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3 On Rao’s Theorems and the Lazarsfeld–Rao Property

Robin Hartshorne

Abstract

Let X be an integral projective scheme satisfying the condition S3 of Serre and
H1(OX(n)) = 0 for all n ∈ Z. We generalize Rao’s theorem by showing that biliaison
equivalence classes of codimension two subschemes without embedded components are
in one-to-one correspondence with pseudo-isomorphism classes of coherent sheaves on
X satisfying certain depth conditions.

We give a new proof and generalization of Strano’s strengthening of the Lazarsfeld–
Rao property, showing that if a codimension two subscheme is not minimal in its
biliaison class, then it admits a strictly descending elementary biliaison.

For a three-dimensional arithmetically Gorenstein scheme X, we show that biliaison
equivalence classes of curves are in one-to-one correspondence with triples (M,P,α),
up to shift, where M is the Rao module, P is a maximal Cohen–Macaulay module on
the homogeneous coordinate ring of X, and α : P∨ → M∗ → 0 is a surjective map of
the duals.

0 Introduction

The Lazarsfeld–Rao property was initially formulated for curves in P
3. It says that each even

liaison class of curves has minimal elements, which form an irreducible family. Any curve in
the even liaison class that is not minimal can be obtained from a minimal curve by a finite
sequence of ascending basic double links, followed by a deformation. This result has been
generalized in several directions, and most recently Strano [15] has shown that if one uses
elementary biliaisons, the deformation at the last step is not necessary. Note that a basic
double link is essentially a union of the smaller scheme with a complete intersection, while
an elementary biliaison has linear equivalence built into the definition. So another way of
phrasing Strano’s result is that the only deformations needed in the Lazarsfeld–Rao theorem
are linear equivalences on suitable hypersurfaces.

Our purpose in this paper is to give a uniform treatment of the theorems of Rao and the
Lazarsfeld–Rao property, in a fairly general context, and from a slightly different point of
view than the traditional one. In particular, we will use biliaisons only, and we deal with
codimension 2 subschemes that are equidimensional and without embedded components.
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A good summary of the literature can be found in Chapter 6 of Migliore’s book [10].
Rao first gave theorems relating biliaison equivalence classes of codimension 2 subschemes to
stable equivalence classes of certain sheaves on P

n [13], [14]. The Lazarsfeld–Rao property
was first proved in a special case in [8]. Then it was proved independently for curves in P

3 in
[9] and for codimension 2 locally Cohen–Macaulay schemes in [1]. The ambient scheme was
generalized from P

n to an arithmetically Gorenstein scheme in [14] and [2]. The condition
that the subschemes be locally Cohen–Macaulay was dropped in [11] and [12]. The necessity
of the deformation at the last step of the LR property was eliminated by Strano [15].

In this paper we retain all these generalizations. Using ideas from the papers mentioned
above, and some technical results from the papers [5], [6], we can now prove the Lazarsfeld–
Rao property for biliaison equivalence classes of codimension 2 subschemes without embed-
ded components on an integral projective scheme X satisfying condition S3 of Serre and
H1

∗ (OX) = 0 (2.4). We also give a version of the theorem of Rao for a three-dimensional
arithmetically Gorenstein scheme (3.2). We have made an effort in this paper to present
each result with the minimal number of hypotheses, so as to bring out more clearly which
results depend on which assumptions.

1 Pseudo-isomorphism

Here we borrow some ideas from [5, Section 2] and adapt them to our situation.

Hypotheses 1.1. Let X be a projective scheme over an algebraically closed field k, equidi-
mensional of dimension N ≥ 2. We assume X satisfies the condition S2 of Serre. Let OX(1)
be an ample invertible sheaf. For any coherent sheaf F we denote ⊕n∈ZH i(X,F(n)) by
H i

∗(F). We assume that H1
∗ (OX) = 0.

Definition 1.2. A coherent sheaf L on X is dissocié if L ∼= ⊕OX(ni) for some ni ∈ Z.

Definition 1.3. An elementary pseudo-isomorphism is a surjective map E → E ′ → 0
of coherent sheaves whose kernel is dissocié. The equivalence relation generated by the
elementary pseudo-isomorphisms (and their inverses) is called pseudo-isomorphism (psi for
short).

Lemma 1.4. A composition of elementary psi is an elementary psi.

Proof. Suppose given

0 → L → E → E ′ → 0

0 → L′ → E ′ → E ′′ → 0

2



with L and L′ dissocié. The kernel of the composed map E → E ′′ is an extension of L′ by
L. Because of the hypothesis (1.1) that H1

∗ (OX) = 0, this extension splits, so the kernel is
L ⊕ L′, which is dissocié.

Lemma 1.5. If E1 and E2 are psi-equivalent, then there exists a coherent sheaf F and
elementary psi’s F → E1 and F → E2.

Proof. Any psi is a finite composition of elementary psi’s and their inverses. In view of (1.4),
and using induction on the length of a chain, it is sufficient to show that if E1 → E ′ and
E2 → E ′ are elementary psi’s, then there exists elementary psi’s F → E1 and F → E2 making
a commutative diagram. So let

0 → L1 → E1 → E ′ → 0

and
0 → L2 → E2 → E ′ → 0.

Take F to be the fibered sum ker(E1⊕E2 → E ′). Then the kernel of the natural map F → Ei

is just L3−i for i = 1, 2.

Definition 1.6. We say a coherent sheaf E on X satisfies the condition T if the following
hold

1) E is locally free of constant rank in codimension ≤ 1.

2) E has depth ≥ 1 in codimension 2.

3) E has depth ≥ 2 in codimension ≥ 3.

4) There is a closed subset Z ⊆ X of codimension ≥ 2 such that E is locally free on X−Z
and det E|X−Z

∼= OX−Z(ℓ) for some ℓ ∈ Z. In this case, we say E is orientable.

Example 1.7. a) Let V be a closed subscheme of X of codimension 2, equidimensional, and
having no embedded components. Then the ideal sheaf IV of V satisfies the condition T . To
each such closed subscheme V then, we will associate the psi-equivalence class of coherent
sheaves satisfying T containing the ideal sheaf IV .

b) Conversely, if E is a rank 1 coherent sheaf satisfying T , then E is isomorphic to IV (n)
for some subscheme V of codimension 2 without embedded points, and some n ∈ Z. Indeed,
let Z be a closed set of codimension ≥ 2 such that E is locally free on X − Z. Then since E
is orientable, E ∼= OX(n) on X − Z for some n. Let j : X − Z → X be the inclusion. Then
there is a natural map α : E → j∗j

∗E . Since X satisfies S2, j∗j
∗E ∼= OX(n). Furthermore,

the map α is injective because of the depth conditions on E . Hence E ∼= IV (n) for some
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closed subscheme V of codimension ≥ 2. It may happen that E ∼= O(n), in which case V is
empty. If V is nonempty, the depth conditions on E now imply that V is equidimensional of
codimension 2, and has no embedded components.

c) If V is a closed subscheme as in a) and b) above, and if Y is a hypersurface of X,
linearly equivalent to nH , containing V , where H is the divisor class corresponding to OX(1),
then the exact sequence 0 → IY → IV → IV,Y → 0 shows that IV → IV,Y is a psi, since
IY

∼= OX(−n). Note, however, that IV,Y does not satisfy T , because it is a torsion sheaf
with support in codimension 1 along Y .

Lemma 1.8. a) If E → E ′ is an elementary psi, and E ′ satisfies T , then so does E .
b) if X satisfies condition S3 of Serre, and if E is a sheaf satisfying T of rank ≥ 2, then

there exists an elementary psi E → E ′ to a sheaf E ′ of rank one less, also satisfying T .

Proof. Part a) is obvious. To prove b), let E(n) be a twist of E that is generated by global
sections. I claim that if s is a sufficiently general section in H0(E(n)), then the quotient
E ′ = E/O(−n) defined by s will be locally free in codimension 1. At a point x ∈ X,
the condition for E ′ to be locally free is that s(x) ∈ E(n) ⊗ k(x) be non-zero. If E is
locally free of rank r ≥ 2, since E(n) is generated by global sections, the bad set of sections
s ∈ V = H0(E(n)) will have codimension r. It follows that for a general s ∈ V , the bad
set of x ∈ X for which s(x) = 0 will have codimension ≥ r ≥ 2. Hence E ′ is locally free in
codimension 1. The rest of condition T for E ′ follows from the S3 condition on X.

Definition 1.9 [5, 2.6]. A coherent sheaf E X is extraverti if H1
∗ (E

∨) = 0 and Ext1(E ,OX) =
0.

Lemma 1.10. a) If E → E ′ is an elementary psi, and E ′ is extraverti, so is E .
b) If E1 and E2 are extraverti sheaves that are psi equivalent, then they are stably equiv-

alent, namely, there exist dissocié sheaves L and M such that E1 ⊕L ∼= E2 ⊕M.

Proof. a) If 0 → L → E → E ′ → 0 with L dissocié, then we have

0 → E ′∨ → E∨ → L∨ → Ext1(E ′,OX) → Ext1(E ,OX) → 0.

Assuming that Ext1(E ′,OX) = 0, we get Ext1(E ,OX) = 0 and an exact sequence 0 → E ′∨ →
E∨ → L∨ → 0. Now the exact sequence of cohomology shows H1

∗ (E
∨) = 0.

b) In view of part a) and (1.5), it is sufficient to show that if 0 → L → E → E ′ → 0 with
E ′ extraverti, then the sequence splits, so E ∼= E ′ ⊕ L. For this we use the low terms of the
spectral sequence of Ext:

0 → H1
∗ (E

′∨) → Ext1
∗(E

′,OX) → H0
∗(Ext1(E ′,OX)) → H2

∗ (E
′∨) → . . .

The first and third terms being zero, so is the second, so the sequence splits.
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Proposition 1.11. Every psi equivalence class of sheaves satisfying T contains an extraverti
sheaf satisfying T .

Proof. Let E be a coherent sheaf satisfying T . Let

0 → G → M → E → 0

be a resolution with M dissocié. From the hypothesis H1
∗ (OX) = 0 we see that Ext1

∗(E ,OX)
is a quotient of H0

∗ (G
∨), and hence is a finitely generated graded S = H0

∗ (OX)-module.
Take a set of generators ξi ∈ Ext1(E ,OX(−ai)) of this module and let

0 → L → F → E → 0

be the corresponding extension, with L = ⊕OX(−ai). Then F is psi-equivalent to E by
construction, and satisfies T by (1.8). We will show that F is extraverti.

First we apply the functor Hom(·,OX(∗)). This gives

0 → H0
∗ (E

∨) → H0
∗ (F

∨) → H0
∗ (L

∨)
α
→ Ext1

∗(E ,OX) → Ext1
∗(F ,OX) → 0.

Furthermore, the map α sends the generators of H0
∗ (L

∨) to the chosen generators ξi of
Ext1

∗(E ,OX). Hence Ext1
∗(F ,OX) = 0, and we conclude from the spectral sequence men-

tioned in the proof of (1.10) above that H1
∗ (F

∨) = 0.
From that same spectral sequence, and noting that H2

∗ (E
∨) is zero in large enough degrees,

by Serre vanishing, we see that the map

Ext1
∗(E ,OX) → H0

∗ (Ext1(E ,OX))

is surjective in large enough degrees. Hence the images of the generators ξi also generate the
sheaf Ext1(E ,OX). Then from applying Hom(·,OX) to the sequence defining F above, we
find also Ext1(F ,OX) = 0, and F is extraverti.

Combining the results of this section, we have the following relationship between codi-
mension two subvarieties and coherent sheaves on X.

Proposition 1.12. Let X be an equidimensional projective scheme of dimension ≥ 2 satis-
fying S2 and H1

∗ (OX) = 0.
a) For any codimension two subscheme V without embedded points, we associate to it the

psi-equivalence class of coherent sheaves satisfying T that contains the sheaf IV .
b) If furthermore X satisfies S3, then every psi-equivalence class of sheaves satisfying

T contains a sheaf of the form IV ′(n), where V ′ is a codimension two subscheme without
embedded points, for some n ∈ Z.

c) Every psi-equivalence class of sheaves satisfying T contains extraverti sheaves, unique
up to stable equivalence.
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Proof. a) is (1.7)a.
b) is (1.8) together with (1.7)b.
c) is (1.11) plus (1.10).

Remark 1.13. If X satisfies in addition condition G2, Gorenstein in codimension 2, then the
condition Ext1(E ,OX) = 0 implies by local duality depth E ≥ 2 at every point of codimension
2, so that then E will satisfy condition S2. In the presence of G1, this makes E reflexive [3,
1.9]. Thus, the extraverti sheaves of (1.12)c are reflexive, and we recover the construction of
Nollet [12] and Nagel [11] by another route.

Furthermore, if X is nonsingular, and we take V to be locally Cohen–Macaulay of codi-
mension 2, then depth IV ≥ r − 1 in codimension r, and the same applies to E . Then the
condition Ext1(E ,O) = 0 makes depth E = r in codimension r, i.e., E is a Cohen–Macaulay
sheaf. Since X is nonsingular, the extraverti sheaves associated to V will be locally free.
Then we recover the usual N -type resolution of IV .

2 The Lazarsfeld–Rao property

We preserve the hypotheses (1.1) and in addition we assume X satisfies S3. Let H be the
divisor class corresponding to OX(1), i.e., whose fractional ideal is isomorphic to OX(−1).
If Y ⊆ X is an effective divisor linearly equivalent to nH for some n, then Y is a Cartier
divisor on X, and so the scheme Y satisfies S2. Thus we can speak of generalized divisors
on Y [4].

Definition 2.1. Let V be a closed subscheme of pure codimension 2 of X, with no embedded
components. We say another such subscheme V ′ is obtained by an elementary biliaison of
height h from V , if there exists an effective divisor Y ∼ nH on X for some n, and a linear
equivalence V ′ ∼ V + hH on Y for some h ∈ Z. (Here by abuse of notation, H denotes the
divisor class of OX(1) or OY (1) according to context.) The equivalence relation generated
by elementary biliaisons will be called biliaison. (To be precise, we should call this notion
complete intersection biliaison or CI-biliaison, to distinguish it from the more general notion
of Gorenstein biliaison that uses ACM divisors Y on X [4].)

Proposition 2.2. If V1 and V2 are closed subschemes of codimension 2 of X as above that
are equivalent for biliaison, then there is an integer m ∈ Z such that the ideal sheaves IV1

and IV2
(m) are equivalent for pseudo-isomorphism.

Proof. Let V ′ ∼ V + hH as a divisor Y ∼ nH of X. Then IV ′,Y
∼= IV,Y (−h). On the other

hand, IV ′,Y ∼ IV ′,X for psi and IV,Y ∼ IV,X for psi by (1.7). Hence IV ′ ∼ IV (−h) for psi.
Combining a sequence of elementary biliaisons gives the result.
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Remark 2.3. The converse of this proposition is the theorem of Rao: if the ideal sheaves IV1

and IV2
(n) are equivalent for psi, then V1 and V2 are equivalent for biliaison. The Lazarsfeld–

Rao property gives a more detailed structure of the biliaison equivalence class of codimension
2 subschemes. Both results are combined in the following theorem.

Theorem 2.4. Let X be a projective scheme over an algebraically closed field k, equidimen-
sional of dimension N ≥ 2. Let OX(1) be a very ample invertible sheaf. We assume that X
is integral, that it satisfies condition S3 of Serre, and that H1

∗ (OX) = 0. We consider closed
subschemes V of codimension 2 equidimensional and without embedded components.

a) If IV1
and IV2

(n) are psi-equivalent for some n ∈ Z, then V1 and V2 are equivalent for
biliaison. Hence the biliaison equivalence classes of subschemes V are in one-to-one
correspondence with psi-equivalence classes (up to twist) of coherent sheaves satisfying
condition T (1.6).

b) If V is a codimension 2 subscheme whose degree is not minimal in its biliaison equiv-
alence class, then V admits a strictly descending biliaison (i.e., there exists a divisor
Y ∼ nH on X containing V , and a subscheme V ′ ∼ V + hH on Y with h < 0).

c) Any two subschemes V, V ′ in the same biliaison class, both of minimal degree, can be
joined by a sequence of elementary biliaisons of height 0, i.e., linear equivalences on
divisors Yi ∼ niH on X.

The proof will follow after some preliminary results. The main idea is this: if IV1
(a) and

IV2
(b) are equivalent for psi, then by (1.5) there exists a coherent sheaf E (satisfying T by

(1.8)) and elementary psi’s from E to IV1
(a) and IV2

(b). Thus there are exact sequences

0 → ⊕r
i=1O(−ai)

α
→ E → IV1

(a) → 0

0 → ⊕r
i=1O(−bi)

β
→ E → IV2

(b) → 0

where E has rank r + 1. The maps α, β are defined by sections si ∈ H0(E(ai)) and ti ∈
H0(E(bi)). The proof proceeds by comparison of the integers ai, bi, and a careful study of
the exact conditions for a section s ∈ H0(E(n)) to have a quotient E ′ = E(n)/(s) that satisfies
T .

First we consider a special case.

Proposition 2.5. Let X satisfy the hypotheses of (2.4), let E be a rank 2 coherent sheaf on
X satisfying T , and suppose there are codimension 2 subschemes V1, V2 and exact sequences

0 → O(−a1)
α
→ E → IV1

(a) → 0
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0 → O(−b1)
β
→ E → IV2

(b) → 0.

Then V2 is obtained from V1 by an elementary biliaison of height b − a on a suitable divisor
Y ∼ nH on X.

Proof. Consider the composed map γ : O(−b1)
β
→ E → IV1

(a). If γ is zero, then β factors
through O(−a1). We get an injective map O(−b1) → O(−a1) whose cokernel is contained
in IV2

(b), hence is zero, because IV2
(b) is torsion-free. Thus a1 = b1, so α = β, a = b, and

IV1
= IV2

, so V1 and V2 are equal.
If γ is not zero, then since X is integral (and here is exactly where we use the hypothesis

X integral), it is injective. Let the cokernel be F :

0 → O(−b1)
γ
→ IV1

(a) → F → 0.

Let Y be the divisor on X defined by γ followed by the inclusion of IV1
(a) in OX(a). Then

Y ∼ (a+b1)H on X, and F ∼= IV1,Y (a). A diagram chase shows that F also fits into another
exact sequence

0 → O(−a1) → IV2
(b) → F → 0.

Hence F ∼= IV2,Y (b) also. Therefore IV1,Y (a) ∼= IV2,Y (b) and there is a linear equivalence
V2 ∼ V1 + (b − a)H on Y . Thus V2 is obtained by an elementary biliaison of height b − a
from V1.

Proposition 2.6. Let X be an integral projective scheme satisfying condition S2 of Serre.
Let E be a torsion-free coherent sheaf, locally free in codimension 1. Let W be a subvector
space of H0(E), and let E0 be the subsheaf generated by W . Then the following conditions
are equivalent:

(i) There exists a section s ∈ W such that E ′ = E/(s) is torsion-free and locally free in
codimension 1

(ii) (a) for all x ∈ X of codimension 1, rank (E0 ⊗ k(x)
σx→ E ⊗ k(x)) ≥ 1, and

(b) either rank E0 ≥ 2 or E0
∼= OX and E/E0 is torsion-free and locally free in codi-

mension 1.

Proof (cf. [6, 1.4]) (i) ⇒ (ii). Suppose given s ∈ W such that E ′ = E/(s) is torsion-free and
locally free in codimension 1. Then there is a diagram

0 −−−→ O
s

−−−→ E −−−→ E ′ −−−→ 0




y





y





y

0 −−−→ E0 −−−→ E −−−→ E/E0 −−−→ 0.

8



Let x be a point of codimension 1, and tensor with k(x). Since E ′ is locally free at x, we
have

0 −−−→ k(x) −−−→ E ⊗ k(x) −−−→ E ′ ⊗ k(x) −−−→ 0




y





y





y

E0 ⊗ k(x)
σx−−−→ E ⊗ k(x) −−−→ (E/E0) ⊗ k(x) −−−→ 0.

Thus it is clear that rank σx ≥ 1. If rank E0 ≥ 2, there is nothing more to prove. If rank
E0 = 1, then E0/O ⊆ E ′, and since E ′ is torsion-free, we must have E0

∼= O and E/E0
∼= E ′

torsion-free and locally free in codimension 1, as required.
(ii) ⇒ (i). Assuming condition (ii), we will show that a general element s ∈ W makes

E ′ = E/(s) locally free in codimension 1. Then the condition E torsion-free and X satisfies
S2 will imply E ′ also torsion-free.

Since E is locally free in codimension 1, the condition that E ′ be locally free at a point
x of codimension 1 is precisely that s(x) ∈ E ⊗ k(x) be non-zero. Consider the bad locus
B = {(s, x) | s(x) = 0 in E ⊗ k(x)} inside W × X. From condition (ii) a) it is clear that
E0 6= 0. If rank E0 = 1, then we know that E0

∼= OX , and E/E0 locally free in codimension 1,
so there is nothing to prove. So we may assume rank E0 ≥ 2.

Since X is integral, there is a nonempty open set U ⊆ X over which E/E0 is locally free.
For any x ∈ U , rank σx ≥ 2 and so the fiber Bx of B over x has codimension ≥ 2 in W .
Therefore BU = B∩(W ×U) has dimension ≤ w−2+N , where w = dim W and N = dim X.
Let D = X − U . At points x ∈ D of codimension 1 in X, rank σx ≥ 1. Hence rank σx ≥ 1
over an open set U ′ ≤ D, and dim BU ′ ≤ w − 1 + N − 1. Finally, there may be some subset
Z ⊆ D1 of codimension ≥ 2 in X, for which rank σx = 0. Then dim BZ ≤ w + N − 2.
All in all, we find dim B ≤ w + N − 2. Looking at the projection of B to W , we see that
for a general s ∈ W , the fiber Bs ⊆ X of B over s will have codimension ≥ 2. Therefore
E ′ = E/(s) will be locally free in codimension 1, as required.

Remark 2.7. If X satisfies the hypotheses (1.1) and also condition S3 of Serre, and if the
sheaf E of (2.6) satisfies T , then the quotients E ′ = E/(s) of (2.6) will also satisfy T . Indeed
the extra conditions 3), 4) of (1.6) follow from the same conditions for E plus the condition
S3 on X.

Proposition 2.8. With the hypotheses of (2.4), suppose that E is a coherent sheaf satisfying
T , and that there are codimension 2 subschemes V and W and exact sequences

0 → ⊕r
i=1O(−ai)

α
→ E → IV (a) → 0

0 → ⊕r
i=1O(−bi)

β
→ E → IW (b) → 0.

Assume that a1 ≤ a2 ≤ · · · ≤ ar and b1 ≤ b2 ≤ · · · ≤ br and that ai = bi for i = 1, . . . , k − 1,
and ak < bk for some k. Then W admits a strictly descending biliaison.

9



Proof. Let si ∈ H0(E(ai)) and ti ∈ H0(E(bi)) be the sections defining the maps α and β.
The idea is to show that t1, . . . , tk−1, sk, tk+1, . . . , tr define another subscheme W ′ by an exact
sequence

0 → ⊕i6=kO(−bi) ⊕O(−ak) → E → IW ′(b′) → 0.

Then considering determinants of the locally free sheaves on an open subset of X we find
b′ = b − bk + ak < b. If we let E ′ = E/(t1, . . . , tk−1, tk+1, . . . , tr), then E ′ is a rank 2 coherent
sheaf with sections tk, sk defining W and W ′, respectively. According to (2.5), W ′ is then
obtained from W by an elementary biliaison of height b′ − b < 0, and we get the desired
result. This idea may not work with the original si, ti, so we must modify them a little,
without changing V and W .

Step 1. We will show that for sufficiently general s′k ∈ H0(E(ak)), the quotient sheaf
E/(t1, . . . , tk−1, s

′
k) satisfies T of rank r + 1 − k. To show this, consider the sheaf F =

E(ak)/(t1, . . . , tk−1). This has IW (b + ak) as a quotient, hence satisfies T by (1.8). We will
apply (2.6) to F to show that it has a section s̄′k (which lifts to a section s′k ∈ H0(E(ak)))
with quotient satisfying T .

Let E0 be the subsheaf of E(ak) generated by global sections, and let F0 be the subsheaf
of F generated by global sections. Then we have

0 −−−→ ⊕k−1
i=1 O(ak − bi)

(ti)
−−−→ E0 −−−→ F0 −−−→ 0

‖




y





y

0 −−−→ ⊕k−1
i=1 O(ak − bi)

(ti)
−−−→ E(ak) −−−→ F −−−→ 0.

On the other hand, we know that E/(s1, . . . , sk) satisfies T and is of rank r + 1 − k, so
for every point x ∈ X of codimension 1 we must have rank (σx(E(ak)) : E0 ⊗ k(x) →
E(ak) ⊗ k(x)) ≥ k. Tensoring the diagram above with k(x), it follows that rank (σx(F) :
F0 ⊗ k(x) → F ⊗ k(x)) ≥ 1. Furthermore, if rank F0 = 1, then rank E0 = k, so E0 must
be equal to the subsheaf generated by s1, . . . , sk, which is ⊕k

i=1O(ak − ai). In this case
E0/(t1, . . . , tk−1) ∼= E0/(s1, . . . , sk−1) ∼= OX and F/F0 = E(ak)/E0 satisfies T .

So the conditions of (2.6) are satisfied (taking the whole space H0(E(ak))), and there is
a section s′k ∈ E(ak) so that E(ak)/(t1, . . . , tk−1, s

′
k) = F/(s̄′k) satisfies T . Note also that the

image of s′k in IW (b+ ak) is nonzero. For if it were zero, then s′k ∈ H0 (⊕r
i=1(ak − bi)). Since

ak < bk, in fact s′k ∈ H0
(

⊕k−1
i=1 O(ak − bi)

)

, which is impossible since s̄′k 6= 0 in H0(F).

Step 2 (cf. proof of [1, 2.1]). Now we will show that for suitable choice of t′i = ti +
fitk, i = k + 1, . . . , r, where the fi are elements of H0(OX(bi − bk)), the sheaf E ′′ =
E/(t1, . . . , tk−1, s

′
k, t

′
k−1, . . . , t

′
r) will satisfy T of rank 1, hence be of the form IW ′(b′) for

some codimension 2 scheme W ′.

10



To do this, consider the sheaf G = E/(t1, . . . , tr, s
′
k) = E ′′/(tk). Since G is the quotient

of IW (b) by the image of s′k, it is a torsion sheaf supported along a divisor Y . Thus E ′′

is locally free in codimension 1 except possibly along Y . For each generic point y of an
irreducible component of Y , we have t1(y), . . . , tk−1(y), s′k(y) linearly independent in E⊗k(y),
and similarly for t1(y), . . . , tr(y). Hence for general forms fi ∈ H0(OX(bi − bk)), letting
t′i = ti + fitk, i = k +1, . . . , r, we will have t1(y), . . . , tk−1(y), s′k(y), t′k+1(y), . . . , t′r(y) linearly
independent, and so E ′′ will be locally free at y. We can do this simultaneously for the finite
number of generic points y of Y . Thus E ′′ will be locally free of rank 1 in codimension 1,
hence will satisfy T and be of the form IW ′(b′).

Step 3. Now take E ′ = E/(t1, . . . , tk−1, t
′
k+1, . . . , t

′
r). Then E ′ satisfies T of rank 2, and

E ′/(tk) = IW (b), and E ′/(s′k) = IW ′(b′). Then, as explained above, using (2.5), W ′ is
obtained by a strictly descending elementary biliaison from W .

Proposition 2.9. Suppose given V, W and exact sequences as in (2.8) with ai = bi for each
i. Then W is obtained from V by a finite number of elementary biliaisons of height zero.

Proof. By induction on rank E = r + 1. Note first that by computing determinants, since
ai = bi for all i, we find a = b. If rank E = 2, this is just (2.5). So suppose rank E ≥ 3, i.e.,
r ≥ 2. As in the proof of (2.8), let si and ti define the maps α and β.

Applying (2.6) to the sheaf F = E/(s1, . . . , sr−1), since E(ar) has one section sr making
a quotient satisfying T , it follows that if we take a general section s′ ∈ H0(E(ar)), then
E ′ = E/(s1, . . . , sr−1, s

′) will be equal to IV ′(a) for some codimension 2 subscheme V ′. Then
using (2.5) applied to F , we find V and V ′ are related by an elementary biliaison of height
zero.

Doing the same with G = E/(t1, . . . , tr−1), we find that for sufficiently general s′ ∈
H0(E(ar)), which we can take to be the same as the s′ above (!), the quotient E/(t1, . . . , tr−1, s

′)
will define a subscheme W ′, related by one elementary biliaison of height zero to W .

Now V ′ and W ′ both have resolutions of the above form using the sheaf E ′ = E/(s′), of
rank one less, so by the induction hypothesis, V ′ and W ′ are related by a finite sequence of
elementary biliaisons of height zero, and we are done.

Proof of (2.4). Suppose given subschemes V and W such that IV (a) and IW (b) are psi-
equivalent. Then by (1.5) there is a coherent sheaf E satisfying T and exact sequences as
in the statement of (2.8). If ai is not equal to bi for all i, then by (2.8), one of the two
subschemes admits a descending biliaison to a subscheme of lower degree. Since the degree
of a subscheme is always nonnegative, we can proceed inductively, and after a finite number
of steps we arrive at a situation where ai = bi for all i. Then (2.9) applies to show they are
equivalent by a finite number of biliaisons of height zero.
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This proves a) of the theorem. For b), given V not of minimal degree, take any W of
minimal degree in the same biliaison class. Then in (2.8) it must be V that admits the
descending biliaison.

As for c), if V and W are both of minimal degree, neither one can admit a descending
biliaison, so the ai must be equal to the bi, and (2.9) applies.

Remark 2.10. There is one special case of the theorem that merits special attention. It
might happen in the course of the proof that one of the subschemes obtained by a descending
biliaison is empty. The theorem and its proof still hold, provided that we allow the empty
scheme. The psi class of the corresponding coherent sheaves is the class containing the
dissocié sheaves. This corresponds to one biliaison equivalence class, the one containing
complete intersections of hypersurfaces Y ∼ nH and Y ′ ∼ n′H in X. The schemes of
minimal degree in this class are the empty scheme.

This may be regarded as unsatisfactory, so we prove separately that for the biliaison class
corresponding to the dissocié sheaves, the results of the theorem hold also if we restrict our
attention only to the nonempty schemes.

We have only to consider the case where in the proof of (2.8) we might obtain an empty
scheme W ′. In that case, W ∼ mH on a hypersurface Y ∼ nH in X. Since H1(OX(m−n)) =
0, it follows that H0(OX(m)) → H0(OY (m)) is surjective, so W is a complete intersection
of Y with Y ′ ∼ mH . If m ≥ 2, we can make a descending biliaison to W ′ ∼ H on Y . If
m = 1 and n ≥ 2, we regard W as a divisor on Y ′ ∼ H on X and again make a descending
biliaison to W ′ ∼ H on Y ′. If m = n = 1, I claim W is of minimal degree among the
nonempty schemes in this biliaison class. For if V was something of lower degree, according
to the theorem there would be a sequence V = V1, V2, . . . , Vr of descending biliaisons, with
Vr the empty scheme. In that case, as we have seen, Vr−1 would be a complete intersection
of degree ≥ W , which is impossible. The same argument shows that any nonempty scheme
of minimal degree is of the same form as W . Now W has a resolution of the form 0 →
O(−2) → O(−1) ⊕ O(−1) → IW → 0. Given two of these, they have the same E and the
same ai, so by (2.9) they are joined by a sequence of biliaisons of height zero.

Remark 2.11. In case X = P
n, the codimension two schemes in the biliaison class of

the empty scheme are the ACM schemes. So we have just shown (2.10) that any ACM
codimension 2 scheme admits descending elementary biliaisons to a minimal one, which is
just a linear variety P

n−2 in P
n.

Remark 2.12. A consequence of the theorem is that a variety V that is not of minimal
degree can be reached by a sequence of strictly ascending elementary biliaisons from one of
minimal degree. For curves in P

3, this is Strano’s theorem [15], answering a question of [9,
p. 93], showing that the deformation in earlier proofs of the Lazarsfeld–Rao property is not
necessary.
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Remark 2.13. If we wish to prove only (2.4a), namely that psi equivalence of ideal sheaves
implies biliaison equivalence of subschemes, we can remove the hypothesis that X is integral.
We prove this by the original method of Rao. First of all, in (2.5) instead of comparing α to
β, we compare them both to γ : O(−c) → E , where c is chosen sufficiently large that E(c) is
generated by global sections. Then the induced maps O(−c) → IV1

(a) and O(−c) → IV2
(b)

will both be injective, and we find that V1 and V2 are now related by two biliaisons of large
heights.

For sheaves of arbitrary rank, we follow the plan of proof of (2.9), but take the section s′

of that proof to be a general section of E(n) for n ≫ 0. Then we can make s′ independent
of the other sections and proceed as in that proof, except that the biliaisons are now up and
down of large heights.

Corollary 2.14. a) With the hypotheses of (2.4), the biliaison equivalence classes of codi-
mension two subschemes are in one-to-one correspondence with stable equivalence classes of
extraverti sheaves satisfying T (up to twist).

b) If furthermore X also satisfies G2, then the biliaison classes of codimension two sub-
schemes are in one-to-one correspondence with stable equivalence classes of reflexive ex-
traverti sheaves satisfying T (up to twist).

Proof. This is simply a restatement of (2.4), using (1.12) and (1.13). Part b) is the theorem
of Nollet [12, 2.12] in the case X = P

n, and of Nagel [11, 6.4] in the case X is an inte-
gral arithmetically Gorenstein scheme. Nagel also proved [11, 7.3] the weaker form of the
Lazarsfeld–Rao property (2.4b) allowing a deformation before making a descending biliaison.

3 Cohomological characterization of biliaison classes

For curves in P
3, the original theorem of Rao [13] says that two curves C1, C2 are in the same

biliaison equivalence class if and only if their Rao modules M1, M2 are isomorphic up to twist.
The Rao module of a curve C is M = H1

∗ (IC). It was proved by first relating biliaison classes
of curves to stable equivalence classes of locally free sheaves, and then using a theorem of
Horrocks [7]. The theorem of Horrocks is difficult to generalize to higher dimensions, but in
this section we give a version for an arithmetically Gorenstein scheme X of dimension 3.

Proposition 3.1. Let X be a 3-dimensional projective ACM scheme, and let S = H0
∗ (OX).

a) Each psi equivalence class of coherent sheaves E satisfying T determines a finite length
graded S-module M = H1

∗ (E).

b) Conversely, for each finite length graded S-module M , there is a locally free extraverti
coherent sheaf E satisfying T , such that H1

∗ (E) ∼= M .
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Proof. For part a) we first show that if 0 → L → E → E ′ → 0 is an elementary psi, then
H1

∗ (E) ∼= H1
∗ (E

′). This is because X being ACM implies H i
∗(OX) = 0 for i = 1, 2. Serre’s

theorem tells us that H1(E(n)) = 0 for n ≫ 0. To show that M is of finite length, we must
show also H1(E(−n)) = 0 for n ≫ 0. Let ω be the dualizing sheaf on X. Then H1(E(m)) is
dual to Ext2

X(E , ω(n)). For n ≫ 0, the sheaves Exti(E , ω(n)) have no higher cohomology, so
the spectral sequence of local and global Ext gives Ext2(E , ω(n)) = H0(Ext2(E , ω(n))). Now
we use local duality at a closed point x ∈ X. There Ext2(E , ω)x is dual to H1

x(E), and this
is zero because depth Ex ≥ 2 by condition T .

For part b), let M be a finite length graded S-module. Take a resolution

0 → E → L1 → L0 → M → 0

of graded S-modules, with Li free, and E the second syzygy. Passing to associated sheaves
we get

0 → E → L1 → L0 → 0.

This shows that E is locally free and H1
∗(E) ∼= M . Also det E = (det L1)(det L0)

−1, so E
satisfies T . Taking duals, we find

0 → L∨
0 → L∨

1 → E∨ → 0

and Ext1(E ,O) = 0. From this, again using X is ACM, we find H1
∗ (E

∨) = 0, so E is
extraverti.

Theorem 3.2. Now assume that X is a 3-dimensional arithmetically Gorenstein scheme,
i.e., X is ACM and S = H0

∗ (OX) is a Gorenstein ring.
a) To each extraverti coherent sheaf E satisfying T we will associate a maximal Cohen–

Macaulay module P over the ring S, defined up to stable equivalence, and a map α : P ∨ →
M∗ → 0, where M∗ is the dual of the finite length module M = H1

∗ (E).
b) If E1 and E2 are two such sheaves with the same associated modules M1

∼= M2, and if
the associated maximal Cohen–Macaulay modules P1, P2 are stably equivalent and the maps
α1 : P ∨

1 → M∗ and α2 : P ∨
2 → M∗ are compatible with the stable equivalence, then E1 and E2

are stably equivalent.
c) Given a finite-length graded S-module M , a graded maximal Cohen–Macaulay module

P whose associated sheaf P is orientable, and given a map α : P ∨ → M∗ → 0, there exists
an extraverti sheaf E satisfying T that gives rise to this triple, as above.

Proof. a) Given E extraverti satisfying T , let E = H0
∗ (E), and take a resolution of graded

S-modules
0 → P → L1 → L0 → E → 0

14



where L0, L1 are free and P is the kernel. Since E has depth ≥ 2 at the irrelevant prime m

of S, we see that P has depth 4, so P is a maximal Cohen–Macaulay module. Taking duals
we obtain an exact sequence

0 → E∨ → L∨
0 → L∨

1 → P ∨ α
→ M∗ → 0.

To see this, first consider Ext1
S(E, S). This is dual on S to H3

m
(E), which is isomorphic to

H2
∗ (E) on X. This in turn is dual to Ext1

X,∗(E ,O) which is zero because E is extraverti, using
the exact sequence of low degree terms of the spectral sequence mentioned in the proof of
(1.10). Hence Ext1

S(E, S) = 0. Secondly, Ext2
S(E, S) is dual to H2

m
(E), which is isomorphic

to H1
∗ (E), which is M .

In this way we obtain the maximal CM module P , determined up to stable equivalence
on S, and the map α : P ∨ → M∗ → 0.

b) Now suppose E1 and E2 are two such sheaves, with isomorphic associated modules
M1

∼= M2 = M and stably equivalent maximal CM modules P1 and P2, and compatible
maps α1, α2. Then E∨

1 and E∨
2 both occur in resolutions of α : P ∨ → M∗ → 0 as above,

and hence E∨
1 and E∨

2 are stably equivalent graded S-modules. It follows that E1 and E2 are
stably equivalent sheaves.

c) Given α : P ∨ → M∗ → 0, take a resolution

0 → E ′ → L′
1 → L′

0 → P ∨ → M∗ → 0.

Then let E = E ′∨ and let E be the associated sheaf. One checks easily that E is extraverti
satisfying T and gives rise to M , P , α as required.

Corollary 3.3. Let X be an arithmetically Gorenstein scheme of dimension 3. Then to each
curve C ⊆ X is associated a maximal Cohen–Macaulay module P over the ring S = H0

∗ (OX),
and a map α : P ∨ → M∗ → 0, where M = H1

∗ (IC) is the Rao module of C. Two curves
C1 and C2 are in the same biliaison equivalence class if and only if (up to shift) M1

∼= M2,
P1, P2 are stably equivalent, and α1, α2 are compatible with this isomorphism on a stable
equivalence. Furthermore, every triple (M, P, α) as in (3.2c) occurs for some biliaison class
of curves.

Proof. Given C, take any extraverti sheaf E in the psi equivalence class of IC (1.12). Then
we obtain the associated P and α by (3.2). Now if two curves C1 and C2 have compatible
Mi, Pi, and αi, up to shift, the corresponding sheaves E1 and E2 are stably equivalent, up to
shift, by the theorem. This in turn implies C1 and C2 are in the same biliaison equivalence
class by (2.4), cf. also (2.14).

Remark 3.4. In the special case X = P
3, the maximal Cohen–Macaulay module is free,

since S is a regular ring. Thus the condition of (3.3) boils down to M1
∼= M2, which is
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the original theorem of Rao. Note that the statement “every maximal Cohen–Macaulay
module is free” over a local Cohen–Macaulay ring implies that every module has a finite
free resolution, and so the ring is regular. Thus P

3 is the only arithmetically Gorenstein
scheme for which the isomorphism of Rao modules is sufficient to imply biliaison equivalence
of curves.

For a two-dimensional arithmetically Gorenstein scheme, there is a much simpler analo-
gous result.

Proposition 3.5. Let X be an arithmetically Gorenstein scheme of dimension 2. There is
a natural one-to-one correspondence between biliaison classes of 0-dimensional closed sub-
schemes Z and stable equivalence classes of maximal Cohen–Macaulay modules over the ring
S = H0

∗ (OX) whose associated sheaf E is orientable.

Proof. To any 0-dimensional subscheme Z we associate an extraverti sheaf E in the psi-
equivalence class of IZ (1.11). Then E is reflexive (1.13) and hence locally Cohen–Macaulay
on X. Since X is arithmetically Gorenstein, the condition H1

∗ (E
∨) = 0 implies by Serre

duality that H1
∗ (E) = 0. Hence E = H0

∗ (E) is a maximal Cohen–Macaulay module over S.
Now (2.14) shows that biliaison equivalence classes of Z correspond to stable equivalence
classes of E and hence of E. The condition orientable just requires that E be locally free in
codimension 1 and its determinant be isomorphic to OX(ℓ) for some ℓ on X minus a finite
number of points.
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