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Abstract

Data-driven modeling is useful for reconstructing nonlinear dynamical sys-
tems when the underlying process is unknown or too expensive to compute.
Having reliable uncertainty assessment of the forecast enables tools to be de-
ployed to predict new scenarios unobserved before. In this work, we first ex-
tend parallel partial Gaussian processes for predicting the vector-valued tran-
sition function that links the observations between the current and next time
points, and quantify the uncertainty of predictions by posterior sampling.
Second, we show the equivalence between the dynamic mode decomposition
and the maximum likelihood estimator of the linear mapping matrix in the
linear state space model. The connection provides a probabilistic generative
model of dynamic mode decomposition and thus, uncertainty of predictions
can be obtained. Furthermore, we draw close connections between different
data-driven models for approximating nonlinear dynamics, through a unified
view of generative models. We study two numerical examples, where the
inputs of the dynamics are assumed to be known in the first example and
the inputs are unknown in the second example. The examples indicate that
uncertainty of forecast can be properly quantified, whereas model or input
misspecification can degrade the accuracy of uncertainty quantification.
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1. Introduction

Dynamical systems are ubiquitously used for describing natural phenom-
ena, such as passive motions driven by thermodynamics [1] and phase tran-
sition from flocking [2, 3], and social behaviors, such as epidemiological pro-
cesses [4]. As mathematical models typically contain unknown parameters,
observations are often used for calibrating the models and filtering the noises
to estimate the latent state of the dynamical system. Kalman filter [5] and
Rauch–Tung–Striebel smoother [6], for instance, produce fast estimation of
latent states for linear dynamical systems with additive Gaussian fluctuations
and noises, at a computational cost linearly increasing with the number of
time points. When dynamical systems are nonlinear or non-Gaussian, ap-
proximate approaches, such as extended Kalman filter [7], particle filters [8]
and ensemble Kalman filter [9], were developed to approximate the posterior
distributions of latent states. However, these approaches require underlying
data-generating models to be known, whereas models that exactly reproduce
the reality may be unavailable or too costly to compute in some applications.

Data-driven approaches become useful for estimating dynamical systems
when the true data-generating mechanism is unknown. For instance, or-
thogonal basis is estimated in proper orthogonal decomposition [10, 11] to
reconstruct the covariance between each of the output coordinates by treating
temporal observations as independent measurements. Dynamic mode decom-
position [12, 13] reconstructs the output vector through linearizing the one-
step-ahead transition operator between the input and output pairs, where
the eigenpairs of the linear mapping matrix produce a finite-dimensional
approximation of the Koopman modes and eigenvalues [14, 15]. Extensive
variants of Koopman operator have been proposed, such as utilizing longer
temporal lag of observations through Hankel method or higher order dynamic
mode decomposition [16], and utilizing nonlinear basis functions for lifting
the process by the extended dynamic mode decomposition [17]. A few recent
techniques, such as sparse regression [18, 19], model predictive control [20],
and Koopman eigenfunctions [21], were studied for designing the nonlinear
basis and estimating the lifted state in extended dynamic mode decomposi-
tion. Other nonlinear methods employ neural networks to model differential
equations [22, 23, 24]. The uncertainty of the estimation by the dynamic
mode decomposition and other machine learning approaches, however, may
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not be available, as the generative models were not well-studied.
Deploying data-driven models to forecast or extrapolate the input space

requires reliable uncertainty assessments of predictions. We evaluate the
precision of uncertainty quantification by the percentage of held-out obser-
vations covered by the 1 − α predictive intervals, with 0 < α < 1. An
efficient approach should have around 1− α of the held-out samples covered
by a short predictive interval. Gaussian processes have been applied in emu-
lating expensive computer simulations [25, 26, 27], and calibrating computer
models [28, 29, 30]. However, uncertainty assessment of these approaches
is typically assessed for interpolating physical input space, while forecast
or extrapolation is required in various real-world applications, such as opti-
mizing chemical reaction conditions through Bayesian optimization [31] and
controlling the predictive error by active learning [32].

The goal of this paper is to quantify the uncertainty from probabilistic
forecasts by different approaches. Our contributions are three-fold. First, we
extend a recent approach, called the parallel partial Gaussian process (PP-
GP) [33], to forecast dynamical systems with multivariate outputs through
predicting the one-step-ahead transition function, and the uncertainty of the
forecast can be assessed through posterior sampling. Predicting the one-
step-ahead transition function with a finite-dimensional space allows one to
transform the forecast problem to an interpolation problem, and under reg-
ularity conditions, Gaussian process regression converges to the truth with a
minimax rate [34]. Furthermore, the assessed uncertainty from the PP-GP
can alert when the forecast becomes less accurate, which allows for timely in-
terventions to control predictive error. The PP-GP is particularly suitable for
dynamical systems with massive outputs, as the computational complexity
of the PP-GP is linear to the number of outputs at each time point. Second,
we introduce a general two-step approach to derive a probabilistic genera-
tive model. Based on this approach, we show the estimation of dynamic
mode decomposition is equivalent to the maximum likelihood estimator of
a linear mapping matrix in a linear state space model, which produces un-
certainty assessment from the sampling model. Third, we draw connections
between different approaches, including Gaussian processes, proper orthog-
onal decomposition and dynamic mode decomposition. These connections
allow one to examine the inherent generative models of different approaches,
and to develop a suitable predictive model for real-world problems.

We compare the approaches for forecasting and uncertainty quantification
by two numerical examples. In the first example, we assume the inputs of the

3



process are known, whereas we do not have prior knowledge of the functional
form of the process. Hence we cannot use the exact form of the function to
form the nonlinear basis. Rather we aim to test default or generic kernels
or basis, which can be used for other scenarios. We test this scenario by
the Lorenz 96 system [35], a benchmark approach of modeling atmospheric
quantities at equally spaced locations along a cycle that induces chaotic be-
haviors. The PP-GP can detect the time when the predictive error becomes
large, based on its internal uncertainty assessment of the forecast.

In the second example, we do not assume the true inputs are known,
which is unconventional in designing data-driven approaches, but not un-
common in practice [36]. We consider one of the most challenging problems
in condensed matter physics: simulating quantum many-body systems far
from equilibrium. Many problems in quantum dynamics, such as the motion
of atoms or charge carriers, cannot be modeled by well-established equilib-
rium methods, including density functional theory (DFT) for the electronic
ground state or the GW plus Bethe–Salpeter equation [37, 38] which de-
scribes excited-state properties in the equilibrium linear response regime.
This limits, for example, the understanding of systems under irradiation by
ultrafast or intense laser pulses for obtaining information about the electronic
structure of a system [39]. Therefore, nonequilibrium simulations that de-
scribe how a system responds to an external perturbation and how it evolves
from one configuration to another under these circumstances are crucial for
a complete understanding of electronic and optical properties of molecules
and solids.

A rigorous approach to simulating materials’ nonequilibrium dynamics
lies in propagating the nonequilibrium Green’s function as a two-point cor-
relator of the creation and annihilation field operators on the Keldysh con-
tour [40, 41, 42]. This approach has been recently applied to compute various
nonlinear and nonequilibrium optical responses from first principles in the
adiabatic limit, which limits the time-evolution to a single average time, ne-
glecting memory effects [43, 44, 45, 46, 47]. However, even in the adiabatic
approximation, the numerical evaluation is far from trivial, requiring mil-
lions of CPU hours for systems of only a few atoms. Thus, models that can
forecast the time-evolution without the need of the simulator are urgently
needed. Recent work [48, 49] uses dynamic mode decomposition to approx-
imate the Green’s functions where the system is assumed to start from a
known non-interacting state, and it is driven by an arbitrary external elec-
tromagnetic field. Different representations of the Green’s function encode
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spectroscopic information, which may be measured in experiments. In this
work, inputs such as the external field and many-electron interactions are not
used in constructing data-driven models to test uncertainty quantification of
forecast for the scenario when inputs are misspecified.

The article is organized as follows. In Section 2, we extended the PP-
GP for forecasting nonlinear dynamical processes. We introduce a gen-
eral approach to derive a generative model, and apply this approach to
derive a sampling model of the dynamic mode decomposition and its pre-
dictive distribution in Section 3. PP-GP, dynamic mode decomposition and
proper orthogonal decomposition are compared in Section 4, focusing on
generative models of these approaches. In Section 5, we numerically com-
pare different approaches for forecast, and discuss the scenarios when re-
liable forecast can be constructed even at reasonably long trajectory. We
conclude this study and outline future directions in Section 6. The data
and code used in this work are publicly available (https://github.com/
UncertaintyQuantification/forecast_dynamical_systems).

2. Probabilistic forecast and uncertainty quantification through
parallel partial Gaussian processes

The parallel partial Gaussian process (PP-GP) emulator was originally
designed as a fast surrogate model to approximate computationally expen-
sive computer models with massive observations [33]. Emulating computer
models typically starts with running the computer simulation at a set of
‘space-filling’ designs, such as the Latin hypercube designs [25], for building
the emulator. For any other inputs untested before, the predictive distribu-
tion of the emulator is used for predictions and quantifying the uncertainty
of the predictions. Most of the computer model emulation tasks deal with
interpolation for a design space, meaning that the distance between the test
input and some training inputs is close, as the ‘space-filling’ inputs fill the in-
put space. However, many scientific tasks, such as designing a new molecule
or forecasting dynamical systems, inevitably require extrapolation from the
existing design space, where reliable uncertainty quantification of the predic-
tions is needed. Here we extend the PP-GP model for forecasting nonlinear
dynamical systems that enables uncertainty of the forecast to be quantified
in a probabilistic way, which was not studied before.

Suppose we have collected n vectors of real-valued outputs or snapshots,
each having m dimensions, where the tth output vector is denoted as y(xt) =
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(y1(xt), ..., ym(xt))
T , with xt being a p-dimensional input that contains the

observations in the prior time points and additional physics input, for t =
1, ..., n. When the observational vector in the prior time point is used as the
input, we have xt = y(xt−1) and thus p = m. In general, the dimensions of
the input and output vectors can be different.

In the PP-GP model, we assume a distinct mean parameter µj and vari-
ance parameter σ2

j at each coordinate of the output yj(·), for j = 1, ...,m,
which makes it flexible to capture the scale difference in output coordinates.
The correlation of the output at two coordinates j and j′, on the other hand,
is assumed to be the same, i.e. Cor(yj(x), yj(x

′)) = Cor(yj′(x), yj′(x
′)), which

greatly simplifies the computation. The observations from dynamical system
may contain noises, due to numerical or measurement errors. Thus, for any
input x, we define the PP-GP model of the jth coordinate below:

yj(x) = fj(x) + ϵj, (1)

where x is p-dimensional input variable, fj(·) follows a Gaussian process
prior with mean µj and covariance σ2

jK(·, ·), and ϵj is an independent Gaus-
sian noise with variance ησ2

j . For any p × n input matrix X = [x1, ...,xn],
integrating the latent Gaussian process fj(·), the marginal distribution yj =
[yj(x1), ..., yj(xn)]

T follows a multivariate normal distribution:

(yj | X, µj, σ
2
j , η,γ) ∼ MN

(
µj1n, σ

2
j K̃
)
, (2)

where MN denotes the multivariate normal distribution, µj is an unknown
mean parameter, K̃ = (K + ηIn) with K being a correlation matrix and η
being a nugget parameter due to noises in observations. The (t, t′)th entry of
K follows Kt,t′ = K(xt,xt′) with K(·, ·) being a kernel function containing a
p̃-dimensional range parameter γ, and In denotes an identity matrix. With a
nugget parameter, the prediction of GP will be dragged towards to the mean
compared to a noise-free GP [50]. Additional trend or mean basis functions
can be included in the mean of the PP-GP model.

Frequently used covariance functions include isotropic covariance and
product covariance [25]. The isotropic covariance is a function of Euclidean
distance between two inputs: d = ||x− x′|| with || · || denoting the L2 norm.
For instance, the isotropic power exponential covariance function follows

σ2
jK(d) = σ2

j exp

(
−dα

γ

)
, (3)
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where the roughness parameter 0 < α ≤ 2 is typically held fixed and γ is
a positive range parameter controlling the correlation length, which is often
estimated by data. Here the number of range parameters is 1, i.e. p̃ = 1.

Another widely used isotropic covariance is the Matérn covariance [51]:

σ2
jK(d) = σ2

j

21−α

Γ(α)

(√
2αd

γ

)α

Kα

(√
2αd

γ

)
, (4)

where d = ||x−x′|| is the distance between inputs, Γ(·) is the gamma function
and Kα(·) is the modified Bessel function of the second kind with a positive
parameter α. The Matérn covariance has a closed-form expression with an
integer roughness parameter α = 2z+1

2
with z ∈ N. When α = 2.5, for

example, the Matérn covariance function has the following expression

σ2
jK(d) = σ2

j

(
1 +

√
5d

γ
+

5d2

3γ2

)
exp

(
−
√
5d

γ

)
. (5)

The GP model having a Matérn covariance with a roughness parameter α is
⌊α−1⌋ mean squared differentiable, an appealing property as the smoothness
of the process is directly controlled by the roughness parameter α.

When the input variables have different scales, a product correlation func-
tion is more frequently used, as it allows one to have a distinct correlation
length parameter for each of the input coordinates:

K(x,x′) =

p∏
l=1

Kl(xl, x
′
l), (6)

where Kl(xl, x
′
l) is a kernel function, such as power exponential kernel or

Matérn kernel, with range parameter γl for l = 1, ..., p and we have p̃ = p
range parameters. The product form of the kernel in Eq. (6) is widely used
for computer model emulation [52, 53, 54] and often treated as the default
setting in statistical emulator software packages [55, 56], as inputs variable
can contain completely different scales and physical meanings, thus requiring
distinct correlation lengthscales. In practice, isotropic covariance may be
used when Euclidean distance is meaningful for characterizing the distance
between two inputs. The product covariance may yield better predictive
performance, whereas more range parameters are needed to be estimated.

In the PP-GP model, we have m mean parameters µ = (µ1, ..., µm)
T ,

m variance parameters σ2 = (σ2
1, ..., σ

2
m)

T , p̃ covariance range parameters
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γ = (γ1, ..., γp̃)
T and a nugget parameter η. We follow the Bayesian proce-

dure to define the prior of parameters. As most of the parameters can be
integrated out explicitly, meaning that the uncertainty from the estimates of
these parameters is quantified during the Bayesian inference with almost no
extra computational cost, whereas a plug-in estimator of the parameters may
ignore the uncertainty from parameter estimation. We assume an objective
Bayesian prior [33, 57] of the parameters below

π(µ,σ2,γ, η) ∝ π(γ, η)∏m
j=1 σ

2
j

, (7)

where π(γ, η) is a prior of the range and nugget parameters. Denote the
m× n matrix of observations by Y = [y(x1), ...,y(xn)]. Integrating out the
mean and variance parameters, the predictive distribution for xt∗ follows a
noncentral Students’ t distribution with n− 1 degrees of freedom [33]:

(yj (xt∗) | X,Y,xt∗ ,γ, η) ∼ T
(
ŷj (xt∗) , σ̂

2
jK

∗, n− 1
)
, (8)

where the predictive mean and scale parameters follow

ŷj (xt∗) = µ̂j + kT (xt∗)K̃
−1 (yj − µ̂j1n) , (9)

σ̂2
j =

1

n− 1
(yj − µ̂j1n)

T K̃−1 (yj − µ̂j1n) , (10)

K∗ = 1 + η − kT (xt∗)K̃
−1k(xt∗) +

(
1− 1T

nK̃
−1k(xt∗)

)2
1T
nK̃

−11n

, (11)

with K̃ = K + ηIn, µ̂j =
(
1T
nK̃

−11n

)−1

1T
nK̃

−1yj being the generalized

least square estimator of the mean, 1n is an n-vector of ones and k(xt∗) =
(K(x1,xt∗), ..., K(xn,xt∗))

T being an n-vector of the covariance between the
training inputs and the test input.

The PP-GP model has been implemented in different computational plat-
forms such as MATLAB, Python and R [56]. The predictive mean from
distribution in Eq. (8) is typically used for prediction. The uncertainty of
the prediction can be quantified by the predictive interval. A few recent
studies approximate the transition operator of dynamical systems through
kernel flows [58, 59]. In comparison, the PP-GP provides a distinct mean
and variance for each coordinate, and these parameters are integrated out
for calculating the predictive distribution in Eq. (8), making the model more
flexible in uncertainty assessment. We will discuss the computational issue
and compare PP-GP with other vector-valued GP approaches in Section 2.3.
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2.1. Predictions as weighted averages of basis functions and output vectors

The predictive mean or median ŷj(xt∗) is often used for one-step-ahead
prediction of output coordinate j for any test input xt∗ , for j = 1, ...,m.
The corollary below shows that the prediction of the PP-GP model can be
written as a weighted average of the observations and kernel functions.

Corollary 1. The predictive mean vector ŷ(xt∗) = (ŷ1(xt∗), ..., ŷm(xt∗))
T

from Eq. (9) follows

ŷ(xt∗) = YvT = µ̂+Wk(xt∗), (12)

where v is an n-dimensional row vector and W = [wT
1 , ...,w

T
m]

T is a m× n
matrix with wj being an n-dimensional row vector defined below:

v =
(1− kT (xt∗)K̃

−11n)1
T
nK̃

−1(
1T
nK̃

−11n

) + kT (xt∗)K̃
−1, (13)

wj = (yj − µ̂j1n)
T K̃−1, (14)

for j = 1, ...,m.

From Corollary 1, the prediction of a test input at the jth coordinate of
the output from the PP-GP model can be written as a weighted average of the
observations at the jth coordinate, ŷj(xt∗) = vyj. Furthermore, the residuals
can be written as a weighted average of the kernel function between the test
input and training input set, ŷj(xt∗) − µ̂j = wjk(xt∗), as outlined by the
second equality in Eq. (12). When µ̂j = 0, the predictive mean estimator in
Eq. (9) at each output coordinate is equivalent to the kernel ridge regression
separately for each coordinate j [60]:

ŷj(·) = argminfj∈H

{
1

n

n∑
t=1

(yj(xt)− fj(xt))
2 +

η

n
||fj||2H

}
, (15)

where H is the reproducing kernel Hilbert space (RKHS) [61] attached to
the kernel K(·, ·) and || · ||H is the associated native norm. The loss function
in Eq. (15) penalizes the fitting error and complexity of the model simulta-
neously, which helps avoid the overfitting problem automatically. Compared
to the kernel ridge regression in Eq. (15), the uncertainty of the prediction
of PP-GP can be quantified based on the predictive distribution in Eq. (8).
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Here the range and nugget parameters (γ, η) can be estimated by max-
imum marginal posterior distribution described in the Appendix and then
these parameters will be plugged into Eq. (8) for computing the predictive
distribution. Here the uncertainty of the mean and variance parameters are
taken into account in the analysis, whereas the uncertainty in estimating the
range and nugget parameters was not considered due to computational feasi-
bility, and confounding issues between kernel parameters [62]. Sampling the
parameters from the posterior distribution or residual bootstrap approach
[63] can be used for estimating the uncertainty of these kernel parameters.

2.2. Forecast by parallel partial Gaussian processes

Here we focus on estimating the one-step-ahead transition function that
maps the input xt to the output y(xt) at any time point t. Consider a simple
scenario, where the previous snapshot is used for predicting the output at the
current time step: xt = y(xt−1) for any t ≥ 1. Since the function is nonlinear,
we may iteratively use the predictive distribution to sample S chains for
forecasting from t∗ = n + 1, ..., n + n∗. Let the input be x

(s)
n+1 = y(xn) for

any chain s, s = 1, ..., S. For each of the chain s, we simulate a new output
from the predictive distribution sequentially for t∗ = n+ 1, ..., n+ n∗:

y(s)(x
(s)
t∗+1) ∼ p(y(s)(x

(s)
t∗+1) | Y,X,x

(s)
t∗+1,γ, η), (16)

where p(y(s)(x
(s)
t∗+1) | Y,X,x

(s)
t∗+1,γ, η) is the predictive distribution of y(s)(xt∗+1).

As directly sampling from the joint predictive distribution at all output
coordinates can be computationally intensive, one may sample the jth coor-
dinate of the output from the marginal predictive distribution p(y

(s)
j (xt∗+1) |

Y,X,x
(s)
t∗+1,γ, η) in Eq. (8) as an approximation. After we obtain predictive

samples y
(s)
t∗,j for s = 1, ..., S, we can use mean or median for predictions, and

the lower and upper α quantiles of the samples for constructing the 1 − α
predictive interval for any 0 < α < 1. Furthermore, the predictive mean
ŷ(xt∗+1) may be approximated by using a plug-in estimator of the input
xt∗+1 ≈ ŷ(xt∗) by Eq. (9). The assessed uncertainty from PP-GP can alert
when the forecast becomes less accurate, which allows for timely interven-
tions to control the predictive error, whereas the uncertainty assessment may
not be not available in some other machine learning approaches [18, 22, 23].

Here we transform the forecast problem to predict the one-step-ahead
transition function with a finite-dimensional input space. Under regularity
conditions, the minimax convergence rate of Gaussian process regression to
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the truth was studied [34]. We should note that the convergence is obtained
when the training inputs fill a bounded input domain, whereas sequentially
sampled input in forecast could move outside the training input domain in
practice. When the inputs approach the boundary of input space, the quanti-
fied uncertainty becomes large, which can give alert for refining the prediction
by expanding the input domain and training the PP-GP emulator with in-
puts in the expanded input domain. It is of interest to study the convergence
of PP-GP forecast in different dynamical systems.

2.3. Computational complexity

Compared with other GP approaches for emulating vectorized output,
one advantage of the PP-GP model comes with the computational scala-
bility when the number of output coordinates m is large. Computing the
predictive mean of m output coordinates in Eq. (9) requires O(nm) +O(n3)
operations, and to obtain S predictive samples of m output vectors at n∗

time points for uncertainty quantification requires O(n2n∗S) + O(n2m) op-
erations. The largest cost of PP-GP typically comes from estimating the
range and nugget parameters, which requires O(S̃n3 + S̃n2m) operations for
S̃ iterations in numerical optimization. When the number of time points
n is large, approximation methods, such as the inducing point method [64]
and the Vecchia approach [65], may be used for approximating the likelihood
function of Gaussian processes.

The computational advantage of PP-GP comes from two assumptions.
First, the outputs at different coordinates are assumed to be independent.
In Theorem 1 in [33], the authors show that the predictive mean of PP-GP
is exactly the same as the predictive mean of a separable Gaussian process
of the vectorized output, with the covariance Σy ⊗ K, where Σy is the co-
variance of output at different coordinates, and the variance between the
two models is similar. The inverse of covariance between output coordinates
Σy generally takes O(m3) operations in computing the likelihood function of
separable Gaussian process, whereas the complexity of predictions by PP-GP
is linear to the number of coordinates (m). Second, the correlation of the
output at different inputs x is shared across output coordinates. Allowing
the correlation parameters to differ at each spatial coordinate makes the com-
putational complexity become O(n3m) for computing the predictive mean,
which is higher than O(nm) + O(n3). Furthermore, separably estimating
m(p̃+ 1) range and nugget parameters can be less stable as PP-GP.
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3. Generative models of dynamic mode decomposition

Mathematical and machine learning approaches often minimize a loss
function for estimating parameters. Many loss-minimization approaches can
be shown to be equivalent to statistical estimations from probabilistic gener-
ative models. We summarize a two-step procedure of building a generative
model.

1. Build a probabilistic generative model of untransformed data with pa-
rameters that can be identified from data. Generalize the model as
much as possible to the extent that the parameters can still be identi-
fied from the data.

2. Show equivalence between the estimator that minimizes a loss function
and a statistical estimator, such as the maximum likelihood estimator
or maximum marginal likelihood estimator, of the probabilistic gener-
ative model.

The generative model helps us understand the underlying assumptions from
the loss-minimization estimator. A more efficient estimator can be derived
based on the generative model if the loss-minimization estimator is not op-
timal. We follow this procedure to derive a generative model of the dynamic
mode decomposition that enables uncertainty assessment of the estimation.

3.1. Dynamic mode decomposition

Dynamic mode decomposition (DMD) is a data-driven approach to obtain
a reduced rank representation of data from complex dynamical systems [12],
which quickly gains popularity for approximating dynamical systems [66].
Here we summarize DMD and derive a generative model of DMD.

Let us split the m× n real-valued observational matrix at n time points
Y into two matrices, Y1:(n−1) = [y(x1),y(x2), . . . ,y(xn−1)] and Y2:n =
[y(x2),y(x3), . . . ,y(xn)]. DMD relies on the approximation: y(xt+1) ≈
Ay(xt) for t = 1, . . . , n − 1, where A is an m × m matrix. In DMD, A
is estimated by minimizing the loss between the observations and the linear
dynamics constructed from previous time steps:

Â = argminA∥Y2:n −AY1:n−1∥= Y2:n(Y1:n−1)
+, (17)

where ∥·∥ is the L2 norm or Frobenius norm and (Y1:n−1)
+ is the Moore–Penrose

pseudo-inverse of Y1:n−1.
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We first introduce the lemma that connects the DMD estimation to the
maximum likelihood estimator (MLE) of the linear mapping matrix in a
dynamic linear model [67] or linear state space model [68].

Lemma 1 (Equivalence Between the MLE of the Linear Mapping Matrix in
a Linear State Space Model and the DMD Estimation). The DMD estimator
Â in Eq. (17) is the MLE of A of the following linear state space model

y(xt+1) = Ay(xt) + εt+1, (18)

where εt+1 ∼ MN (0,Σε) is a vector of Gaussian distributions with a posi-
tive definite covariance matrix Σε, for any t = 1, 2, ...n and we assume the
marginal distribution of initial state y(x1) does not depend on A. We refer
the linear state model by Eq. (18) the DMD-induced process.

Proof. The log-likelihood of A and Σε is:

L(A,Σε) = log

{
p(y(x1))

n∏
t=2

p(y(xt) | y(xt−1),A,Σε)

}
∝ −n

2
log(|Σε|)−

y(x1)
TΣ−1

ε y(x1)

2

−
n∑

t=2

(y(xt)−Ay(xt−1))
TΣ−1

ε (y(xt)−Ay(xt−1))

2
.

Taking the derivative of log-likelihood with respect to A and Σε, we
obtain the maximum likelihood estimator of A and Σε:

Â =

(
n∑

t=2

y(xt)y(xt−1)
T

)(
n∑

t=2

y(xt−1)y(xt−1)
T

)+

= Y2:nY
T
1:n−1(Y1:n−1Y

T
1:n−1)

+ = Y2:n(Y1:n−1)
+,

Σ̂ε =
y(x1)y(x1)

T +
∑n

t=2(y(xt)− Ây(xt−1))(y(xt)− Ây(xt−1))
T

n
.

The last equality in the equation of Â can be derived by performing the
singular value decomposition (SVD) to Y1:n−1 and connecting the SVD with
Moore–Penrose pseudo-inverse.
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We notice that the maximum likelihood estimator ofA is equivalent to the
solution of DMD shown in Eq. (17). Here Y+

1:(n−1) can be computed by the

SVD of Y1:(n−1) = UDV∗ as Y+
1:(n−1) = VD−1U∗, where U∗ and V∗ denote

the conjugate transpose of U and V, respectively, and D ∈ Rm×(n−1) is a
rectangular diagonal matrix of non-negative singular values. In practice, one
can keep the r largest singular values for approximation: Y1:(n−1) ≈ UrDrV

∗
r ,

where Ur is the first r columns of U, Dr is a r×r diagonal matrix containing
the first r largest singular values, with r ≤ min(m,n− 1), and Vr is the first
r columns of V. Consequently, Â can be approximated by

Â ≈ Y2:nVrD
−1
r U∗

r. (19)

As some singular values may be small, the approximation from the right-
hand side of Eq. (19) is typically more stable as it avoids numerical error in
computing the diagonal terms in D−1.

A primary goal of DMD is to identify the nonzero eigenvalues and their
corresponding eigenvectors of A, denoted as {λi,ϕi}ri=1, which can approx-
imate the Koopman eigenvalues and modes, respectively [15]. However, di-
rectly computing the eigenvalues and eigenvectors of a m ×m matrix Â in
Eq. (19) can be costly when m is large. To reduce the computational cost,
we may project Â onto the column space of Ur and define Ã as

Ã = U∗
rÂUr ≈ U∗

rY2:nVrD
−1
r U∗

rUr = U∗
rY2:nVrD

−1
r . (20)

Denote {λi,ωi}ri=1 to be the eigenpairs of Ã such that λiÃ = Ãωi. In [13],
the authors show that λi is the DMD eigenvalue, and the corresponding
eigenvector of A, also known as the DMD mode, can be calculated below

ϕi =
1

λi

Y2:nVrD
−1
r ωi, (21)

for i = 1, ..., r.
The snapshots at any t can be approximated by DMDmodes and eigenval-

ues with a smaller dimension. DenoteΦ = [ϕ1, . . . ,ϕr] andΛ = diag(λ1, . . . , λr),
for any t ≥ 1, the reconstructed snapshots ŷ(xt) can be represented as

ŷ(xt) = Ât−1y(x1) = ΦΛt−1b, (22)

where b = [b1, . . . , br]
T = Φ+y(x1) represents the mode amplitudes with Φ+

being the pseudo-inverse of Φ. As y(x1) may contain measurement error, an
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alternative way is to minimize the squared error loss below:

b̂ = argminb

n∑
t=1

∥ΦΛt−1b− y(xt)∥2, (23)

where ∥·∥ is the L2 norm or Frobenius norm.
Eq. (22) can be applied to any t, including those t∗ > n with n being

the number of observed time points, and thus it can be used for forecasts.
When the observations are noise-free, a more straightforward way is to let
ŷ(xn) = y(xn) and forecast output vector on any t∗ > n by

ŷ(xt∗) = Ât∗−ny(xn). (24)

From the DMD-induced process in Eq. (18), we have the following lemma,
which gives the posterior distribution for forecast.

Lemma 2. Conditional on the observations Y with plug-in estimators of
Â and Σ̂ε, the posterior distribution of the output vector of DMD-induced
process in Eq. (18) at any xt∗ follows a multivariate normal distribution(

y(xt∗) | Y, Â, Σ̂ε

)
∼ MN

(
ŷ(xt∗),

t∗−n−1∑
i=0

ÂiΣ̂ε(Â
T )i

)
, (25)

where ŷ(xt∗) follows Eq. (24) for any t∗ > n.

Proof. We prove this by induction. For t∗ = n+ 1, we have

E[y(xt∗) | Y, Â, Σ̂ε] = Ây(xn),

V[y(xt∗) | Y, Â, Σ̂ε] = Σ̂ε.

Assume for t∗ > n+ 1, we have

E[y(xt∗) | Y, Â, Σ̂ε] = Ât∗−ny(xn),

V[y(xt∗) | Y, Â, Σ̂ε] =
t∗−n−1∑

i=0

ÂiΣ̂ε(Â
T )i.

For any t∗ + 1, by the sampling model in Eq. (18) and the law of total
expectation, the posterior mean follows:

E[y(xt∗+1) | Y, Â, Σ̂ε] =E[E[y(xt∗+1) | Y,y(xt∗), Â, Σ̂ε]]

=E[Ây(xt∗) | Y, Â, Σ̂ε]

=Âŷ(xt∗) = Ât∗+1−ny(xn).
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By the sampling model in Eq. (18) and the law of total covariance, for any
t∗ + 1, the posterior covariance follows

V[y(xt∗+1) | Y, Â, Σ̂ε]

=V[E[y(xt∗+1) | Y,y(xt∗), Â, Σ̂ε]] + E[V[y(xt∗+1) | Y,y(xt∗), Â, Σ̂ε]]

=V[Ây(xt∗) | Y, Â, Σ̂ε] + Σ̂ε

=Â

(
t∗−n−1∑

i=0

ÂiΣ̂ε(Â
T )i

)
ÂT + Σ̂ε =

t∗−n∑
i=0

ÂiΣ̂ε(Â
T )i.

Although we can assess the uncertainty of the forecast by DMD from
the predictive distribution in Eq. (25), the linear state space model can be
restrictive to approximate nonlinear dynamical systems. Furthermore, the
uncertainty in estimating A and Σε is not propagated for predictions. Fi-
nally, choosing the rank r in DMD is an open problem as it represents one’s
belief on the degree of the model is misspecified, which could be hard to be
quantified precisely. Typical ways of choosing r include letting the summa-
tion of DMD eigenvalues explain a large proportion of the output variability,
while this choice could potentially misfit the data, as minimizing the L2 loss
in Eq. (17) cannot avoid overfitting the data.

3.2. Higher order dynamic mode decomposition

One limitation of the DMD approach is that only the observation from the
prior time point is used, equivalently inducing a first-order Markov model in
Eq. (18). Variants of DMD approaches, such as Higher Order Dynamic Mode
Decomposition (HODMD) [16] or Hankel DMD [69], use more observations
from longer time lag to construct the dynamics:

y(xt+q) = A1y(xt) +A2y(xt+1) + · · ·+Aqy(xt+q−1), (26)

where q ≥ 1 is a tunable parameter that determines the number of time-
lagged snapshots to be included in the model.

The estimation accuracy from HODMD can be higher than the conven-
tional DMD as multiple time-lagged snapshots are used. For scenarios where
the number of time points is larger than the number of output coordinates,
including more time-lagged snapshots can increase the upper bound of the
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number of nonzero singular values, thus potentially capturing complex dy-
namics in a higher dimensional space. From the theoretical point of view,
the eigenfunctions and eigenvalues of HODMD are guaranteed to converge
to the Koopman eigenfunctions and eigenvalues for ergodic systems [69].

Let us define yaug(xt) = (y(xt)
T ,y(xt+1)

T , ...,y(xt+q−1)
T )T , an augmented

vector of mq dimensions that contain q snapshots. The linear mapping ma-
trix ÂHODMD in HODMD can be obtained by minimizing the Frobenius or L2

norm between the observations and linear dynamics constructed from the pre-
vious time steps: ÂHODMD = argminAHODMD∥Yaug

2:n −AHODMDYaug
1:(n−1)∥, where

Yaug
2:n = [yaug(x2), . . . ,y

aug(xn)] and Yaug
1:(n−1) = [yaug(x1), . . . ,y

aug(xn−1)].
However, concatenating q consecutive snapshots increases the number of

rows in Yaug
1:(n−1) from m to mq, and the cost of a singular value decompo-

sition for Yaug
1:(n−1), leading to higher computational cost. To overcome this

limitation, one can use a subsampled version of the data instead of the en-
tire dataset. For instance, one might skip ∆t time steps when constructing
the data matrices, i.e., Ỹaug

1 = [yaug(x1),y
aug(x1+∆t), . . . ,y

aug(x1+⌊n−2
∆t

⌋∆t)]

and Ỹaug
2 = [yaug(x2),y

aug(x2+∆t), . . . ,y
aug(x2+⌊n−2

∆t
⌋∆t)]. The estimator of

AHODMD can be computed below

ÂHODMD = argminAHODMD∥Ỹaug
2 −AHODMDỸaug

1 ∥. (27)

The HODMD contains two prespecified parameters: the number of time-
lagged snapshots q to be included in any given time, and the number of
skipped time steps ∆t in estimation. Note that the estimated AHODMD does
not preserve the model structure in Eq. (26). Instead, let us consider the
following generative model for HODMD with parameters (q,∆t)

yaug(x2+i∆t) = AHODMDyaug(x1+i∆t) + εaug2+i∆t, (28)

for i = 1, ..., ⌊(n − 2)/∆t⌋ with εaug2+i∆t ∼ MN (0,Σaug
ε ). In practice, the

model performance depends on the choice of (q,∆t), since the underlying
data-generating model may rely on multiple time-lagged snapshots and us-
ing observations from longer time lag make the model more accurate. The
HODMD estimator in Eq. (27) is equivalent to the MLE of AHODMD in the
generative model in Eq. (28).

3.3. Extended dynamic mode decomposition
The generative model of the DMD algorithm in Eq. (18) is a linear state

space model, while some dynamical systems cannot be accurately approx-
imated by linear dynamics. The extended dynamic mode decomposition
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(EDMD) [17] aims to define a dictionary of m̃ nonlinear basis functions
k(·) = (k1(·), . . . , km̃(·))T to lift the observations to a system that can be ap-
proximated by linear dynamics. Denote the linear mapping matrix AEDMD

to be an approximation of the Koopman operator. In EDMD, the linear
mapping matrix AEDMD is obtained by minimizing the squared error loss
function

ÂEDMD = argminAEDMD

n−1∑
t=1

∥k(y(xt+1))−AEDMDk(y(xt))∥22. (29)

Similar to the DMD-induced process, the estimator of EDMD is equiva-
lent to the maximum likelihood estimator of the linear mapping matrix in a
linear state space model defined in the lifted space for t = 1, . . . , n− 1:

k(y(xt+1)) = AEDMDk(y(xt)) + εEDMD
t+1 , (30)

with εEDMD
t+1 ∼ MN (0,ΣEDMD

ε ), where ΣEDMD
ε is a positive definite matrix.

After estimating the linear mapping matrix between the linear state space
model, we need to transform it back to predict the future states [20], which
may be achieved by defining ŷ(xt) = Pk(y(xt)), where P is a m× m̃ matrix
and can be estimated by P̂ = argminP

∑n
t=1∥y(xt)−Pk(y(xt))∥2.

Choosing an appropriate set of basis functions is crucial for the EDMD
method. A few generic basis functions, such as Hermite polynomials, radial
basis functions, and discontinuous spectral elements, were suggested in [17].
The selection of basis functions depends on the context of the problem and
domain knowledge may be used as well, whereas misspecifying basis func-
tions can degrade the estimation efficiency of the model. PP-GP is closely
connected to EDMD. Assuming the mean is zero, we can write the predictive
mean of PP-GP in a matrix form Ŷ = WK, where Y is a m × n observa-
tional matrix of n snapshots, and W = [wT

1 , ...,w
T
m]

T is an m × n weight
matrix given from Corollary 1. This means the prediction from PP-GP uses
the same kernel basis to represent the output for each coordinate, whereas
the weights are estimated by solving the linear system of equations with
shared coefficients, separately for the output at each coordinate. Compared
to EDMD, the PP-GP does not project the output onto the lifted space,
and hence we do not need to transform the lifted states back for forecasting.
The PP-GP is a flexible model, as the mean and variance parameters are
distinct for each coordinate, which can be marginalized out by computing
the predictive distribution. Besides, the covariance matrix contains range
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Parameter estimation Forecast and UQ
DMD O(m2n) O(m2rn∗)
HODMD O((mq)2⌊ n

∆t
⌋) O(m2q2rn∗)

EDMD O(mnm̃T ) O(mm̃n∗)

PP-GP O(S̃n3 + S̃n2m) O(Smn2n∗ + n3)

Table 1: Computational complexity for parameter estimation and forecast of n∗ time
points in DMD, HODMD, EDMD, and PP-GP, where m is the dimension of an output, n
is the number of observations, r is the rank of data matrix, q is the number of snapshots
stacked in HODMD, ∆t is the number of skipped time points in HODMD, m̃ is the number
of basis functions in EDMD, T is the number of iterations in K-means, S̃ and S are the
iterations of numerical optimization and samples for forecast in PP-GP.

and nugget parameters, and they are estimated by the maximum marginal
posterior distribution, discussed in Appendix.

3.4. Computational complexity

The computational complexity of estimating the transition and covari-
ance matrices in DMD are O(min(m2n,mn2)) and O(m2n), respectively.
Obtaining the n∗-step forecast with uncertainty quantification by DMD re-
quires O(m2rn∗), where r is the rank of the observation matrix Y1:n−1. Sim-
ilarly, for HODMD with time lag q and thining parameter ∆t, the compu-
tational complexity of parameter estimation and n∗-step forecast with un-
certainty quantification are O(min((mq)2⌊ n

∆t
⌋,mq(⌊ n

∆t
⌋)2)) +O((mq)2⌊ n

∆t
⌋)

and O((mq)2rn∗), respectively. For EDMD using m̃ radial basis functions
to lift the data where the centers are determined by the K-means clustering
approach, transforming the data and estimating the parameters in the lifted
space requires O(mnm̃T ), where T is the number of iterations in K-means.
Obtaining the predictions needs O(mm̃n∗). For simplicity, here we assume
m > n > m̃. The computational complexity for estimating the parameters as
well as providing forecast with uncertainty assessment by DMD, HODMD,
EDMD, and PP-GP are summarized in Table 1.

4. Connection of different data-driven approaches of modeling dy-
namical systems with respect to generative models

Here we compare three classes of data-driven models, namely the proper
orthogonal decomposition (POD) [11], DMD and PP-GP approaches. To
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simplify the notations, we assume the data are properly centered, meaning
that the m× n real-valued output matrix Y has zero mean.

In POD, the data are decomposed by SVD Y = UyDyV
T
y , where Uy and

Vy are m × m and n × n unitary matrix, respectively, and Dy is a m × n
rectangle diagonal matrix with non-negative singular values in the diagonals.
The first r ≤ m columns of Uy associated with the largest r singular values
provide the orthogonal basis of a linear subspace to reconstruct the covari-
ance of output at different coordinates by treating the temporal observations
as independent measurements: YYT/(n− 1) = UyD

2
yU

T
y /(n− 1). This ap-

proach is known as the principal component analysis (PCA) [70], which is
widely used in unsupervised learning and dimension reduction. The SVD
basis from the PCA can be shown to have the same linear subspace to the
maximum marginal likelihood estimator of the linear mapping matrix B after
marginalizing out z(xt) in the following generative model [71]:

y(xt) = Bz(xt) + ϵt, (31)

where ϵt ∼ MN (0, σ2
0Im) and z(xt) ∼ MN (0, Ir) is a r-dimensional latent

factors independently following standard normal distributions. Under such
model, the covariance of the data at each time follows V[y(xt)] = BBT +
σ2
0Im. However, the generative model assumes independence between the

observations at different time points, which is restrictive. In [72], zl(·) is
modeled as a GP for each l = 1, ..., r, and the maximum marginal likelihood
estimator of B under the assumption BTB = Ir is derived.

Second, the generative model of DMD is given in Eq. (18), where the noise
of the data is not modeled. Assuming the initial states follow a multivariate
normal distribution with zero mean and covariance Σε. It is not hard to
show that E[y(xt)] = 0 and the covariance between any two output vectors
at two time points follows: Cov[y(xt′),y(xt)] = At′−t

∑t−1
i=0 A

iΣε(A
T )i for

t′ ≥ t. Specifically, the covariance of output at any time point t ≥ 1 follows
V[y(xt)] =

∑t−1
i=0 A

iΣε(A
T )i. Compared with the sampling model in POD,

the generative model in the DMD-induced process in Eq. (18) are correlated
over time and the strength of the correlation is captured by the linear map-
ping matrix A between output vectors at the consecutive time points. The
DMD-induced process may not be differentiable with respect to time and the
assumption of homogeneous variance at each output coordinate may also be
restrictive for applications where the output has different scales.

Third, the PP-GP model in Eq. (9) has the same predictive mean as
modeling the output matrix Y by a matrix-normal distribution [33], with a
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separable covariance V[Y] = Σy ⊗ K̃, where Σy is the covariance between
output coordinates with the jth diagonal term being σ2

j , for j = 1, ...,m and

K̃ is the correlation matrix between inputs with ⊗ denoting the Kronecker
product. In comparison, the generative model by DMD in Eq. (18) is a linear
state space model, which has a semi-separable covariance structure. The PP-
GP induces nonlinear dynamics when using the observations from previous
time points as the inputs, and the differentiability of the nonlinear processes
induced by PP-GP can be controlled by the choice of kernel function. When
the underlying dynamic is smooth, a differentiable GP prior of the nonlinear
dynamics by PP-GP may be preferred to have a better convergence rate of
compared to a nondifferential GP prior [34]. Another advantage of PP-GP
is that the range parameters can be estimated by the MLE or maximum
marginal posterior mode, which is more flexible than using fixed nonlinear
basis functions in EDMD. Lastly, the variance of the output coordinate is
distinct and the variance estimator of PP-GP has a closed form expression in
Eq. (10), whereas the induced processes by DMD and its variants typically
have homogeneous variance. The different variance terms make PP-GP par-
ticularly suitable when the output has different scales, which are common in
practice.

5. Numerical results

We compare different data-driven forecast approaches for nonlinear dy-
namical systems, focusing on uncertainty quantification of the forecast. We
consider two scenarios. In the first scenario, we assume the underlying dy-
namical system is modeled by a map from Rp → Rm: dy/dt = f(xt), where
the input variables xt is a subset of yt. Here the vector-valued function f is
treated as unknown and required to be approximated, whereas the inputs xt

are known. For all approaches, we do not include the vector-valued function
f(·) in nonlinear basis functions. Instead, we test uncertainty quantification
with generic kernels or nonlinear basis functions that provide default ways of
approximation. In the second scenario, the dynamical system is described by
dy/dt = f(xt,ut), where we can only observe xt, whereas the external inputs
ut and the vector-valued function f(·) are unobserved.

For both scenarios, we forecast held-out data y(xt∗) = (y1(xt∗), ..., ym(xt∗))
T

at t∗ = n + 1, n + 2, ..., n + n∗. The autoregressive model with lag order 1
(AR(1)) separately fitted for each coordinate is used as a benchmark predic-
tion model [73]. Also included are DMD, HODMD and PP-GP. Note that
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the generative model of the DMD method is equivalent to a noise-free vector
autoregressive (VAR) model with lag order 1 [74] and hence we do not include
other VAR models for comparison. The criteria include the predictive root
of mean squared error (RMSE), the average length of the 95% predictive
intervals (L(95%)), and the proportion of the samples covered in the 95%
predictive interval (P (95%)):

RMSE =

(
m∑
j=1

n+n∗∑
t=n+1

(ŷj(xt∗)− yj(xt∗))
2

) 1
2

, (32)

L(95%) =
1

mn∗

m∑
j=1

n∗+n∑
t∗=n+1

length {CIj,t∗(95%)} , (33)

P (95%) =
1

mn∗

m∑
j=1

n∗+n∑
t∗=n+1

1yj(xt∗ )∈CIj,t∗ (95%), (34)

where ŷj(xt∗) is the prediction of the output at coordinate j with input
xt∗ , CIj,t∗(95%) is the 95% predictive interval of the output at coordinate
j and time t∗, length {CIj,t∗(95%)} denotes the length of the predictive in-
terval, and ȳ =

∑m
j=1

∑n
t=1 yj(xt)/(mn) is the mean of the observations in

the training data set. An accurate method should have small predictive
error quantified by RMSE, short average length of 95% predictive interval
(L(95%)) and the proportion of the sample covered by the 95% predictive
interval (P (95%)) should be close to the 95% nominal level.

5.1. Lorenz 96 system

We first discuss the Lorenz 96 system for modeling the atmospheric quan-
tities at equally spaced locations along a cycle [35]:

dyj(t)

dt
= (yj+1(t)− yj−2(t))yj−1(t)− yj(t) + F, (35)

for j = 1, ...,m, where m = 40 and F = 8 are typically used for testing. Here
fj(xt) = (yj+1(t) − yj−2(t))yj−1(t) − yj(t), where the 4 dimensional input
is xt = {yj−2(t), yj−1(t), yj(t), yj+1(t)}. The Lorenz 96 system is often used
for demonstrating the effectiveness of nonlinear filtering approaches, such as
ensemble Kalman filter in data assimilation [75], where the function fj(·) is
typically assumed to be known. Here we assume the underlying dynamics
from fj(·) is unknown.
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500-step forecast RMSE P (95%) L(95%)
AR(1) 4.60 69.8% 10.8
DMD 4.51 91.6% 20.2
HODMD 4.24 98.8% 39.4
PP-GP 0.0126 93.9% 0.0352
900-step forecast RMSE P (95%) L(95%)
AR(1) 4.63 75.4% 12.6
DMD 4.55 93.5% 21.9
HODMD 4.37 99.3% 43.6
PP-GP 1.52 94.6% 2.64

Table 2: Forecast accuracy and uncertainty assessment on the held-out data. The standard
deviation is 3.54 and 3.62 for the 500-step test data and 900-step test data, respectively.

We test a few methods and compare their performance on uncertainty
quantification. We assume both the derivative and output values are avail-
able. The data are obtained by the Runge Kutta method of order 4 with
step size h = 0.01 for 1000 steps. The initial values of the states are sampled
from zero mean multivariate normal distribution where covariance matrix is
sampled from a Wishart distribution with the scale matrix being identity and
m degrees of freedom [76]. Any method can use the mn = 4, 000 observa-
tions from the first n = 100 time points as training observations, whereas the
rest of the 36, 000 observations at later n∗ = 900 time points are held out as
test data. For DMD and HODMD, we try both the observed output values
and derivatives for forecasting. Since both ways do not work well, we only
present results based on the observed output values. When constructing the
data matrices for HODMD, 6 observed snapshots (q = 6) are concatenated
and 3 time points are skipped in the augmented data (∆t = 3). For PP-GP,
we uniformly subsample ntraining = 500 observations from 4, 000 observa-
tions of derivatives in the training time period to estimate the parameters
and construct predictive distributions in Eq. (8), because of the high compu-
tational cost when n is large. We use the default product Matérn covariance
function with roughness parameter being 2.5 in PP-GP. As PP-GP can be
considered as an extended version of DMD on projecting the data onto the
kernel space discussed in Section 3.3, we do not include any other EDMD
approach. The range parameters of the kernel in PP-GP are estimated by
the default marginal posterior mode estimation [56], which is more flexible
than assuming fixed nonlinear basis function in EDMD.
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Fig. 1: Forecast of the Lorenz 96 systems for 900 steps by AR(1) (pink dashed curves),
DMD (brown dashed curves), HODMD (yellow dashed curves) and PP-GP (blue dashed
curve). The 95% predictive interval by PP-GP is graphed as blue shaded area. The blue
dashed curves (PP-GP) and black curves (held-out truth) overlap for around the first 500
held-out time steps.

Fig. 1 gives the 900-step forecast by AR(1), DMD, HODMD and PP-GP
for the 10th 20th, 30th and 40th states. The uncertainty of the forecast by
PP-GP is graphed as the blue shared area in all plots. With the default
kernel function and estimation [56], the forecast of PP-GP is reasonably
accurate for the first 500 time steps and 95% predictive interval by PP-GP
(graphed as the blued shaded area) is almost indistinguishable in this time
domain. As the average Lyapunov time for our simulation is around 1.58,
the PP-GP can make precise forecast for more than 3 Lyapunov time. The
95% predictive interval becomes noticeably wider at later time steps, and
simultaneously, the difference between PP-GP and held-out truth becomes
large. The internal uncertainty assessment quantified by the 95% predictive
interval of PP-GP provides a time range of reliable forecasts without knowing
the held-out truth. Furthermore, Fig. 2 compares the truth to the forecast
by PP-GP for all states, which confirms the forecast by PP-GP for the first
500 steps is accurate for all states.

Table 2 summarizes the performance of forecast and uncertainty assess-
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Fig. 2: The truth, 900-step forecast by PP-GP, and their difference for the Lorenz 96
system.

ment by different approaches for the Lorenz 96 system. The RMSE by the
PP-GP for the first 500 steps is much smaller than the standard deviation
of the test data and the length of the 95% predictive interval by PP-GP is
also substantially smaller than the variability in the held-out observations.
Even if the 95% predictive interval by PP-GP is short, it covers 93.9% of
the observations, indicating the uncertainty of the forecast is properly quan-
tified. The predictive error by PP-GP becomes large at later steps due to
the accumulation of the approximation error, and the overall predictive error
of the 900-step forecast is dominated by the large error at later time points.
Note that the length of the 95% predictive interval from PP-GP increases
automatically in PP-GP, enabling 94.6% of the held-out data to be covered
by the 95% predictive interval. In comparison, although the proportion of
the samples covered by the 95% predictive interval by DMD and HODMD
is also close to the 95% nominal level, the average length of intervals is sub-
stantially larger, as the underlying dynamics cannot be written as a linear
combination of previous outputs. It is worth mentioning that the uncertainty
of DMD and HODMD is affected by the selected rank to represent the data,
here chosen to be the smallest value such that the summation of the eigen-
values explain at least 99% of the variability. A principled way to model the
noise and select the rank may improve the uncertainty assessment of these
methods.

Fig. 3 presents the predictive standard deviation of PP-GP and the corre-
sponding cumulative mean absolute error between the true values and PP-GP
forecasts, for the 1st and 21st states. In the initial 500-step forecasts, both
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Fig. 3: The predictive standard deviation from the PP-GP model at each step and cu-

mulative mean absolute error SEj(t
∗) =

∑t∗

s∗=n+1 |ŷj(s∗) − yj(s
∗)|/(t∗ − n) of 900-step

forecast of state j = 1 and j = 21 for t∗ = 101, ..., 1000 and n = 100.

the standard deviation computed by Eq. (8) and the cumulative mean ab-
solute error are relatively small. As the number of forecast steps increases,
the cumulative mean absolute error increases. The 95% predictive interval in
Fig. 1 can be used to quantify the time when the forecast becomes inaccurate.

The uncertainty assessment by the PP-GP model is reasonably accurate
as we convert the challenging problem of forecasting chaotic systems to the
problem of predicting the one-step-ahead function in a 4-dimensional input
space. In practice, reducing the inputs to a low-dimensional space is helpful
for producing reliable forecasts and uncertainty assessments.

5.2. Time-dependent Green’s function

In the second example, we apply the data-driven approach to forecast
the simulation of the nonequilibrium dynamics of interacting electrons in
materials exposed to intense time-varying electric fields, which is one of the
most challenging problems in condensed matter physics. Modeling nonequi-
librium dynamics from the basic principles of quantum mechanics is excep-
tionally challenging in computation, and has only been extended to the ab
initio simulation of real materials in the last decade through the develop-
ment of a new time-domain approach based on a formalism of Keldysh,
Kadanoff and Baym [41, 40, 42] for the dynamics of the nonequilibrium
Green’s function [43, 44, 77]. We refer to the new computational approach as
the time-dependent adiabatic GW (TD-aGW) method, where G stands for
the interacting single-particle Green’s function and W stands for the screened
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Coulomb interaction. Details about our implementation of the method can
be found in [44], which is built on approximations developed in [43]. In princi-
pal, the TD-aGW approach gives quantitatively accurate descriptions of ma-
terials’ response to electric fields, allowing for the simulation of experiments
with femtosecond resolution and the development of new classes of quantum
materials whose properties can be switched with laser pulses [45, 47, 78].
However, the scaling with respect to the size of the problem is computa-
tionally prohibitive, and thus, the TD-aGW method is currently limited to
systems containing a few atoms and for short timescales.

In the context of many-body perturbation theory and second quantiza-
tion, the nonequilibrium Green’s function is a two-point correlation function
comprised of the creation and annihilation field operators that increase and
decrease the number of particles in a given state respectively. In general, it
is a function of two time variables, but following the work in [43, 44], the
change in the energy of an electron due interactions with its environment
(i.e. the electron self energy) can be approximated as the equilibrium self
energy plus a static nonequilibrium contribution. In this approximation, the
key equation that we solve in TD-aGW is an equation of motion for a matrix
of single-particle density ρ(t) with index (m1m2,k)

iℏ
∂

∂t
ρm1m2,k(t) = [H(t),ρ(t)]m1m2,k, (36)

where H(t) is a matrix of the Hamiltonian of the system having the same
size of ρ(t), the square bracket denotes the commutator of two matrices A
and B such that [A,B] = AB − BA, and ℏ is the Planck constant. The
particle density matrix is written in a basis of electron quantum states with
a band index m and a wave vector (or crystal momentum) k. Hence, the
matrix element ρm1m2,k(t) encodes the entanglement of a state (m1,k) with
another state (m2,k). The Hamiltonian of the system is calculated as

H(t) = H0 − eE(t) · r+ΣGW + δΣ(t). (37)

Here, H0 is the system’s mean-field Hamiltonian at equilibrium; ΣGW is the
electron self-energy at equilibrium computed within the GW approximation;
and δΣ is the nonequilibrium correction to the electron self-energy. eE(t) · r
describes the coupling of the system with the external electric field, such
that E(t) is a spatially-uniform, time-varying electric field; r is the position
operator in quantum mechanics; and e is the fundamental charge of the
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electron. H0 and ΣGW describe equilibrium properties and thus have no
time-dependence. δΣ(t) is a functional of ρ(t):

δΣm1m2,k(t) =
∑

m′
1,m

′
2,k

′

ρm1m2,k−k′(t)Wm1m′
1m2m′

2,k−k′ , (38)

where Wm1m′
1m2m′

2,k−k′ is the equilibrium screened Coulomb interaction com-
puted in the random-phase approximation (RPA); m1, m

′
1, m2, m

′
2 are band

indices, and k and k′ are vectors in reciprocal space.
We use monolayer MoS2–a material where the electron self energy is

known to be large [79, 80, 81, 82, 83]–as our test system. In order to perform
the time evolution in Eq. (36), we first need to compute the equilibrium so-
lution before the electric field is turned on to obtain ρ(t = 0), as well as the
time-independent matrices H0 and ΣGW in Eq. (36) and W in Eq. (38). We
do this within the one-shot GW approximation [37, 38, 84] using the follow-
ing calculation parameters. Our basis includes 4 bands (the top 2 valence
bands and the bottom 2 conduction bands) and a uniform grid of 36×36×1
k-points in reciprocal space. Density functional theory (DFT) calculations
with spin-orbit coupling are performed using the Quantum Espresso package
[85]. We use norm-conserving fully relativistic PBE pseudopotentials from
the SG15 ONCV potential library [86] and a plane wave cutoff energy of
80 Ry. A GW plus Bethe Salpeter equation (BSE) calculation is done as
a one-shot calculation on top DFT using the BerkeleyGW package [84]. A
dielectric cutoff of 10 Ry and 6000 bands are used in the GW and BSE calcu-
lations. We use the results of the equilibrium calculations to setup Eq. (36)
at time t=0, and then we propagate the equation in time with an external
electric field that mimics a laser pulse polarized along the r1 direction. The

field is Er1(t) = A sin
(
πt
T

)2
sin (ωt), where the constants (in Ryd) A = 0.006

is the amplitude of the electric field, ω = 0.022 is the frequency of the light,
and T = 160 fs is the duration of the light pulse, all in Rydberg atomic units.
Er2(t) = 0 and Er3(t) = 0. The electric field parameters are values consis-
tent with typical experimental setups in high harmonic generation (HHG)
experiments [87]. The 4th order Runge-Kutta method is then used to update
ρm1m2,k(t) and δΣ(t) at each time step, and the matrix element ρm1m2,k(t) is
saved for the single k-point, k = 0, to be used as the test and training data
for our data-driven models.

Our focus in this example is on forecasting the real part of the den-
sity matrix from Eq. (36), which in turn is related to the two-time Green’s
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1000-step forecast RMSE P (95%) L(95%)
AR(1) 6.20× 10−6 23.7% 3.97× 10−6

DMD 2.87× 10−5 8.65% 2.03× 10−6

HODMD 1.30× 10−5 9.52% 6.56× 10−7

PP-GP 3.53× 10−6 65.2% 2.98× 10−6

2000-step forecast RMSE P (95%) L(95%)
AR(1) 6.23× 10−6 35.8% 5.57× 10−6

DMD 2.01× 10−3 4.35% 7.29× 10−5

HODMD 6.22× 10−5 9.22% 1.94× 10−6

PP-GP 3.42× 10−6 75.3% 3.97× 10−6

Table 3: Forecast and uncertainty assessment for the density matrix using the held-out
data. Observations at the first 2500 time steps are used to fit the model. The standard
deviation is 1.56× 10−5 and 1.48× 10−5 of the 1000-step test data and the 2000-step test
data, respectively.

function through the Generalized Kadanoff-Baym ansatz (GKBA) [88, 42].
Each snapshot is a 16-dimensional vector: yt = Vec(ρk(t)), where ρk(t) is
a 4 × 4 matrix with the (m1,m2)th entry being ρm1m2,k(t) for m1 = 1, ..., 4
and m2 = 1, ..., 4, and k = 0. To solve Eq. (36), one needs to compute E(t),
which is a known analytic function, and δΣ(t), which depends on the density
matrix ρm1m2,k−k′(t) at other reciprocal lattice vectors k ̸= 0. To evaluate
the performance of that data-driven approaches, we only utilize the obser-
vations yt to construct the model, which only contains the local information
at k = 0, whereas the external field E(t) and interactions terms δΣ(t) from
other lesser Green’s function G<

m1m2,k−k′(t) are not used. For all methods, we
test two scenarios with training time steps being 2500 and 3500, respectively.
For AR(1) and DMD, all training data are used. For HODMD, we use the
same setting as the previous example with q = 6 and ∆t = 3. For PP-GP,
we use an isotropic kernel and 800 pairs of observations, uniformly sampled
from the training data for constructing the model, and the output vector of
m = m1m2 = 16 dimensions from the previous time point is used as the
input for predicting the one-step-ahead transition function.

Table 3 and Table 4 provide the performance of each method when using
observations from the first 2500 time steps and first 3500 time step as the
training data, respectively. The PP-GP has the smallest RMSE for 2000-
step forecast among three approaches in both scenarios, smallest RMSE for
1000-step forecast in the first scenario.
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1000-step forecast RMSE P (95%) L(95%)
AR(1) 1.13× 10−5 31.7% 7.12× 10−6

DMD 6.00× 10−6 15.9% 1.00× 10−6

HODMD 9.29× 10−6 29.6% 1.05× 10−6

PP-GP 3.93× 10−6 81.7% 1.89× 10−5

2000-step forecast RMSE P (95%) L(95%)
AR(1) 1.50× 10−5 28.5% 9.93× 10−6

DMD 8.83× 10−6 16.3% 2.98× 10−6

HODMD 2.24× 10−5 20.2% 1.62× 10−6

PP-GP 9.13× 10−6 88.8% 4.36× 10−5

Table 4: Forecast and uncertainty assessment of the density using the held-out data.
Observations from the first 3500-time steps are used to fit the model. The standard
deviation is 1.40× 10−5 and 1.06× 10−5 of the 1000-step test data and the 2000-step test
data, respectively.

The misspecification of the input variables, however, degrades the ac-
curacy of predictions and uncertainty quantification. The predictive error
differs when using two output regimes as the training data, as the trend is
different, and neither represents the trend in the held-out test data. The cov-
erage of held-out data by the 95% predictive interval from the PP-GP is the
highest among all methods, and having observations from a longer training
time period seems to improve the overall coverage of the held-out data.

Fig. 4 and Fig. 5 display the 1000-step forecast by AR(1), DMD, HODMD
and PP-GP model using 2500 and 3500 timesteps as training data, ,respec-
tively. The PP-GP model can make accurate prediction for the first few
cycles with short predictive intervals. The prediction error accumulates, and
the model automatically detects the inaccuracy of the prediction, leading to
large 95% predictive intervals at later time points. Note that the scale of
the held-out truth is decreasing and the overall trend is not captured by any
method. This is because for all four methods, some inputs such as H(t) and
ρ(t) at k ̸= 0, are assumed to be unknown. The large predictive intervals
from PP-GP indicate substantial differences between the output in the train-
ing and forecast period, signaling more information is required to obtain an
accurate prediction.
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Fig. 4: Forecast of two time Green’s function for 1000 steps by AR(1) (orange dashed
curves), DMD (brown dashed curves), HODMD (yellow dashed curves) and PP-GP (blue
dashed curve). 2500-time steps are used as training data. The 95% predictive interval by
PP-GP is graphed as blue shaded area.

6. Concluding remarks

Quantifying the uncertainty for forecast and extrapolation by data-driven
models is a challenging task that was not well-studied. We showed pop-
ular approaches for representing dynamical systems, such as the dynamic
mode decomposition, can be written as the maximum likelihood estimator
of a linear mapping matrix in a linear state space model, and this gener-
ative model allows the uncertainty to be quantified of forecast rigorously.
We also extended the parallel partial Gaussian process approach to emulate
the one-step-ahead transition function that links observations at two nearby
time frames, and propagated the uncertainty through posterior sampling for
forecasting a longer time. We numerically compared different approaches
with correctly specified inputs and misspecified inputs in two examples. We
discussed scenarios where the uncertainty can be reliably quantified, and an-
alyzed the factors that can degrade the accuracy of uncertainty assessment.

There is a wide range of open issues to obtain reliable uncertainty quan-
tification for probabilistic forecast of nonlinear dynamical systems. First,
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Fig. 5: Forecast of two time Green’s function for 1000 steps by AR(1) (orange dashed
curves), DMD (brown dashed curves), HODMD (yellow dashed curves) and PP-GP (blue
dashed curve). 3500-time steps are used as training data. The 95% predictive interval by
PP-GP is graphed as blue shaded area.

restrictive model assumptions, such as equal variance between output coor-
dinates, subjective choice of latent dimensions and lack of models of trends
from the forecast period, can degrade the accuracy of uncertainty assessment
for forecasting. Having a probabilistic generative model allows one to bet-
ter understand the model assumptions and hence select data-driven models
more suitable for real-world tasks. Second, the kernel representation of vec-
tor functions, such as the PP-GP model, can capture nonlinear behaviors
of dynamical systems through modeling the one-step-ahead transition func-
tion, whereas the Markov assumption of the model can be restrictive. Hav-
ing inputs from longer time lag period may improve the model performance.
Furthermore, when the dimension of input is large, we need to develop a com-
putationally scalable way to reduce the input dimension and form a suitable
distance metric between the reduced inputs. Finally, filtering approaches may
be used along with the data-driven predictions of one-step-ahead transition
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function, when the observations contain nonnegligible noises.

Appendix: Estimation of range and nugget parameters in PP-GP

The range and nugget parameters of PP-GP model can be estimated
from mode estimator, such as the maximum likelihood estimator (MLE) or
maximum marginal posterior estimator (MMPE). The MLE can be unstable
for estimating these parameters when the sample size is small. Transforming
the range parameters to define the inverse range parameter βl = 1/γl, we use
the MMPE for estimating the inverse range and nugget parameters ([33]):

(β̂, η̂) = argmaxβ,η {log(L(β, η)) + log(π(β, η))} . (39)

Here the logarithm of the marginal likelihood after integrating out the mean
and variance is

log(L(β, η)) = c1 −
m

2
log |K̃| − m

2
log |1T

nK̃
−11n| −

(
n− 1

2

) m∑
j=1

log
(
S2
j

)
,

(40)
where S2

j = (yj − µ̂j1n)
T K̃−1(yj − µ̂j1n) and c1 is a normalizing constant

not related to (γ, η). The jointly robust prior [89] is used as a default choice
for prior in the RobustGaSP package [56]

log(π(β, η)) = c2 + a log

(
p̃∑

l=1

Clβl + η

)
− b

(
p̃∑

l=1

Clβl + η

)
, (41)

where c2 is a normalizing constant not relevant to (β, η) and the default choice
of prior parameters in the RobustGaSP package is a = 0.2, b = n−1/p̃(a +
p̃) and Cl = n−1/p̃|xmax

l − xmin
l | with xmax

l and xmin
l being the largest and

lowest input values in the lth coordinate, respectively. For deterministic
output values, including the cases where numerical error of the simulations
is negligible, the nugget η may be set to be zero.

We transform the estimated inverse range parameters back to get γ̂l =
1/β̂l, for l = 1, ..., p̃ and compute the predictive distribution after integrating
the m mean parameters and m variance parameters

p (yj (xt∗) | X,Y,xt∗ , γ̂, η̂)

=

∫
p(yj (xt∗) | X,Y,xt∗ , γ̂, η̂,µ, σ

2)π(µ, σ2)dµdσ2,
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where the reference prior of mean and variance parameters follows π(µ, σ2) ∝
1/
∏m

j=1 σ
2
j , and p(yj (xt∗) | X,Y,xt∗ , γ̂, η̂,µ, σ

2) is the conditional distribu-
tion of the output at xt∗ at coordinate j. With the assumption the out-
puts are independent across different coordinates, the predictive distribution
p (yj (xt∗) | X,Y,xt∗ , γ̂, η̂) follows a Student’s distribution in Eq. (8).
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