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A Numerical Study of Kelvin-Helmholtz Instability
by the Point Vortex Method

Robert Krasny

Abstract

Rosenhead's classical point vortex numerical method for studying the
evolution of a vortex sheet from analytic initial data (Kelvin-Helmholtz insta-
bility) is examined using the discrete Fourier analysis technigues of Sulem,
Sulem & Frisch. One cause for the "chaotic” motion pfeviously observed in
computations using a largé number of vortices is that short wavelength per-
turbations are introduced spuriously by finite precision arithmetic and
become amplified by the model's dynamics. Methods for controlling this
source of error are given and the results confirm the formation of a singu-
larity in a finite time which was previously found by Moore and Meiron, Baker
& Orszag using different techniques of analysis. A cusp forms in the vortex
sheet strength at the critical time, explaining the onset of erratic particle
motion in applications of the numerical methods of Van de Vooren and Fink
& Soh to this problem. Unlike those methaods, the point vortex approxima-
tion remains consistent at the critical time and we present the results of a
long time calculation. The singularity is interpreted physically as a discon-
tinuity in the strain rate along the vortex sheet and also as the start of roll
up on a small scale. We numerically study some aspects of the dependence
of the solution on the initial condition and find agreement with Mocore's
asymptotic relation between the initial amplitude and the critical time. For
large initial amplitudes, two cusps for.'m in the sheet strength, correspond-
ing to double roll up. We explain why the Poincaré recurrence theorem does

not imply that the sheet will eventually unroll. Our results suggest that



beyond the critical time, the vortex sheet becomes a spiral with infinite
arclength although we have doubts about the approximation’s accuracy in

that fegime.
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0. Introduction -

In this paper we study the vortex sheet model for the vinstébility of a
parallel shear flow. We consider the nonlinear temporal instability to ana-
-lytic perturbations of the following weak _solution,- with shear, of the Euler
equations: |

-U if >0,
u(z.y) = | . v(zy)=0, (0.1)

v if ¥<0,
where (u,v) are the Cartesian components of the velocity and U is a positive
constant. The 'eﬁects of d_ensi_t_y stratification, c;)mpressibility. body forces,
surface tensi.on, viscosity, bbuhda_ries and three dimensionality will be

ignored.

~ The interface separating the two fluid regions is a vortex sheet and‘ the
classical point of view (Prandtl & Tietjens 1934), based on expérimental
observation, was that a sinusoidally perturfbed sheet rolls up smoothly into
local concentrations of vorticity as in ﬁgure 0.1 . A vortex sheet can be

described by a curve in the comp.lexﬂ plane:

Z{I't)=X(T',t) +1i¥(I", t),
where t is time and I' is a Lagrangian parameter which measures the circula-
tion between a base point ['=0 and an arbitrary point along the sheet (Bir-

khoff 1962). The vortex sheet strength (', t ) is the tangential jump in velo-

city across the sheet and is determined up to sign by:
— -1 . _ 9z

G(Fnt)_ IZFI ' Zr ar -

Consider a vortex sheet for which Z(T',t) —I/RU is periodic in T' with

period 2UA. 1t follows that Z(F+2U)\,t) =Z(TI',t) + A so that A is the

wavelength in the z direction. Define dimensionless variables (primed) by:



‘IP=2UAT" , t=2Ut/\N , Z=\T.

The initial value problem for the vortex sheet in nondimensional form (drop-

ping the primes) is:

g—f(l‘.th L feotn( 2(r.t) - 2(F.t))al,  (0.2a)
| z(r.0)=T+P(r,0). | (0.2b)

The bar on the left side of (0.2a) denotes complex conjugate and the slash on

the integral sign denotes a Cauchy principal value.

Equation (0.2a) , the kinematical condition that the vortex sheet be a
free surface, is a special case of the Biot-Savart law relating vorticity and
velocity in incompressible flow. The dynamical requirement that ciréulaf.ién
around material curves be preéerved is implieitly coﬁtained. in the under-
standing that I' is a Lagrangian variable. The vortex sheet may be written as

the sum:
Z(T,t)=T+ P(I,t),

where P(T',t) is a periodic perturbation of the flat, constant strength vor-
tex sheet corresponding to the equilibrium flow {0.1). For each wavenumber
k., the linearized problem admits two solutions having exponential growth
and decay rates kU, the well known linear Kelvin-Helmholtz instability

(Batchelor 1968). These linear modes are given nondimensionally by :

Z(I' t)=T +ae?* (1 —1i)sin2nl, (0.3a)

Z(T,t)=T+ae™®™(1 +4)sin2nT, (0.3b)

and are displayed in figure 0.2 . In this paper, the initial perturbation
P(T",0) will be a linear combination of at most two such linear theory modes
of small amplitude. In particular, the initial perturbations will be analytic

functions, a crucial assumption for the viability of the vortex sheet model.



Birkhoff (1962) conjectured that a solution of equations (0.2) which is
initially analytic remains so for at least a finite time. A proof of this conjec-
ture has recently been advanced by Sulem, Sulem, Bardos & Frisch (1981).
Noting that linear theory predict:s faster growth rates for shorter wavelength
perturbations and assuming that nonl‘in‘earv interac_tidns will perturb all
wavelengths, one may suspect that a singularity forms in a finite time even
for analytic initial data. Indeed, Birkhoff conj'ectured,that this would occur
in the absence of surface tension and viscosity. Moore (1979) performed an
asymptotic \analysis.which suggested that a curvature singularity does form
at. a critical time which depgnds_ upon the initial perturbation amplitude.
Using Taylor series in time Meiron, ‘Baker & Orszag (1982) have obtained
nq:ner_ical results in agreement with Moore’'s asymptotics. They found that
at the critical time the vortex sheet strength has a cusp although the inter-
face is only slightly distorted and 'possesses none of the features associated
with roll up (as previously noted by Moore). Both Moore and Meiron, Baker &
Orszag viewed the formation of this singularity as a possible restriction on

the validity of the vortex sheet model.

With. these recent papers there is emerging a consistent picture of the
nonlinear Kelvin-Helmholtz instability. This contrasts with the confusion
aroused by the failure of standard numerical methods to solve equations
reliably {0.2). We will now briefly survey. the large literature on these

methods; see also Pullin (1982), Moore (1981) and Saffman & Baker (1979).

The classical approach to the numerical solution of (0.2), introduced by
Rosenhead (1931), is to replace the curve Z(T,t) at a fixed time by a finite
number of particles corrésponding to a- ur‘lifvbirm T-mesh. Thus
{Z;(t):j=1,....N}  approximates {Z([;,t);j=1,...,N}  where
f'j = (j—-1)AT, NFAI.' =1 and N is the hﬁmber of péftic!és‘per wavelength. The

integral on the right side of (0.2a) is approximated by trapezoidal quadra-



ture and the infinite contribution due to the integrand’'s singularity is

ignored. This gives a system of ordinary differential equations for the parti-

cle péths:
dZ; _ 1
T’: Eﬁ‘k:l Cot "(ZJ - Zk) ] (0.46)
k=j
7;(0) =Ty + P(T;.0). | (0.40)

Equation (0.4a) also describes the evolution of N periodic rows of equal
strength point vortices. In this iriter_'pretation the omission k#j
corresponds to the fact that a point vortex (and more generally a periodic
row of point vortices) has zero self induced velocity. The dynamical require-
ment that the strength of each point vortex does not change in time 1s impli-
cit. A related fact, implicit in the discretization of Z([', £ ), is that the point
vortices are ordered by continuity in I This ordering doesn’t change in
time and allows the points to be connected by a curve which approximates

the exact interface.

We remark that a diécrete system of equal strength point vortices,
equally spaced on a straight line, is linearly unstable in a fashion which
closely mimics the linear Kelvin-Helmholtz instability of a continuous vortex
sheet (Lamb 1932). The fastest growing mode of this discrete linear instabil-

ity is an interaction between pairs of adjacent vortices.

For future reference, we record that the point vortex equations {0.4)

form a finite dimensional Hamiltonian system with Hamiltonian:

Hy(t) = —= ﬁfmsinn('z-(t)?—'*z‘f(t))|
NAETT onN? s, i k : (0.5)
# :

The continuous system (0.2) has an analogous conserved quantity (Van de

Vooren 1965, pub. 1980):



H(t)':%folﬁm|sinn(Z(I‘,t‘)—Z(T',t))|deT‘. - {0.8)

‘Rosenheed integrated the real and imaginary parts of (0.4) by Euler's
method. The “initial condition was a transverse Sinusoidel perturbationlof
the flat constant strength vortex sheet. A.vcopy of these caleulations; per-
formed on desk rnach.ines with N = 12. is shoﬁ in ﬁgure 0.3. The intefpolat-
ing curve tnat was drawn through the point vortices indicates a smooth roll
o, : : . .

These calculations Were accepte‘d as suppont for Prandtl’s ‘cnnception of

Kelvin-Helmholtz instability until challenged by Birkhoff (1982). He viewed

.Rosenhead’s work as inconclusive since convergence of the method had not

been demonstrated. Birkhoff also gave the following reasons for doubting

‘the validity of Prandtl's spéculations:

(1) the great‘:ervinstability of perturbations of short wavelength,

(2) ._t'he reversibilitsr end (pfesumed) dsymptotic tende_nc-y towards random-
ness. of cdnser(rative 'dynemicad sysierns. n

TheSe doubts were reinforced by computer eelculations '(Birkhoﬁ & Fisher

{1959)) using N 20 and fourth order Runge-Kutta time mtegratlon Some of

these results are reproduced in figure 0.4 . In all cases the evolutlon eventu-

ally exhibited irregular and apparently random motion of the point vortices.

Bu‘khoff dlscounted the eﬁect of truncatlon and roundoff errors and con-

dcluded that the smooth roll up observed physically depends on the 1nﬁuence

of v150051ty.

. Since then, Resenhead's method has fallen into disrennte. Inv‘estigaltors
have focussed on repeiring t:he presurned defect in the point‘ vortex approxi-
mation, namely the fect that close to a point_vor‘tex the indueed singular
velocity fleld poorly approximates the tangential velocity jump of a vortex

sheet. Two general approaches to this issue have emerged:



(1) an analytic approach which seeks to account for the velocity contribu-

tion of the portion of the sheet neglected in (0.4a),

(2) a vortex blob approach in which the singular velocity field is smoothed

by convolution with a cutoff function.

In the analytic approach, advanced by Van de Vooren {1965, pub. 1980),
the Cauchy principal value integral in {0.2a) is replaced by an equivalent
integral whose integrand has a removable singularity. The trapezoidal rule
is then applied yielding a system of equations which differs from (0.4a) only

in the addition of a correction term to the right side:

dz; 1 & 1 [ Zrr ‘
i’ S - _1_f4mr
dt  ZiN ,,Z{ cotm(Z; = Z) * g [ 77 ]J. ' . (0.7)

k#j
where the last term is evaluated at I'; (Moore 1981). Van de‘ Vooren used a
numerical diﬁerentiation rule exact for eighth degree polynomials to
approximate these derivatives. Calculations using N =40,80 led to irregu-
larities sooner in some cases than with the uncorrected equation (0.4a). Van
de Vooren attributed this to instability and roundoff error although no evi-
dence was presented to'sup_port such claims. A pseudospectral method for
calculating Zr and Zrr, proposed by Conte & Sherman (1979), also led to

irregularities.

Other work in this vein was done by Fink & Soh (1978), Baker {1979),
Pullin (1982), and Bromilow & Clements (1983) among others. One trend has
been to include physical effects which stabilize aspe;:ts of the linear problem
(e.g. stable density stratification and surface tension (Chandresekhar
1965)). Different numerical techniques have been tried (predictor-corrector
ODE solvers, numerical differentiation of interpolating splines, resetting the
particles at each time step to be equidistant in chordlength, ad-hoc numeri-

cal smoothing). While acheiving success in a variety of flow situations these



methods have all run aground on Kelvin-Helmholtz instability. For the
related problem of Rayleigh-Taylor instability, it has been noted that using
large numbers of computational elements causes the computation’s reliabil-

ity to deteriorate (Baker, Meiron & Orszag 1980).

Moore (1981) haé shown that, for point vortex appfoximation of a circu-
lar vortex sheet qf constant strength, chaotic métion is lcaused by growth of
numerical errors dué :to 'iinear Kelvin—He]niholtz instability. He demon-
strated that the onset of this chaotic motion could be delayed by the linear
smoothing formula of Ldnguei-Higgins & Cokelet (1976) and by the reposi-
tlomng technique of Fink & Soh (1978) Moore .also advocated abandoning

‘.the vortex sheet model in favor of a vorte)‘c‘l‘aj?ér' of finite thickness for which

short wavelength perturbétions are 'linearly stablé.

W‘Chorin & Be;rnard (1973) introdué.e_d.th'é vértex blob meﬁhod to study
the vdrtex sheet‘ shed by an elliptlically loaded wmg Later work using vortex
blobs has concentrated on boundary layers and smooth vorticity distribu-
tions with little direct relation to the instability of a free vortex sheet (Cho-
rin (1978), Hald (1979), Beale & Majda (1982)). Acton {1976), Ashurst (1979)
and Nakamurma, Leonard & Spalart (1982) have used the blob method to
study vortex layers of finite thickness and Ander_sop‘(1983) has extended the
blob methed to treat the roll up of an interface separating fluids of different
densities. To my knéﬁledge, no vortex blob calculatic;ns .for a periodiéélly

perturbed vortex sheet have been published.

Th_é aim of this paper is to resolve some of the issues sﬁrrounding previ-
ous numerical studies of K_elvin-Helmholtz /instability with analytic initial
perturbations. We will use discrete Fourier analy.sisi to examine fesqlts com-
puted by Rosenhead's point vortex approximation. Ou__r_numerical experi-
men£s show t;hat the irregular vortex motion previously observed has séveral

distinct causes:



(1) amplification, due to linear Kelvin-Helmholtz instability, of shortwave

perturbations introduced by roundoff error,
() improper balance between time and spatial truncation errors,

(3) loss of analyticity in finite time which causes the correction term in

(0.7) to become undefined,
(4) misinterpretation of numerical results for certain initial conditions.

The first phenornenon is an effect of the computer’s finite precision
arithmetic and may be abated By methods discusséd in section 1. High
resolution results (N=100) far into the nonlinear regime are presented
which show a smooth roll up similar to Prandtl’s picture. Point (2) is related
to the often overlooked finding of Chorin & Bernard (1973) that for a certain

choice of time step, point vortices and vortex blobs gave similar results. We

present results using Euler's method with several different ratios of 4 = -2—1{.-

which show irregularities for small ¥ although a complete understanding of

this issue is lacking.

The third phenomenon is precisely the singularity formation discovered

by Moore (1979) and Meiron, Baker & QOrszag (1982). In section 2 Rosenhead’s

method is used to confirm some of their results. For the choice Af = -1%7-—

using Fuler’s method, we demonstrate convergence of the point vortex
approximation at the critical time. A physical interpretation of the singular-
ity formation, in terms of the strain rate along the sheet, is given in section
3 along with a description of the velocity field. Section 4 presents results
showing an unexpected double roll up for certain initial conditions. We
study the effect of changing the initial amplitude and present point vortex
results in agreement with Moore’s asymptotic relation for the critical time.
Various issues are discussed in sectionv 5. We assert, in contrast to the pre-

vious investigators’ conclusion, that the formation of the singularity does



not necessarily invalidate the vortex sheet model. However, it does raise
theoretical questions about the validity, possibly in a weak sense, of a nona-
nalytic vortex sheet. It also expiains'the failure of those numerical methods
for the present problem which were based on the sheet's presumed analyti-
city. ;

Our work explains some of the pr:evious n"egétive numerical results for
“ Kelvin—Helmhbitz instability with analyl;ic initial data and restores credibility
to the 'poih£_vortex appfoﬁfnétion. This sﬁoﬁld not be taken as an endorse-
| yrhént of -p..oint (bfticés cither for other vortex sheets or for more general

problems of vortex dynamics.
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1. The Role of Roundoff Error

As explained in the Introduction, the point vortex positions
{Z;(t),j=1, ..., N{ may be viewed as approximately interpolating the exact
vortex sheet Z(T',£) at points  {Ij]. The _perturbation,
P(T',t)=2Z(I',t) -T, is periodic in I with period 1 and it is therefore
natural to consider Py(T',t), the trigonorn‘etric» polynomial of degree N—1
which interpolates {P;(t)=Z;(t)—I;j at ' =T; for j=1,... N. A discrete
Fourier transform is required in general to obtain the coeflicients, Pj; (k.t),

OfPN(F.t ):

|=

N :
21.

Yoo oy

N

ﬁN(k,t)=ﬁP,(t)e2"""rf . k=-
i=1

However, in our problem, the fast Fourier transform (FFT) (IMSL 1982) can
be used since the {I';] are equally spaced on [0,1]. We expect that Py(T.t),

given explicitly by:

mlz )

-1
Py(T.t) = 2= % Pu(k,t)e 2T,
k

N
2

approximates the exact perturbation for all values 0<I'< 1. Similar formu-
lae are available when N is an odd integer. The vortices will be connected by

plotting the interpolating curve Py(I',t) + I" as a function of .

A solution to the point vortex equations (0.4) with N=100 was obtained
by Euler's method using A£=0-01. The initial condition was a discretized
linear theory growing mode of amplitudé a=0'01 and waveléngth 1 (see .

(0.3a))
Z(T;,0) =Ty +a(1—-i)sin2nly; . Ty=(j—1)/N. - (L1)

This computation was performed in double precision on a VAX 11/780 com-

puter giving 14 digits of precision.
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The right side of figure 1.1 shows the vortex positions at successive
- times and the left side shows the corresponding interpolating curves. The
vortices tend to form pairs and larger clusters which exhibit irregular small
scale motion similar to that seen by many numerical investigations of
Kelvin-Helmholtz instabilitir after Rosenhead’s. The resulting vortex sheet

quickly tangles and the computation’s reliability deteriorates.

Figt_xre 1.2 displays linear-log plots of the computed Fourier coefficients’
amplitudes | Py(k,t)], as a function of wavenumber k, for 0<t =05 in
sieps of 0-05 and at £ =1. All of the initial conditions considered in this
paper will satisfy P(-I",0) = —P(I", 0), a property that is preserved under

evolution and discretization. This implies that Py( -k ,t) = —Py(k,t) and

therefore only Fourier coeﬁicien’c amplitudes for 0<k <Kpaz, Kmex= g——l

appear in oxir spectral plots. The perﬁurbétion in initial condition (1.1) has,
for O<k<kp,,. only one nonzero discrete Fourier coeﬁicient,
Pu(k= l.f =0)“= a(1 —1',4)’. Figure 1.2 shows the computed initial spec-
trum which contaihs the spike at k=1 and small amplitude numerical noise
(%10713) in all the higher modes. This is nof surprising and is due to
roundoff error in setting'ﬁp the initial condition and in the FFT. A horizontal
line drawn at amplitude In 1073 ~ —30 bounds the noise level of the compﬁ—

tation.

As time progresses, the spike spreads out in frequehcy space and the
higher modes grow in amplitude. For £<0-1, the logarithmic; amplitudés
decrease linearly with increasing wavénumber until they fall below and
remain bounded by the ﬁoiéé level out to k nex- This accords with the com-
mon notion of nonlinear' excitation of frequeﬁcies.

By ¢=0-15 something | unexpecfed has happened. T’hé previéus

behaviour is repeated for k<25 while a wiggly tail of amplitudes has
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emerged just above the noise level for 25<k <k The highest
wavenumber modes grow fastest out of the noise, recalling the dispersion
relation of linear. Kelvin-Helmholtz instability. For 0-2<t <045 the spec-
trum has a low wavenumber band with monotone decreasing amplitudes and
a high wavenumber band with roughly __increasing amplitudes. This
behaviour in the spectrum’s tail indicates a nonanalytic solution. It appears
that before the highest modes are amplified by nonlinearity, they are sub-
ject to linear Kelvin-Helmholtz instability. The foundoff error supplies a per-
turbation to all modes which c_onspires with linear instability to amplify the
high wavenumber modes above the ‘noise level. For 02=<t=<045 _t.hése
modes grow in time at a uniform rate, presumably due to finite amplitude

effects, leading to the irregular vortex motion of figure 1.1.

To understand what would happen if kp,,x Wwere smaller, i.e. using fewer
point vortices, draw a vertical line in figure 1.2 and ignore everything to its
right. If the line is drawn to the left of k£ =25, the premature growth of high
wavenuimber modes does not occur. This is because 'nonlinearity reaches
this lower k,; before linear instability can amplify P N{kmex.t ) above the
noise level. We have observed this in computations using kp.g =20 which
produce a smooth roll up similar to Rosenhead’s. If k¢ is increased, lineér
instability acts on higher wavenumber modes causing them to grow more
rapidly. Thus the increasingly 'chaotic'" small scale behavior previously
observed as more vortices were used is a numerical phenomenon which ori-

ginates in finite precision arithmetic.

This assértion is consistent with Moore's (1981) finding for the circular
vortex sheet. Instead of seeking ways to dampen the short wave instability,
as he did, we prefer to focus attention on reducing the amplitude of the
numerical noise. We believe that for arbitary values of N and any consistent

time integration scheme, approximate solutions to the point vortex equa-
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tions (0.4) with initial condition (1.1), will not exhibit this "chaotic" motion if
the arithmetic is sufficiently precise.

One way to test this conject.ure is to compute with more digits of accu-
racy. Before presen'ting these results, an alternative procedure for control-

lmg the spurlous perturbmg of the higher modes will be described.

Frorn the noise level of the computed 1n1t1a1 condxtlon seen in figure 1.2,
it i_s clear that the computation cannot dlstlngulsh between a mode of zero
ampiitude aud one of.amplitude roughlyv 1071, There.fore.a’t the end of every
time step we reset to zero any Fourier coefficient Whose ampiitude is less
than 10713, The vortex positions are then correspondingly adjusted by an
iri\'rerse FFT and the calculation proceeds to the next time stép. In order for
a mode to grow, its amplitude must therefore jump above the noise level in a
single time step. | | |

F1gure 1 3 shows the result of 1mplementmg this choppmg procedure in
a computatlon whlch is othermse 1dentlca1 to that which produced ﬁgures '
1.1 and 1.2 . For O 5<t<1 5, the vortex sheet rolls up srnoothly 1nto a

splral Past £t =1'5, two types of 1rregular1ty appear in figure 1.3:

(1) Small scale vortex pairing occurs on the almost flat port1on ofv the sheet
between adjacent vortex cores, the "braid” region. This version of
linear Keivi(n-Hehnholtz"instability is inhibited by the strain fleld
induced by the neighb.oring cores and thus occurs on a slow time scele.
This .irregularity also origihetes. in perturbetions introduced by roundoff

| error as will be demonstrated shortly The chopping procedure cannot
be apphed because by this time (t>1 5) the spectral amplitudes have
grown above the noise level. It is not clear how to filter numerical noise
from .these noniero Fourier coefficients without making' ad-hoc assump-
t1ons The straln ﬁeld and 1ts suggestmn of ﬁmte amphtude stablhty will

be dlscussed in greater detail in sectlon 3.
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(2) The spacing between adjacent turns in the spiral becomes smaller than
the spacing between consecutive vortices. Thus vortices on different
spiral turns which happen to lie close to one another capture each
other and rotate in pairs. The resulting distortion and tangling of the
inner turns of the spiral are due to the truncation errors of the I' and ¢
discretizations and not to the roundoff amplification of point (1) above.
The smooth portions of the outer turns are presumably still an accurate
representation of the exact solution. The tangling slowly spreads to

include more spiral turns.

Figures 1.4a,b display linear-log and log-log plots of the spectral ampli-
tudes corresponding to.ﬁgure 1.3 . The chopping brocedure has eliminated
the amplification of numerical noise seen in figure 1.1 while allowing the
higher modes to grow in an orderly manner. For t <05, the computed spec-
trum decays monotonically. In section 2 this decay is analyzed and conclu-
sions are drawn concerning the analytic structure of the vortex sheet. We
point out that the chopping procedure operates only ciuring the time inter-
val [0,0-38], the time taken for nonlinearity ivo amplify P N{¥kmax.t) above
the noise level, beyond which the program reverts to the standard point vor-

tex method.

In ofder to further test our ideas about the role of roundoff error, pro-
gram was run, with the chopping procedure turned off, in double precision
on a CDC 7600 giving 29 digits of precision. Figure 1.5 shows the resulting
vortex sheet. The corresponding spectrum is virtually indistinguishable
from figures 1.4a,b and so is not shown. Now the braid region remains
smooth even for long times. In this run, linear instability acts upon modal
perturbations of smaller amplitude than in the 14 digit calculation. Spuri-
ous growth of higher modes occurs here too, but starting from a lower noise

level, it never affects the solution plotted in figure 1.5 . Calculation with
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high enough values of N does produce irregular vortex motion even for 29
digits of precision. The core regions of figure 1.5 are identical to those of
figure 1.3, supporting the claim that the tangling there is not due to

roundoff amplification.

-A plot of vortex trajectories is given in figure 1.8 . The vortex sheet is
plotted at f=0-486, just when roll up begins. According to linear theory for a
single mode solution, material points move on straight lines inclined 45° to
the horizontal axis {see (0.3)), as observed in this plot for short time,
£ <0-46. For longer times, vortices near the sheet’s center (I'=0-5) move
in spiral orbits while vortex trajectories near I'= 0,‘1, are still fairlystfaight.
Evidently, the linear theory breaks down nonuniformly in I‘—t space.

The existence of certain invariants offers a check on aspects of the

- computation’s accuracy. For a periodic array of point vortices (0.4a) the

.mean vortex position,:
Zm(t) = 'N—z ch(t) [
. ¥ k=1 B A
and the Hamiltonian (0.5) are constant and serve as a check on the ODE

solver. The computed mean position was preserved to high accuracy. A plot

of the computed Hamiltonian is given in figure 1.7 . The mean relative varia-

Ho0(4) — H100(0)

Ho(0) 4/ At | ™ 0005, a reasonable
10000}

tion in Hig(t) per time step was |
accuracy for first order time integration with At=0-01.

An effort was made to assess the importance of a more familiar
roundoff effect, namely loss of significant digits due to cancellation. In the
interaction velocity calculation of equation (0.4a), expressed in real and
imaginary parts, the denominator

cosh(2n(¥~ 1)) — cos(2n(X; X)) .

was replaced by the equivalent
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2(sinb¥(n(Y;—Y.)) + sin¥(n(X;-X,))), where Z; = X; +1iY;,

as suggested by Van de Vooren (1985, pub. 1980). We also tried various
implementations of the Biot-Savart summation in (0.4a) including Kahan's
algorithm (Dahlquist 1975) for controlling loss of significance, and sym-
metric summation. In the latter, interaction velocities with indices k =3 +1
are summed in pairs and the resulting terms are summed in increasing

magnitude. None of these devices had any significant effect on the com-

puted results.

Since the erratic small scale motion previously observed in computa-
tions with a large number of point vortices for this problem can be con-
trolled, it becomes reasonable to inquire into the convergence properties of
the approximation. Figures 1.8a,b show the evolution for N =20 using
Euler's method with At between 0-1 and 0-005 and then using 4% order
Runge-Kutta with Af =0:05. As the truncation error due to the time integra-
tion becomes smaller, the approximate votex sheets converge to a curve
with a tangled core. We observed this for several different values of N and
conclude that it is a property of exact solutions of the point vortex equa-
tions (0.4).

Such tangling is not expected for solutions of the continuous equations
(0.2). In fact, the invariance of the continuous system’s Hamiltonian, (0.6)
implies that a continuous vortex sheet cannot cross itself unless the vortex
sheet strength is also zero at the point of intersection. The invariance of f.he
discrete system’s Hamiltonian, (0.5) only precludes the arbitrarily close
approach of point vortices and imposes no obvious constraint on the approx-

imate vortex sheet constructed from those vortices.

These remarks suggest that the ezact evolution of a finite number of
point vortices is not a particularly accurate approximation to the vortex

sheet evolution under consideration. If this is true then the common
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practice of previous investigators in solving the point vortex equations (0.4)
very accurately has been self-defeating. It may be that the approzimate
evolution of a finite number of point vortices gives a better approximation to
the continuous vortex sheet. Some of our calculations using Euler’'s method
and large At give plausible approximations to the physically observed
‘smooth roll up. The smoothingveﬂect of large time steps was noted by Cho-

rin & Bernard (1973) in the context of a different vortex sheet. -
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2. The Formation of a Singularity

The point w'/orte_x method is used in this sectioﬁ to study the formation
~ of a singularity in tine vortex sheet. Sulem, Sulem & Frisch (1983) (referred
to later as SSF) showed that [;seudospect:ral numerical methods can cietect
the analytic structure §f periodic solut'}ox;xs of nonlinéar évolution equations
up to the tjrne a singularity occurs. ThlS approach will be exblained and
then applied to the point vortex resuits.

Consider an evolution equation for which real analytic initial data is
given. A basic mathematical issue is whether or not "breakdown”, L.e. loss of
analyticity, occurs in a finite time. A simple example of breakdown is the
development of shocks for the inviscid Burgers equation with periodic ana-
lytic initial data. The analytic continuation into the complex plane.of the
real analytic solution will generally have complex singularities. As the solu-
tion evolves, each singularity traces a curve in the complex plane. One view |
of breakdown is that such a curve intersects the real axis in a finite time. To
detect this, SSF exploited the relation between the analytic properties of a
function and the high ‘frequency asymptotic behaviour of its Fourier

transform (Carrier, Krook & Pearson 1966).

Suppose that for I' in a complex neighborhood of I'p(t) + i6(t), the func-

tion P(I',t ) has the behaviour :
P(D.t)~ (T = (To(t) +i6(t) ) &), . (2.1)

where Tg is real, >0 and s >—1. If this branch point is the closest singular-
ity to the real axis in the upper half plane, then the Fourier coefficients of P

decay asyrriptotically for k »oo,

ﬁ(k,t) ~ o —a(t)+1)g —k6(8) , *T0l8) : . kot (2.2)

The exponential decrement 6(t) is the width of the analyticity strip in the
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upper half plane and u(t) is the order of the branch point.

Pseudospectral ‘solution of the evolution equation “).rields apﬁroximate
values ‘of. ﬁ(k.t) ‘at eéch time step. Sulem, Sulem & 'Frisc_h proposed
estimating u(t) and 8(t) by least squares fitting of the model (2.2) to the
appi'oxdmate spe;:trum co'mputed. 1n this way. A narrow band of
wavehumbers adjabeht t‘o.k':'m was excluded from the fit since these were
tﬂhoﬁg'ht‘ to be inaccurate due to series truncation efects. Fourier
coefficients whose émplitudes are‘ in the noise level are not described by
(2.2) and were also excluded. Numerical evidence for global time analyticity
is obtained if the fitted 8(¢) remains positive. Alternatively, breakdown may
be deduced if 6(t) equals zero within. the computation’s resolution at a finite
time £;. At the critical time {;, the spectrum decays algebraically and the
fitted ue =u(t;) tells how many derivatives the solutidn' retains. For exam-
ple, if 1<y, <2then P(T.f;) has a continuous first derivative but its ,sec;>nd
derivative is undefined at Tg(£;). . -

Sulem, Sulem & Frisch pointed out that these estimates of the-critical
values, f{; and u., depend on the range of corhputed Fourier coeflicients
included in the least squares fit. For the shock solution of Burgers equation
which they studied, exponential decay e F6(t) persists up to f; in the high
wavenumbers Wh_ile power law decay_k—(_p’ (fe)+ 1) at f; dominates the low
_wavenu;nbers. These authors therefore use a high wavenumber band to esti-
mate f; and a low Wayepumber band for Hc and obtain agreement with the
known criticaly_value‘s The uncertainty in the method’s estimates of critical
values has not been rigorously analyzed and caution ‘seems advised when
interpreting the results for solutions of gquations whpse analytic structure
is sought. This issue is discussed by Brachet, et. al. (1983) who applieci the

method to the Taylor-Green flow.



20

For the reasons outlined in the Introduction, it was commonly believed
that Rosenhead's method was incapable of capturing the analytic properties
. of Kelvin-Helmholtz instability. Moore (1979') and Meiron, Baker & Orszag
(1982) (referred to later as MBO) therefore employed asymptotic, analytic
and alternai:ive_numerical tecﬁniqu_es to compute Fourier coeflicients for
the vortex sheet from which conclusions were made using the model (2.2).
For initial condition, Moore. used a transverse sinusoidal perturbation and

MBO used a flat vortex sheet with sinusoidally perturbed strength.

In ‘sﬁpite of differepces in initial conditions and methodology, both inves-.
tigétioné revealed essentially the same phenomena :

(1) A singularity forms in a finite time‘ which depends upon the initial
afnpli‘tl.lde. An explicit asymptotic relation for this depéndence was
given, valid for small arhplitudeé.

() ’i'he algebraic 'decay rate at the critical time is g = 1-5 (Moore),
.p.c =1-7+0-2 (MBO). ‘vT.his implies that the she‘et"s curvature becomes
undefined at some point. The sheet however retains a Hélder continuous

tangent vector at all points.

(3) When the singularity forms, the vortex sheet strength has a cusp

‘although the sheet shows no sign of roll up.

These phenomena (except for the last part of (3)) will now be confirmed
by using the point vortex method. with roundoff perturbation controlled, to
calculate approximate values of P(k,t), as explained in section 1, and then
estimating the critical values as described above. Conc'ernin’g (3), it will be

"shown that the singularity time marks the beginning of a small scale roll up

that could not have been noticed by the methods of Moore and MBO.

Recall that the initial condition used in our work is a discretized grow-

ing mode of linear theory (1.1). The almost straight lines in figure (1.4a) for
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- short times, £ <0-45, and high wavenumbers, k> 15, indicate that the com-
puted spectrum decays exponentially as a function of k. As t increases
from 0 to 045, algebraic decay appears in the lower wavenumbers and gra-
dually spreads to cover a wider band of frequencies (note the almost
straight lines in figure 1.4b). This behaviour is consistent‘v with the
hypothesis that a complex singularity of P(I',t) is approaching the real

axis. We have implemented the least squares fit by transforming (2.2) to:
In] Bk, t)| ~~(u(t)+1)Ilnk - 6(t)k + C, (2.3)

which is linear in Ink and k. In the following, a superscript N (e.g. t¥), will

denote a calculated value based on N point vortices per wavelengthvusing

Euler's method with a time step of At = ;/— A symbol with superscript o

(e.g. u¢’) will denote a value extrapolated to N-eo.
Plotted in figures 2.1a,b are the computed 6!%(¢) and w!%(t) using
model (2.3) fitted to several high wavenumber ranges. The width of the dou-

ble line in figure (2.1a) is the smallest resolvable waveléngth for this compu-

tation, k2" . The computed 61%%(t) approaches zero linearly and the criti-
max
cal time, taken as the first time step for which §190(t) < kZ" , is estimated
mex

as t/%°=0-46. The accuracy of this value could be improved slightly by

21

using linear approximation to determine when 6!%(¢) = P This situation

max
contrasts with that for the inviscid Taylor-Green vortex (Brachet, et.al.
1_983) in which the exponential decrement approaches zero exponentially
making determination of {; a more delicate matter. Changing the band of
fitted wavenumbers had only a small effect on §'%(¢) as long as a band of

high wavenumbers was included.

Relying on the findings of SSF, to study the low wavenumber power law

we will exclude the exponentially decaying high wavenumbers from the fit.,
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Plotted in figures 2.2a,b are 61%(¢) and u!%(t) using model (2.3) fitted to
several low wavenumber ranges including 1<k <15, the range used by MBO
in obtaining result (2) above. A value of xi% =1-11 based on this range is
observed. The estimated value of L, depends on the range of low
wavenumbers used in the fit and we cannot ascribe special significance to
any of thg particular values in figure 2.2b . We believe however that
1<y, <2 and find support for this in the plots of vortex sheet strength to be

presented below.

Since the computed critical time and algebraic decay rate depend on
N, the calculation was repeated for eight values of N between 50 and 400.

Table 2.1 records these results and figures 2.3a,b plot the computed tY and

.

N "The curve drawn in these figures is a least squares fit

Y as functions of

of the eight data points to a quadratic model. The good fit obtained is evi-
dence for the existence of constants, £ and uZ, to which t¥ and u con-

verge asymptotically,

¢ £
tc“~t£V+ —Nl—+ N—Z+ . for N-c when At=—jlv-,

and similarly for 4. The constants ¢,,c,,... depend 6n the initial condition
but are independent of N. Extrapolated values obtained from these curves
are t; =038 and u"=1-9.

This critical time is less than that, 068 in our units, predicted by
Moore's asymptotic relation. This is due to the difference in initial condi-
tions whose effect upon the evolution will be discussed in section 4. The
algebraic decay rate obtained here supports the conclusion in (2) concern-
ing the regularity of the sheet at the critical time. The theoretical and
numerical significance of this aspect of the singularity will be discussed in

section 5.
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Figure 2.4 shows the numerical solution using N-=250, A=0-004 at suc-
cessive times in a neighborhood of the critical time, t2*°=0-416. A closeup
view of the core is plottedbtogether' with the vortex sheet strength as a func-
tion of I, computed by pseudospectral differentiation. The critical time
coincides with the formation of a cusp in .the vortex sheét strength as
observed by the previous investigators (point (3) abové). Contary to their
findings, we observe that roll up on a very small scale also begins at the crit-
ical time. Because thévv'ortex‘ sheet remains cont:ihuously differentiable at
t;, the ensuing roll up appears ""smooth".

F“lgure 2..5 displays the vortéx sheet strength as the cusp developes. In
the core (I'~0-5) the strength increases monotonically as t»t2%0 from
below. Most of the growf.h in the cusp’s amplitude takes place vvery close to

the critical time.
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3. Some Physical Properties of Roll Up

This section uses the computational results of section 1 to display vari-
ous physicai properties of the vortex sheet evolution including the strain
rate along the sheet, growth of the sheet's arclength, streamlines of the
induced velocity field and the maximum sheet displacement. Strain rate
and arclength have been identified as iniportaht parameters in combustion
problems (Ghoniem. Chorin & Oppeﬁheim (1982)).

Corcos & Sherr%lan (1983) have studied thev tangential strain felt by a
passive materiai curve in a viscous shear layer. The scalar strain rate y was

defined to be the proportional rate of extension along the curve:

_ o1 8(dl) _ Bus
LAl P R T P (3.1)

where dl is a Lagrangian curve element, u; is the curve’s tangential velocity
and 3/ 0s means differentiation with réspect to arcléngth. Positive values of
7 imply local stretching of. the material curve and ‘hegat;lve values imply
local éompreséion. These authors presented a contour plot of ¥ as a func-
tion of time and of a Lagrangian curve parameter. The success of this
approach in yielding a deeper understanding of sheaii layer dynamics has

motivated the present study of the strain rate along the vortex sheet.

The viscous shear layer studied by Corcos and Sherman had, at £ =0, a
cont_inubus vorticity distribution. The vortex éheet model can be heuristi-
cally viewed as the limit in both vanishing vis'cosity and initial layer thick-
ness. Comparison of the strain rates in the two studies offers some insight

into the nature of this dual limit.

For the vortex sheet, ¥ can be expressed as :
7(F,t)=Re(a(UZpZ¢ )r). Re =real part. : (3.2)

This follows from (3.1) since the real and imaginary parts of ¢Zr form a unit
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vector tangent to the vortex sheet and 8/8s =0d/ I Pseudospectral
approximation of 9’ by this expression should be very'accurate up to the
"critical time. Alternatively, one may approximate expression (3.1) by:

. 1 ) iZfH"Z;II_IZ}‘;II_Z}‘_II
| Zf ) - 27 | ot A

AG+RAT. mat ) ' (39)

where 7' is the position of the 7* point' vortex at time nAt. Figure 3.1a
shows a contour plot of ¥(T', t ) over the half period 0<I'<0-5 up to t=1 and
figure 3.1b’is a closeup plot for 004<I'=0-5 and 0'4<t<0-5. The plotting
routine has left white space in regions where the contour lines are very
close. Figures 3.2a-d show ¥(T',t) for I'=0,025,0-45,0-5 as functions of
time up to £=4. These values of ¥ were computed by the finite difference
expression (3.3). The corresponding vortex sheet was shown in figures 1.3
and 1.5.

' 'I'he rhost prominent feature of these pl"ots is the discontinuous strain
r"ate. at the interface’s clentex".f'f'=0"5.v A global mmlmum in It space of
y™—20 occurs at the critical time (£1%=0-46) and a global maximum of
7§i +40 occurs one t'u:ne StéAp‘later. Computatio‘n;s with increasiné values of
N showed an incre'ésing jump in y at t¥ from negafive'to positive. values. In
their study, Corcos and Sherman found a continuous strain rate with global
extrema roughly +10 (in our units) in the core around the time at which the
material curve achieved a vertical slope. As expected, viscosity and finite
layer thickness at t-#o produced a less fierce roll up than does the inviscid
vortex sheet model.

Examination of figures 1.3 ( for ¢ =04), 3.1 aulnd 3.2 reveals that up to
the critical time, nega't'i\.?e ‘strain near I'=05 pulls point vortices closer
together and into 'l:.h'e lcore region. This 'cofnpress;ion at the c'enter.causes
the c.>ut.er' portioris of the éheét to stretch. FOr exarnple at £=0, 50% A,of tﬁe

sheet ('0-25<F.<0'-75) is stretching while this fraction increases to 80%
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(0<I'<0-4,0-6<I'<1) by £=0-4. For the viscous, finite initial thickness layer
the opposite was observed, i.e. before roll up, more and more of the inter-
face was compressed though to a lesser degree than seen here. Professor
Corcos conjectures this is due primarily to finite initial thickness rather

than nonzero viscosity.

In our problem, the concentration of vorticity and negative strain rate
at the sheet’s center are tésolved at the critical time when the vortex sheet
"eracks"” (curvature discontinuity of section 2) leading to the large pbsitive
strain rate just past t,{.v. Beyond the critical time the strain rate oscillates
both in time and along the ihterfdce in qualitative agreement with the
results of Corcos & Sherman. Figures 3.1a,b indicate a predominance of
positive strain rates, with the braid region (I'~0,1) being continuously
stretched for long times. Figure 3.3 shows the resulting increase of the
sheet’s arclength. To obtain this plot, the arclength element ds was approx-
imated by the chordlength | Z;4+; —Z; | of consecutive point vortices. Up to
t¥ the arclength hardly grows, but it increases linearly With time afterwards.
This was observed using othér values of N with larger rate of increase of
arclength for larger N. The numerical results do not rule out the possibility

that the continuous vortex sheet developes infinite arclength past £,.

Another effect of the predominantly positive strain rates beyond ¢} is to
smooth out small amplitude short wavelength perturbations in sheet posi-
tion. This was élready observed numerically‘in section 1 in connection with
the slow irregular motion of point vortices in the braid regioh for the 14
ydigit calculation (figure 1.3). It appears that the singularity has a stabilizing
effect on the vortex sheet evolution. The relation between vortex sheet
stretching and stability has been studied by Moore (1978). The stabilizing
effect of a singularity is known for shock waves (Lax 1973) and has also been

observed recently in cusp formation for a model of flame propagation



27

(Sethian 1982).

' Streamlines are an important visual aid to understanding two dimen-
sional iﬁcompreésible fluid flow. For é periodié vortex sheet Z (T",t), the
stream function at an aribtfai‘y point 2z not on the sheet is givén by:

o L n ' ‘ , 1

Yz t) = 'é;r‘fo In |sinn(z —Z(T.£))| dT". (3.4)
This integral is & simple layer of strength = o the vortex sheet strength
(Kellogg 1953). .Away. from the vortex sheet the ihtegral is propér and ¥ is

L1

harmonic. Both the stream function ¢ and the tangential derivative Bs

continuous across the sheet while the normal derivative %’% has.a jump

discontinuity equal to ¢. Trapezoidal quadrature of the integral in (3.4)

yields the stream function ¥y(2,t) of a set of periodic point vortices:

et = 58 nlsimn(z-AO) . (@)

If 2 = Z;(t) for some index j then the summation above should omit k=j3 .

Contour piots of"¢) at successnive times were obtained usihg approxima-

tion (3.5) and are displayed in figures 3.4a-h. The contour lines have deli-
. . . . ] . : . . . . Q’L
berately not been smoothed in order to display the jump in an across the

vortex sheet. T§ avoid sgeiné the circular streamlines qlose to the point vor-
tices, Yy was evaluated on a coarse mesh (35 by 35). The cpntour plotting
routine has diﬁ"lcult_.y.r:ésolving the saddle [;oints I'=0,1 of thé_ stream func-
tion and the plots should not be taken literally near these points. Such
errors in these contour plots could be diminished by using the tri-

gonometric interpolating curve to obtain a more accurate evaluation of the

integral in (3.4) than that given by (3.5).
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Streamlines intersecting at ['=0,1 separate an unbounded region of
open streamlines away from the interface from a bounded region of closed
strearnlines surrounding the interface. This latter region of recirculating
fluid (dubbed "cat’s eyes’ by Kelvin) allows the two fluid streams to mix. For
roughly £ <3, fluid continuously has crossed the cat’s e);e boundary, enter-

ing the bounded region and causing its area to increase.

Figure 3.5 shows the computed maximum sheet amplitude, - Yiag(t)
plotted against time. Exponential increase occurs up to ¢ ~0-46 =£ fol-
lowed by an interval of approximately linear increase £J° <t <3. The
bumps in amplitude appearing for later times are due to the tangling of the
sheet’s turns. For £ > 3.5 the rolled up sheet is shrinking in amplitude but

increasing its streamwise extent extent.

At late times (f~4) the recirculation region stops growing and ;the
closed stréamlines assume an elliptical concentric pattern which flattens in
the streamwise direction. For ¢t <4 the vortex sheet remains inside the cat's
eye. At £ =4 it appears that some portion of the vortex sheet crosses the
cat’'s eye boundary into the streaming fluid. In a real shear layer, further
growth can take place through pairing of adjacent vortex cores as observed
experimentally by Winant & Browand (1974). This long wave instability con-
trasts with the short wave stabiiity (after roll up) indicated above. Patnaik,
Corcos & Sherman (19768) numerically studied vortex pairing in a viscous
shear layer by including a subharmonic linear theory eigenfunction in the

initial condition. This could also be done for the present vortex sheet model.
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4. The Effect of Varying the Initial Condition.

In this sectlon we w111 ﬁrst make some general remarks concermng our

choice of initial condition (1.1) and then study numerically how different ini-

tial condltions eﬁect some properties of the evolution. All computations

presented in this section were performed with N =250, 29 digits of accu-

racy, the chopping procedure turned on at the levei 107% and Eulers

method with At =0-004.

The vortex sheet modei under study has. two components, namely the
evolution equation and the initial condition. It is reasonable to require some
degree of consistency between these components Mathematically this
means that the 1mt1al condltion should belong to some ciass of functions for
which the initial value problem is well posed for at least a finite time.
Sulem. Sulern, Bardos. & Frisch (1981) have shown that a cless of analytic
functions, bounded in a certain norm, meets this requirement. One also
seeks to determine those initial conditions which approxirnate a physically
interesting situation and which do not violate the modelling assumptions.
implicit in the evolution -equation. Since the vortex sheet is essentially a
long wave approximation to a shear layer of finite thickness, we would not
expect to obtain meaningful results from initial conditions which contain
arbitrarily short wavelengths of large amplitudes. This gives heuristic credi-
bility to the mathematical well posedness result mentioned above. The fact
that by a finite time the evolution equation has amplified the short
wavelengths in a particular way is not ineonsistent with the need to restrict

the size of these short wavelengths in the initial condition.
Experimental observation should also guide the choice of initial condi-
tion. Corcos & Sherman {1983), citing the experiments ‘of Thorpe (1971),

have emphasized that shear layers exhibit a sharp selection mechanism
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which initially inhibits the growth of all but a single dominant wavelength.
While this mechanism needs further study, it motivates our use, in the vor-
tex sheet model, of a growing eigenfunction of linear theory with small
amplitude to wavelength ratio as the initial condition. This choice yields a
model which is mathematically consistent and that we hope has physical

content.

Consider the following initial conditions:

- Z(I',0) =T+ a(1-i)sin2nT, (4.1)

Z(I0) =T +aisin2nl. (4.2)

The right side of (4.1) is a linear theory growing mode whose complex conju-

gate is a decaying mode (see 0.3a,b). The transverse sinusoidal perturba-

tion (4.2) considered by Moore (1979) is a linear combination of growing and
decaying modes of equal amplitude.
We pose the following questions :

(1) The numerical results presented thus far have used initial condition
(4.1) with @ =0-01. What effect does changil;lg the initial émplitude have
on the evolution?

(2) How do solutions uéing (4.2) compare with those using (4.1)?

(3) Using (4.2), Moore derived the following asﬁnptotic relation between

the critical time £; and the initial amplitude a (expressed in our units):

2 ,
1+ 71, +In2n7, = ln;r?.'—, . (4.4)

t, =1, + L 2 _, ... | a-so0.

2T, 48n3712

How well do point vortex solutions using (4.2) agree with this result?

~~
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To answer the first question, computations using (4.1) were performed
fop.values o_f a between 00025 and 0-08. .In all .cases _it was.observed that
smaller. @ led to smaller Ypu(f:) and larger £;. For values of a less than
approximately 0-04, the evolution was generally similar to what has already
been described for @ =0-01. Initial amplitudes larger than 0-04 produced
some significant diﬁeregces. These are evident in figure 4.1 which shows the
evolution using a =0-08.

‘First, point vortices crowd together along a portion of the core region
forming approximately a straight line segment. At the critical time, two

.cusps have formed. in the vortex sheet strength at positions corresponding
to thé straight segment's ends (figure 4.2). .Then both ends roll up on a
small scale and eventually:merge... A plot of Fourier coefficient ami:iitudes
(figure 4.3) reveals a -modulation .of : the previous. behaviour,
| P(k)| ~k~®+tDe~8 up to t,, which had been observed in section 1 for
a =0-01. This modulation does not occur when a single. branch point in the
upper half plane approaches the real axis and must therefore be.due to a

more complicated distribution of complex singularities.-

The evolution using (4.2) and @ =0-08 is shown in figure 4.4 with the
corresponding spectrum in figure 4.5 . Straightening and double roll up,
similar to that of initial condition (4.1) for large a, was observed here for
smaller initial amplitudes (e.g. even for a =0:01)." Such behaviour was previ-
ously observed (see our figure 0.3a from Birkhoff & Fisher {1959)) and inter-
preted as irregularity. Now we can explain the double roll up as the oﬁt-
come of sheet straightening which itself can be.caused by large initial ampli-
tudes or inclusion of a decaying linear mode in the initial condition. In com-
putations using initial condition (4.2), a singularity developed later than for
initial candition {4.1) with equal amplitude. 1t is plausible:that this delayed

critical time is due to an interaction between the growing and decaying
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modes initially present in (4.2) .

For both initial conditions (4.1) and (4.2), as a becomes smaller, the
two cusps approach I'=0-5 until they cannot be distinguished from a single
cusp. For (4.2) these ‘cusps remain distinct for smaller values of a than for
solutions using (4.1) . Whether two distinct cusps persist in the exact solu-
tion as @ -0 or bifurcate from a single cusp at some finite initial amplitude
could not be determined by the present computations. Chorin (1983), in a
numerical study of instability of fronts in porous media, has also observed
qualitative changes when the initial perturbation amplitude is raised above a
certain value. I cannot explain why the spectrum of figure 4.5 is so much
less smooth than that of figure 4.3 . The modulated behaviour of Fourier
coeflicients for certain initial conditions makes critical time prediction by
the method of Sulem, Sulem & Frisch (1983) less straightforward. This is
because the simple model of spectral decay (equation {2.2)) is not strictly
applicable. Alternatively, the critical time may be estimated by the
occurence of several other related events: minimum séparation of two point
vortices, global minimum in strain rate along the sheet, cusp appearing in

sheet strength.

Table 4.1 contains critical times which were collected in this way for
various values of @ and N, uSihg initial conditions (4.1) and (4.2). Critical
times £;°(a), extrapolated to N-= as in section 2, are plotted in figure 4.8
together with the first three approximations to f;(a) given by Moore's
asymptotic relation (4.4). For values of @ =0-04,0-08 the first term of (4.4)
gives the closest agreement with our computed critical time. As a
decreases to 0-0025, the first two terms and finally the first three terms give
the closest agreement. These results are consistent with the asymptotic

validity, as a -0, of Moore’s relation.
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Figure 4.8 also shows that the critical time for the growing mode per-
turbation (4.1) is smaller than that for the less physically motivated (4.2).

The critical time thus depends on both the initial perturbation's amplitude

~and its particular decomposition into linear theory eigenfunctions. Although

both Moore's result and our I.:)oint vortex t:omputatioris lack rigotoﬁs
justification, their agreement gives confidence in the reliability of these crit-

ical times.
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5. Discussion and Conclusions

Rosenhead's classical numerical method for vortex sheet evolution from
analytic initial data has been examined using the discrete Fourier analysis
techniques of Sulem, Sulem & Frisch (1983), leading to a deeper but still
incomplete understanding of Kelvin-Helmholtz instability and the point vor-

tex approximation. .

.Previous investigations using a large number of point vortices have
failed because short wavelength perturbations introduced by machine
roundoff error grow exponentially fast during the linear instability stage of
the evolution. This mechanism should be con.trasted with loss of significant
digits, a more familiér finite precision effect. This occurs for example when
nufnbers of disparate magnitude are added or a number is divided by
another of much smaller magnitude. Perturbations grow in the present case
not by arithmetic. accumulation of rounding errors but because of the

model’'s dynamics.

If the exact initial perturbation is analytic then its high frequency
amplitudes decrease exponentially fast with increasing wavenumber. The
number of point vortices used is alsq the highest wavenumber resolved by
the computation. With a large number of point vortices, this means that the
computed discrete initial spectrum’s high frequencies are dominated by
computational noise and their amplitudes do not decay. The numerical evi-
. dence suggests that the high frequency modes grow 1n time either by
amplification of roundoff error perturbations or by nonlinearity. The com-
putational challenge is to suppress the former while not disturbing the

latter.

We call attention to the numerically observed asymptotic nature of the

relation between machine precision, number of computational elements and
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the error in the computed solution. With more than a certain number of
vortices, which depends on the rnachine'précision, larger computational
errors are incurred. This is because with more point vortices, shorter
wavelengths  are represented and once spuriously perturbed, amplify
quicker, leading to faster collapse of the computation. For any number of
point vortices, a sufficiently precise calculation will reduce this source of
computational error. This is because with greater machine precision, the
spurious short wave perturbations enter the corhputation at a lower ampli-
tude. Past an amount which depends on the number of computational ele-
ments, extra precison has no significant effect on the computation. The pre-
cision necessary to decrease the computational noise to a harmless level

increases sharply with the number of vortices.

‘The numerical phenomenon described above can be expected to occur
for other physical models which exhibit linear short wave instability (e‘.g.'
Rayleigh-Taylor instability). The severity of the problem also depends on
what is happening dynamically. For Kelvin-Helmholtz inétability, an increase
in the amplitude of the initial perturbation causes faster developement of a
strain field whose predominant stretching stabilizes the roll up to small
amplitude short wave perturbations. Conversely, with smaller initial ampli-
tudes, the‘linear instability stage of the evolution is prolonged, allowing
more time for the spuricus- perturbations to grow. We expect that the
roundoff amplification problem would be diminished by the inclusion in the
model of surface tension, .finite initial layer thickness or viscosity which sta-
bilize short wave perturbations according to linear theory.

‘Because high ‘precision' arithmetic is expensive, we have introduced a
chopping procedure which allows more computational elements to be used
for a given machine accuracy. The procedure is heuristically justified if th.e

initial perturbation is analytic, making it easiér to distinguish arithmetic
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noise from the genuine high frequency component. Under such cir-
cumstances, chopping effectively forces the computed spectrum to have
compact support for a finite time. - During this time the computed solution
approximates an analytic function in accordance with the theoretical result
of Sulem, Sulem, Bardos & Frisch (1981). The chopping procedure turns off
when nonlinearity has amplified all the modes above the noise level. Some
of the vortex blobs currently used for other flows have Fourier transforms
which decay at high frequencies (Chorin 1973 and Beale & Majda 1983). It
may be that for the present problem, such computational elements will
loosen the precision constraint with no drastic damage to the truncation

error. Discrete Fourier analysis should be useful in testing this conjecture.

Our point vortex results confirm the formation of a singularity in finite
time for analytic initial data as found by Moore (1979) and Meiron, Baker &
Orszag (1982) using different techniques. For initial conditions (4.1) and
(4.2), Z(T',t) remains analytic at the critical time except at one or two
values of I', corresponding to the centers of the roll ﬁp, where the sheet
retains a Holder continuous tangent vector. The Cauchy principal value
integral in {0.3a) can still be defined for such a vortex sheet although the
methods used by Moore and MBO rely on the sheet’s analyticity and are for-
mally valid only up to the critical time. Itherefore disagree with the conclu-
sion of Moore and Meiron, Baker & Orszag that this singularity's formation
restricts the validity of the vortex sheet model at the critical time. The indi-
cations that past the critical time the sheet has an inﬁnite number of turns,
as conjectured by D. Pullin {private communication), and infinite arclength
Seem to pose difficulties for the proper definition of a Cauchy principal valué
integral. Infinite spiral vortex sheets with special structure have been stu-
died asymptotically and numerically (see Pullin & Phillips (1981) for some

recent work) and we hope to eventually relate these results to the present
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work. - -

The formation of the singularity explains the difficulty encountered by ‘
the numerical methods of .Van de Vooren (1965, pub. 1980) and Fink & Soh
(1978) in studies of Kelvin-Helmholtz instability. These methods rely for
their consistency on the existence of higher derivatives of the exact solution
and even if the pfoblern of roundoff arnpliﬁcétion ié éircﬁmvented, erratic
sheet motion appears beyond the critical time. We have checked this by
using Van de Vooren's correction (0’7) evaluated by pseudospectral
diﬁeren.tiation in I. At ihe critical time, the correction tern; (Zfr/ ZF)J-

becomes undefined at some point.

A standard objection to Rosenhead's method for vortex sheet evolution
is that it neglects higher order terms associated with the integrand singu-
larity in the Cauchy principal value integréll (0.2a) (Fink & Soh 19‘78)‘. Recall
however the definition of ‘such an integ'ralv as.the limit as £-0 of proper
int_;egrals for wﬁich a symmetﬁc interval of length £ around the singularity
has been removed. The omission of a velocity self interactibn term in the
sﬁmmation (O.4a) is a subtle numerical implementation of fhis definition.
Consistency of the trapezoidal quadrature, which was used in approxima£ing
(0.2a) by (0.4a); follows from the Holder cén_tinuity of the vortex sheet
strength. These cbnsiderations do not necessafily apply to vorticity distfi-
buted over two and three dimensiona.l. Avolumes for which the Biot;Savart
integralv is improper. | | |

- Up to the critical time, the vortices move approximately on straight
lines implying that even Euler’'s method with a large time step is accurate.
Past the critical time we have seen that reducing the time truncation error
for fixed N leads to sheet f.angling. We view this as evidence that the exact
evolution of a finite number of point vortices does not describev with uniform

accuracy the evolution of the particular vortex sheet under consideration.
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We have observed more plausible behaviour using Euler's method with

At = i and 9>1. A complete understanding of the relation between the T’

N

and t discretizations is lackirig. and presents another interesting area‘ for

. future research.

The forrnaﬁon of the singularify results from a cc-mc‘entration'of 1vorti-
city and has dmmical signiﬁéance. At the critical time, the t;angential
strain raté at;. somé materidl point jumps ffom a large negative vélue to é
large positive vélu‘e as the sheet Begins to roll up ‘on a small scﬂe. The ensu-
ing roll up is stable to small amplitude short wavelength perturbations, in
the sense that such perturbations do not grow drastically. This contrasts

with the strong short wave linear instability before the critical time.

Birkhoff & Fisher (1959) noted the relevance of the Poincaré recurrence
theorem (Thompson 1979) to the periodic point vortex equations (0.4). For
the theorem to apply, the point vortices must remain in a bounded region of
the configuration space. This is satisfied by using periodicity to identify
point vortex arrays modulo integer shifts in the horizontal direction and
assuming bounded motion in the vertical direction. The theorem says that
almost every configuration will eventually return arbitrarily close to its ini-
tial configuration. Birkhoff & Fisher concluded that vortex sheets eventually
have to unroll. Recall however that it is the configuration of point vortices
as well as their ordering and the curve that connects them which determine
the approximate vortex sheet. A particular vortex configuration may recur
even though the vortex sheet has rolled up. The recurrence of the point vor-
tex configuration does not mean that the sheet has returned to its initial

shape.

We have demonstrated that information about vortex sheet instability

can be obtained by using the point vortex approximation. A rigorous con-
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vergence proof is still lacking, although we observed convergence of the crit-
ical values for a particular ratio of Af to A' when roundoff error
amplification was controlled. Clearly the model studied in this p.aper cannot
describe éllv aspects of a real %nixing 1a§er. However, 'ﬂ: appears that a
periodic vortex sheet with analytic perturbations is capable of modelling
some features of the initial stages of transition in turbulent mixing Iayers.
In the future we hope to restore some of the physical effects neglected by

this model in order to facilitate comparison with experiments.
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Least squares estimates for the critical values t», u¥ for various values of N.

N ky tN(5<k<k,) ud (1=k<15)

50 20 05 0-736
100 40 048 111
124 50 0-448 1-226
166 70 0-432 1-368
200 80 0-425 1-446
250 115 0-416 1-531
312 140 0-4096 1-6808
400 180 0-4025 1-675

- — 0-38 19

TABLE 2.1

Note the different ranges fit to obtain columns 3 and 4. The extrapolated |

values £;°, t in the last row were obtained by fitting a quadratic function

through the eight data points as in figure 2,3 .
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N 0-0025 0-005 0-01 0-02 0-04 0-08

50 0-88 0-68 0-50 034 0-22 0-12

100 0-80 0-62 0-48 0-31 019 012

200 0-75 0-58 0-425 0-285 0175 012

250 0-74 0-572 0416 | 028 0172 | 0116

oo 0-89 0-53 0-38 0-25 0-16 0-11
TABILE 4.1a

Values of ¢ for various @ and N using initial condition (4.1). The row

labelled «» was obtained by least squares fitting of the four values for fixed a.

AN | 00025 | 0005 001 | 002 .| 004 008
50 114 . 098 0-84 0-86 05 0-36
100 1.08 0-93 0-77 081 0-45 031
200 1-045 0-89 073 0-57 0-42 0-285
250 1-038 0-878 0-716 0-56 0412 0-28
0 1-00 0-83 0-68 052 038 0-26

TABLE 4.1b

Same as above except that initial condition (4.2) was used.
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F1a. 165a-e.—Instability of a surface of
geparation.

Figure 0.1 Roll up of a vortex sheet. (Prandtl & Tietjens 1934)

(T t)

Figure 0.2 Plots of the linear theory growihg mode (0.3a) with 2=0-01

fort=0,01,02,03,04,05.
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Figure 0.3 Rosenhead's (1931) solution of equations (0.4) by Euler's method
with N =12 and At =0-05.
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Figure 0.4 Numerical solution of equations (0.4) with N =20 and At in the

range 0-0005 -0-002 using 4% order Runge-Kutta integration. .

(a) large initial amplitude (b) small initial amplitude {(c) vortex trajectories
for initial conditions similar to (b) (copied from Birkhoff (1962) and Birkhofl

& Fisher (1959))
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Figure 1.1 Solution of equations (0.4) with N =100 by Euler's method using

At =0-01. The initial condition is (0.3a) with @ =0-01 and £ =0. Point vortex

positions are on the right and the trigonometric interpolating curve is drawn

on the left. This computation used 14 digits of precision.
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Figure 1.2 A linear-log plot of the discrete Fourier coefficient amplitudes of the
perturbation, P(T',¢) for the solution in figure 1.1 at time intervals of 0-05

betweent =0and t =0-5and at f =1.
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Figure 1.3 Same parameters as figure 1.1 except with the chopping pro-

cedure turned on.
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Figure 1.4a A linear-log plot of the discrete Fourier coefficient amplitudes of
the perturbation, P(I',¢ )" for the solution in figure 1.3 at time intervals of

0-05 between ¢ =0andt =05andatt =1.
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Figure 1.4b A log-log plot of the discrete Fourier coefficient amplitudes of
the perturbation, P(I',t ) for the solution in figure 1.3 at time intervals of

0-05 between{ =0and t =0'5and att =1.
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Figure 1.5 Same parameters as figure 1.1 except with 29 digits of accuracy

and the chopping procedure turned off.
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Figure 1.6 Point vortex trajectories for figure 1.5 up tot =1.5. The solid line

showé the interpolating curve at £ =0-46, when the sheet begins to roll up.
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Figure 1.7 A plot of the Hamiltonian, H,go(t) vs. time for the results shown in
figure 1.5.
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Figure 1.8a Evolution with N
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Figure 1.8b Evolution with N =20 using Euler's method for i) , ii)

iii) At =0-05
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-
o

i
-

and 4% order Runge-Kutta for iii).

4% order Runge-Kutta

ii) At =0-005

i) At =0-01
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Figure 2.1 Plots of (a) 6'%(t) and u!%(¢) vs. time, determined by least squares
fitting to the spectrum in figures 1.4a,b over a band of high wavenumbers:

i)5<k<40 ii)20<k=<40 iii)5<k=<30 iv)20<k=<30.
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Figure 2.2 Plots of (a) 6'9°(t) and u!%(t) vs. time, determined by least squares

fitting to the spectrum in figures 1.4a,b over a band of low wavenumbers:

Dl<k<6 ii)1

<k <10 iii) 1<k<15

iv) 1=k <20 v) 1<k <40



-l

0.550

2.500

0.450

0.400

9.350

57

[ Y 77 vy T rTrrrrr—YyrTrTTrT Ty g ﬁi

o 4

[ ]

= -

. ]

5 p

4

L p

[ i PR S SN W S S S S PN N SR SO S G N S S S )
0.0000 9.0050 0.0100 9.0159 9.0200 0.0

I/N

- L

- -

- -

= -

- -

PUNES VORI ST U N VN WU GH SR LY SN VN UHiD Ui S T SR S SN S G S W
0.0000 9.005¢ 0.0100 0.0150 0.0200 0.8
1/N

- - Figure 2.3 A plot of estimated values of ¥ and ud vs. 1/ N using Euler's method

with At =1/ N (Table 2.1).  The curves are quadratic functons of 1/ N whose

coefficients were found by least squares fitting to the eight data points.
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Figure 2.4 Behaviour near the critical time using N =250, Af = 0-004 showing:

t=04

t=0418
L =0424
=046

t

{a) vortex sheet (b) closeup of the sheet in the core (c) vortex sheet
strength, o(T',t ) vs. ['. Note that at the critical time, £.2°=0-416 the vortex

sheet strength has a cusp at I'=0 and the sheet is beginning to roll up about

that point on a small scale.

(c)

(b)

(a)
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o(T',t)
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0.0 ‘ 1 ! i
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Figure 2.5 A plot of the vortex sheet strength, o(I',t) vs. T' using
N =250, At =0-004. For the plotted times ( 0, 02,032, 04 , 0418 = £250),

o{I'=0-5,t) increases monotonically:

1.00
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Figure 3.1 {a) A contour plot of the strain rate along the sheet, ¥(T",t) for

0<I'=0'5 and 0<¢ < 1. This run used N=100 and Af=0-01.

(b) A closeup of figure 3.1a for 0-4<T'<0-5 and 0-4<? <0'5.
The contour lines were not smoothed.
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arclength
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Figure 3.3 Arclength vs. time for figure 1.5 (N =100). Note the approximately

linear increase in arclength past tcwé =0-46.
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Figure 3.4 Streamline plots. The contour lines were not smoothed.
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Figure 3.5 A plot of the maximum sheet amplitude, Ymax(t) vs. time for the

evolution shown in figure 1.5.
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Figure 4.1 Initial condition (4.1) with @ =0-08, N =250 and A¢ =0-004.
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Figure 4.2 A plot of the vortex sheet strength of figure 4.1, vs. T’ for various

times. (£=0,008,098, 0-116=¢2%)
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Figure 4.3 A linear-log plot of the spectral amplitudes for figure 4.1 at vari-

ous times. (¢ =0,0-02,0-04,0-06,0:08,0-092,0-1,0-108,0-116,0-44)
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Figure 4.4 Initial condition (4.2) with @ =0-08.



1n13250|'(k,t)|

S.o

'15-0

-20. 0

-2500

-30.0

~35.¢

70

"

M‘.LAAM m s’li

-
BN P AR ARYA
.“‘o‘l‘ o V,"\, NN ‘A;’ :,'_\‘I_'
i |
lll lllAl llll an l
124.

Figure 4.5 A linear-log plot of the spectral amplitudes for figure 4.1 at vari-

ous times. (¢t =0, 0-04, 008, 0-12, 0-16, 0:2, 0-24, 0-26, 0-28=¢t*°, 0:30)"
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Figure 4.6 The relation between critical time and initial amplitude. The
curves show the first three approximations (labelled 1, 2 and 3) given by
Moore's asymptotic relation (4.4). Our computed results are plotted for
various.values of Ina for initial condition (4.1) ( 0 ) and for initial condition
(4.2) ( +). The computed times were obtained by extrapolation to N+« as

in Table 4.1 .
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