 1. 2, 

it is clear that the computation cannot distinguish between a mode of zero 

amplitude and one of amplitude roughly 10-1::1. Therefore at the end of every 

time step we reset to zero any Fourier coefficient whose amplitude is less 

than 10-13, The vortex positions are then correspondingly adjusted by an 

i~verse FFT and the calculation proceeds to the next time step. In order for 

a mode· to grow, its amplithde'must therefore jump above the noise level in a 

single time step. 

Figure 1.3 shows the result of implementing this chopping procedure in 

a computation which is otherwise identical to that which produced figures· 

1.1 and 1.2. For O' 5 ~ t ~ l' 5, the vortex sheet rolls up smoothly into a 

spiral. Past t = 1· 5, two types of irregularity appear in figure 1.3 : 

{1} Small scale vortex pairing occurs on the almost fiat portion of the sheet 

between adjacent vortex cores, the "braid" region. This version of 

linear Kelvin-Helmholtz instability is inhibited by the strain field 

induced by the neighboring cores and thus occurs on a slow time scale. 

This irregularity also originates in perturbations introduced by roundoff 

error as will be demonstrated shortly. The chopping procedure cannot 

be applied because by this time (t~1.5), the spectral amplitudes have 

grown above the noise level. It is not clear how to filter numerical noise 

from these nonzero Fourier coefficients without making ad-hoc assump­

tions. The strain field and its suggestion of finite amplitude stability will 

be discussed in greater detail in section 3. 
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(2) The spacing between adjacent turns in the spiral becomes smaller than 

the spacing between consecutive vortices. Thus vortices on different 

spiral turns which happen to lie close to one another capture each 

other and rotate in pairs. The resulting distortion and tangling of the 

inner turns of the spir~l are due to the truncation errors of the r and t 

discretizations and not to the roundoff amplification of point (1) above. 

The smooth portions of the outer turns are presumably still an accurate 

representation of the exact solution. The tangling slowly spreads to 

include more spiral turns. 

Figures 1.4a,b display linear-log and log-log plots of the spectral ampli­

tudes corresponding to figure 1.3. The chopping procedure has eliminated 

the amplification of numerical noise seen in figure 1.1 while allowing the 

higher modes to grow in an orderly manner. For t ~0'5, the computed spec­

trum decays monotonically. In section 2 this decay is analyzed and conclu­

sions are drawn concerning the analytic structure of the vortex sheet. We 

point out that the chopping procedure operates only during the time inter­

val [0,0'38], the time taken for nonlinearity to amplify P N(k mu , t) above 

the noise level, beyond which the program reverts to the standard point vor­

tex method. 

In order to further test our ideas about the role of roundoff error, pro­

gram was run, with the chopping procedure turned off, in double precision 

on a CDC 7600 giving 29' digits of precision. Figure 1.5 shows the resulting 

vortex sheet. The corresponding spectrum is virtually indistinguishable 

from figures 1.4a, b and so is not shown. Now the braid region remains 

smooth even for long times. In this run, linear instability acts upon modal 

perturbations of smaller amplitude than in the 14 digit .calculation. Spuri­

ous growth of higher modes occurs here too, but starting from a lower noise 

level, it never affects the solution plotted in figure 1.5. Calculation with 
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high enough values of N does produce irregular vortex motion even for 29 

digits of precision. The core regions of figure 1.5 are identical to those of 

figure 1.3, supporting the claim that the. tangling there is· not due to 

roundoff amplification. 

A plot of vortex trajectories is given in figure 1.6. The vortex sheet is 

plotted at t =0'46, just when roll up begins. According to linear theory for a 

single mode solution, material points move on straight lines inclined 45° to 

the horizontal axis (see (0.3», as observed in this plot for short time, 

t <0·46. For longer times, vortices near the sheet's center (f=0'5) move 

in spiral orbits while vortex trajectories near f = 0, 1. are still fairly straight. 

Evidently, the linear theory breaks doWl:1. nonuniformly in f-t space. 

The existence of certain invariants offers a check on aspects of the 

computation's accuracy. F.or a periodic array of point vortices (0.4a) the 

mean vortex position, : 

and the Hamiltonian (0.5) are constant and serve as a check on the ODE 

solver. The computed mean position was preserved to high accuracy. A plot 

of the computed Hamiltonian is given in figure 1.7. The mean relative varia-

. H (4) -H (0) 
t " "H· (t) t" t·· I 100 . 100 I ...... 0 005 bl lOn 10 100 per lIDe s ep was· H () At "'. , a reasona e 

100 0 ·4/ Ll 

accuracy for first order time integration with M =0,01. 

An effort was made to assess the importance of a more familiar 

roundoff effect, namely loss of significant digits due to cancellation. In the 

interaction veloCity calculation of equation (O.4a) , expressed in real and 

imaginary parts, the denominator 

was replaced by the equivalent 
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2(sinh2(1T(Yj-l'k» + sin2(1T(Xj-X.lJ» , where Zj = Xj + iYj , 

as suggested by Van de Vooren (1965, pub. 19BO). We also tried various 

implementations of the Biot-Savart summation in (O.4a) including Kahan's 

algorithm (Dahlquist 1975) for controlling loss of significance, and sym­

metric summation. In the latter, interaction velocities with indices k = j ± l 

are summed in pairs and the resulting terms are summed in increasing 

magnitude. None of these devices had any significant effect on the com­

puted results. 

Since the erratic small scale motion previously observed in computa­

tions with a large number of point vortices for this problem can be con­

trolled, it becomes reasonable to inquire into the convergence properties of 

the approximation. Figures 1. Ba, b show the evolution for N = 20 using 

Euler's method with At between 0'1 and 0·005 and then using 4th order 

Runge-Kutta with At = 0·05. As the truncation error due to the time integra­

tion becomes smaller, the approximate votex sheets. converge to a curve 

with a tangled core. We observed this for several different values of Nand 

conclude that it is a property of exact solutions of the point vortex equa­

tions (0.4). 

Such tangling is not expected for solutions of the continuous equations 

(0.2). In fact, the invariance of the continuous system's Hamiltonian, (0.6) 

implies that a continuous vortex sheet cannot cross itself unless the vortex 

sheet strength is also zero at the point of intersection. The invariance of the 

discrete system's Hamiltonian, (0.5) only precludes the arbitrarily close 

approach of point vortices and imposes no obvious constraint on the approx­

imate vortex sheet constructed from those vortices. 

These remarks suggest that the exact evolution of a finite number of 

point vortices is not a particularly accurate approximation to the vortex 

sheet evolution under consideration. If this is true then the common 
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practice of previous investigators in solving the point vortex equations (0.4) 

very accurately has been self-defeating. It may be that the approximate 

evolution of a finite number of point vortices gives a better approximation to 

the continuous vOrtex sheet. Some of our calcUlations using EUler's method 

and large 1st give plausible approximations to the physically observed 

. smooth roll up. The smoothing effect of large time steps was noted by Cho-

rin & Bernard (1973) in the context of a different vortex sheet. 
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2. The Formation of a Singularity 

The point vortex method is used in this section to study the formation 

of a singularity in the vortex sheet. Sulem, Sulem &Frisch (1983) (referred 

to later as SSF) showed that pseudospectral numerical methods can detect 

the analytic structure of periodic solutions of nonlinear evolution equations 

up to the time a singularity occurs. This approach will be explained and 

then app~ied tothe point vortex results. 

Consider an evolution equation for. which real analytic initial data is 

given. A basic mathematical issue is whether or not "breakdown", i.e. loss of 

analyticity, occurs in atinite. time. A simple example of. breakdown is the 

development of shocks for the inviscid Burgers equation with periodic ana­

lytic initial data. The analytic continuation into the complex plane of the 

real analytic solution will generally have complex singularities. As the solu­

tion evolves, each singularity traces a curve in the complex plane. One view 

of breakdown is that such a curve intersects the real aXis in a finite time. To 

detect this, SSF exploited the relation between the analytic properties of a 

function and the high frequency asymptotic behaviour of its Fourier 

transform (Carrier, Krook & Pearson 1966). 

Suppose that for r in a complex neighborhood of fe(t) + io(t), the func­

tion p(r, t ) has the behaviour : 

p(r.t) .... (r - (fe(t) + io(t» )JI.(t). (2.1) 

where fo is real, 0>0 and j.L>-1. If this branch point is' the closest singular­

ity to' the real axis in the upper half plane. then the Fourier coeff"icients of P 

decay asymptotically for k "'''''. 

(2.2) 

The exponential decrement o(t) is the width of the analyticity strip in the 
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upper half plane and J..L( t) is the. order of the branch ·point. 

Pseudospectral . solution of the evolution equation yields approximate 

values of P{k ,t) at each time' step. Sulem, Sulem & Frisch proposed 

estiinating J..L{t} and c5{t) by lea~t squar~s fitting or'the model {2.2} to the 

approximate spectrum computed in this way. A narrow band of 
. . , 

wavenumbers adjacent to kmax was excluded from the fit since these were 

thought to be inaccurate due to series truncation effects. Fourier 

coefficients whose amplitudes are in the noise level are not described by 

{2.2} and were also excluded. Numerical evidence for global time analyticity 

is obtained if the fitted c5(t} remains positive. Alternatively, breakdown may 

be deducedifc5(t) equals zero within. the computation's resolution at a finite 

time te . . At the critical time te, the spectrum decays algebraically and the 

fitted J..Lc = J..L(tc} tells how many derivatives the solution retains. For exam­

ple, if 1 <J..Lc < 2 then P( r, tc } .has a continuous first derivative but its second 

derivative is undefined at ro(te ). 

Sulem, Sulem & Frisch pointed out that these estimates of the critical 

values, te and J..Le, depend on the range of computed Fourier coefficients 

inoluded in the least squares fit. For the shock solution of Burgers equation 

which they studied, exponential decay e -k6(t) persists up to te in the high 

- (}.I.(t ) + 1) . 
wavenumbers while power law decay k a at te dOIDlnates the low 

wavenumbers. These autq.ors therefore use a high wavenumber band to esti-

mate te and a low waveJ:lumber band for J..Lc and obtain agreement with the 

known critical.values. The uncertainty in the method's estimates of critical 

values has not been rigorously analyzed and caution seems advised when 

interpreting the results for solutions of equations whose analytic structure 

is sought. This issue is discussed by Brachet, et. al. (1983) who applied the 

method to the Taylor-Green flow. 
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For the reasons outlined in the Introduction, it was commonly believed 

that Rosenhead's method was incapable of capturing the analytic properties 

of Kelvin-Helmholtz instability. Moore (1979) and Meiron, Baker & Orszag 

(1982) (referred to later as MBO) therefore employed asymptotic, analytic 

and alternative numerical techniques to compute Fourier coefficients for 

the vortex sheet from which conclusions were made using the model (2.2). 

For initial condition, Moore. used a transverse sinusoidal perturbation and 

MBa used a fiat vortex sheet with sinusoidally perturbed strength. 

, 

In spite of differences in initial conditions and methodology, both inves-

tigations revealed essentially the same phenomena; 

(1) A singularity forms in a finite time which depends upon the initial 

amplitude. An explicit asymptotic relation for this dependence was 

given, valid for small amplitudes. 

(2) The algebraic decay rate at the critical time is IJ.c; = 1·5 (Moore), 

IJ.c; = 1· 7 ± O· 2 (MBa). This implies that the sheet's curvature becomes 

undefined at some point. The sheet however retains a Holder continuous 

tangent vector at all points. 

(3) When the singularity forms, the vortex sheet strength has a cusp 

although the sheet shows no sign of roll up. 

These phenomena (except for the last part of (3» will now be confirmed 

by using the point vortex method, with roundoff perturbation controlled, to 

calculate approximate values of P(k,t), as explained ~ section 1. and then 

estimating the critical values as described abo~e. Concerning (3), it will be 

shown that the singularity time marks the beginning of a small scale roll up 

that could not have been noticed by the methods of Moore and MBa. 

Recall that the initial condition used in our work is a discretized grow­

ing mode of linear theory (1.1). The almost straight lines in figure (1.4a) for 
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short times, t <0-45. and high wavenumbers. k> 15, indicate that the com-

puted spectrum decays exponentially as a function of k. As t increases 

frotnO to Q-45.algebraic decay appears in the lower wavenumbers and gra­

dually spreads' to cover a wider band of frequencies (note the almost 

straight lines in figure 1.4b).This behaviour is consistent with the 

hypothesis that a complex singularity of P{ r. t) is approaching the real 

axis. We have implemented the least squares fit by transforming (2.2) to: 

Inlfi(k.t)1 "'-{JL{t)+l)lnk -o(t)k + C. (2.3) 

which is linear in Ink and k. In the following, a superscript N (e.g. tf), will 

denote a calculated value based on N point vortices per wavelength using 

Euler's method with a time step of At = ~. A symbol with superscript 00 

(e.g. J..Lc"') will denote a value extrapolated to N -')00. 

Plotted in figures 2.1a,b are the computed OlOO(t) and JL100{t) using 

model (2.3) fitted to several high wavenumber ranges. The width of the dou­

ble line in figure (2.1a) is the smallest resolvable wavelength for this compu-

tation, k 2rr . The computed Ol00(t) approaches zero linearly and the criti-
max 

cal time, taken as the first time step for which OlOO(t) < k2rr 
• is estimated 

max 

as tl}OO = 0-46. The accuracy of this value could be improved slightly by 

using linear approximation to determine when OlOO(t) = k 2rr . This situation 
max 

contrasts with that for the inviscid Taylor-Green vortex (Brachet, et.al. 

1983) in which the exponential decrement approaches zero exponentially 

making determination of tc a more delicate matter. Changing the band of 

fitted wavenumbers had only a small effect on OlOO(t) as long as a band of 

high wavenumbers was included. 

Relying on the findings of SSF. to study the low wavenumber power law 

we will exclude the exponentially decaying high wavenumbers from the fit. 
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Plotted in figures 2.2a.b are t5 1OO(t) and /-L1OO(t) using model (2.3) fitted to 

several low wavenumber ranges including l~k ~ 15. the range used by MBO 

in obtaining result (2) above. A value of J.Li0o = 1·11 based on this range is 

observed. The estimated value of /-Lr; depends on the range of low 

wavenumbers used in the fit and we cannot ascribe special significance to 

any of the particular values in figure 2.2b . We believe however that 

1 </-Lr; < 2 and find support for this in the plots of vortex sheet. strength to be 

presented below. 

Since the computed critical time and algebraic decay rate depend on 

N. the calculation was repeated for eight values of N between 50 and 400. 

Table 2.1 records these results and figures 2.3a.b plot the computed tf and 

/-Lf as functions of ~ . The curve drawn in these figures is a least squares fit 

of the eight data points to a quadratic model. The good fit obtained isevi-

dence for the e)ristence of constants. tt and /-L:. to which tf and /-Lf con-

verge asymptotically. 

for N ~oo when I:lt = L 
N' 

and similarly for /-Lf. The constants c 1.c2 •... depend on the initial condition 

but are independent of N. Extrapolated values obtained from these curves 

are tc'"' = 0'38 and J.Lc'"' = 1·9. 

This critical time is less than that. 0·68 in our units. predicted by 

Moore's asymptotic relation. This is due to the difference in initial condi-

tions whose effect upon the evolution will be discussed in section 4. The 

algebraic decay rate obtained here supports the conclusion in (2) concern-

ing the regularity of the sheet at the critical time. The theoretical and 

numerical significance of this aspect of the singularity will be discussed in 

section 5. 
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Figure 2.4 shows the numerical solution using N = 250. ~= 0·004 at suc­

cessive times in a neighborhood of the critical time. tc250 = 0·416. A closeup 

view of the core is plotted together with the vortex sheet strength as a func­

tion of r. computed by pseudospectral differentiation. The critical time 

coincides with the formation of a cusp in the vortex sheet strength as 

observed by the previous investigators (point (3) above). Contary to their 

findings. we observe that roll up on a very small scale also begins at the crit­

ical time. Because the vortex sheet remains continuously differentiable at 

tc. the ensuing roll up appears "smooth". 

Figure 2.5 displays the vortex sheet strength as the cusp developes. In 

the core (f R1 0'5) the strength incre~ses mo~otonically as t ... tc
250 from 

below. Most of the growth in the cusp's amplitude takes place very close to 

the critical time. 
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3. Some Physical Properties of Roll Up 

This section uses the computational results of section 1 to display vari-

ous physical properties of the vortex sheet evolution including the strain 

rate along the sheet, growth of the sheet's arclength, streamlines of the 

induced velocity field and the maximum sheet displacement. Strain rate 

and arclength have been identified as important parameters in combustion 

problems (Ghoniem, Chorln & Oppenheim (1982» . 

Corcos & Sherman (1983) have studied the tangential strain felt by a 

passive material curve in a viscous shear layer. The scalar strain rate '"/ was 

defined to be the proportional rate of extension along the curve: 

_. 1 ~_ aUs 
'"/- MTodf at - as' (3.1) 

where d1 is a Lagrangian curve element, Us is the curve's tangential velocity 

and a/ os means differentiation with respect to arclength. Positive values of 

'"/ imply local stretching of the material curve and 'negative values imply 

local compression. These authors presented a contour plot of '"/ as a func-

tion of time and of a Lagrangian curve parameter. The success of this 

approach in yielding a deeper understanding of shear layer dynamics has 

motivated the present study of the strain rate along the vortex sheet. 

The viscous shear layer studied by Corcos and Sherman had, at t = 0, a 

continuous vorticity distribution. The vortex sheet model can be heuristi-

cally viewed as the limit in both vanishing viscosity and initial layer thick-

ness. Comparison of the strain rates in the two studies offers some insight 

into the nature of this dual limit. 

For the vortex sheet, '"/ can be expressed as : 

'"/( r . t ) = Re{ a ( a Zr Zt )r ), Re == real part. (3.2) 

This follows from (3.1) since the real and imaginary parts of aZr form a unit 
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vector tangent to the Vortex sheet and 818s = u81 ar; Pseudospectral 

approximation· of "r by . this expression·· should be very·· accurate . up· to the 

critical time. Alternatively; one may approximate expression (3.1) by: 

(3.3) 

where Zj is the position of the jth point' vortex at time nllt. Figure 3.1a 

shows a contour plot of -y( r , t } over the half period 0 sPs 0·5 up to t = 1 and 

figure 3.1bis a closeup plot for 0'4srs 0·5 and 0:4s t sO·5. The plotting 

routine has left white space in regions where the contour lines are very 

close. Figure's 3.2a-d show· -y(T , t) for r = 0, O' 25, o· 45, O· 5as functions of 

time up to t =4. These values of "y were computed· by the finite 'difference 

expression (3.3). The corresponding vortex sheet was shown in figures 1.3 

and 1.5. 

The most prominent feature of these plots is the discontinuous strain 

rate at the interface's center,fr =0·5. A global minimum in r,t space of 

-yRl-20 occurs at the critical time (telOO = 0'46) and a· global maximum of 

-yRl +40 occurs one time step later. Computations with increasing values of 

N show~d ~ increasing jump in -y at tf from negative to positive values. In 

their study, Corcos and Sherman found a continuous strain rate with global 

extrema roughly ±10 (iIi our units) in the core around the time at which the 

material curve achieved a vertical slope. As expected; viscosity and finite 

layer thickness· at t, = 0 produced a less fierce roll up than does the inviscid 

vortex sheet model. 

Examination of figures i.3 ( for t = 0'4), 3.1 and 3.2 reveals that up to 

the critical time, negative strain near r = o· 5 pulls point vortices closer 

together and into the core region. This compression at the center causes 

the outer portions of the sheet to stretch. For example at {=O, 50% pf the 

sheet (0' 25 < r < 0'75) is stretching while this fraction increases to 80% 
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(0 <r < 0'4, 0·6 <r < 1) by t =0·4. For the viscous, finite initial thickness layer 

the opposite was observed, i.e. 'before roll up, more and more of the inter­

face was compressed though to a lesser degree than seen here. Professor 

Corcos conjectures this is due primarily to finite initial thickness rather 

than nonzero viscosity. 

In our problem, the concentration of vorticity and negative strain rate 

at the sheet's center are resolved at the critical time when the vortex sheet 

"cracks" (curvature discontinuity of section 2) leading to the large positive 

strain rate just past t/!. Beyond the critical time the strain rate oscillates 

both in time and along the interface in qualitative agreement with the 

results of Corcos & Sherman. Figures 3.1a,b indicate a predominance of 

positive strain rates, with the braid region (rR:tO,1) being continuously 

stretched for long times. Figure 3.3 shows the resulting increase of the 

sheet's arclength. To obtain this plot, the arclength element cis was approx­

imated by the chordlength I Zj+l-Zj I of consecutive point vortices. Up to 

tf the arclength hardly grows, but it increases linearly with time afterwards. 

This was observed using other values of N with larger rate of increase of 

arclength for larger N. The numerical results do not rule out the possibility 

that the continuous vortex sheet developes infinite arclength past tc. 

Another effect of the predominantly positive strain rates beyond tf is to 

smooth out small amplitude short wavelength perturbations in sheet posi­

tion. This was already observed numerically in section 1 in connection with 

the slow irregular motion of point vortices in the braid region for the 14 

digit calculation (figure 1.3). It appears that the singularity has a stabilizing 

effect on the vortex sheet evolution. The relation between vortex sheet 

stretching and stability has been studied by Moore (1976). The stabilizing 

effect of a singularity is known for shock waves (Lax 1973) and has also been 

observed recently in cusp formation for a model of flame propagation 
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(Sethian 1982); 

Streamlines are an important Visual aid tel understanding two dimen­

sional incompressible flUid flow. For ~ periodic vortex sheet Z( r , t), the 

stream functi'on at an aribtrai-y poinl'z not on the sheet is given by: 

-l.rl ( 1/1( 2 ,t) = 211' JoIn I sin 11' 2 - Z ( r , t ) ) I dr. (3.4) 

This integral is ci simple layer 6f strength a = ~ , the vortex sheet strength 

, . .,. '. " 

(Kellogg 1953). Away from the vortex sheet the integral is proper and 1/1 is 
. ',' 

harmonic. Both the stream function '1/1 and the tangential derivative ~! are 

continuous across the sheet while the normal derivative ~~ has a jump 

discontinuity equal to a. Trapezoidal quadrature of the integral in (3.4) 

yields the stream function 'I/IN(z ,t) of a set of periodic point vortices: 

.... -1 N . 

'1/1(2 ,t) = 211'N Ic~/n I sin 11'( z - Zic (t» I . (3.5) 

If z= Zj (t) for some index j then the summation above should omit k = j . 

Contour plots of 'I{I at successive times were obtained using approxima­

tion (3.5) and are displayed in figures 3.4a-h. The contour lines have deli-

berately not been smoothed in order to display the jump in ~~ across the 
- .', . . . 

. vortex sheet. To avoid seeing the circular streamlines close to the point vor­

tices, 'I/IN was evaluated on a coarse mesh (35 by 35). The contour plotting 

routine has difficulty resolving the saddle points r = 0, 1 of the stream func­

tion and the plots shoUld not be taken literally near these points. Such 

errors in these contour plots coUld be diminished by using the tri-

gonometric interpolating curve to obtain a more accurate evaluation of the 

integral in (3.4) than that given by (3.5). 



2B 

Streamlines intersecting at r = 0, 1 separate an unbounded region of 

open streamlines away from the interface from a bounded region of closed 

streamlines surrounding the interface. This latter region of recirculating 

tluid (dubbed "eat's eyes" by Kelvin) allows the two tluid streams to mix. For 

roughly t <3, tluid continuously has crossed the eat's eye boundary, enter­

ing the bounded region and causing its area to increase. 

Figure 3.5 shows the computed maximum sheet amplitude, Y ma:J[(t) 

plotted against time. Exponential increase occurs up to t ~ O· 46 = tlOO fol­

lowed by an interval of approximately linear increase telOO < t < 3. The 

bumps in amplitude appearing for later times are due to the tangling of the 

sheet's turns. For t > 3.5 the rolled up sheet is shrinking in amplitude but 

increasing its streamwise extent extent. 

At late times (t ~ 4) the recirculation region stops growing and the 

closed streamlines assume an elliptical concentric pattern which fiattens in 

the streamwise direction. For t < 4 the vortex sheet remains inside the eat's 

eye. At t = 4 it appears that some portion of the vortex sheet crosses the 

eat's eye boundary into the streaming tluid. In a real shear layer, further 

growth can take place through pairing of adjacent vortex cores as observed 

experimentally by Winant & Browand (1974). This long wave instability con­

trasts with the short wave stability (after roll up) indicated above. Patnaik, 

Corcos & Sherman (1976) numerically studied vortex pairing in a viscous 

s~ear layer by including a subharmonic linear theory eigenfunction in the 

initial condition. This could also be done for the present vortex sheet modeL 
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4. 'lb.e meet of Varying the Initial Condition 

In this section we will first make some general remarks concerning our 

choice of initial condition (1.1) and then study numerically how different ini­

tial conditions effect some properties of the evolution. All computations 

presented in this section were performed with N = 250, 29 digits of accu­

racy, the chopping procedure turned on at the level 10-25 and Euler's 

method with M = O' 004. 

The vortex sheet model under study has two components, namely the 

evolution equation and the initial condition. It is reasonable to require some 

degree of consistency between these components. Mathematically this 

means that the initial condition should belong to some class of functions for 

which the initial value problem is well posed for at least a finite. time. 

Sulem. Sulem, Bardos, & Frisch (1981) have shown that a class of analytic 

functions. bounded in a certain norm, meets this requirement. One also 

seeks to determine those initial conditions which approximate a physically 

interesting situation and which do not violate the modelling assumptions 

implicit in the evolution equation. Since the; vortex sheet is essentially a 

long wave approximation to a shear layer of finite thickness, we would not 

expect to obtain meaningful results from initial conditions which contain 

arbitrarily short wavelengths of large amplitudes. This gives heuristic credi­

bility to the mathematical well posedness result mentioned above. The fact 

that by a finite time the evolution equation has amplified the short 

wavelengths in a particular way is not inconsistent with the need to restrict 

the size of these short wavelengths in the initial condition. 

Experimental observation should also guide the choice of initial condi­

tion. Corcos & Sherman (1983). citing the experiments 'of Thorpe (1971). 

have emphasized that shear layers exhibit a sharp selection mechanism 
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which initially inhibits the growth of all but a single dominant wavelength. 

While this mechanism needs further study. it motivates our use. in the vor-

tex sheet model. of a growing eigenfunction of linear theory with small 

amplitude to wavelength ratio as the initial condition. This choice yields a 

model which is mathematically consistent and that we hope has physical 

content. 

Consider the following initial conditions: 

z ( r . 0) ::: r + a. ( 1-i) sin 211r . (4.1) 

z(r,O) = r + ai sin211r . (4.2) 

The right side of (4.1) is a linear theory growing mode whose complex conju­

gate is a decaying mode (see 0.3a.b). The transverse sinusoidal perturba­

tion (4.2) considered by Moore (1979) is a linear combination of growing and 

decaying modes of equal amplitude. 

We pose the following questions: 

(1) The numerical results presented thus far have used initial condition 

(4.1) with a. = O· 01. What effect does changing the initial amplitude have 

on the evolution? 

(2) How do solutions using (4.2) compare with those using (4.1)? 

(3) Using (4.2). Moore derived the following asymptotic relation between 

the critical time tc and the initial amplitude a (expressed in our units): 

2 
1 + rr/c + In2rr/c = In-. 

11'0. 
(4.4) 

a. ... o. 

How well do point vortex solutions using (4.2) agree with this result? 

'. 
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To answer the first question. computations using (4.1) were performed 

fo~ values of a between 0·0025 and O·OB . .In all cases it was observed that 

smaller: a led to smaller Y max(tc) .and larger fc . For values of a less than 

approximately 0·04. the evolution was geperally similar to what has already 

been described for a = 0·01. Initial amplitudes larger than 0·04 produced 

some significant differences. These are evident in figure 4 . .1 whic;:h shows the 

evolution using a = 0·08. 

First. point vortices crowd together along a portion of the core region 

forming approximately a straight . line segment. At the critical time. two 

cusps have formed in the vortex sheet strength at positions corresponding 

to the straight segment's ends (figure 4.2) .• Then both ends roll up on a 

small scale and eventually merge .. A plot of Fourier coefficient amplitudes 

(figure 4.3) reveals a modulation ·of the previous behaviour. 

I P(k) I '" k -UH l)e -6Jc up to fc.which had been observed in section 1 for 

a = 0·01. This modulation does not occur when a single. branch point in the 

upper half plane approaches the teal axis and must therefore be due to a 

more complicated distribution of complex singularities. 

The evolution using (4.2) and a = 0·08 is shown in figure 4.4 with the 

corresponding spectrum in figure 4.5. Straightening and double roll up, 

similar to that of initial condition (4.1) for large a • .was observed here for 

smaller initial amplitudes (e.g. even for a = 0'01).' Such behaviour was previ­

ously observed (see our figure 0.3a from Birkhoff & Fisher (1959» and inter­

preted as irregularity. Now we can explain the double roll up as the out­

come of sheet straightening which itself can be caused by large initial ampli­

tudes or inclusion of a decaying linear mode in the initial condition. In com­

putations using initial condition (4.2). a singularity developed later thanfor 

initial condition (4.1) with equal amplitude. It is plausible that this delayed 

critical time is due to an interaction between the growing and decaying 
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modes initially present in (4.2) . 

For both initial conditions (4.1) and (4.2). as a becomes smaller. the 

two cusps approach r = 0·5 until they cannot be distinguished from a single 

cusp. For (4.2) these cusps remain distinct for smaller values of a than for 

solutions using (4.1). Whether two distinct cusps persist in the exact solu­

tion as a":'O or bifurcate from a single cusp at some finite initial amplitude 

could not be determined by the present computations. Chorin (1983). in a 

numerical study of instability of fronts in porous media. has also observed 

qualitative changes when the initial perturbation amplitude is raised above a 

certain value. I cannot explain why the spectrum of figure 4.5 is so much 

less smooth than that of figure 4.3. The modulated behaviour of Fourier 

coefficients for certain initial conditions makes critical time prediction by 

the method of Sulem, Sulem & Frisch (1983) less straightforward. This is 

because the simple model of spectral decay (equation (2.2» is not strictly 

applicable. Alternatively. the critical time may be estimated by the 

occurence of several other related events: minimum separation of two point 

vortices. global minimum in strain rate along the sheet. cusp appearing in 

sheet strength. 

Table 4.1 contains critical times which were collected in this way for 

various values of a and N. using initial conditions (4.1) and (4.2). Critical 

times tc"'(a). extrapolated to N 400 as in section 2. are plotted in figure 4.6 

together with the first three approximations to tc (a) given by Moore's 

asymptotic relation (4.4). For values of a = 0·04. 0·08 the first term of (4.4) 

gives the closest agreement with our computed critical time. As a 

decreases to 0'0025. the first two terms and finally the first three terms give 

the closest agreement. These results are consistent with the asymptotic 

validity. as a 40. of Moore's relation. 



" 

33 

Figure 4.6 also shows that the critical time for ,the growing mode per­

turbation (4.1) is smaller than that for the less physically motivated (4.2). 

The critical time thus depends on both the initial perturbation's amplitude 

and its particular decomposition into linear theory eigenfunctions. Although 

both Moore's result and' our point vortex' computations lack rigorous 

justification, their agreement gives confidence in the reliability of these crit­

ical times. 
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5. Discussion and Conclusions 

Rosenhead's classical numerical method for vortex sheet evolution from 

analytic initial data has been examined using the discrete Fourier analysis 

techniques of Sulem, SuleIIl. & Frisch (1983), leading to a deeper but still 

incomplete understanding of Kelvin-Helmholtz instability and the point vor­

tex approximation. 

Previous investigations using a large number of point vortices have 

failed because short wavelength perturbations introduced by machine 

roundoff error grow eXponentially fast during the linear instability stage of 

the evolution. This mechanism should be contrasted with loss of significant 

digits, a more familiar finite precision effect. This occurs for example when 

numbers of disparat~ magnitude are added or a number is divided by 

another of much smaller magnitude. Perturbations grow in the present case 

not by arithmetic accumulation of rounding errors but because of the 

model's dynamics. 

If the exact initial perturbation is analytic then its high frequency 

amplitudes decrease exponentially fast with increasing wavenumber. The 

number of point vortices used is also the highest wavenumber resolved by 

the computation. With a large number of point vortices, this means that the 

computed discrete initial spectrum's high frequencies are dominated by 

computational noise and their amplitudes do not decay. The numerical evi­

dence suggests that the high frequency modes grow in time either by 

amplification of roundoff error perturbations or by nonlinearity. The com­

putational challenge is to suppress the former while not disturbing the 

latter. 

We call attention to the numerically observed asymptotic nature of the 

relation between machine precision, number of computational elements and 
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the error in the computed solution. With more than a certain number of 

vortices, which depends on the machine' precision, larger computational 

errors are incurred., This is because with more point vortices, shorter 

wavelengths are represented and once spuriously perturbed" amplify 

quicker, leading to faster collapse of the computation. For any number of 

point vortices, a sufficiently precise calculation will reduce this source of 

computational error. This is because with greater machine precision, the 

spurious shortwave perturbations enter the computation at a lower ampli­

tUde.Past an amount which depends on the number of computational ele~ 

ments, extra precison has no significant effect on the computation. The pre­

cision necessary to decrease the computational noise to a harmless level 

increases sharply with the number of v?rtices. 

The numerical phenomenon described above can be expected to occur 

for other physical models which exhibit linear short wave instability (e.g. 

Rayleigh-Taylor instability). ' The severity of the problem also depends on 

what is happening dynamically. For Kelvin-Helmholtz instability, an increase 

in the amplitude of the initial perturbation causes faster developement of a 

strain field whose predominant stretching ,stabilizes the roll up to small 

amplitude short wave perturbations. Conversely, with smaller initial ampli­

tudes,the ,'linear instability stage, of the evolution is prolonged, allowing 

more time for the spurious perturbations to grow. We expect that the 

roundoff amplification problem would be diminished by the inclusion in the 

model of surface tension, .finite initial layer thickness or viscosity ,which sta­

bilize short wave perturbations according to linear theory. 

, B~cause high precision arithmetic is expensive, we have introduced a 

chopping procedure which allows more computational elements to be used 

for a: given machine accuracy. The procedure is heuristically justified if the 

initial pertur'bationis analytic, making it easier to distinguish arithmetic 
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noise from the genuine high frequency component. Under such cir­

cumstances. chopping effectively forces the computed spectrum to have 

compact support for a finite time .. During this time the computed solution 

approximates an analytic function in accordance with the theoretical result 

of Sulem. Sulem. Bardos & Frisch (19B1). The chopping procedure turns off 

when nonlinearity has amplified all the modes above the noise level. Some 

of the vortex blobs currently used for other flows have Fourier transforms 

which decay at high frequencies {Chorin 1973 and Beale &·Majda 19B3}. It 

may be that. for the present problem. such computational elements will 

loosen the precision constraint with no drastic damage to the truncation 

error. Discrete Fourier analysis should be useful in testing this conjecture. 

Our point vortex results confirm the formation of a singularity in finite 

time for analytic initial data as found by Moore (1979) and Meiron. Baker & 

Orszag (19B2) using different techniques. For initial conditions (4.1) and 

(4.2). Z{r. t) remains analytic at the critical time except atone or two 

values of r. corresponding to the centers of the roll up. where the sheet 

retain.s a Holder continuous tangent vector. The Cauchy principal value 

integral in (O.3a) can still be defined for such a vortex sheet although the 

methods used by Moore and MBO rely on the sheet·s analyticity and are for­

mally valid only up to the critical time. I therefore disagree with the conclu­

sion of Moore and Meiron. Baker & Orszag that this singularity's formation 

restricts the validity of the vortex sheet model at the critical time. The indi­

cations that past the critical time the sheet has an infinite number of turns. 

as conjectured by D. Pullin (private communicat~on). and infinite arclength 

seem to pose difficulties for the proper definition of a Cauchy principal value 

integral. Infinite spiral vortex sheets with special structure have been stu­

died asymptotically and numerically (see Pullin & Phillips (19B1) for some 

recent work) and we hope to eventually relate these results to the present 
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work. ' < 

The formation of the singularity explains the difficulty encountered by 

the numerical methods of Van de Vooren (1965, pub. 1980) and Fink & Soh 

(1978) in studies of Kelvin-Helmholtz instability. These methods rely for 

their consistency on the existence of higher derivatives of the exact solution 

and even if the problem of roundoff amplification is circumvented, erratic 

sheet motion appears beyond the critical time. We have checked this by 

using Van de Vooren's correction (0.7) evaluated by pseudospectral 

differentiation in r. At the critical time, the correction term {ZITI ZP)j 

becomes undefined at some point. 

A standard objection to Rosenhead's method for vortex sheet evolution 

is that it neglects higher order terms associated with the integrand 'singu­

larity in the Cauchy principal value integral (0.2a) (Fink & Soh 1978). Re~all 

however the definition of such an integral as the limit as e--O of proper 

integrals for which a symmetric interval of length e around the singularity 

has been removed. The omission of a velocity self interaction term in the 

summation (0.4a) is a subtle numerical implementation of this definition. 

Consistency of the trapezoidal quadrature, which was used in approximating 

(0.2a) by (O.4a), follows from the Holder continuity of the vortex sheet 

strength. These considerations do not necessarily apply to vorticity distri­

buted over two and three dimensional volumes for which the Biot-Savart 

integral is improper. 

Up to the critical time, the vortices rp.ove approximately on straight 

lines implying that even Euler,'s method with a large lime::!!tep is accurate. 

Past the critical time we have seen that reducing the time truncation error 

for fixed N leads to sheet tangling. We view this as evidence that the exact 

evolution of a finite number of point vortices does not describe with uniform 

accuracy the evolution of the particular vortex sheet under consideration. 
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We have observed more plausible behaviour using Euler's method with 

l:!.t = ~ and 19. ~ 1. A complete understanding of the relation between the r 

and t discretizations is lacking and presents another interesting area for 

future research. 

The formation of the singularity results from a concentration of vorti­

city and has dynamical significance. At the critical time, the tangential 

strain rate at some material point jumps from a large negative value to a 

large positive value as the sheet begins to roll up on a small scale. The ensu­

ing roll up is stable to small amplitude short wavelength perturbations, in 

the sense that such perturbations do not grow drastically. This contrasts 

with the strong short wave linear instability before the critical time. 

Birkhoff & Fisher (1959) noted the relevance of the Poincare rec~rrence 

theorem (Thompson 1979) to the periodic point vortex equations (0.4). For 

the theorem to apply, the point vortices must remain in a bounded region of 

the configuration space. This is satisfied by using periodicity to identify 

point vortex arrays modulo integer shifts in the horizontal direction and 

assuming bounded motion in the vertical direction. The theorem says that 

almost every configuration will eventually return arbitrarily close to its ini­

tial configuration. Birkhoff & Fisher concluded that vortex sheets eventually 

have to unroll. Recall however that it is the configuration of point vortices 

as well as their ordering and the curve that connects them which determine 

the approximate vortex sheet. A particular vortex configuration may recur 

even though the vortex sheet has rolled up. The recurrence of the point vor­

tex configuration does not mean that the sheet has returned to its initial 

shape. 

We have demonstrated that information about vortex sheet instability 

can be obtained by using the point vortex approximation. A rigorous con-
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vergence proof is still lacking, although we observed convergence of the crit­

ical values for a particular ratio of b.t to ~r when roundoff error 

amplification was controlled. Clearly the model studied in this paper cannot 

describe all aspects of a real mixing layer. However, it appears that a 

periodic vortex sheet with analytic perturbations is capable of modelling 

some features of the initial stages of transition in turbulent mixing layers. 

In the future we hope to restore some of the physical effects neglected by 

this model in order to facilitate comparison with experiments. 
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N k" tt' (5~k ~k" ) ~(1~k~15) 

50 20 0·5 0·736 

100 40 0·46 1'11 

124 50 0'448 1·226 

166 70 0'432 1·366 

200 90 0'425 1'446 

250 115 0·416 1·531 

312 140 0'4096 1-606 

400 180 0'4025 1'675 

OCI --- 0·38 1-9 

TABLE 2.1 

Least squares estimates for the critical values tf, IJ! for various values of N. 

Note the different ranges tit to obtain columns 3 and 4. The extrapolated 

values to", ,.",; in the last row were obtained by fitting a quadratic function 

through the eight data points as in figure 2.3 . 
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~ 0·0025 0·005 0·01 0·02 0·04 0·08 

50 0'88 0·68 0-50 0-34- 0-22 0-12 

100 0-80 0-62 0-46 0-31 0-19 0'12 

200 0-75 0-58 0-425 0-285 0-175 0-12 

250 0'74 0-572 0-416 0-28 0-172 0-116 

"" 0-69 0~53 0-38 0-25 0-16 0-11 

TABLE 4.1a 

Values of tf for various a. and N using initial condition (4.1). The row 

labelled"" was obtained by least squares fitting of the four values for fixed a.. 

~ 0-0025 0-005 0-01 0-02 0-04 0-08 ·N .. 
." I 

50 1'14 0-98 0·84 0·66 0·5 0·36 

100 1-08 0-93 0·77 0·61 0-45 0-31 

200 1-045 0-89 0·73 0-57 0-42 0-285 

250 1-036 0-876 0-716 0-56 0·412 0·28 

"" 1-00 0·83· 0·68 0-52 0·38 0·26 

TABLE 4.1b 

Same as above except that initial condition (4.2) was used. 
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Figure 0.1 Roll up of a vortex sheet. (Prandtl & Tietjens 1934) 
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F'lgure 0.2 Plots of the linear theory growing mode (0.3a) with a=O'Ol 

for t=O, 0'1,0'2,0'3,0'4,0'5. 
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Figure 0.3 Rosenhead's (1931) solution of equations (0.4) by Euler's method 

with N = 12 and!J.t =0-05. 
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TU/A=O 

TU/A= .38 

TU/A= .45 

5 ./~ 

Figure 0.4 Numerical solution of equations (0.4). with N = 20 and 6t in the 

range 0,0005 -0,002 using 4th order Runge-Kutta integration. 

(a) large initial amplitude (b) small initial amplitude (c) vortex trajectories 

for initial conditions similar to (b) (copied from Birkhot! (1962) and Birkhot! 

& Fisher (1959» 
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t=o --------_ ................................................................................ . 

t =0'4 

~-----~ ~ ................ " ................ ..-/ ... 
... -............... . 

t =0-5 

-----__ -f ---........................................ :;( .................................... . 

t = 0'75 
" : ......... . 

:. ',: ; .. ', 
. ~::.',: 

.. I : ~ ',.,'.',' :: 

t=l 

F"lgure 1.1 ~olution of equations (0.4) with N = 100 by Euler's method using 

Ilt = 0-01. The initial condition is (0.3a) with a. = 0·01 and t = o. Point vortex 

positions are on the right and the trigonometric interpolating curve is drawn 

on the left. This computation used 14 digits of precision. 
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Figure 1.2 A linear-log plot of the discrete Fourier coefficient amplitudes of the 

perturbation, P{ r. t) for the solution in figure 1.1 at time intervals of O' 05 

between t = 0 and t = O' 5 and at t = 1. 
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Fig\lI'e 1. 3 Same parameters as figure 1.1 except with the chopping pro­

cedure turned on. 
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Figure 1.4a A linear-log plot of the discrete Fourier coefficient amplitudes of 

the perturbation, P{ r, t ) for the solution in figure 1.3 at time intervals of 

0·05 between t = 0 and t = 0·5 and at t = 1. 
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Figure l.4b A log-log plot of the discrete Fourier coefficient amplitudes of 

the perturbation. P{ r. t) for the solution in figure 1.3 at time intervals of 

O' 05 between t = 0 and t = O· 5 and at t = 1. 
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Figure 1.5 Same parameters as figure 1.1 except with 29 digits of accuracy 

and the chopping procedure turned ot!. 
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Figure 1.6 Point vortex trajectories for figure 1.5 up to t = 1.5. The solid line 

shows the interpolating curve at t = O· 46, when the sheet begins to roll up. 
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Figure 1.7 A plot of the Hamiltonian. H UIO(t) vs. time for the results shown in 

figure 1.5. 
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Figure 1.8a Evolution with N = 20 using Euler's method. 
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Figure 1.8b Evolution with N = 20 using Euler's method for i) , ii) 

and 4th order Runge-Kutta for iii). 
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.F"lgure 2.1 Plots of (a) 61OC(t) and f.LIOO(t) vs. time. determined by least squares 

fitting to the spectrum in figures 1.4a,b over a band of high wavenumbers: 

i)5~k~40 ii)20~k~40 iii)5~k~30 iv)20~k~30. 
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F'lgure 2.2 Plots of (a) OlOO(t) and J,J.I00(t) vs. time, determined by least squares 

fitting to the spectrum in figures 1.4a,b over a band of low wavenumbers: 

i) 1~k~6 ii) l~k~lO iii) lsk~15 iv) 1~k~20 v) l~k~40. 
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Flgure 2.3 A plot of estimated values of tf and JJ! vs. 1/ N using Euler's method 

with M = 1/ N (Table 2.1). The curves are quadratic functons of 1/ N whose 

coefficients were found by least squares fitting to the eight data points. 
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F"lgure 2.4 Behaviour near the critical time using N = 250, At = 0'004 showing: 

{a} vortex sheet (b) closeup of the sheet in the core (0) vortex sheet 

strength, a( r, t ) vs. r. Note that at the critical time, tc2f1O = 0·416 the vortex 

sheet strength has a cusp at r = 0 and the sheet is beginning to roll up about 

that point on a small scale. 
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Figure 2.5 A plot of the vortex sheet strength, a( r, t) vs. r using 

N=250,6t =0-004. For the plotted times (0.0'2,0-32,0-4,0-416 =tc250), 

a( r = O' 5, t ) increases monotonically; 

Lee 
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F"J.gure 3.1 (a) A contour plot of the strain rate along the sheet. ?,(r. t) for 

o~r!!;; 0'5 and O~ t ~ 1. This run used N=100 and 6t =0·01. 

(b) A closeup of figure 3.1a for 0'4~rsO'5 and O'4~t ~O·5. 
The contour lines were not smoothed. 
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Figure 3.2 Pl~ts of strain rate along th~ sheet. -y( r. t ) vs. lime. 
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Figure 3.3 Arclength vs. time for figure 1.5 (N::: 100). Note the approximately 

linear increase in arclength past tc
loO = 0·46. 
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Figure 3.4 Streamline plots. The contour lines were not smoothed. 
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Figure 3.5 A plot of the maximum sheet amPlitude. Ymo{t) vs~ time for the 

evolution shown in figure 1.5. 
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Figure 4.2 A plot of the vortex sheet strength of tigure4.1, vs. r for various 
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Figure 4.3 A linear-log plot of the spectral amplitudes for figure 4.1 at vari­

ous times. (t =0,0-02,0-04,0-06,0-06,0-092,0-1, 0-10B, 0-116, 0-44) 
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Figure 4.4 Initial condition (4.2) with a = O-OB. 
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Figure 4.5 A linear-log plot of the spectral arilplitudes for figure 4.1 at vari­
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Figure 4.6 The relation between critical time and initial amplitude. The 

curves show the first three approximations (labelled 1, 2 and 3) given by 

Moore's asymptotic relation (4.4). Our computed results are plotted for 

various values of Ina. for initial condition (4.1) ( 0 ) and for initial condition 

(4.2) ( +). The computed times were obtained by extrapolation to N-HXJ as 

in Table 4. 1 . 
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