
University of California
Santa Barbara

A Positional Timewarp Accelerator for Mobile

Virtual Reality Devices

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science

in

Electrical & Computer Engineering

by

Russell M. Barnes

Committee in charge:

Professor Yuan Xie, Chair
Professor Tobias Höllerer
Professor Li-C. Wang

June 2017

The Thesis of Russell M. Barnes is approved.

Professor Tobias Höllerer

Professor Li-C. Wang

Professor Yuan Xie, Committee Chair

June 2017

A Positional Timewarp Accelerator for Mobile Virtual Reality Devices

Copyright c© 2017

by

Russell M. Barnes

iii

To my past educators Andy Long, Robert Remler, Cindy

Bradley-Cross, Kate Molony, Bill Ekroth, Roger Traylor and

Prof. Yuan Xie. Thank you for encouraging, captivating &

inspiring me.

iv

Acknowledgements

I would like to thank Professor Xie for supporting my graduate school experience and

allowing me to teach and conduct research in SEAL; Arthur Marmin and Industrial

Technology Research Institue of Taiwan for collaborating on the project formation, design

exploration and software prototype; Brandon Pon for his help with data collection and

design exploration; Prof. Yiyu Shi and the National Science Foundation IRES program

for sending me to Taiwan and Prof. TingTing Hwang for hosting me at NTHU; Prof.

Hung-Kuo Chu for his advocation; Prof. Tobias Höllerer and Ehsan Sayyad of UCSB Four

Eyes Lab for their support; and finally, my parents and grandparents for supporting me

through college.

v

Abstract

A Positional Timewarp Accelerator for Mobile Virtual Reality Devices

by

Russell M. Barnes

Mobile virtual reality devices are becoming more common, and yet their performance

is still too low to be considered ideal. Frame rate and latency are two of the most

important areas that should improve in order to provide a high-quality virtual reality

experience. Meanwhile, positional tracking is improving the immersive experience of new

mobile virtual reality devices by allowing users to physically move about in space and

see their corresponding view matched in the virtual world. Timewarping is a technique

that can improve the perceived latency and frame rate of virtual reality systems, but

the positional variant of timewarping has proven to be difficult to implement on mobile

devices due to the performance demands. A depth-informed positional time warp cannot

be fully parallelized due to the depth test required for each pixel or group of pixels.

This thesis proposes a positional timewarp hardware accelerator for mobile devices.

The accelerator accepts a rendered frame and depth image and produces an updated

frame corresponding to the user’s head position and orientation. The accelerator is com-

patible with existing deferred rendering engines for minimal modification of the software

structure. Its execution time is directly proportional to the image resolution and is ag-

nostic of the scene complexity. The accelerator’s size can be adjusted to meet the latency

requirement for a given image resolution. It can be integrated into a system-on-chip or

fabricated as a separate chip.

Three examples are designed and simulated to show the performance potential of

this accelerator architecture. The designs provide latencies of 15.43 ms, 11.58 ms and

vi

9.27 ms for frame rates of 64.7, 86.4 and 107.9 frames per second, respectively. Although

the visual side-effects may be insufficiently few to completely disregard the GPU’s frame

rate, the accelerator can still improve the end-to-end positional latency and is also capable

of substituting the GPU in the case of dropped frames.

vii

Contents

Abstract vi

1 Introduction 1

2 Background and Related Work 5
2.1 Computer Graphics & Graphics Processing Units 5
2.2 Rendering Environments for Virtual Reality 9
2.3 Timewarping . 13
2.4 Accelerators . 16
2.5 Related Work . 17

3 Proposed Architecture and Design 21

4 Implementation 26
4.1 Software Prototype . 26
4.2 High-Level Synthesis . 29
4.3 Memory Design . 31
4.4 Algorithm Implementation . 34
4.5 Top-Level Design . 38

5 Results and Discussion 41
5.1 Results . 41
5.2 Discussion . 47

6 Conclusion and Future Work 51
6.1 Summary of Contributions . 51
6.2 Future Work . 52

Bibliography 54

viii

Chapter 1

Introduction

Virtual reality is a technology that, when executed successfully, provides a new medium

for understanding information, watching stories, visiting virtual environments and inter-

acting with people the world over. As a medium in its infancy, however, the promise of

virtual reality has yet to meet the increasingly high expectations from users regarding

both the content and the platform itself. Although it can be argued that a “killer app”

is needed for virtual reality to make the leap to mainstream adoption, the technology

plays an important role, too, as it delineates the experiences of watching something on a

screen and becoming immersed in another environment.

This latest wave of virtual reality activity was brought on by the ingenuity of Oculus

founder Palmer Luckey and the fostering of computer graphics pioneer John Carmack [1].

Since the release of the first development kit from Oculus, several major head-mounted

displays (HMDs) for desktop computers and consoles have entered large-scale manufac-

turing, notably the Oculus Rift, HTC Vive and PlayStation VR [2, 3, 4]. These devices

use the full capabilities of powerful graphics processing units (GPUs) to deliver the best

experiences that are currently possible. Their major downsides include demanding hard-

ware performance requirements, leading to a high total cost, and the use of a cable and

1

Introduction Chapter 1

Figure 1.1: Immersion in virtual reality [8]

external tracking devices to tether users to one particular indoor space. As with many

electronic devices prior, virtual reality is heading toward a mobile form factor. Samsung

and Oculus partnered to release the Gear VR, an add-on device for smartphones that

pairs an inertial measurement unit and lenses with a smartphone’s high-resolution display

and processing capabilities [5]. Gear VR’s lower barrier to entry led to more units sold in

2016 than the top three high-end devices combined [6]. The Google Daydream platform

is leading to new smartphone-based and standalone mobile virtual reality devices [7].

Mobile solutions benefit from the absence of any cables and space limitations but suffer

from limited performance and power budgets.

Two important metrics for measuring the quality of a virtual reality experience are

frame rate and latency. The frame rate is the frequency with which new frames are

presented on the display. The latency is the time it takes from when the user’s head

position is sampled to when the user sees the corresponding view appear on the display.

A key component for achieving high performance in both of these metrics is the GPU.

A fast GPU can process more details and effects for a given span of time, leading to

higher visual quality, a higher frame rate, or both. Mobile devices are at a disadvantage

2

Introduction Chapter 1

with producing quality virtual reality experiences because of their GPUs. Mobile GPUs

typically cannot contain as many transistors as desktop or console GPUs because of

the physical space limitation of the smartphone form factor. Their heat dissipation is

also constrained due to the lower thermal design power of smartphones [9], specifically

causing an issue with using positional tracking for virtual reality [10]. Because of the

characteristics of smartphones, it is difficult for mobile GPUs to come close to matching

desktop and console GPUs, the high end of which are used to power virtual reality

devices.

Timewarping, also known as reprojection and image warping, is a technique first

developed in the 1990s to increase the frame rate and reduce the latency in 3D graphics

systems [11]. The timewarping algorithm in its most basic form, which will be referred

to as rotational timewarp, accepts an image, the camera orientation that the image is

rendered for and the desired camera orientation, and it produces an image that resembles

one rendered for the desired camera orientation. A more thorough form that will be

referred to as positional timewarp accepts a depth image consisting of a colormap and

depthmap, as well as the original and desired camera positions, and produces an image

that resembles a rendered image from the desired position. When done efficiently, this

technique can be used to update a rendered frame with the latest position data before

displaying it, reducing the perceived latency of the graphics system, and in some cases

increasing the frame rate.

This technique has been popularized in recent years as a tool for improving the

quality of virtual reality systems. Notably, Oculus and Samsung implemented rotational

timewarp in the Gear VR to compensate for smartphone GPU limitations [12]. However,

Gear VR is a rotation-only virtual reality device that does not consider the translation

of the user’s head in three-dimensional space. Thus, it does not require anything beyond

rotational timewarping to improve the latency. Newer mobile virtual reality devices

3

Introduction Chapter 1

utilize more advanced inside-out tracking methods to provide six degrees of freedom for

both rotation and position changes of the user’s view in the virtual world [7]. For these

devices, positional timewarp capability would be beneficial to the end user experience.

The rotational timewarp used in mobile devices today is executed in the GPU. It will

be shown in Chapter 4 that a positional timewarp requires higher memory bandwidth

and is more difficult to parallelize than its rotational counterpart. According to Oculus

regarding the Gear VR, they “do not have the performance headroom on mobile to have

TimeWarp do a depth buffer informed reprojection” [13]. While the processing power of

mobile devices will indeed continue to improve over time, the resolutions and frame rates

of virtual reality devices will also increase in order to improve immersion and bring the

experience closer to resembling reality, potentially leaving little allowance for a positional

timewarp solution using only the GPU.

The idea that this thesis puts forth is a positional timewarping accelerator for mobile

virtual reality devices. As the GPU produces frames, the accelerator reads the most

recent frame and its head position along with the newest head position data from shared

memory. Then, it generates an updated frame using a positional timewarp. A tile-based

design allows for the accelerator to process more pixels per unit time by adding more

hardware and memory interfaces, allowing for the accelerator to generate timewarped

frames faster than the GPU is capable of producing them. This accelerator could be

integrated into a system-on-chip or produced on its own.

Background material and previous works are reviewed in Chapter 2. Chapter 3 intro-

duces the proposed accelerator and system architectures, and implementation details are

discussed in Chapter 4. Three register-transfer level (RTL) prototypes of this accelerator

were designed and simulated, and the results are presented and discussed in Chapter 5.

A summary and ideas for future work based on this accelerator are found in Chapter 6.

4

Chapter 2

Background and Related Work

Before describing the accelerator architecture in detail, it is necessary to review some basic

concepts of three-dimensional computer graphics. Then, specifics related to rendering 3D

graphics for virtual reality are discussed. The timewarping algorithm is described in both

rotational and positional forms, along with their respective trade-offs. Related works in

the areas of timewarp algorithms and acceleration are also reviewed.

2.1 Computer Graphics & Graphics Processing Un-

its

The goal of computer graphics is to turn data stored in a digital medium into an

image to be displayed. These images can show content that is two-dimensional, such

as an operating system desktop, or three-dimensional, in the case of 3D animated films,

video games and virtual reality. For the remainder of this paper, the focus will be on

three-dimensional computer graphics.

At the core, these computer graphics are made up of vertices connected by lines.

When three points are connected, they form a triangular polygon. Using polygons, many

5

Background and Related Work Chapter 2

Vertex
Shader

Geometry
Shader

Fragment
Shader

Deferred
Lighting

Vertex
Stream

Rendered
Frame

Figure 2.1: Graphics pipeline with deferred rendering

three-dimensional volumes can be constructed. For example, two equilateral polygons can

make a square, and six of those squares can make an enclosed cube. With a sufficiently

large number of very small polygons, they can be arranged to create complex virtual

shapes with smooth or textured surfaces that are nearly indistinguishable from real ones.

Triangular polygons are common in computer graphics because a triangle will always

form a plane, so certain assumptions can be made with regards to its properties when

working in three dimensions. However, the memory-intensive calculations involved to

display these shapes are inefficient when executed on a central processing unit (CPU).

CPUs are capable of processing computer graphics, but because they are made to run

any kind of computation, they are not optimized for this particular task. When graphical

user interfaces and three-dimensional graphics applications took off in the 1990s, graphics

processing units (GPUs) were invented to perform these calculations more efficiently and

quickly.

GPUs were originally designed to perform a predetermined fixed-function pipeline of

tasks, but since their inception, they have become more generalized and programmable.

The basic graphics work flow in OpenGL [14], a prevalent graphics programming inter-

face, begins with a list of vertices. These are passed through fragment shaders before

being connected to form polygons and processed in geometry shaders. After color and

6

Background and Related Work Chapter 2

Model
Matrix

View
Matrix

Projection
Matrix

Perspective Division

Model
Space

World
Space

View
Space

Clip
Space

Screen
Space

Figure 2.2: Coordinate systems

effects have been applied to the polygons, the program may perform view culling, which

eliminates the polygons that are not directly visible to the user, and then rasterization

is performed, which converts the graphics in 3D space into a grid of pixel-like fragments

that is almost ready to be displayed on the screen. The fragments are passed through

fragment shaders, and in programs that use a method called deferred rendering, certain

lighting effects are calculated. Lighting effects are done at this stage instead of earlier

in the pipeline in order to constrain the computational complexity of the calculations in

accordance with the number of pixels on the screen as opposed to the number of polygons

present in the scene. Finally, the frame is completed and submitted to the display, and

the process starts over to generate the next frame.

Three-dimensional graphics programs usually generate images of the scene that re-

semble what a human eye might see. To translate an abstract set of polygons onto an

image with a realistic perspective, a camera model is used. The camera model describes

parameters including the field of view and aspect ratio of the desired perspective, and

the camera can be positioned and oriented anywhere in the three-dimensional scene. The

pinhole camera model is favored for its simplicity.

To translate an abstract idea of three-dimensional objects into an image on a screen, a

system of coordinate transformations is required to map data between coordinate spaces

7

Background and Related Work Chapter 2

y

x

z

y

x

z

Model space, left, to world space

y

x

z

View space to clip space

Figure 2.3: Model, world and view spaces

(Figure ??), eventually terminating in screen space, the two-dimensional image that is

displayed on the screen. A popular system for expressing these transformations is with

model-view-projection matrices. The model-view-projection system is comprised of linear

algebra transformations that are chained together to produce an image of the desired

scene. Initially, polygons are grouped together to form models, or discrete objects in the

scene. Each model has a local origin, and the polygons within the model are located with

respect to that origin. Their locations are described with three values corresponding to

x, y and z coordinates. To represent objects at an infinite distance, such as a sky or

faraway mountains, homogeneous coordinates are used; this system add a fourth value,

ω, to the coordinates of each point, creating a 4× 1 vector.

Figure 2.2 shows the transformations that occur between coordinate spaces. First,

8

Background and Related Work Chapter 2

4 × 4 model matrices are applied to each object to position and orient it within the

three-dimensional scene. After the models are properly positioned, a 4 × 4 view matrix

is applied to translate and orient the camera at a desired position within the scene.

Then, a 4 × 4 projection matrix applies a linear transformation that forms the frustum

of a camera, transforming the data into clip space. Finally, a perspective division of the

points within the view frustum is performed by dividing xh, yh and zh by ωh, resulting in

a flat image on the camera face of the frustum in screen space, where x and y are used

for screen coordinates (u v)T .

Algebraically, the model-view-projection transformations are applied from right to

left, as shown in Formula 2.1, where P is the projection matrix, V is the view matrix,

M is the model matrix and xh, yh, zh and ωh are the homogeneous coordinates of the

vertex.


xh
yh
zh
ωh

 = PVM


x
y
z
1

 (2.1)

2.2 Rendering Environments for Virtual Reality

Virtual reality systems differ from typical interactive systems in their data flow and

performance requirements. Typical graphics data flows use a keyboard and computer

mouse or joystick as inputs, which are then transferred to the GPU via the CPU. The

GPU then renders a frame and submits it to the display. In virtual reality systems,

the data flow involves additional steps. In addition to peripheral control inputs that

may include a keyboard, game controller or tracked hand controllers, the head-mounted

display (HMD) itself provides an input to the rendering process. In most virtual reality

systems, the HMD contains an inertial measurement unit to sense head motion, and it

9

Background and Related Work Chapter 2

CPU GPUHMD Position

Display

Figure 2.4: The flow of data in a virtual reality system

may utilize external or internal vision sensors for more accurate tracking. After this data

is gathered and processed by the CPU, it is transferred to the GPU, where it acts as an

input to the camera model.

Instead of rendering one view, virtual reality systems must render two independent

viewpoints to provide stereo vision. The GPU can be optimized to reuse data for both

viewpoints, but regardless, it leads to more effort than rendering only one. After the

stereoscopic frame is rendered, a barrel distortion and chromatic aberration correction is

applied to each eye. The barrel distortion is necessary to compensate for the pincushion

distortion caused by the lenses used to focus and fill the user’s field of vision with the

light from the HMD’s display, and chromatic aberration correction redistributes colors

at the fringes of the view. Finally, the completed frame, exemplified in Figure 2.5, is

transferred to the display via a high-speed video link.

When rendering environments for virtual reality systems, the performance require-

ments to deliver a sufficient experience are increased significantly over traditional real-

time graphics applications. For one, the display resolution factors into how much detail

can be perceived in the virtual world. The latest virtual reality desktop systems contain

either one or two displays for a resolution of about 2, 160 px × 1, 200 px per eye [2, 3].

While this display density leads to an impressive pixels per centimeter figure for a smart-

phone screen held at arm’s length, viewing these displays from several centimeters away

through a lens can lead to the discernment of individual pixels and, depending on the

10

Background and Related Work Chapter 2

Figure 2.5: A frame in a virtual reality system

underlying display technology, even the empty gaps in-between them (the screen-door

effect). Hence, resolutions in virtual reality devices must undergo a great increase, with

an ideal target of around 32, 000 px×24, 000 px for producing images that approach real-

world clarity [15]. As display resolution increases, so does the number of computations

required to render a frame. This can be a challenge for mobile virtual reality devices in

particular, as the GPU is expected to render for a display resolution that already exceeds

many standard desktop displays. Some applications need to lower their resolution in or-

der to keep up with the required frame rate [16]. An accelerator can potentially assist

the GPU by generating new frames at a higher frequency while the GPU renders them

at a slower rate.

Latency is another crucial component of virtual reality systems. As defined in Chapter

1, latency in virtual reality systems is the time it takes from when the user’s head position

is sampled to when the user sees the corresponding view appear on the display. Note that

the frame rate provides a lower bound for latency. If a system displays new frames at 60

frames per second, the latency cannot be consistently faster than 16.7 ms. If a program

11

Background and Related Work Chapter 2

samples a new head position 5 ms before displaying a new frame but only produces 30

frames per second, the per-frame latency is low, but the overall latency is high because

of the 33 ms between frames.

The latency requirement in virtual reality systems is much more stringent than in

traditional scenarios. When interacting with video games on a television, the input

latency is rather high—roughly in the 80 ms to 100 ms range [17]. In virtual reality

systems, the screen does not act as an object that is observed from a distance, but rather

a tool that effectively replaces the eyes of the user. Studies have shown that a higher

latency in HMDs leads to an increase in simulator sickness [18] and a loss of presence [19].

A NASA study showed that the latency of a virtual reality system should be no more

than 17 ms [20], while a latency of as low as 3.2 ms [21] is ideal to eliminate the perception

of any latency in a HMD.

The rotational asynchronous timewarping present in the Gear VR allows for a rota-

tional input latency of less than 20 ms [22]. When positional tracking is added to mobile

virtual reality devices, the performance limitations will be an issue in keeping up with a

low latency in positional movement as well as rotation [13]. An accelerator can help in

this area by reducing the time from when the user’s head position is sampled to when

a corresponding view is displayed and performing a full positional and rotational view

adjustment.

Based on these parameters, it can be argued whether or not the most advanced virtual

reality systems at present can deliver a sufficiently immersive experience, or whether there

is progress to be made before this can be claimed. The resolution of both the display and

the rendered image should increase, and the time it takes to respond to the actions of

the user should decrease. There is still much progress to be made before virtual reality

systems can deliver something that is capable of mimicking reality, and an accelerator

can help to bridge this gap sooner on mobile platforms.

12

Background and Related Work Chapter 2

Figure 2.6: Reprojection from the reference perspective Ci to a desired perspective Co

2.3 Timewarping

Timewarping, also known as reprojection or, more broadly, image-based rendering, is

a technique used in computer graphics to generate new views from one source image. It

was introduced by William Mark, Leonard McMillan and Gary Bishop in 1997 [11]. One

or more depth images are used as reference frames, along with the known viewpoints at

which those images were taken. A desired viewpoint at an arbitrary location is specified,

and a new image is generated that corresponds to the perspective of the desired viewpoint.

A depth image is an image with an extra data channel for the depth of each pixel,

analogous to the Z axis in Cartesian coordinates.

This technique can be applied to generate new frames for an interactive graphics

system that cannot meet the quality-of-service level for its use case. Using the time-

warping algorithm to generate a new image is much less computationally expensive than

rendering one from scratch, and its cost is irrespective of the content or complexity of

the underlying scene, instead dependent only upon the image resolution.

There are two types of timewarp algorithms. The full timewarping algorithm pre-

sented in the original paper is referred to as positional timewarping because it corrects

for any translation and rotation of the camera. Formula 2.2 shows this transformation

with reference input transformation matrix Ti, desired output transformation matrix To

13

Background and Related Work Chapter 2

and input vector vi.

vo = ToT
−1
i vi (2.2)

The second, simpler type of this algorithm is rotational timewarping, and it only

corrects for the rotation of the camera. Unlike its positional counterpart, rotational

timewarping does not require depth information and is injective. Its solution is simplified

in that the translational component of ToT
−1
i is set to 0 as in Formula 2.3.


α1,1 α1,2 α1,3 0
α2,1 α2,2 α2,3 0
α3,1 α3,2 α3,3 0
α4,1 α4,2 α4,3 1

 = ToT
−1
i (2.3)

When timewarping is used to generate a new frame in the place of a GPU, such as a

system that alternates between GPU-generated images and timewarp-generated images

every other frame, it is said to be synchronous. A timewarp procedure that is scheduled

to operate on a frame just before a new image should be sent to the display, potentially

interrupting the tasks on the GPU, is said to be asynchronous.

Image-based rendering has found use in stereoscopic content delivery systems for 3D

televisions where two views can be generated with small lateral perspective shifts [23].

However, there are a few reasons why this technique has not been popularized for use

in typical interactive graphics applications such as video games. One of the primary

issues with timewarping is the artifacts that occur when using only one source image.

When rotational timewarping is used, empty areas appear where the reference frame

ends. These empty areas grow in size the farther that the desired perspective rotates

from the reference perspective. When positional timewarping is used, this remains true,

and there is also the issue of disocclusion. If the camera undergoes a translation in the

virtual environment, and there are objects of varying depths in view, the areas behind

those objects can be exposed. Figure 2.7 shows an artifact from disocclusion due to a

14

Background and Related Work Chapter 2

Figure 2.7: Example of a disocclusion artifact in positional timewarp

perspective shift to the left. There is no information available in the reference frame

about what lies behind the bird, so a black area appears on the bird’s left side. Because

only one reference frame from the most recent GPU render job is available in typical

graphics systems, and this reference frame does not contain any data about what lies

behind the visible objects in the scene, these disoccluded areas are empty.

Translucent surfaces and reflections present visual issues because timewarping moves

objects with respect to their position and not their effects or properties. If the user looks

through a pane of glass with a depth representative of the pane’s location, the algorithm

will move the image seen through the glass as though it were located within the pane

itself instead of with a proper parallax motion. Also, any motion in the scene that is

not due to a camera movement by the user will remain static until the GPU produces a

new reference frame. This means that motion that does not come from the user’s head

movements, such as a flying bird or the view out of a moving car’s window, will lag until

the next GPU frame. In many video games, this would result in a noticeable stuttering

effect if the base frame rate from the GPU is low.

Another reason as to why the timewarp algorithm has not been widely adopted is

the high speed of camera rotations in traditional use cases. With video games and other

applications that use a mouse or joystick for view rotation, users are able to achieve a high

15

Background and Related Work Chapter 2

angular velocity. Additionally, many applications involve a “third-person” camera view

with fast positional displacement. This results in large view translations and rotations,

which lead to large, noticeable artifacts. Finally, using asynchronous timewarping, which

could lower the effective latency of the system by altering an image that was just rendered

by the GPU, requires task preemption in order to execute. This is because time warping

is better executed on the GPU than the CPU, and the GPU may be rendering a frame at

the moment of the timewarp execution [24]. Task preemption is something that has only

recently been added to personal computer GPUs [25, 26]. Also, latencies for traditional

interactive graphics use cases have comfortably occupied a higher threshold [17].

With the latest wave of virtual reality devices, interest in timewarp in its various forms

has reignited. Unlike in traditional graphics applications, virtual reality head rotation is

limited to the speed of a human head, leading to smaller artifacts. Positional changes

of the head are often smaller—fast virtual camera movements like running can create a

disconnect from the experience and introduce simulator sickness in the user, so smaller

view translations resulting from physical head movements are encouraged [18, 21]. Also,

the inherent pursuit of high frame rates leads to better artifacts, as the artifacts improve

when less time passes between reference image updates. However, care must be taken not

to rely on timewarping too much as the visual side-effects mentioned above still occur.

2.4 Accelerators

The CPU is, as denominated, the center or “brain” of a computer. It is capable of

performing many diverse tasks. Due to the general-purpose nature of the CPU, there are

some workloads that it does not execute in an efficient manner. When a task is deemed to

be worth the extra monetary expense to perform more quickly or efficiently, an accelerator

is added to the system. An accelerator is hardware that is designed to only perform a

16

Background and Related Work Chapter 2

specific domain of tasks. Although the GPU is a programmable computing platform

today, it used to be considered a dedicated accelerator for the graphics workload in a

system [27]. A digital signal processor is another example of an accelerator; it computes

signals of the analog domain, such as audio.

While performance is an important role of accelerators, energy efficiency is another

important benefit. Mobile devices are constrained by a limited power source; in smart-

phones, accelerators are used to handle various features of the system, including image

and audio processing, leading to lower power usage [28]. While desktop systems are

not faced with similar constraints, economic and environmental factors encourage lower

power usage in all electronics. Processors are also limited by the heat that they can

produce, and mobile virtual reality devices are no exception [10].

2.5 Related Work

Three-dimensional image-based rendering was introduced by Bishop, Mark and McMil-

lan in the 1990s [29, 30, 11, 31]. Their vision for the application of this technique was

in a head-mounted display. They addressed image quality concerns by using multiple

reference images to cover the holes in the warped image. New developments in GPU-

based 3D image warping are being made by Schollmeyer, Schneegans, Beck, Steed, and

Froehlich [32]. They address issues with translucency and disocclusion holes by choosing

between two warping methods and designing a new hole filling technique.

Other approaches to image-based rendering involve rendering a field of view greater

than what will be displayed in order to avoid gaps at the edges caused by view rotation [33,

34]. This approach has a higher visual quality but is more computationally expensive

and does not address disocclusion of objects in the scene due to positional changes.

Some have taken a client-server approach to image warping [35, 36, 37]. This idea

17

Background and Related Work Chapter 2

involves rendering depth images remotely and transmitting it to a mobile device. More

recently, Xiaochuan and Xiaohui designed an image-based rendering technique that uses

motion prediction and multiple depth images for improved image quality [38].

In the realm of hardware acceleration of image-based rendering for virtual reality,

Smit, van Liere and Froehlich designed a programmable display layer that performs

high-quality image warping [39]. Their algorithm warps objects in the scene separately

by using a motion field that is generated by the application. This allows for objects

that are moving in the scene to continue moving in the new images that are generated.

User motion prediction is used to continue producing frames with low latencies until a

new reference frame is ready. To reduce artifacts, they use two reference depth images,

increase the field-of-view of one of the reference perspectives to minimize edge holes

and evaluate intelligent camera placement strategies. Their technique uses one GPU

as a client and one GPU per display as servers. However, this work does not benefit

mobile devices, which are limited to one performance- and energy-constrained GPU. An

additional GPU in a mobile platform could be prohibitive in area and the thermal design

power.

Research is also being done on using alternative display technologies to reduce la-

tency. Lincoln et al. designed a system to deliver 80 µs of motion-to-photon latency [40].

They combine 3D image warping with a grayscale micromirror display for an extremely

low-latency virtual reality display. However, digital micromirror displays are not cur-

rently in use as primary displays for desktop computers or mobile devices and require

additional mechanical parts to project color images. As illustrated by their follow-up

work for augmented reality [41], there is much work to be done in shrinking the size of

the components before it can become an integrated display solution. Also, this latency

figure does not include the delay incurred by typical sensors and pose calculation, which

is orders of magnitude larger.

18

Background and Related Work Chapter 2

Other research into latency reduction involves changes in the graphics rendering pro-

cess itself. One of the precursors to time warping is the address recalculation pipeline

invented by Regan and Pose in 1994 [33], which separates the user’s head position from

the rendering process and is able to render different parts of the scene at different rates.

Friston, Steed, Tilbury and Gaydadjiev recently designed a frameless renderer based on

this work along with concepts of dataflow computing and ray casting [42]. Their system

is able to render pixels in any order and time each one for completion just before the

raster displays it. They implement the renderer in an FPGA hardware accelerator for

testing with a desktop HMD. This work results in an impressive 1 ms of motion-to-photon

latency for positional and rotational movements. The crux of the idea is a new rendering

architecture, so all graphics applications would be required to shift away from GPU ren-

dering to this new hardware, a change that may not work for area-limited mobile devices

that need to retain their GPUs to run traditional graphics applications in addition to

virtual reality. Also, it is uncertain if this technique could maintain the current standards

of visual quality in graphics applications when coupled with another rendering technique

to produce them. The test cases shown are very simple static scenes, and ray tracing is

considered to be too demanding when rendering complex scenes, but progress is being

made in this problem as well [43].

Numerous software solutions are currently available that use the existing hardware to

lower the motion-to-photon latency. Both major GPU vendors provide software features

that encourage low latency for virtual reality applications by enabling asynchronous task

scheduling, namely found in NVIDIA’s VRWorks [25] and AMD’s LiquidVR [26]. Valve

and HTC support asynchronous reprojection on the HTC Vive [44]. This reduces motion-

to-photon delay by resampling the head input and interrupting the GPU when needed

to generate a new frame. It currently does not correct for positional motion, but this is

planned for a future update [45].

19

Background and Related Work Chapter 2

In late 2016, Oculus introduced Asynchronous Spacewarp for their Rift HMD [46].

This technique uses both the CPU and GPU to provide both positional and rotational

timewarp capabilities and also update moving objects in the scene [47]. When the appli-

cation experiences a drop in frame rate below the 90 frames per second target, the GPU

only generates new reference frames at 45 frames per second, while it continues to deliver

updated frames to the HMD at 90 frames per second using Asynchronous Spacewarp.

The GPU produces motion vectors for each frame, and they are used to find the optical

flow between frames and extrapolate animation and positional change [48]. The Space-

warp task can run concurrently with the rendering process. An asynchronous timewarp

takes care of view rotation in a separate task [47]. A fairly new GPU is required to use

these features, and it is not yet available on any mobile virtual reality device.

The state of latency reduction on mobile devices is more limited. Oculus and Samsung

addressed the latency problem at the launch of their mobile product Gear VR with

asynchronous timewarping [5, 12]. The version of asynchronous timewarp present on the

Gear VR only corrects for view rotation—this is because of both the lack of positional

tracking in the Gear VR and performance limitations [13]. To implement the rotational

warp, they combined it with the lens distortion correction step so that each pixel need

only be repositioned once [12].

20

Chapter 3

Proposed Architecture and Design

Mobile virtual reality devices are becoming more common, and yet their performance

levels are still too low to be considered ideal, let alone those of their tethered counter-

parts [21, 15]. Positional tracking is improving the immersive experience of new mobile

virtual reality devices by allowing users to move about in space and see their correspond-

ing view matched in the virtual world [7]. Asynchronous timewarping can improve the

perceived latency of virtual reality systems [12], but positional timewarping has proven

to be difficult to implement on mobile devices due to the performance demands [13]. A

basic positional time warp cannot be fully parallelized due to the depth test required

for each pixel or group of pixels, which will be discussed in Chapter 4. Although the

tile-based architecture of mobile GPUs allows for task preemption, special care must be

taken to reliably execute an asynchronous time warp [24].

This thesis proposes a positional timewarp hardware accelerator for mobile devices.

The accelerator is compatible with existing deferred rendering engines for minimal modi-

fication of the software structure. Its execution time is directly proportional to the image

resolution and is agnostic of the scene complexity. The amount of hardware resources

can be adjusted to meet a latency requirement for a given image resolution. This accel-

21

Proposed Architecture and Design Chapter 3

CPU

GPUAccel

HMD

Shared Memory

Position

Display

Figure 3.1: Proposed system architecture

erator can be integrated into a system-on-chip or, memory bus bandwidth permitting,

fabricated as a separate chip.

As the accelerator is separate from the GPU, it is inherently asynchronous. The data

flow begins with the sensor data being read from the HMD. The CPU reads and processes

this data and passes the user’s head position and orientation to the GPU as an input

for the rendering process. When the GPU is finished rendering a new frame, this data

is made available to the accelerator. Separately, the accelerator reads the most recent

frame from the GPU and its corresponding head position data along with the newest

head position from the CPU. Then, it generates an updated frame using a positional

timewarp and issues it for display on the screen.

This accelerator takes advantage of the shared memory present in many mobile

system-on-chip architectures [49] to read data from the GPU without a time-consuming

memory copy. When the GPU begins rendering a new frame from scratch, which will

be referred to hereafter as a reference frame, it records the user’s view position. When a

reference frame is completed, it is stored with its view position in shared memory. Ex-

ternal timing logic keeps track of when a new frame is due to be displayed and triggers

the accelerator with enough time to complete the timewarp task.

22

Proposed Architecture and Design Chapter 3

Memory Interface

0.49 KB BRAM 2.69 KB BRAM

Load-Predict

Reproject

TILE 0

Memory Interface

0.49 KB BRAM 2.69 KB BRAM

Load-Predict

Reproject

TILE 1

256 b

Color Data

256 b

Depth Data

256 b

Color Data

256 b

Depth Data

Figure 3.2: Proposed accelerator architecture

The accelerator as proposed does not attempt any form of hole filling, nor does it

update any animation present in the scene. Users prefer a trade-off in visual quality for

a lower system latency when performing tasks in virtual reality [50], and higher source

application frame rates lead to smaller artifacts between frames. This is not to say that

visual quality should be abandoned in the pursuit of low latency—according to Antonov,

positional timewarping without hole filling and animation updates should not be relied

on to continuously improve the frame rate of a slow application [12], and a reliance on

an asynchronous accelerator without motion updates may need to trade lower positional

latency for higher animation latency. However, this accelerator is a step toward a design

that can provide a high visual quality, and it can also fill in frames that are dropped by

the GPU, which is a net benefit.

Like rotational timewarping, positional timewarping creates empty areas at the edges

of the image after view rotations. Average head rotation speeds when using HMDs are

around 50 ◦ s−1, with 300 ◦ s−1 considered a rapid velocity [51]. Although eyes do undergo

translation in space during a head rotation, the effect of motion smear [52] may help

to hide small artifacts that occur due to this translation in static areas of the virtual

23

Proposed Architecture and Design Chapter 3

environment. Also, the edges of the image are obscured by the lens distortion, so it is

more difficult to detect in an HMD than it would be on a normal display.

The input data to the accelerator is a reference depth image that includes three color

channels and one depth channel. Each color channel is 8 bits, for a total of 24 bits per

pixel, and each depth value is a 32-bit floating-point value. Space is required for both

the reference image and final image. The reference and desired view positions are also

recorded, with 16 floating-point elements in each matrix. The image data is too much

to be stored on chip, so shared off-chip memory is used. At the hardware level, the

accelerator uses multiple memory interfaces for parallel reads and writes to this shared

memory.

To allow for the GPU render concurrently with the accelerator, two image buffers

should be allocated in shared memory. If the accelerator is scaled to be a very low

latency, it can run for every frame that the GPU submits. At higher latencies that

approach the target frame rate, it may be a better idea to only display images from the

accelerator during dropped frames. In this case, the CPU can arbitrate which source the

image comes from.


m = 3wh(3c+ d) + 3(16f)

c = 8 b

d = 32 b

f = 32 b

(3.1)

The memory footprint is shown in Formula 3.1, where m is the memory footprint in

bits, w is the total image width in pixels spanning both eyes, n is the number of image

buffers that the GPU can write to, h is the image height in pixels, c is the bits per color

channel, d is the bits per depth channel and f is the bits per position matrix element.

One copy each of the depth image and position data are needed for the output, and two

copies are needed for the input so that the GPU can modify new image data while leaving

24

Proposed Architecture and Design Chapter 3

the previous one intact.

Because image resolutions for mobile virtual reality systems are on the order of

1, 920 px × 1, 080 px, there is too much data for the accelerator to store and process

at once. However, individual reads from off-chip memory for each pixel use too many

clock cycles at the scale of this image resolution. Instead, the accelerator loads input

data from the reference image in tiles of size 8 px×8 px, grouping them together in burst

reads for a more efficient overhead. It processes multiple of these tiles in parallel for

increased throughput.

With positional timewarping, each pixel’s destination is unknown until its depth value

is read from memory, so an input tile of 8 px×8 px may not warp cleanly to a contiguous

8 px× 8 px area in the output image. Nonetheless, individual writes to off-chip memory

are also too expensive. Accordingly, an output cache of size 24 px×16 px is used to buffer

writes and reads for the output image. The output cache is larger than the input tile to

account for variation in the input tile’s depth values and target locations.

When the accelerator loads an 8 px × 8 px input tile from the reference frame, it

performs a motion-informed predictive cache load from memory based on the predicted

target locations of these pixels. If the predicted location is within the domain of the

final image, then the data is passed to the reprojection and distortion correction logic

for processing. Finally, the output cache is written back to memory.

25

Chapter 4

Implementation

This chapter discusses the implementation of proof-of-concept accelerator designs. First,

a software prototype was used to evaluate the algorithm and visual quality. Then, three

register-transfer level designs were created to evaluate the resource-latency trade-offs.

The design was done in Vivado High-Level Synthesis in order to speed up development

time.

4.1 Software Prototype

A software prototype was created using C++. This step served the purpose of imple-

menting a version of the positional timewarp algorithm and testing the impact of design

decisions on image quality. A lens distortion compensation step was also included.

Deferred rendering, mentioned in Section 2.1, is of particular interest to the posi-

tional timewarp algorithm. A requirement of deferred rendering is that a depth buffer

is generated to indicate the three-dimensional depth of each fragment in the frame. The

depth buffer stores a floating-point depth value for each pixel. As a natural byproduct

of deferred rendering, this depth buffer can be fed into the positional timewarp.

26

Implementation Chapter 4

Broadly, the positional timewarp transforms each pixel into homogeneous coordinates

in three-dimensional space and then records a new view of these points with the desired

camera perspective. First, the pixels of the reference depth image must be converted from

screen coordinates plus depth into normalized device coordinates in three-dimensional

space, as in Formula 4.1 where xsc and ysc are the screen coordinates of the pixel, d is

the depth and w and h are the image width and height, respectively.

xNDC

yNDC

zNDC

 =


2
xsc

w
− 1

2
ysc

h
− 1

d

 (4.1)

Then, ω is set to 1 to create a homogeneous coordinate vector.


xh
yh
zh
ω

 =


xNDC

yNDC

zNDC

1

 (4.2)

The positional timewarping transformation of the vector is taken with input head

position Vi and output head position Vo (Formula 4.3).


xf
yf
zf
ωf

 = PVoMoM
−1
i V −1

i P−1


xh
yh
zh
ω



= PVoV
−1
i P−1


xh
yh
zh
ω


(4.3)

The model matrices are not known, but they form an identity when multiplied and

can be ignored. Finally, rasterization of the data is performed by dividing each three-

dimensional coordinate by its homogeneous component, flattening it to the new image

plane and discretizing the resulting value into a pixel grid, which comprises the final

27

Implementation Chapter 4

Reprojection

Multiple source pixels corresponding
to the same target pixel

Target pixel without
an antecedent

Figure 4.1: Post-reprojection reconstruction issues

image to be displayed (Formula 4.4).

(
xsc
ysc

)
=


w

xh

ωh

+ 1

2

h

yh

ωh

+ 1

2

 (4.4)

One issue with positional timewarping is the potential for non-surjective and non-

injective pixel mappings onto the source image. With the former case, normalized device

coordinates may not align neatly with discretized screen space, leaving some target pixels

empty while others with multiple mappings and leading to noticeable artifacts. Figure

4.1 illustrates these issues. Multiple solutions were considered for filling in the blank

pixels, including mesh interpolation and splatting. In the end, the latter was chosen

for its simple hardware implementation. Splatting resamples each mapped pixel’s color

and depth onto three adjacent pixels so that if the source pixel in question is hidden by

another, it may still be displayed.

To solve the issue of multiple depth-informed source pixels mapping to the same

target, depth tests are required. Before each source pixel writes its color and depth

28

Implementation Chapter 4

data to a target pixel in the output image, it must check that either the target pixel is

empty or the target pixel’s depth is farther away from the new camera than its own; to

overwrite a foreground object with something behind it would be incorrect. This depth

test introduces a limiting factor in the performance of positional timewarp that leads to

difficult implementation on mobile devices. Consider moving laterally in front of a chain-

link fence with a distant background—pixels from the fence can traverse great portions of

the view. The timewarp task cannot be fully parallelized because for an arbitrary scene,

any pixel could theoretically overwrite another one.

HMDs use lenses to fill the user’s field of vision with data from the display. To

produce an image resembling one that the human eye perceives from reality, the images

on the display must compensate for the pincushion distortion of the lenses with a barrel

distortion. For the accelerator to be the last stage of the display chain, it must consider

this distortion by either calculating the pixel reprojection in distortion space or applying

the barrel distortion to an undistorted frame. This accelerator takes the latter approach.

A simplified version (Formula 4.5) of the Brown–Condray model [53] was used to correct

for radial distortion. For approximating a lens correction used in a real HMD, OpenCV

was used to extract K1 and K2 from the HTC Vive.


xo = xi(1 +K1r

2 +K2r
4)

yo = yi(1 +K1r
2 +K2r

4)

r =

√
(xi −

w

2
)2 + (yi −

h

2
)2

(4.5)

4.2 High-Level Synthesis

C++ is a popular programming language that can express an algorithm with a rea-

sonable amount of code. It abstracts some memory management details away from the

programmer and includes useful libraries to perform special functions. Hardware de-

29

Implementation Chapter 4

scription languages (HDLs), meanwhile, are just that—a class of languages that describe

digital hardware. The most common HDLs today are Verilog and VHDL. Although HDLs

do not design the hardware directly, they define the behavior that the hardware should

have with respect to the data, so there can be more than one hardware implementation

of an HDL description. High-level synthesis (HLS) is a system for converting common

computer programming code into HDL in order to enable rapid prototyping, faster de-

velopment time and a lower barrier to entry for engineers to design digital hardware.

Xilinx offers a product called Vivado High-Level Synthesis for its FPGA platforms [54]

that originated from work by Cong et al. [55].

For this work, Vivado HLS was chosen as a tool to achieve a faster design cycle given

a limited time and resource budget. The positional timewarping software prototype

was used as a basis for a hardware design in the Vivado HLS toolchain. Limitations of

Vivado HLS were discovered along the way, and the adapted software prototype required

significant modification and revisions to produce a functional design with a reasonable

performance.

One of the key differences between designing software and static hardware functions

is the inability for hardware to dynamically allocate data storage for itself. Any dynamic

memory allocation present in the source program must be converted to static before a

hardware version can be created, annulling one of the most convenient capabilities of C++

along with features such as std::vector. Also, type casting is limited in Vivado HLS,

and it was unable to perform some casts for data at the top-level interface and within

the functions, in one case requiring data from the top-level interface to be stored in a

local register of the same data type before being cast. Language support in Vivado HLS

lags far behind the current versions, and C++11 is only supported in a preliminary form,

foregoing features such as template aliasing.

Some parts of the Vivado HLS design process are lacking in documentation. The

30

Implementation Chapter 4

outcomes of pragma directives, a tool for modifying the hardware implementation, were

unexpectedly dependent upon where in the code they were placed. Task scheduling, an

important part of designing a fast architecture, was especially difficult to control and

required peculiar workarounds to achieve, including when enabling parallelism between

functional blocks to reduce latency. Vivado HLS is not intended for designs that require

communication between parallel tasks, so this brings some limitations as to what type of

architectures can be implemented with this tool. Some iterations of the design executed

successfully in software simulation but generated non-functional hardware, leading to

iterative guess-and-check design alterations until a working combination was discovered.

Hardware instantiation and reuse of hardware blocks is difficult to control, so effort was

also spent to reuse the memory and reprojection cores instead of instantiating redundant

ones.

4.3 Memory Design

One of the key challenges of implementing this accelerator proved to be the memory

system. A depth image of size 1, 920 px× 1, 080 px contains 2,073,600 pixels. Each pixel

contains three single-byte color channels and one four-byte depth channel for a total of

over 14.5 MB of data. Since this is too large to store all at once on the accelerator, off-chip

DRAM is used to store the data, which necessitates an interface between the accelerator

and memory. One of the features that Vivado HLS provides is the ability to design a

streaming processor that operates on a large set of data by passing elements through

the processor in sequential order. This works well for image filters such as convolutions

and per-pixel differences to execute with a low latency. Unfortunately, streaming is not

suitable for positional timewarping, which requires a random access to memory that

stems from the unpredictability of the depth values in the input image. Instead, this

31

Implementation Chapter 4

accelerator must use an addressable bus that is called AXI Master in Vivado.

One design decision to be made is the bus width, or how much data to read or write

with one transaction over the memory interface. In Vivado HLS, the width of the AXI

Master data bus can be from 8 bits to 1,024 bits in width. The bus width also indicates

the alignment and granularity of the data—if the bus is 64 bits wide, in order to change

the value of byte 3 of element n, all 64 bits of n must be read, the value of the third byte

must be written, and all 64 bits must then be written back to memory. Likewise, data

stored in segments that do not divide into the bus width will be split across boundaries,

e.g. accessing 48 bits at a time with a 64-bit bus leads to some 48-bit elements with 16

bits at one address and 32 bits at another, requiring two reads from the bus.

An attempt was made at accessing each pixel individually. This design was extremely

slow on account of multiple (∼ 6) clock cycles required to read from or write to the off-

chip DRAM. Although a DATA PACK pragma directive is available to combine structs into

single elements over the memory interface interface, it results in a complete partitioning

of the elements inside and an explosion of registers in the accelerator, which are expensive

in hardware. To mitigate the performance overhead for memory accesses, two steps were

taken. First, a wide bus width was chosen in order to read and write many pixels at

once. Designs for 128-bit, 256-bit and 512-bit bus widths were evaluated, as well as

a design with a 256-bit input bus and a 512-bit output bus. The design with 256-bit

memory buses for both inputs and outputs resulted in the best performance-to-resource

trade-off, resulting in 10.6 pixel colors or 8 pixel depths per transaction. Second, burst

transactions were used. Burst transactions combine multiple reads or writes under one

request, allowing for performance to approach one read or write per clock cycle for a high

number of requests. To use burst transactions, data must be contiguous in memory. For

image data stored in row-major order, like in this project, one row can be read in a burst,

but reading from multiple rows requires a separate burst transaction for each row.

32

Implementation Chapter 4

Burst
Copy

96B
LUT

256 b

Depth Mem

Depth BRAM

256 b

128 b

Burst
Copy

96B
LUT

72B
LUT

256 b

Color Mem

Color BRAM

256 b

128 b

64 b

PHASE 0 PHASE 1 PHASE 2 PHASE 3

Figure 4.2: Memory architecture

In Vivado HLS, burst transactions write to and read from a block RAM (BRAM) on

the host side with an equal size to the bus width. BRAM is a more efficient way to store

a large amount of data than with registers. BRAM can be instantiated at any size in

hardware, although there are complications in Vivado HLS if the size exceeds 1,024 bits.

A design challenge with BRAM in this tool is its limitation to only two ports for reading

and writing at any time. This means that if 32 pixels are stored in one 768-bit BRAM,

only two can be read from or written to at once, creating a significant bottleneck for the

algorithm logic. Another challenge is the high cost of dynamic bit accesses in the design,

such as reading byte k from a 256-bit word. To maintain a high memory bandwidth

while eliminating these bottlenecks, the data was first read into a 256-bit-wide BRAM

and then copied into 24-bit and 32-bit BRAM arrays for color and depth, respectively.

To split the color and depth arrays into separate BRAMs, the ARRAY PARTITION pragma

directive was used.

33

Implementation Chapter 4

However, this still did not achieve optimal performance due to a bottleneck in the

two BRAM ports of the 256-bit BRAM. To address this, intermediate BRAMs were used

to copy data in multiple stages. When reading from memory, the data from a 256-bit

BRAM is copied to two 128-bit BRAMs, which then copy to four 64-bit BRAMs, which

in turn copy to the sized arrays. For write-back, the reverse is performed.

An obvious issue with a 256-bit bus width for the 24-bit pixel color elements is the

data alignment, as 24 does not divide 256. In order to dynamically read from and write to

memory in this fashion, a memory interface core was created with four phases to handle

each alignment case. Each phase is instantiated separately in hardware. This serves to

improve performance because of the expensive nature of dynamic bit addressing.

4.4 Algorithm Implementation

The positional timewarp algorithm is the core of the accelerator. To achieve a low

latency, the throughput of this block should be as high as possible. If each pixel in a

1, 920 px×1, 080 px image was processed sequentially in one clock cycle each at a 100 MHz

clock speed, the computation would take 20.7 ms. This is already slower than 60 frames

per second, and it does not include the overhead required for memory I/O or a sufficient

number of cycles to perform the reprojection and lens distortion compensation. For a

sufficient throughput, some amount of concurrent processing is required. Note that for

basic positional timewarping, any pixel’s target destination could theoretically conflict

with another, so the processing cannot be fully parallelized.

To start with, the input image is divided into tiles of size 8 px × 8 px. Because

individual writes to the output image are too expensive, an on-chip BRAM output cache

is used to buffer the values. As a gradient in depth values across the 8 px×8 px input tile

will lead to an expansion or compression of their spatial distribution, they will probably

34

Implementation Chapter 4

Figure 4.3: Reprojection with 8 px× 8 px input tile, 24 px× 16 px output cache

not warp cleanly to an 8 px× 8 px output tile. Thus, a larger output cache size is used.

Heuristic analysis showed that 24 px×16 px is a sufficient output tile size for most scenes.

When designing the reprojection logic, several steps were taken to increase efficiency.

An advantage of custom digital hardware is that data sizes can be tailored to suit the

application. For this algorithm, it is not necessary to use a 32-bit floating-point value

because it is known that the input depth values are between 0.0 and 1.0. Fixed-point

numbers have a static decimal range and fractional precision and lead to more efficient

circuitry in most cases. Multiple depth precisions were tested, and it was found that a

fixed-point representation with a 22-bit fractional precision and 4 decimal bits was the

lowest precision to retain sufficient visual quality in the final image. When converting

from normalized device coordinates, it was expected that a fixed-point representation

would perform better with the division. However, floating-point division proved to be

faster here, so a floating-point representation was retained for this step.

Before the reprojection, the depth pixel is converted into three-dimensional homoge-

neous coordinates. Also, the transformation matrix is fully partitioned into registers so

that there are no port limitations when reading values. Since the reprojection is part

of the critical path, it is important to make it as fast as possible. An efficient matrix

multiplication template from the Vivado HLS library is used to multiply the fixed-point

transformation matrix with the coordinate vector. Then, the radius and lens distortion

35

Implementation Chapter 4

Algorithm 1: Reproject Tile

Result: 8× 8 tile is reprojected
for v ← 0 to 7 do

do in parallel
for u← 0 to 7 do

d←LoadDepthFromTile(u,v);
{unew, vnew, dnew}←Reproject(u, v, d);
if {unew, vnew} ∈ c ; . If cache contains (unew,vnew)
then

isV aliduv ← 1
else

isV aliduv ← 0
end

end
end

end
for v ← 0 to 7 do

for u← 0 to 7 do
rgb←LoadColorFromTile(u,v);
do in parallel

foreach {splatx, splaty} ∈ {[0, 1], [0, 1]} do
dc ←LoadDepthFromCache(unew + splatx, vnew + splaty);
if isV aliduv ∧ {unew + splatx, vnew + splaty} ∈ c ∧ dnew < dc then

WriteToCache(unew + splatx, vnew + splaty, rgb, dnew);
end

end
end

end

end

36

Implementation Chapter 4

compensation coefficient for each pixel is calculated and applied. The lens distortion

is applied at this step so that only one depth test per pixel is necessary. Finally, the

fixed-point homogeneous coordinates are converted into discretized screen coordinates.

The 8 px×8 px tiles serve as inputs to the warping logic along with the transformation

matrix used to calculate the reprojections. First, the reprojections for all 64 pixels are

calculated. If the position is valid, a flag is set and the target location is saved into a

partitioned BRAM array. Eight reprojection blocks are instantiated and subsequently

pipelined to maximize throughput, so all 64 pixels are processed in about 64 clock cy-

cles. Pipelining the reprojections in their own loop led to a lower initiation interval (i.e.

the number of clock cycles between each iteration of the functional block) than group-

ing the reprojections with the depth tests because calculating the reprojections without

committing them to memory is fully parallelizable. To enable the parallel processing in

Vivado HLS, DEPENDENCE pragma directives were used to indicate the absence of data

dependencies in the data arrays between iterations.

After this step, depth tests are performed to arbitrate which pixels are saved to

the output image. Each valid reprojected pixel results in four writes according to the

splatting technique described in the previous section. For each splatted pixel, a depth

test is required to compare the new depth value with the one already present in the

cache. Because the four splats act on separate targets, their depth tests are instantiated

separately and run in parallel. To generate a working hardware design, the output array

target elements were passed to the depth test cores as direct references instead of pointers

to the beginning of the array. The depth test and splatting hardware is pipelined, and

the resulting performance is about 270 clock cycles.

37

Implementation Chapter 4

4.5 Top-Level Design

The top-level module defines the inputs and outputs of the hardware block and instan-

tiates functional blocks inside. At this level, the memory interface cores and timewarping

blocks are controlled. A tile-based design is used to scale the performance up for different

image resolutions and latency targets.

Each tile present in the accelerator is able to read from the input image, reproject

pixels and write to the output image independently. For each tile in the design, new

memory interfaces are added; this avoids memory bus contention. To constrain the

hardware cost of the memory interface cores, image data is loaded only at boundaries

that are multiples of 8 in the x direction. For a memory bus width of 256 bits, There are

four ways that 8 pixel colors of 192 bits can align within an element, which means only

four separate cases to handle in hardware. The output cache uses a 24-pixel width and

the same alignment constraint. Because the data is stored in column-major order, the y

direction is unconstrained in addressing, hence a shorter 16-pixel output cache height.

Before reprojection begins, the transformation matrix is built from the user’s current

and previous head position (Formula 4.3). At the start of each loop iteration, the next

8 px × 8 px input tile is loaded, and the output cache location is predicted. In parallel

with this, the output cache from the previous iteration is written back to off-chip mem-

ory, hiding most of the clock cycles. To perform a motion-informed predictive output

cache load, the upper-left corner pixel depth is sampled from the input tile, converted to

homogeneous coordinates and multiplied with the transformation matrix. The resulting

screen coordinates are adjusted to the closest tile boundary in the x direction. Then,

8 is subtracted from both dimension to find the upper-left corner of the desired output

cache. If this location is outside of the domain of the output image, then no output data

will be loaded.

38

Implementation Chapter 4

Algorithm 2: Accelerator, single tile

Result: Input image is reprojected
for tn ∈ N do

do in parallel
if locn−1 ∈ Io ; . If previous target is within image bounds

then
Writeback(cn−1, locn−1);

end
do

Load(tn);
locn ← Predict(tn);

end;
end
if locn ∈ Io then

Load(cn, locn);
ReprojectTile(tn, cn, posi, poso);

end

end
if locN ∈ Io then

Writeback(cN , locN) ; . Writeback the last tile

end

39

Implementation Chapter 4

After both of these steps are completed in 80 clock cycles, the output cache loads

the predicted location from off-chip memory in 79 clock cycles. Then, the input tile

is reprojected, and valid pixels are saved to the output cache. Before beginning the

reprojection step, a check must be made to ensure that no two output caches overlap, as

this would cause memory contention; to reduce the chance of this occurring, the input

tiles are widely distributed. For the last iteration, a write-back of the output cache data

is performed without loading new input data.

In order to manipulate Vivado HLS into executing hardware blocks in parallel, wrap-

per functions were created around the function calls. In one case, multiple levels of

wrapper functions were required to achieve the desired parallelism.

40

Chapter 5

Results and Discussion

This chapter presents the simulation results from accelerator implementations with 12,

16 and 20 tiles. The RTL representation of each design was simulated in Vivado to

estimate the clock cycles and resource use of a hardware accelerator. After the results

are shared, the performance, hardware usage, image quality, possible applications and

areas for improvement are discussed.

5.1 Results

To evaluate this hardware accelerator concept, several hardware designs were created

and simulated in order to observe the performance and resource usage. Designs with 12,

16 and 20 tiles were created to illustrate the trade-off between latency and resource use.

The accelerator concept is flexible in the number of tiles that it can include, and these

are only shown as examples. These designs were created to process 1, 920 px× 1, 080 px

stereo images, and an HTC Vive was used for position data and the lens distortion

model. Vivado HLS was used to simulate the RTL designs. The clock frequency of each

accelerator is 105 MHz.

41

Results and Discussion Chapter 5

Design Clock Cycles
Megapixels/

Sec
Latency (ms) Frames/Sec

12 tiles 1,626,151 134 15.43 64.7
16 tiles 1,220,231 179 11.58 86.4
20 tiles 976,676 223 9.27 107.9

Table 5.1: Performance for tile configurations

Design BRAM DSP FF LUT

12 tiles 2,502 2,449 515,397 1,169,539
16 tiles 3,334 3,241 683,913 1,555,829
20 tiles 4,166 4,033 852,439 1,942,125

Table 5.2: Resource utilizations in Vivado HLS

Table 5.1 shows the performances for the three designs. As expected, a larger design

with more tiles leads to a lower latency. The 12-tile design results in a latency of 15.43 ms,

which is close to the lowest latency that an accelerator for this task should have. At the

other end, the 20-tile design exhibits a more competitive latency. This is not the same

frame rate that a real system would exhibit with this accelerator because of the additional

time that it takes to scan out the image from the frame buffer to the display. Also, the

delay from gathering and processing sensor data to check the user’s latest head position

must be considered, especially if an effective prediction method is not used.

Table 5.2 shows the resource utilizations for the three designs in Vivado HLS. Figure

5.1 illustrates the resource utilizations normalized to the 12-tile design. The most sig-

nificant use of resources according to Vivado is lookup tables (LUT), followed in order

by BRAM, digital signal processors (DSP) and flip-flops (FF). Most of the lookup table

utilization is due to the memory system. Much effort was spent to lower the hardware

cost of maintaining a high off-chip memory bandwidth, but the hardware cost remains

high in that respect. A high BRAM utilizations is due to the on-chip buffering of image

42

Results and Discussion Chapter 5

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

12 Tiles 16 Tiles 20 Tiles
BRAM DSP FF LUT

Figure 5.1: Resource utilizations, normalized to 12-tile design

data. To decrease this, tile and cache sizes could be reduced in the y direction.

To evaluate image quality under what could pass for a real use case in virtual reality,

proper head position data should be used to provide the correct amount of image arti-

facts. An average human walk speed of 1.386 m s−1 was selected to represent a lateral

movement [56]. Lateral translations result in the largest disocclusions, and these move-

ments are usually slower than when moving forward, so this figure was thought to err on

the side of caution in illustrating disocclusion.

Figure 5.2 shows one half of a positionally-timewarped frame with a 1.386 m s−1 lateral

velocity to the left. The spikes at the corners are due to the experimental lens distortion

model and are not representative of what appears in HMDs. In a real HMD, these

areas would remain hidden from the user’s view by the lens distortion. Figure 5.3 shows

the detail of image artifacts due to disocclusion. The tree branches have a high spatial

frequency in the reference depth image, leading to black areas appearing on their left

side.

Figure 5.4 shows the effect of fixed-point depth value precision on image quality. The

images are a zoomed-in sample of a scene looking in the distance. The source data uses 32

43

Results and Discussion Chapter 5

Figure 5.2: Positional timewarp at 60 frames per second for one eye

44

Results and Discussion Chapter 5

Figure 5.3: Disocclusion artifact detail

32 bits 22 bits

20 bits 16 bits

Figure 5.4: Effect of fixed-point precision on image quality

45

Results and Discussion Chapter 5

Precision BRAM DSP FF LUT Clock Cycles Latency (ms)
float 2,502 3,481 693,724 1,168,447 1,783,841 16.93

22-bit fixed 2,502 2,449 515,397 1,169,539 1,626,151 15.43

∆ 0% −29.6% −25.7% ∼ 0% −8.8% −1.5 ms

Table 5.3: Effects of precision on hardware resources and performance

Source data Quad splatting

Figure 5.5: Effect of pixel splatting on image quality

bits of precision for the depth channel. When this is reduced, the image clarity decreases

slowly until 21 bits of precision, at which it begins increasing more rapidly. A precision

of 22 bits was found to have the best image quality-to-performance trade-off. Table 5.3

shows the hardware resources and performance trade-offs. A lower precision results in

significant savings in hardware resources and performance.

Figure 5.5 shows a reference image compared to splatting after a small positional

timewarp, enlarged for detail. This type of image reconstruction is efficient in hardware

but results in a slight reduction in image quality. This effect is discussed in the next

section.

46

Results and Discussion Chapter 5

5.2 Discussion

This type of accelerator provides higher performance when more hardware is used.

Higher performance is required when image resolution or frame rate increases. These

targets are different depending on the virtual reality system in question. The 12-tile

design is the smallest in consideration because of the 17 ms of latency [20] required to

deliver a high-quality experience. Given the initial hardware investment of including

the minimum number of tiles, it may make sense to add a few more tiles to achieve a

significantly lower latency.

This accelerator is envisioned to be a part of a mobile virtual reality device, such as a

smartphone. Because the performance of this platform is lower than personal computer-

and console-tethered virtual reality systems, it has more to gain from an accelerator like

this. Something to keep in mind when choosing the timewarping accelerator latency is

the time it takes to render a frame on the GPU. An accelerator latency of 15 ms does

not guarantee a perceived latency of 15 ms for every frame or the ability to timewarp

asynchronously—for an application running at 60 frames per second, this probably does

not leave enough time before the timewarp process begins for the GPU to render the

frame. In this case, the accelerator can be used to inject frames when the GPU drops

them.

To perform reliable asynchronous timewarping and lower the perceived latency of

each frame, a larger accelerator is required. The 20-tile example can deliver a stream of

frames at 107 per second as the GPU renders new ones at a slower pace. Any animation

in the scene will remain static until it is updated by the GPU. To avoid a situation where

scene animation jerks and stutters as the GPU’s frame rate oscillates with respect to the

accelerator’s, the GPU’s frame rate should be limited to a factor of the accelerator’s, but

not so low as to make the user uncomfortable from a low rate of animation.

47

Results and Discussion Chapter 5

Regarding the high lookup table usage of the example designs, the high-bandwidth

random-access memory interface was a difficult piece of hardware to design in Vivado

HLS. Taking another route with the hardware design process like writing HDL for a full-

custom algorithm core and using an external memory interface IP may result in a design

with a smaller footprint.

The latencies presented here assume that the head position data is valid as of the

time that the accelerator begins processing. Sensor data incurs a delay during recording,

transmitting to the CPU and processing, so some amount of motion prediction in software

is required to ensure that it is still valid after the delay. Fortunately, prediction can be

used to lower the perceived latency by predicting what the user’s head position will be

at the time that the frame will appear on the display. The shorter the prediction time

interval, the more accurate the prediction can be [57], particularly during acceleration.

Foveated rendering could further reduce the latency of the accelerator. This is an

optimization to the graphics rendering process that lowers the image quality in areas

outside of the primary focal point of the image [58, 59]. It is particularly well-suited for

HMDs because their use of lenses limits the ability to perceive the full pixel resolution of

the display to the center of each eye’s image. When eye tracking is added to HMDs, it

will become even more powerful. Foveated rendering could also be applied to positional

timewarping. For example, pixels away from the center of each eye’s image could be

reprojected with a much lower fixed-point precision, and the depth values could be tiled

together to reproject pixels in groups using fewer clock cycles. Another consideration

is to discard every other pixel from tiles with target locations in the compressed areas

of the image where the distortion coefficient is higher, leading to fewer unnecessary re-

projections and depth tests. Because additional capabilities require additional hardware,

the hardware resources would likely remain the same or increase with these changes.

For a point of comparison, van Waveren’s 2016 study on asynchronous timewarp

48

Results and Discussion Chapter 5

performance can be referred to [24]. This study implemented and compared rotational

asynchronous timewarp performance on a variety of processors, including a laptop CPU,

laptop GPU, smartphone CPU, smartphone GPU and a smartphone DSP. A 1, 920 px×

1, 080 px image was used for each processor.

An important distinction is that van Waveren’s study was only for rotational time-

warping, while this thesis implements positional timewarping. Rotational timewarping

does not require a depth component in the frame, and it is fully parallelizable. Basic

positional timewarping requires a depth check for every pixel, introducing a sequential

component into the algorithm. Another difference is that the processors in this study run

anywhere from 500 MHz to 2.6 GHz, whereas the example designs in the thesis are clocked

at only 105 MHz. Power in integrated circuits is proportional to 1
2
CV 2f , so given that

these accelerators should be no larger than the processors in question and use the same

voltage, it is expected that the accelerators here would use less power for the same task,

although any difference in data movement energy between the accelerator and memory

must also be considered. A lower power use means less heat dissipation, which is a boon

for mobile virtual reality devices with positional tracking that must perform all of the

processing near the user’s body [10].

Of particular note are the results for the smartphone processors. The 2.6 GHz smart-

phone CPU can complete a rotational timewarp in 7.4 ms to 11.3 ms, while the 500 MHz

smartphone GPU can do the same in 1.9 ms. Unlike an accelerator, these processors play

other important roles in the system, and they can only perform so many tasks at once.

If the more demanding positional timewarp were to execute, it would take away more

execution time from these processors, leaving less time for other tasks in the system to

complete. An accelerator removes this burden and allows them to carry on with the other

tasks required of an interactive virtual reality system.

It is worth noting that an increase in clock speed will lead to a proportional loss in

49

Results and Discussion Chapter 5

accelerator latency, but it is not so simple as turning up the phase-locked loop. A shorter

clock period leaves less time for signals to travel from one part of the chip to another.

Faster signals are difficult to route and sometimes result in design rule complications

that must be addressed. Eventually, increasing the clock speed will require an increase

in voltage, leading to an exponential growth in power use. This avenue was not explored

in this work.

One weaknesses in this work stems from a small loss of detail in the warped image

(Figure 5.5). The type of image reconstruction used, splatting, results in a slightly lower

image fidelity than higher-quality methods. Depending on the positional change, the

data may not be aligned in the exact same way to preserve fine detail. A more advanced

image reconstruction method such as meshes would be required to approach the level

of quality of the source image, likely combined with foveated rendering to minimize the

impact on latency.

Also, this work does not consider the additional effort required to correct for chromatic

aberration of the lenses. For the best user experience, colors toward the edges of each

eye’s image should be redistributed to produce an accurate color at the user’s retina to

compensate for the varying refraction in the lens.

Finally, this work does not address the problem of animation, only updating the user’s

head position relative to the virtual world. If a positional timewarp accelerator was relied

on to generate new frames in place of the GPU, no motion would occur in the virtual

environment other than the user’s local head movement. Any moving objects in the

virtual world would remain static, and relative motion, such as scenery moving past as

the user drives a vehicle, would not occur. An idea for updating animation is mentioned

in Section 6.2, Future Work. Adding this ability to an accelerator would enable a much

higher visual quality while the mobile GPU is decoupled from the display and relying on

the accelerator for frame timing.

50

Chapter 6

Conclusion and Future Work

6.1 Summary of Contributions

This thesis proposed a hardware accelerator for positional timewarping on mobile

virtual reality devices. The accelerator accepts a rendered frame and depth image and

produces an updated frame corresponding to the user’s head position and orientation.

The accelerator is compatible with existing deferred rendering engines for minimal modi-

fication of the software structure. Its execution time is directly proportional to the image

resolution and is agnostic of the scene complexity. The accelerator’s size can be adjusted

to meet the latency requirement for a given image resolution. It can be integrated into

a system-on-chip or fabricated as a separate chip.

Three RTL examples are designed and simulated to show the performance potential

of this accelerator architecture. The designs provide respective latencies of 15.43 ms,

11.58 ms and 9.27 ms, and hardware-performance trade-offs are presented.

The 20-tile example design can deliver a stream of frames at 107 per second as the

GPU renders new ones at a slower pace. Any animation in the scene will remain static

until it is updated by the GPU. Although the visual side effects in the resulting images

51

Conclusion and Future Work Chapter 6

stemming from the lack of animation updates may be insufficiently few to entirely dis-

regard the GPU’s frame rate, the accelerator can still improve the end-to-end positional

latency and is also capable of substituting the GPU in the case of dropped frames.

This accelerator helps to improve frame rate and latency in mobile virtual reality

systems, two important metrics for measuring the quality of a virtual reality experience.

The frame rate is the frequency with which new frames are presented on the display. The

latency is the time it takes from when the user’s head position is sampled to when the

user sees the corresponding view appear on the display. Both of these areas are currently

in need of improvement in order for virtual reality systems to mimic reality, especially

for performance- and energy-limited mobile virtual reality devices.

6.2 Future Work

There are a number of visual quality improvements that would benefit this accelerator

design. Adding hole filling capability, for one, would provide a better visual quality

by reducing artifacts due to positional changes. The less severe the artifacts are, the

more comfortable of an experience the accelerator can provide in-between GPU reference

frames. Also, using a bilinear mesh interpolation instead of pixel splatting would likely

also result in better visual quality.

A major improvement to the accelerator would come from enabling animation up-

dates. A potential method is to use optical flow data for the reference frame, such as

a motion vector map [39]. With this data, animation could be updated in each frame

by adding an extra calculation in the reproject step to account for the additional vector

offset, incurring little additional computational overhead but requiring more data to be

read from memory. With animation updates, the GPU could confidently assume a low

frame rate and render at a higher visual quality while the accelerator asynchronously

52

delivers frames with both rotational, positional and animation updates. One caveat is

that the mobile GPU must be capable of generating optical flow data for each frame.

As far as performance goes, the average execution time could increase by grouping

pixels with common depths and warping them together [60]. This could cut down on the

number of reprojections and the number of depth tests, but care must be taken to avoid

additional visual artifacts.

In the hardware realm, the memory cores in this design comprise most of the resources,

so any steps to bring those down would be beneficial. One step could be to design the

accelerator at a lower level than Vivado HLS to improve the efficiency of and control over

the hardware.

Finally, this accelerator concept is not inherently limited to virtual reality systems. It

could also be applied to augmented reality and mixed reality devices, augmented reality

being somewhat a superset of virtual reality. A key difference with the performance

requirements of these devices is that the real-world baseline for how responsive the display

needs to be is always there, making a low latency crucial for blending virtual objects with

the real world. As long as the display remains pixel-addressable, the graphics rendering

process itself should remain similar enough to allow for a positional timewarp to update

objects with respect to the user’s position and orientation.

53

Bibliography

[1] P. Rubin, The inside story of Oculus Rift and how virtual reality became reality,
Wired 22.06 (June, 2014).

[2] “Oculus Rift — Oculus.” https://www.oculus.com/rift/, 2017.

[3] “VIVE — discover virtual reality beyond imagination.”
https://www.vive.com/us/, 2017.

[4] “PlayStation VR – virtual reality headset for PS4.”
https://www.playstation.com/en-us/explore/playstation-vr/, 2017.

[5] “Samsung Gear VR with controller.”
http://www.samsung.com/global/galaxy/gear-vr/, 2017.

[6] M. Korolov, “Report: 98% of VR headsets sold this year are for mobile phones.”
http://www.hypergridbusiness.com/2016/11/report-98-of-vr-headsets-

sold-this-year-are-for-mobile-phones/, 2016.

[7] “Daydream - standalone VR.”
https://vr.google.com/daydream/standalonevr, 2017.

[8] O. Makerspace, “Clube Maker Realidade Virtual.” https://flic.kr/p/Untu5b,
2007. Licensed under a Creative Commons Attribution-ShareAlike 2.0 Generic
(CC BY-SA 2.0).

[9] “The thermal efficiency behind smartphone trends — Qualcomm.”
https://www.qualcomm.com/news/onq/2013/10/09/thermal-efficiency-

snapdragon-processors-under-screen-and-behind-trends, 2013.

[10] “Google: Positional tracking ”solved”, but heat still a problem for VR.”
https://uploadvr.com/inside-out-google-solve-tracking/, Nov., 2016.

[11] G. Bishop, W. R. Mark, and L. McMillan, Post-rendering 3D warping, in
Proceedings of 1997 Symposium on Interactive 3D Graphics, Providence, RI, April
27-30, 1997, pp. 7-16, (Providence, RI), pp. 7–16, Apr., 1997.

54

https://www.oculus.com/rift/
https://www.vive.com/us/
https://www.playstation.com/en-us/explore/playstation-vr/
http://www.samsung.com/global/galaxy/gear-vr/
http://www.hypergridbusiness.com/2016/11/report-98-of-vr-headsets-sold-this-year-are-for-mobile-phones/
http://www.hypergridbusiness.com/2016/11/report-98-of-vr-headsets-sold-this-year-are-for-mobile-phones/
https://vr.google.com/daydream/standalonevr
https://flic.kr/p/Untu5b
https://www.qualcomm.com/news/onq/2013/10/09/thermal-efficiency-snapdragon-processors-under-screen-and-behind-trends
https://www.qualcomm.com/news/onq/2013/10/09/thermal-efficiency-snapdragon-processors-under-screen-and-behind-trends
https://uploadvr.com/inside-out-google-solve-tracking/

[12] M. Antonov, “Asynchronous timewarp examined.”
https://developer3.oculus.com/blog/asynchronous-timewarp-examined/,
Mar., 2015.

[13] “Asynchronous timewarp.” https://developer.oculus.com/documentation/

mobilesdk/latest/concepts/mobile-timewarp-overview/, 2017.

[14] “OpenGL.” https://www.opengl.org, 2017.

[15] W. Hunt, “Virtual reality: The next great graphics revolution.”
http://www.highperformancegraphics.org/2015/program/, Nov., 2015.
High-Performance Graphics 2015.

[16] B. Lang, “Oculus CTO: Improved Gear VR visuals part of a brand new Oculus
runtime system, details improvements.”
http://www.roadtovr.com/oculus-cto-improved-gear-vr-visuals-part-

brand-new-oculus-runtime-system-details-improvements/, June, 2017.

[17] “Console latency: Exploring video game input lag.” https:

//displaylag.com/console-latency-exploring-video-game-input-lag/,
May, 2015.

[18] T. J. Buker, D. A. Vincenzi, and J. E. Deaton, The effect of apparent latency on
simulator sickness while using a see-through helmet-mounted display: Reducing
apparent latency with predictive compensation, Human Factors 54 (Apr., 2012)
235–249.

[19] M. Slater, B. Lotto, M. M. Arnold, and M. V. Sanchez-Vives, How we experience
immersive virtual environments: the concept of presence and its measurement,
Anuario de psicologa/The UB Journal of psychology 40 (2009), no. 2 193–210.

[20] B. D. Adelstein, T. G. Lee, and S. R. Ellis, Head tracking latency in virtual
environments: psychophysics and a model, in Proceedings of the Human Factors
and Ergonomics Society Annual Meeting, vol. 47, pp. 2083–2087, SAGE
Publications, 2003.

[21] J. J. Jerald, Scene-motion- and latency-perception thresholds for head-mounted
displays. PhD thesis, 2009.

[22] P. Rubin, “Review: Samsung Gear VR.”
https://www.wired.com/2015/11/review-samsung-gear-vr/, Nov., 2015.

[23] P. Merkle, H. Brust, K. Dix, Y. Wang, and A. Smolic, Adaptation and optimization
of coding algorithms for mobile 3DTV, Mobile3DTV Project (2008), no. 216503 55.

[24] J. M. P. van Waveren, The asynchronous time warp for virtual reality on consumer
hardware, pp. 37–46, ACM Press, 2016.

55

https://developer3.oculus.com/blog/asynchronous-timewarp-examined/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-timewarp-overview/
https://developer.oculus.com/documentation/mobilesdk/latest/concepts/mobile-timewarp-overview/
https://www.opengl.org
http://www.highperformancegraphics.org/2015/program/
http://www.roadtovr.com/oculus-cto-improved-gear-vr-visuals-part-brand-new-oculus-runtime-system-details-improvements/
http://www.roadtovr.com/oculus-cto-improved-gear-vr-visuals-part-brand-new-oculus-runtime-system-details-improvements/
https://displaylag.com/console-latency-exploring-video-game-input-lag/
https://displaylag.com/console-latency-exploring-video-game-input-lag/
https://www.wired.com/2015/11/review-samsung-gear-vr/

[25] “NVIDIA VRWorks.” https://developer.nvidia.com/vrworks, Feb., 2016.

[26] “Virtual reality with AMD LiquidVR technology.”
https://www.amd.com/en/technologies/vr, 2017.

[27] “CUDA.” http://www.nvidia.com/object/cuda_home_new.html, 2017.

[28] Intel Corporation, Intel Atom Processor Z3600 and Z3700 Series, Dec., 2014. Rev.
003.

[29] L. McMillan and G. Bishop, Head-tracked stereoscopic display using image
warping, in IS&T/SPIE’s Symposium on Electronic Imaging: Science &
Technology, pp. 21–30, International Society for Optics and Photonics, 1995.

[30] L. McMillan, An Image-Based Approach to Three-Dimensional Computer Graphics.
PhD thesis, University of North Carolina, Chapel Hill, Chapel Hill, NC, 1997.

[31] W. R. Mark, Post-Rendering 3D Image Warping: Visibility, Reconstruction, and
Performance for Depth-Image Warping. PhD thesis, University of North Carolina,
Chapel Hill, Chapel Hill, NC, Apr., 1999.

[32] A. Schollmeyer, S. Schneegans, S. Beck, A. Steed, and B. Froehlich, Efficient
hybrid image warping for high frame-rate stereoscopic rendering, IEEE
Transactions on Visualization and Computer Graphics 23 (Apr., 2017) 1332–1341.

[33] M. Regan and R. Pose, Priority rendering with a virtual reality address
recalculation pipeline, (Orlando, Florida), ACM, July, 1994.

[34] P. Bao and D. Gourlay, Superview 3D image warping for visibility gap errors,
IEEE Transactions on Consumer Electronics 49 (2003), no. 1 177–182.

[35] P. Bao and D. Gourlay, Low bandwidth remote rendering using 3D image warping,
in Visual Information Engineering, 2003. VIE 2003. International Conference on,
pp. 61–64, IET, 2003.

[36] P. Bao, D. Gourlay, and Y. Li, Deep compression of remotely rendered views, IEEE
Transactions on Multimedia 8 (June, 2006) 444–456.

[37] W. Pasman, A. van der Schaaf, R. Lagendijk, and F. Jansen, Accurate overlaying
for mobile augmented reality, Computers & Graphics 23 (1999), no. 6 875 – 881.

[38] W. Xiaochuan and L. Xiaohui, Viewpoint-predicting-based remote rendering on
mobile devices using multiple depth images, pp. 216–223, IEEE, Oct., 2015.

[39] F. Smit, R. van Liere, and B. Froehlich, A programmable display layer for virtual
reality system architectures, IEEE Transactions on Visualization and Computer
Graphics 16 (Jan., 2010) 28–42.

56

https://developer.nvidia.com/vrworks
https://www.amd.com/en/technologies/vr
http://www.nvidia.com/object/cuda_home_new.html

[40] P. Lincoln, A. Blate, M. Singh, T. Whitted, A. State, A. Lastra, and H. Fuchs,
From motion to photons in 80 microseconds: Towards minimal latency for virtual
and augmented reality, IEEE Transactions on Visualization and Computer
Graphics 22 (Apr., 2016) 1367–1376.

[41] P. Lincoln, A. Blate, M. Singh, A. State, M. C. Whitton, T. Whitted, and
H. Fuchs, Scene-adaptive high dynamic range display for low latency augmented
reality, pp. 1–7, ACM Press, 2017.

[42] S. Friston, A. Steed, S. Tilbury, and G. Gaydadjiev, Construction and evaluation
of an ultra low latency frameless renderer for VR, IEEE Transactions on
Visualization and Computer Graphics 22 (Apr., 2016) 1377–1386.

[43] M. Weier, T. Roth, E. Kruijff, A. Hinkenjann, A. Prard-Gayot, P. Slusallek, and
Y. Li, Foveated real-time ray tracing for head-mounted displays, Computer
Graphics Forum 35 (2016), no. 7 289–298.

[44] A. Leiby, “SteamVR beta updated (1477423729).” https://steamcommunity.

com/games/250820/announcements/detail/599369548909298226, Oct., 2016.

[45] A. Leiby, “Asynchronous reprojection.” https://steamcommunity.com/app/

250820/discussions/0/341537388320793951/#c341537388325283591, Oct.,
2016.

[46] D. Beeler, E. Hutchins, and P. Pedriana, “Asynchronous spacewarp.”
https://developer.oculus.com/blog/asynchronous-spacewarp/, Nov., 2016.

[47] P. Pedriana, “Under the hood of the Rift SDK building for touch.”
https://www.youtube.com/watch?v=eAl2l_1KfqQ&t=20m39s, Oct., 2016.

[48] M. Marinkovic, “Asynchronous spacewarp: Making great VR experiences more
accessible than ever before.”
http://radeon.com/en-us/asynchronous-space-warp/, Oct., 2016.

[49] “Adreno graphics processing units.”
https://developer.qualcomm.com/software/adreno-gpu-sdk/gpu, 2017.

[50] C. Hanel, B. Weyers, B. Hentschel, and T. W. Kuhlen, Visual quality adjustment
for volume rendering in a head-tracked virtual environment, IEEE Transactions on
Visualization and Computer Graphics 22 (Apr., 2016) 1472–1481.

[51] R. Azuma, Tracking requirements for augmented reality, Commun. ACM 36 (July,
1993) 50–51.

[52] H. E. Bedell, J. Tong, and M. Aydin, The perception of motion smear during eye
and head movements, Vision Research 50 (2010), no. 24 2692 – 2701. Perception
and Action: Part I.

57

https://steamcommunity.com/games/250820/announcements/detail/599369548909298226
https://steamcommunity.com/games/250820/announcements/detail/599369548909298226
https://steamcommunity.com/app/250820/discussions/0/341537388320793951/#c341537388325283591
https://steamcommunity.com/app/250820/discussions/0/341537388320793951/#c341537388325283591
https://developer.oculus.com/blog/asynchronous-spacewarp/
https://www.youtube.com/watch?v=eAl2l_1KfqQ&t=20m39s
http://radeon.com/en-us/asynchronous-space-warp/
https://developer.qualcomm.com/software/adreno-gpu-sdk/gpu

[53] D. C. Brown, Decentering distortion of lenses, Photometric Engineering 32 (1966),
no. 3 444–462.

[54] “Vivado High-Level Synthesis.” https://www.xilinx.com/products/design-

tools/vivado/integration/esl-design.html, 2017.

[55] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang, High-level
synthesis for FPGAs: From prototyping to deployment, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems 30 (2011), no. 4
473–491.

[56] R. V. Levine and A. Norenzayan, The pace of life in 31 countries, Journal of
Cross-Cultural Psychology 30 (1999), no. 2 178–205,
[http://dx.doi.org/10.1177/0022022199030002003].

[57] R. T. Azuma, Predictive tracking for augmented reality. PhD thesis, University of
North Carolina, Chapel Hill, 1995.

[58] T. M. Henry and B. Ravikumar, Foveated texture mapping with JPEG2000
compression, in Image Processing, 2001. Proceedings. 2001 International
Conference on, vol. 3, pp. 832–835, IEEE, 2001.

[59] Foveated 3D Graphics, ACM SIGGRAPH Asia, Nov., 2012.

[60] A. Dayal, C. Woolley, B. Watson, and D. Luebke, Adaptive frameless rendering, in
ACM SIGGRAPH 2005 Courses, SIGGRAPH ’05, (New York, NY, USA), ACM,
2005.

58

https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
http://xxx.lanl.gov/abs/http://dx.doi.org/10.1177/0022022199030002003

	Abstract
	Introduction
	Background and Related Work
	Computer Graphics & Graphics Processing Units
	Rendering Environments for Virtual Reality
	Timewarping
	Accelerators
	Related Work

	Proposed Architecture and Design
	Implementation
	Software Prototype
	High-Level Synthesis
	Memory Design
	Algorithm Implementation
	Top-Level Design

	Results and Discussion
	Results
	Discussion

	Conclusion and Future Work
	Summary of Contributions
	Future Work

	Bibliography

