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Abstract: Epithelial–mesenchymal transition (EMT) is a complex molecular program that regulates
changes in cell morphology and function during embryogenesis and tissue development. EMT
also contributes to tumor progression and metastasis. Cells undergoing EMT expand out of and
degrade the surrounding microenvironment to subsequently migrate from the primary site. The
mesenchymal phenotype observed in fibroblasts is specifically important based on the expression of
smooth muscle actin (α-SMA), fibroblast growth factor (FGF), fibroblast-specific protein-1 (FSP1),
and collagen to enhance EMT. Although EMT is not completely dependent on EMT regulators such
as Snail, Twist, and Zeb-1/-2, analysis of upstream signaling (i.e., TGF-β, EGF, Wnt) is necessary to
understand tumor EMT more comprehensively. Tumor epithelial–fibroblast interactions that regulate
tumor progression have been identified during prostate cancer. The cellular crosstalk is significant
because these events influence therapy response and patient outcome. This review addresses how
canonical EMT signals originating from prostate cancer fibroblasts contribute to tumor metastasis
and recurrence after therapy.
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1. EMT Classifications

The steps of EMT include a combination of the microenvironment molecules adjusting to
accommodate cellular expansion to either promote tissue development in physiological or pathological
contexts [1–5]. These changes depend on spatial and temporal cues, characterized by the production
of secretory enzymes to degrade the extracellular matrix (ECM), while cell expansion continues [5].
ECM degradation by matrix metalloproteinases (MMPs) is a clear example of this step of EMT.
Furthermore, transforming growth factor-beta (TGF-β) regulates MMPs and downstream Smad
signaling to enhance these degradation activities. Steps of EMT in cancer are comparable when
cells intravasate into the circulatory and/or lymphatic systems, extravasate at the secondary site, and
micrometastases develop during advanced disease [6–8]. These phenotypic changes illustrate the
cancer cell plasticity required for tumor escape. To clearly discuss the molecules that control EMT and
potential therapeutic approaches, EMT classifications as type-1, type-2, and type-3 are explained [9–11].
These types of EMT seem to be based on a combination of several factors, including components of
the microenvironment, the context of the epithelial and stromal cells, and exogenous changes in host
immunity. More specifically, stromal fibroblast “re-education” can be used to study adjacent epithelial
cells. The transformation of the stromal compartment along with microenvironment changes provides
a niche, where morphological signals influence tissue vitality and integrity (Figure 1A). Type-1 EMT
is associated with embryogenesis and normal tissue development, type-2 with wound healing, and
type-3 with tumor development and metastasis [12]. Type-1 EMT meets a terminal point during
fetal development and after birth in contrast with type-2 and type-3 EMT. Embryo development
requires the transformation of neural crest cells to generate three defined germ layers, responsible
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for physiological growth and expansion. Epithelial, mesenchymal, and mesodermal cells function
during this process. Mesenchymal cells only exhibited migratory and invasive properties based on
high expression of vimentin, N-cadherin, and low expression of E-cadherin. Wnt signaling orchestrates
these steps of EMT based on findings where Wnt-deficient embryos lost their ability to undergo
gastrulation. Similar results were observed when ectopic expression of Wnt8c in embryos induced
primitive streak formation [13]. The epithelia also serve as the foundation for renal fibrosis where
morphological changes define the clinical outcome [14]. The role of TGF-β during these steps control
Wnt along with other regulators, such as Nodal and Vg1 [2]. Transcription factors related to type-1
EMT include mesodermal posterior 1 and 2 (Mesp1, Mesp2) during gastrulation [15], Snail [16,17],
and eomesodermin (EOMES) [18] while downstream target gene transcription is either repressed or
activated. Snail overexpression in ARCaPM cells influenced the ECM by decreasing the expression
of integrins α5, α2, and β1 [16]. These effects were also similar when Snail transcriptional repressed
maspin in 22Rv1 prostate cancer cells [17]. Snail knockdown reversed these effects to reduce EMT
in prostate cancer cells. The common mesenchymal phenotypes at the initiation of embryogenesis
generate diverse cell types based on these molecular interactions. Wnt signaling can regulate Snail
activity to promote embryonic stem cell renewal or differentiation [19–21]. Snail conditional knockout
experiments in embryonic stem cells had activated Wnt3a and Axin2 expression compared to control
cells [19]. Wnt inhibition did decrease Snail activity, but Snail knockout did not affect EOMES
expression. Traditional patterns of high Snail expression correlated with low E-cadherin expression
were reversed after Snail knockout studies. These findings clearly demonstrate this molecular
link during normal development as these cells also possessed cuboidal (epithelial) morphology.
Furthermore, proliferation and cell death signals were unaffected after Snail knockout. A link to type-2
EMT can be seen when Snail did not affect embryonic stem cells migration after wound healing assays
were performed [19]. Mesp1 induces mesoderm differentiation via Snail in embryonic stem cells,
and have been studied in regards to miRNA regulation. miR-200 is downregulated when Snail is
activated to enhance pluripotency (miR-294, miR-295, miR-292-3p) and repress the epithelial phenotype
(miR-200c, miR-200b, miR-429), another feature of enhanced EMT [22,23]. TGF-β signaling inhibitor
SB-431542 stopped activin receptor-like kinase 5 (activin) and miR-200 functions to promote EMT and
differentiation. These features are important to note based on the function of activin during wound
healing and skin carcinogenesis [12]. However, there is a balance of activin required to repair damaged
tissues and prevent scar tissue formation that may lead to skin tumors.

Cancer tissue remodeling associated with wound healing, described more than 150 years ago by
Virchow, is a major component of the EMT mechanism [10]. Similarities between type-2 and type-3
EMT are found within the stroma of wound healing and transformed tumor cells. Cellular shape and
extracellular matrix deposits from the stroma include collagen, which contributes to microenvironment
remodeling (Figure 1B). Tenascin-C, fibronectin, and fibrinogen increase to accommodate these steps
as cell shape changes [24,25]. The same markers used to monitor the changes of cell morphology
and function is recognized within the circulatory system. Subsequently, the secretion of these
proteins serves as the substrates to promote survival and migration [26,27] (Figures 1 and 2).
Claudins, occludins, and E-cadherin serve as these substrates during EMT to deregulate the ECM
and microenvironment.

Development of cardiac tissue requires type-1 EMT in the generation of cardiac valves from
endocardial cushions, whereas type-2 EMT is involved in adult cardiac disease and other diseases
of the kidney and liver [14,28–30]. Disruption of normal myocardial tissues is regulated by adjacent
fibroblasts. These fibroblasts recruit extracellular matrix (ECM) molecules and originate from
surrounding endothelial (blood vessel) cells. These activities demonstrate a connection between
type-1 EMT and endothelial EMT (endo-MT), another mechanism promoting support for expanding
tissues [31,32]. TGF-β induced the development of fibroblast cells during type-1 and endo-MT.
Conversely, bone morphogenetic protein 7 (BMP-7) maintained the endothelial phenotype, inhibited
endo-MT and progression of cardiac fibrosis, renal injury, and colon cancer [33–35]. The expanding
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fibroblast cells involved in cardiac development invade and assist in epicardium formation, and
maintain structural integrity observed in the adult mesodermal tissues [36,37]. Similar observations
have been made in renal pathologies [9,33,38,39], liver fibrosis [30], and during gastrulation and neural
crest formation [36].J. Clin. Med. 2016, 5, 17  3/17 
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Figure 1. Summary of EMT and metastasus. (A) Normal interactions between cells and extracellular
matrix (ECM) compobnents. Changes in canonical signaling and cellular function are the foundation
of aberrant cell growth and expansion; (B) Increased expression of enzymes that degrade the
ECM are involved in decreasing adhesion to the basement membrane; (C) Cells escape from the
basement membrane as growth factor and cytokine signaling increases to accommodate changes in
the microenvironment; (D) Cells intravasate and spread to the bloodstream as circulating tumor cells
(CTC); (E) Extravasation at the secondary site promotes the formation of micrometastases and the
re-induction of epithelial markers (MET). Sites of metastasis include the lungs, liver, bones, and brain.

Type-2 EMT is activated during injury, and has been studied during kidney fibrosis [40]. The
mechanism of fibrosis can be monitored or predicted using specific fibroblast markers for cell
morphology. Kidney fibrosis cells expressed fibroblast-specific protein 1 (FSP1) and conducted EMT,
demonstrated by fibroblast phenotypes [41]. FSP1 is a filament-associated, calcium-binding protein
specifically expressed at high levels in cells with the EMT phenotype. Findings also indicated that
sometimes fibroblasts arise from the local conversion of epithelial cells [29]. NP-1 tubular epithelial
cells submerged in type I collagen gels converged to a fibroblast phenotype accompanied with de novo
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FSP1 and vimentin expression. After developing a polyclonal FSP1 antibody, expression was also
noted in kidney, lung, and spleen tissues. Embryonic analysis showed that FSP1 was not expressed
in the embryo at day E8.5, although mRNA could be detected in decidual tissues from the uterus [3].
A monoclonal antibody to the β-subunit of the PDGF-receptor was used to determine expression
in renal tissues [42]. Mesangial and peritubular interstitial cells within the glomerulus have high
PDGF-receptor expression during glomerulonephritis, and cellular shape is similar to EMT. FSP1 is
selective for cells exhibiting the fibroblast phenotype, unlike previous markers used to study injury
and healing [43]. Platelet-derived growth factor (PDGF) [42], α-smooth muscle actin (α-SMA) [43],
and ecto-51-nucleotidase [44] expression was associated with myofibroblast accumulation during
injury. The elevated expression of FSP-1 in kidney fibrosis helped support tubular epithelia cells
EMT transformation in generating interstitial fibroblasts during kidney injury [28] and fibrosis [29].
FSP-1, for example, is regulated by a fibroblast transcription site (FTS-1) that exists in the promoters
of EMT-promoting genes such as Twist, Snail, beta-catenin [42]. These activities correspond to
fibroblast-regulated fibrosis in intestines and pulmonary tissues [45]. It is important to note other
sources of myofibroblasts in tumor tissues include pericytes, resident fibroblasts, as well as bone
marrow-derived mesenchymal stem cells [46,47]. Fibroblasts associated with lung cancer have a
clear expression profile related to their involvement during tumor progression. The microarray
gene expression of proteins regulated by TGF-β and MAPK signaling was higher in cancer-associate
fibroblasts (CAF) cells compared to normal fibroblasts [46]. Similar to findings from Neal et al. [16],
integrin α11 was higher in CAF cells following microarray analyses.

TGF-β signaling was analyzed in NMuMG mouse mammary gland cells where TGF-β treatment
induced epithelial differentiation [48]. Although these cells express elevated TGF-β type I receptor
Tsk7L, they lack expression of ALK-5/R4 type I receptor. A shortened form of the Tsk7L type I receptor
inhibited EMT in the presence of TGF-β, even with responsiveness. Cell growth and E-cadherin
were reduced indicating a role for type I TGF-β receptors. Furthermore, these activities occur in a
RhoA-dependent manner in NMuMG cells [49]. Type-3 EMT is identified during cancer development
and metastasis—the primary focus of this review. TGF-β is a master regulator of cancer development,
where decreased E-cadherin, ZO-1, and desmoplakin 1 expression in breast epithelial cells correlated
with a fibroblast-like morphology [50]. Actin fiber reorganization occurred after TGF-β treatment,
representing an early sign of EMT. This event was characterized by cellular differentiation [51], also
indicated in another study where breast tumor EMT was regulated by TGF-β and RhoA [49]. These
breast epithelial cells had the classical EMT morphology and expression of mesenchymal markers. This
study also indicated that TGF-β-induced EMT was unchanged even when Smad signaling decreased,
and stress fiber formation regulated by TGF-β was not Smad-dependent. TGF-β, p38MAPK [50],
and AKT signaling interactions were found to be significant for tumor-specific EMT [52,53], as well
as TGF-β ligand [54,55], and BMP-7 [34,39]. TGF-β signaling in the fibroblasts regulated adjacent
tumor epithelia to promote prostate cancer [56]. These observations indicated a role of this cell type to
regulate oncogenic potential in epithelial cells using a fibroblast-specific TGF-β receptor 2 knockout
model (Tgfbr2fspKO). Alternatively, TGF-β ligand BMP-2 induces invasion and cancer stem features
via STAT3 activation during colon cancer [35], and ERK1/2 and AKT during gastric cancer [57–59].
Tissue scarring depicted by fibrosis, followed by the administration of tumor necrosis factor alpha
(TNF-α), leads to mesenchymal marker expression [60]. Migrating epithelial cells of human skin had
increased vimentin and FSP1 expression. Cells contained within hypertrophic scars also had increased
mesenchymal marker expression, combined with inflammatory cytokine expression. Expression of
MMPs, FSP1 and vimentin were induced after TNF-α treatment antagonized by targeting BMP2/4.
These findings demonstrated similarities during wound healing to promote EMT. Breast cancer
EMT has been studied using fibroblast growth factor-10 (FGF-10) [61]. FGF-10 treatment increased
tumorigenesis by increasing the MDA-MB-231 cell ability to migrate as indicated by wound healing
assays, decreased apoptosis, and increased Wnt signaling. Cells lining the blood vessels supplying
the tumors with nutrients, and a preferred environment to develop micrometastases characterize
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endo-MT. Endo-MT is observed to have a significant role in all three types of EMT. The endothelia
serve as precursors for hematopoietic cells during embryonic development (type-1), fibrosis (type-2),
and cell malignancy (type-3) in the adult [3,15,26]. Most of the cell types within the circulatory system
develop according to the Endo-MT cues responding to factors like platelet-derived growth factor
(PDGF), periostin, and several within the Notch signaling pathway. Studies focused on the signaling
and cross-talk between different cell types during tumor progression have relied on the functionality
and preference of tumor cells to respond to the fibroblast-specific cues, especially during later stages
of tumorigenesis. Proliferative endothelia have been associated with the proliferations and motility
of adjacent breast cancer epithelia [27,62]. Cancer cells associated with EMT promote expansion of
mesenchymal cells where poor patient outcome was correlated with elevated Twist, Snail and CD44
expression in lung cancer [63]. Since tumor vasculature can be critical to the expansion of tumors,
type-1 EMT in the form of endo-MT can play a paracrine role in tumorigenesis. Together, these can be
a mechanism for the expansion of CAF.

2. EMT Mediators: Tumor and Microenvironment Crosstalk

Conserved zinc finger transcription factors (Snail, Zeb-1, Slug), regulated by upstream TGF-β
activities, have been shown to drive EMT functions [64–66]. Snail also represses E-cadherin
transcription at the promoter level by binding to its enhancer box sequence. These functions are
related to the differentiated morphology to subsequently promote tumor metastasis. High expression
of these types of molecules compared to non-tumor molecules are correlated with poorer prognosis
in clinical analyses, as observed with Snail and Twist in lung adenocarcinoma [63], Slug in gastric
cancer [64], Snail in prostate cancer [16,17] and breast cancer [67,68]. More specifically, the epigenetic
events as described with zinc finger protein methylation of ZBTB20 [66], ZNF139 [69], and ZNF545 [70]
are associated with tumor metastasis. Recent findings indicate that pancreatic tumor cells are able
to conduct EMT in the absence of Snail and Twist transcription factors [71]. These cells were able
to conduct metastasis even after Snail or Twist knockout. In vivo analysis of Snail- or Twist-induced
EMT was not rate-limiting for invasion and metastasis in transgenic mouse models. Yet, in vitro
overexpression of Snail regulates maspin tumor suppressor transcription in prostate cancer [17], and
estrogen receptor alpha [67] and kinase activities in breast cancer cells [53]. The regulatory activities of
Snail and Slug were also demonstrated when they activated TGF-β in breast cancer cells [68]. The data
indicate a contrast between the physiologically relevant and cell culture conditions that are significant
to EMT during cancer. Commonalities between the in vivo and in vitro conditions contributing to EMT
are regulated by TGF-β, MAPK, and ECM component activities [72]. The fibroblast phenotype of these
EMT tumor cells is critically important based on analyses of the surrounding microenvironment. CAF
and tumor epithelial cells coordinate during EMT to promote vascular intravasation [73] (Figure 1).
Circulating tumor cell (CTC) can escape from primary radiation or surgical intervention and their
capture by current methods rarely indicate their potential to engraft and expand in a secondary
metastatic site.

EMT is enhanced in part due to the maintenance of the fibroblast morphology and intricate
crosstalk with the tumor microenvironment, also related to decreased cell adhesion [74]. Molecules
that compose tight junctions, ECM components [75], and fibroblast-derived secretome [76] are examples
of the crosstalk between the tumor and microenvironment. RhoA signaling is a traditional mediator of
morphologic change. RhoA-ROCK signaling can serve as a switch to enable cell cycle arrest [49]. A
general theme that has emerged is that proliferation and differentiation do not occur at the same time.
There is controversy in the role of Smad proteins in the progression of EMT downstream of TGF-β.
Smad2/3 may not be essential for morphologic changes of the epithelia, but it is a required component
of cell cycle arrest for transdifferentiation steps to progress. These changes include cytoskeletal changes
depicted by shifts in polarity due to actin reorganization in metastatic cancer cells [77], and increased
motility [75,78]. Cytochalasin D (Cyt D) treatment of breast cancer cells increased E-cadherin and
reduced RhoA expression. Remodeling of the cytoskeleton plays a crucial role in EMT to promote
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cancer. In vivo analysis indicated that vimentin was 3.7 times higher compared to E-cadherin in
oral squamous cell carcinoma [78]. Wnt, Notch, and TGF-β signaling can additionally potentiate
the expression of Zeb1, FoxC2, and Twist for mesenchymal morphologic changes mediated by the
inhibition of E-cadherin expression and increased expression of vimentin and N-cadherin.

Transformation of mammary epithelial cells has been attributed to the functions of stroma, as
compared to findings in prostate cancer [79]. The loss of stromal TGF-β responsiveness enables
paracrine hepatocyte growth factor (HGF) signaling in adjacent epithelia tumors, characterized by
the fibroblast phenotype [80,81]. Epithelial expression of the c-Met and Ron, HGF cognate receptors,
support Stat5, JAK, and TAK1 to promote Snail expression. Platelet-derived growth factor (PDGF)
is also identified as a functional determinant for CAF [4,82]. Following an orthotopic mouse model
of colorectal cancer, the stroma cells required stanniocalcin-1 (STC1), a PDGF regulator, to promote
intravasation of adjacent tumor cells [82]. Thus, epithelial tumors contained within invasive fronts
may be dependent on paracrine signaling. Further, when associated with type 3 EMT, the morphologic
changes can be associated with cell transformation [83,84]. There is clearly an intricate balance of
the intracellular and extracellular activities that modulate EMT and in turn cancer initiation and
progression. The cadherin and integrin switches during EMT involve relocation of the cells from the
basement membrane environment to the fibrillary ECM zone [85]. Matrix metalloproteinases (MMPs)
and integrins function with the tumor microenvironment to induce changes during EMT [62,86,87].
FSP1, matrilysin and stromelysin-1 are EMT-promoting genes that can downregulate E-cadherin to
promote EMT [87,88]. MMP-3 and MMP-9 originating from the tumor microenvironment, tumor cells,
and stromal cells adjacent to the tumor cells help to facilitate EMT via invasion and metastasis
behaviors. The activation and expression of integrins also facilitate interaction with the tumor
environment. Overexpression of αvβ6 integrin activated by MMP-3 in poorly differentiated squamous
cell carcinomas gained a fibroblastic morphology to EMT during oral cancer [89] and melanoma [90].
Myosin filaments, restructured to accommodate changing cell shape by vimentin and beta-catenin
signaling contribute to the invasive front of the tumor. These functions are specifically significant
in head and neck squamous cell cancer (HNSCC), and oral squamous cell cancer (OSCC) [91].
Expression of a CD44high/CD24l0w protein signature, aldehyde dehydrogenase (ALDH1), Nanog, and
stromal cell-derived factor-1/CXCR4 signaling regulate bone metastasis [92]. These activities regulate
cellular plasticity to enhance the interactions between epithelial and fibroblast cell types.

3. EMT and Tumor Metastasis

Although the function of EMT in development has not been disputed, its role in cancer metastasis
has long been a point of controversy. EMT is a resultant of paracrine signaling by stromal-derived
factors as well as a potential source of cells in the stromal compartment (Figure 2). The difficulty
in proving that adult patient tissues unequivocally have cells undergoing EMT is the source of
controversy. However, the process of EMT, either as a result of paracrine induction or inherent
somatic mutations, can be associated with the gain of stem/progenitor cell differentiation. The gain
of the fibroblastic phenotype is often associated with the gain of stem features, such as markers
previously described, reduced proliferation, adaptability to secondary microenvironments during
metastasis, and therapeutic resistance. The aberrant activation of Ras/mitogen-activated protein kinase
(Ras/MAPK) is a feature of cancer stem cells in the pancreas and breast has long been recognized yet
it is a difficult target to drug. In prostate cancer, epithelial expression of receptor activator of NF-κB
ligand (RANKL) in an osteomimicry phenotype conveys the advantages of osteoclast activation in
the bone microenvironment [93,94]. Further profile analysis of bone-specific proteins osteopontin
(OPN), osteocalcin (OC), bone sialoprotein (BSP), and osteoprotegrin (OPG) demonstrated expression
in prostate cancer epithelia [95–97]. Further, the ability of EMT cells to engraft in the bone marrow
niche that also supports hematopoietic stem cells is reported. Survival within the skeleton during
prostate cancer progression is supported by several growth factors related to TGF-β, ECM, and
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hormone-regulated receptors. The molecular crosstalk between the prostate tumor and bone stroma
are targets of therapies to increase tumor cell death.
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Figure 2. Cellular interactions during EMT. Mechanisms of epithelial–stromal–endothelial crosstalk
are depicted. Growth factors, cytokines, and enzymes function dynamically with and between each
cell type.

EMT was associated with RANKL activation in ARCaPM and LNCaP prostate cancer cells
accompanied with Snail overexpression [94]. Similarly, Snail expression in the nucleus of epithelial
ovarian tumors increased from precursor lesions to carcinomas that are especially resistant to traditional
chemotherapy [98]. In this respect, the stem/progenitor state can mean the cancer epithelial may lose
contact inhibition as well as become resistant to anoikis. This line of reasoning can help attribute
EMT to these processes of metastasis while identifying transient cells in human primary tissues. The
evidence of cells in CTC studies that simultaneously have epithelial and fibroblastic markers can
support the role of EMT in the process of metastasis.

The controversial role of EMT has been noted during the regulation of the cytoskeleton protein
complexes [99]. Here, it introduced the ability of cells to metastasize in the absence of an overt need
to undergo EMT, through a process where a group of cells enter the leaky tumor vasculature in a
raft-structure. Integrin outside–in signaling is evident in ECM remodeling by fibroblasts to provide
an environment for invading tumor epithelia [100]. Cytoskeleton regulation of Rho GTPases Cdc42,
Rac1, and RhoA were challenged using inhibitors. The findings from this study implicated that there
are different modes of motility regulated by RhoA/ROCK-independent EMT mechanisms. Tumor
cells were able to overcome inhibitors that target motility by switching to a different mode (Rac1 to
RhoA and RhoC). Tracks of movement were detected as fibroblasts led epithelial tumors through the
ECM. Subsequently, it is presumed that the group of cells could lodge in narrow blood vessels and
expand without the need to extravasate. Histologic documentation of similar structures in the bone
marrow and lung vasculature support this clinical metastatic possibility. In light of the plasticity of
cancer epithelia, both EMT and collective migration methods are both likely modes of metastasis.

4. Cooperative EMT Signaling Mechanisms

A common signaling component of multiple paracrine factors including FGF, HGF, and PDGF
signaling pathways is Ras activation. Even in the absence of somatic Ras mutations, paracrine Ras
activation in the context of TGF-β is a long-recognized cooperation during tumor EMT. Oft et al.
reported that EpH4 mammary epithelial cells transformed by mutant Ras signaling underwent
EMT [101]. These cells possessed a fibroblast phenotype that directly corresponded to their metastatic
behavior and resistance to TGF-β1 cell cycle inhibition. The cooperation of TGF-β and Ras signaling
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can be through multiple signaling proteins, including phosphatidylinositol-3 kinase (PI3K) and
mitogen-activated protein kinase (MAPK), to result in the activation of Snail-downstream genes.
Antagonizing the MAPK pathways with U0126 in ARCaP cells was able to partially reverse EMT
through the downregulation of Snail [16]. TGF-β cooperates in this process by activating integrin
signaling significant to epithelium, but not specific to lung tissue [102]. Forsyth et al. described EMT as
a process that leads to the formation of stromal cells that progress in tandem with invasive carcinoma
cells [103].

The various CTC capture technologies suggest, however, that cancer cells that have undergone
EMT are in fact in circulation (Figure 1D). This observation can be explained by the gain of somatic
mutations, bypassing the need for integrin signaling or additional mechanisms of EMT is the other
obvious alternative. Integrin proteins are major players in the TGF-β-dependent tumor metastasis
process [102,104,105]. Desmosomes and integrins relate consistently to TGF-β, Wnt, and Notch
signaling by regulating not only cellular morphology and composition, but also increasing the potential
for intravasation and extravasation during metastasis [106]. TGF-β potentiates integrin expression.
However, integrin expression can in turn cooperate with TGF-β signaling. Studies in breast epithelia
demonstrated that EMT progression by TGF-β can be interrupted by antagonizing integrin β1. Both
integrin β1 and TGF-β have a common downstream signaling target, p38MAPK [50]. However, TGF-β
activation of p38MAPK was lost if integrin β1 was neutralized. Since p38MAPK is required for
TGF-β-mediated EMT to progress, these findings have interesting implications for epithelia that are
non-adherent and possibly found in circulation. Presumably, the reduced outside–in integrin signaling
by non-adherent cells could result in mesenchymal to epithelial transdifferentiation [49,105]. There are
clearly multiple mechanisms of EMT initiation; however, the means of maintaining the mesenchymal
state is not clear. Such understanding can support therapeutic limitations faced in treating cancer cells
that undergo EMT.

5. Role of EMT in Therapeutic Resistance

EMT is associated with therapy resistance and tumor recurrence. Morphological changes observed
during EMT are defined at distinct stages of differentiation. Invasive behavior carried out by tumor
epithelia are regulated by the tumor-associated stroma [107]. The persistent accumulation of these
cells during the recurrent phase following therapy presents an obstacle during clinical management of
cancer. Research findings have long noted that tumor fibroblasts also contribute to therapy resistance.
The role of EMT in this context during the reduction of therapy efficacy is evident in several tumors,
including prostate and pancreas [108–110]. Neuroendocrine differentiation in prostate cancer cells
was regulated during hormone treatments, but inadvertently resulted in resistance. These findings
are particularly interesting, considering the role of Snail EMT marker during NED in LNCaP prostate
cancer cells [111]. MAPK signaling and IL-6-induced neuroendocrine differentiation was increased
in LNCaP prostate cancer cells, similar to activities observed in patients undergoing ADT [112–114].
It is important to note the fibroblastic and spindle-shaped cells proliferating during these studies.
Canonical signaling regulated by MAPK and PI3K/Akt have also regulated EMT to promote resistance
and tumor recurrence.

The stem features acquired in the specific EMT process can be of particular importance when
considering therapeutic intervention. The activation of Notch signaling was associated with increased
cell proliferation and survival in gemcitabine therapy resistance [111]. Similarly, Slug and Snail
expression is associated with radio-resistance and chemo-resistance by reducing apoptosis while
increasing stemness [99]. STAT-3 signaling (closely associated with IL-6) was antagonized using
siRNA in metastatic PC3 prostate cancer cells [114]. The expression of anti-apoptotic gene Bcl-2,
cyclin D1 and c-Myc were reduced, indicating a correlation between this signaling pathway and
prostate cancer progression. Standard chemotherapy methods used to target cancer, can promote
EMT where methods of reversing EMT had presumed benefit [115,116]. More specifically, resistance
to therapies such as paclitaxel was associated with increased migration and invasion of tumor cells.
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Twist not only induces EMT, but increases therapy resistance in breast cancer cells via downregulation
of estrogen receptor-α [117] and increased Akt [115]. Targeting the proteasome has also been shown to
reduce chemoresistance via Snail signaling. Proteasome inhibitor NPI-0052 downregulated Snail and
NF-kappaB expression while Raf-1 kinase inhibitory protein (RKIP) expression increased [116].

Tumor complexity is perpetuated by the communication between tumor cells and the
microenvironment, contributing to therapy resistance [118]. Therapies targeting endothelial, cancer
stem, and immune-evasive cells also present challenges when tumor signaling adapts. Doxorubicin
therapy induced thymic endothelial cell expression of IL-6 and tissue inhibitor of metalloproteinase 1
(TIMP-1), providing tumor cells with a protective niche within the thymus tissue [118]. Following the
administration of therapies, hypoxic tumor areas increase tumor growth and survival. The reason
that a broader therapeutic strategy of targeting both the tumor epithelia and its microenvironment
is starting to show promise may be because cells undergoing EMT are addressed as well as the
source of paracrine mediators of tumor progression/differentiation. Tumor metastasis brings about
another layer of complexity as the tumor microenvironment changes relative to the primary site.
Tumor adaptation to the surrounding environment is influenced by selective pressure applied by
drug therapy [119]. Claudin5 (CLDN5) is a potential target for antiangiogenic therapy because it was
highly expressed in vascular endothelial cells [120]. Several other CLDN genes (1, 3, 4, 7, 10, 16) were
highly expressed in several human tumors. Unfortunately, the long-term negative consequences tend
to overshadow the short-lived efficiency of CLDN5 antagonism, as a result of upregulation of other
tumor-promoting pathways [121]. Wide-spectrum therapies that are designed to impact more than
one pathway or process have had greater efficacy in late-stage cancers. Taxane-based therapies in
the context of other hormonal therapies or alone seem to have limited efficacy in breast and prostate
cancers. However, in the case of ovarian cancer, where EMT and the gain of stem features by the cancer
cells is common-place, large scale de-bulking of the tumor burden by surgical resection seems to have
the greatest impact. Taxanes, platinum, and the like occupy the standard of care for late-stage cancer
patients, but notoriously have short remission times. Thus, combining such traditional chemotherapy
with targeted drugs or more recently immune checkpoint inhibition therapy seems to address the fast
growing tumor cells, more quiescent, and those undergoing EMT.

Management of the anticancer drugs for patients based on neurotoxicity, the effects on canonical
MAPK and EGFR signaling have been the focus of several studies. Phase II clinical trial analysis
indicated that although toleration of CI-1040 was considerable, it failed to demonstrate sufficient
antitumor activity [122]. The second generation MEK PD 0325901 showed significantly higher response
in various tumors tested, including: breast, colon, pancreatic, and non-small-cell lung cancer. These
findings were also related to breast cancer cell resistance to gefitinib, a EGFR tyrosine kinase inhibitor.
Gefitinib successfully inhibited EGFR activation in SK-Br-3, MDA-MB-261, and MDA-MB-468 breast
cancer cells, although p42/p44-MAPK and AKT phosphorylation was not reduced in MDA-MB-468
compared to the other cells [123]. PI3K inhibitor LY294002 or MEK inhibitor PD 98059 were more
effective at reducing cells growth. Combination therapy resulted in apoptosis that was higher compared
to single treatments. Overexpression of activated MAPK in normal mammary MCF-10A cells increased
resistance, once again indicating the role of this signaling pathway for tumor progression. Epigenetics
and transcriptional regulation also play a role in therapeutic efficacy. Promoter hypermethylation
and silencing of a Wnt antagonist, secreted frizzled related protein 5 (SFRP5), was associated with
ovarian cancer cell chemoresistance to cisplatin [124]. SFRP5 methylation was directly related to poor
prognosis in patients who were treated with platinum-based chemotherapy. Cancer-promoting genes
were activated based on the epigenetic silencing of Wnt-associated gene SFRP5. These findings link
to the Twist- and AKT2-mediated events of EMT where cancer cell invasion, colony formation, and
tumor growth were increased. Plant-based natural products such as Genistein, targets Akt/glycogen
synthase kinase-3 (GSK-3) signaling [125]. The transgenic adenocarcinoma mouse prostate model
(TRAMP/FVB) treated with Genistein had reduce prostate size and poorly defined tissue. Prostatic
intra-epithelial neoplasia (PIN) was reduced using Genistein, and there was decreased Snail and
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migratory potential. Genistein is effective for treatment of various tumors and alters apoptosis, cell
cycle and angiogenesis – further inhibiting metastasis. Specifically, caspases, Bcl-2, MAPK, Wnt,
and AKT signaling are targeted with Genistein, while possessing synergy with other chemotherapy
(i.e., adriamycin, docetaxel, tamoxifen). Quercetin (EGCG) is reported to inhibit EMT, migration, and
stem features [126]. The CD44+/CD133+ expressed prostate cancer cells decreased following EGCG
treatment, indicating its ability to inhibit self-renewal. Caspase-3/7 activation was coupled with
inhibition of Bcl-2, survivin, and Snail. Molecules responsible for invasion and migration were also
inhibited and this agent may be useful in future therapy.

Natural products often have more than one target, which comes with advantages and
disadvantages. However, the lack of rigorous studies on effective doses of such natural products has
been the greatest obstacle to their wide adoption. The heterogeneous nature of the tumor and its
microenvironment defines therapeutic efficacy. Mechanisms of inducing synthetic lethality targeting
both compartments consider the plasticity of the disease. Ultimately, combination therapies that
balance the blocking of resistance mechanisms of first-line therapies without compromising systemic
functions are the obvious goal.

6. Conclusions

Studies discussed here indicate important mechanisms of cancer progression that are intimately
linked to EMT progression in multiple solid tumors. Although the linking of EMT to the process of
metastasis is not clear, its role in therapeutic resistance is evident. This is the result of the stem-like
properties acquired by cells undergoing EMT as well as it being a means of potentiating tumor
heterogeneity. The study of EMT benefits the strategies of cancer prevention, therapy, and prognosis.
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Mesenchymal-epithelial transition
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Fibroblast-specific protein-1
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Zinc finger E-box-binding homeobox 1
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Matrix metalloproteinase
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Bone morphogenetic protein
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Hepatocyte growth factor
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Fibroblast growth factor
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Circulating tumor cells
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Protease-activated receptor-1

α-SMA
α-smooth muscle actin

MSC
Mesenchymal stem cells
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Reactive oxygen species
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Oral squamous cell cancer
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Focal adhesion kinase
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Cancer stem cells
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Aldehyde dehydrogenase 1
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IGF
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OC
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