
UC Irvine
UC Irvine Electronic Theses and Dissertations

Title
Visualizing Execution Phases Using Flame Graph

Permalink
https://escholarship.org/uc/item/96s3w67t

Author
Li, Zichong

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/96s3w67t
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA,
IRVINE

Visualizing Execution Phases Using Flame Graph

THESIS

submitted in partial satisfaction of the requirements
for the degree of

MASTER OF SCIENCE

in Information and Computer Science

by

Zichong Li

Thesis Committee:
Professor James A. Jones, Chair
Professor Cristina Videira Lopes

Professor David Redmiles

2021

© 2021 Zichong Li

TABLE OF CONTENTS

Page

LIST OF FIGURES iv

LIST OF TABLES v

ACKNOWLEDGMENTS vi

ABSTRACT OF THE THESIS vii

1 Introduction 1
1.1 Previous Work . 2
1.2 Motivations . 3

1.2.1 To Process Massive Data Using Phase Detection 3
1.2.2 To Create Multi-level Phase Abstraction 4
1.2.3 To Present Phases Using Flame Graph 4
1.2.4 To Improve Our Previous Study . 4

1.3 Thesis Structure . 5

2 Background 6
2.1 Previous Work . 6

2.1.1 Data Preprocessing . 7
2.1.2 Model Building . 7
2.1.3 Drawbacks . 10

2.2 Blinky Instrumenter . 11
2.3 Flame Graph . 11
2.4 D3.js Library . 14

3 Phase Detection 15
3.1 Data Collecting . 15
3.2 Event-Trace Preprocessing . 18

3.2.1 Overhanging Method . 19
3.3 Tree Edit Distance . 20

3.3.1 Definition . 21
3.3.2 Zhang-Shasha Algorithm . 21

3.4 Duplicate Event Detection . 23
3.5 Phase Clustering . 23

ii

3.5.1 Preliminary Screening . 24
3.5.2 Trimmed Node Comparison . 27
3.5.3 Phase Labeling . 27

3.6 Conclusion . 28

4 Phase Visualization 29
4.1 Design Choice . 30
4.2 Visualization Introduction . 30

4.2.1 Interactions . 31
4.2.2 Multithread Visualization . 34

4.3 Flame Graph Implementation . 34
4.3.1 Generate Input File . 35
4.3.2 Create Flame Graph . 35
4.3.3 Phase Prestore . 35

5 Results 36
5.1 Experimental Design and Introduction . 36
5.2 Experimental Results . 37
5.3 Visualization Analysis on Jackson . 41

6 Discussion 44
6.1 Processing Time . 44
6.2 Phase Detection Mechanism . 45
6.3 Visualization’s Comprehensibility . 45
6.4 Limitations of the Model . 46

6.4.1 Phase Labeling . 46
6.4.2 Data Capacity of Web Application 46
6.4.3 Inapplicable Circumstances . 47

7 Related Work 48
7.1 Trace Compaction and Abstraction . 48
7.2 Execution Trace Visualization . 49

8 Conclusion and Future Work 51
8.1 Conclusion . 51
8.2 Future Work . 52

8.2.1 Flame Graph Implementation . 52
8.2.2 Phase Detection Across Multiple Executions 53
8.2.3 Multi-threaded Handling . 53
8.2.4 Process Automation . 53
8.2.5 User Study . 54

Bibliography 55

iii

LIST OF FIGURES

Page

2.1 Event traces . 7
2.2 Phased detected for the example event traces 8
2.3 Similar preliminary phase tree . 9
2.4 An example of the flame graph visualization, from [8] 12
2.5 Event trace and the generated flame graph 13

3.1 Event traces . 17
3.2 The layerMap after processing the event traces. 20
3.3 The overhanging node . 20
3.4 Added ancestors . 20
3.5 Distance table . 22
3.6 Phase clustering workflow . 24
3.7 Inclusion relation . 25
3.8 Tree with four nodes . 26
3.9 Trees with high size difference . 26
3.10 Trimmed node comparison . 28

4.1 Screenshot of the flame graph implementation 31
4.2 Zooming in and zooming out . 32
4.3 Displayed the toolbox when the mouse is over the box 33

5.1 Screenshot of the execution . 42
5.2 Two main phases . 42
5.3 Similar Phases with different shape and running time 43

6.1 . 46
6.2 Limitation of tree edit distance in phase clustering 47

iv

LIST OF TABLES

Page

5.1 Basic information of the three projects . 39
5.2 Results when similar threshold = 0.6 . 40
5.3 Results when similar threshold = 0.7 . 40
5.4 Results when similar threshold = 0.8 . 40
5.5 Results when comparing events with different root name 40
5.6 Different methods with same group ID . 41

v

ACKNOWLEDGMENTS

First and foremost, I am extremely grateful to my supervisor, Professor James A. Jones
for his continuous support and patience in these two years. He readily agreed to work
with me despite my inexperience in his research field. When I encountered difficulties and
bottlenecks in my research, he always gave me useful help and suggestions. I also would
like to thank Kaj Dreef and Vijay Krishna Palepu for their help with my research. I would
like to thank all the authors of the paper Hierarchical Abstraction of Execution Traces for
Program Comprehension. This project is inspired by their previous work.

I would like to thank my friends Xiaochen Yu, Yang Jiao, and Zhenhan Li for their support
in my daily study during these two years. I also thank Wenxuan Guan, Zhen Huang, Yiliu
Cai, Yunlong Song, and others for their spiritual encouragement and support.

Finally, I would like to express my gratitude to my parents. Without their tremendous
understanding and encouragement, it would be impossible for me to complete my study.

vi

ABSTRACT OF THE THESIS

Visualizing Execution Phases Using Flame Graph

By

Zichong Li

MASTER OF SCIENCE in Information and Computer Science

University of California, Irvine, 2021

Professor James A. Jones, Chair

Profiling mechanisms are an important dynamic analysis approach for source code learners

and maintainers to understand the functions, the dynamic behavior, and the purpose of

method calls in the hierarchical abstraction of the program. However, the output provided

by program profilers can be verbose, making the mapping between source code and program

behavior time-consuming. This paper presents a new approach for processing and visualizing

program execution trace to speed up the understanding process, making profilers’ output

more intuitive to users. This approach first identifies similar execution phases using the

tree edit distance (TED) measure and then visualizes the methods and the phases detected

based on the flame graph. Compared with other similar studies, our approach reduces the

preprocessing time of the profiler’s output and presents the execution phases of the software

at various levels of abstraction to the user while maintaining the invocation time and the

order of the methods in an execution. To verify the effectiveness of this technique, we also

conducted case studies on three different Java programs (Jackson, iText, and FingBugs).

The results demonstrate that our approach can process the profiler output and detect similar

execution phases in a short time. Users can also locate the position of phases in the execution

process by finding similar shapes and simple operations in the visualization.

vii

Chapter 1

Introduction

Program comprehension is the process of acquiring knowledge about a computer program

[35]. With the rapid development of technology and project management, the speed of

software updates and iterations is getting faster and faster, which brings new challenges for

software development and maintenance personnel to comprehend the programs. To facilitate

this process and improve productivity, many strategies of program comprehension have been

proposed. Among them, dynamic analysis is an analysis method by analyzing the programs’

run-time behavior. Dynamic analysis can help programmers gain a deeper understanding of

the program’s running flow and method calls, form the mapping between the source code

and the program’s dynamic behaviors, and facilitate the overall learning process.

Dynamic analysis typically involves instrumenting a program to examine or record certain

aspects of its run-time state [4]. However, the trace events of instrumentation-based profiling

mechanisms can be verbose, limits the usefulness of the analysis. Besides that, different pro-

grammers have different requirements for understanding programs. The raw output provided

by those profilers is usually linear and one-dimensional, which is not suitable for programmers

at the different cognitive levels to use.

1

To tackle these problems, researchers have proposed several types of approaches. One method

is to reduce the size of the profilers’ output by abstraction technique [22, 40, 32]. Those

methods summarize and categorize the trace events into structures or phases to help facilitate

the comprehension process. Another is to visualize the trace events to make trace events

more informative [13, 38]. Those visualizations can usually reveal information that is hard

to discover through analyzing profilers’ raw output.

Previous research in our lab proposed an advanced approach that combines both methods.

It abstracts the execution traces hierarchically to obtain the execution phases of the program

under different hierarchies [15]. Based on the original research, this project analyzed its ad-

vantages and disadvantages, corrected the existing problems while retaining the advantages,

and improved the phases clustering algorithm and the visualization.

By analyzing the experimental results of three case studies, we can conclude that the new

approach can find the execution phases under various program hierarchies faster and more

accurately. The new visualization method based on the flame graph can also provide more

reliable and useful information to users.

1.1 Previous Work

The motivation and central idea for this thesis come from the paper by Yang Feng et al.:

Hierarchical Abstraction of Execution Traces for Program Comprehension [15]. We analyzed

and summarized the advantages and inadequacies of the approach proposed in this paper

and improved the implementation. We will give a more detailed explanation of the previous

work in the background chapter.

2

1.2 Motivations

Dynamic analysis could help bridge the cognitive gap between source code and software run-

time behavior, which is beneficial for software maintainers and learners to complete their

tasks. Dynamic analysis typically comprises the analysis of a system’s execution through in-

strumentation [12]. Developers collect the execution traces produced by the program instru-

menters, observe them, and then obtain software running information. However, analyzing

the execution traces the developers collected may not be a straightforward task. Literature

and papers have pointed out that information overflow is one of the main limitations of an-

alyzing execution traces [17, 12]. The number of execution events that executions produced

may be considerably large for a human to understand. Moreover, the execution traces are

usually verbose and only contain low-level information, which is hard for the human mind

to organize and interpret. Although information overload can be handled by abstraction

approaches, we need to be careful while executing those techniques and make trade-offs be-

tween precision and quantity of information. The goal of this project is to present a possible

workflow to process large amounts of data and present useful information via flame graph

visualization. We summarized our motivation for this project as follow:

1.2.1 To Process Massive Data Using Phase Detection

Complex software could produce massive data after instrumentation. Reducing the size

of execution traces facilitates the understanding process and shortens the data processing

time. One abstraction technique for such problem is phase detection [30, 5]. Finding a

similar pattern in execution events and grouping them into phases could help developers

absorb information more easily. This technique provides developers with the “big picture” of

software run-time behavior and ignores the trivial details. Inspired by this kind of approach,

our goal is to propose a new phase-grouping mechanism while maintaining other useful

3

information.

1.2.2 To Create Multi-level Phase Abstraction

Sufficiently understanding the source code is a key activity for developers. However, “suffi-

cient” can mean different things for developers under different cognitive levels and circum-

stances. Converting the event traces hierarchically to higher-level and lower-level phases on

the basis of needs is beneficial for developers at all cognitive levels.

1.2.3 To Present Phases Using Flame Graph

Flame graphs are a recent data representation technique applied to making informative large

volumes of information from stack traces listing executed functions of a computer system

[17, 9]. Flame graphs were invented by Gregg Brendan in 2011 and used by companies

such as Netflix and Google. Although this visualization is mainly for performance analysis

and debugging, we believe this new form of representation can also be utilized in the pro-

gram comprehension field. Our goal is to extend the use of flame graphs and represent the

hierarchical phase based on it.

1.2.4 To Improve Our Previous Study

This project is the extension of our previous work [15]. We have already proposed a hierar-

chical abstraction technique to tackle the problems discussed before. However, upon closer

analysis, we found that there was much room for improvement in both phase-detection and

visualization. We discuss the previous work and its drawbacks in the background chapter.

4

1.3 Thesis Structure

Chapter 7 briefly describes the related work in this project. Chapter 2 contains the back-

ground required for a full understanding of the project. This chapter includes a detailed

introduction of the paper, tools, and algorithms on which this project is based. Chapters

3 and 4 explain how this new approach detects phases and how the visualization is imple-

mented. Chapter 3 elaborates the source code, as well as the solutions in various cases in

detail. Chapter 4 explains the visualization implementation details and the function of the

visualization. Chapter 5 devotes to three cases studied that we conducted to verify the ef-

fectiveness of our new technique. Chapter 6 discusses the main contributions of the project

and how it has improved compared to previous work. Finally, chapter 8 summarizes the

thesis and discusses the future work.

5

Chapter 2

Background

This section contains the prerequisite techniques and information for understanding this

project. In Section 2.1, we introduced in detail the previous laboratory project on which

this project was based. The rest of the sections mainly introduces the algorithms and tools

used in this project

2.1 Previous Work

The previous paper [15] proposed an automatic approach to present hierarchical abstraction

from event traces. The approach also employed Blinky [1] as the instrumenter to produce

event traces. Two primary stages remain after retrieving the event traces: data preprocessing

and model building. We will give a brief introduction to those stages in this section.

6

2.1.1 Data Preprocessing

The event traces that Blinky outputted contain function-based information. For each method

that triggered, Blinky records its (1) method ID, (2) method name, and (3) method call

depth. Figure 2.1 shows a possible event trace produced by Blinky.

Begin Profiling
ID Name Depth
1 parseFile 0
2 preProcess 1
3 parseASCII 1
5 parseNumber 2
6 parseChar 2
4 parseSpecialCharacter 1
End Profiling

Figure 2.1: Event traces

The next step is to generate a preliminary phase tree from the event traces. The preliminary

phase tree was detected based on the increases and decreases of call depth. The rules of

determining a phase are straight-forward: they traversed all the events, and (1) events with

higher call depth is the children of the most recent event with lower call depth, (2) a phase

is detected whenever the call depth of the next event is lower or equal to the current event.

The phases detected for the event traces above are shown in Figure 2.2.

2.1.2 Model Building

After all the preliminary phase tree is detected, a series of actions are performed. The

primary goal of model building is to find similar phases and combine them to reduce the total

number of phases. Model-building stage will produce a hierarchical execution abstraction for

one program execution. This stage consists of several substeps, each of which is explained

below.

7

Figure 2.2: Phased detected for the example event traces

Phase clustering

They assigned a global key for each preliminary phase tree. The global key is comprised of (1)

the depth of the root method in each phase, (2) all the invoked methods in this preliminary

phase tree, and (3) the order of the invocations. A method will be included only once even

if they were invoked multiple times in this tree. For example, for the preliminary phase tree

in Figure 2.3, the global key for P2, P3 and P6 in the second layer will be “2: b, e, f ”, “2:

g, c, d”, “2: b, e, k”.

They identified the similar preliminary phase tree on each level by comparing their global

key and applied agglomerative hierarchical clustering (AHC) [36] on the unique phases set.

To determine the similar tree, they first calculated the Jaccard Distance between two trees.

JD(Pi, Pj) = 1− |Mi ∩Mj|
|Mi ∪Mj|

8

Figure 2.3: Similar preliminary phase tree

Pi and Pj in equation above are the two phase tree that being compared. Mi and Mj denotes

the all methods in their global keys. The process iteratively compares each tree with other

trees in the same level. For P2 and P6 in Figure 2.3, they all have methods b and e in their

global keys. So the Jaccard Distance of these two tres will be 1 − 2

3
=

1

3
. If the result is

below the threshold they set, the two phase tree will be considered similar. In the final step,

they provide a unique global identifier for all similar trees to reduce the total phase number.

Frequent pattern mining

The last step of abstracting phases is to execute frequent pattern mining over the phase

tree. An ordered sequence of methods to accomplish a certain task may appear in multiple

places in the program. They could further abstract their program by grouping such method

sets as one frequent pattern phase. They perform a frequent pattern mining technique

9

called “sequential pattern mining” (SPAM) [3] on each level of the hierarchical structure. It

allows them to detect frequent sequential patterns from large transactional databases. For

example, if the sequence of “isEndOfFile, readChar, appendToList” appears multiple times

in an execution, SPAM can identify it and label this sequence as a frequent pattern.

2.1.3 Drawbacks

The previous work suggested a way of abstracting software programs hierarchically. However,

after further analysis, we found some major flaws in this approach that need to be improved

or addressed:

1. The previous work firstly uses Jaccard Distance to merge the similar phase trees.

Although this approach can be considered effective, the comparison process is between

the global keys we assigned to each tree. There is no sufficient evidence to indicate the

global keys welly maintain the important information of the phase trees they extracted

from. Comparing two trees directly for detecting similar phases may be beneficial to

the phase clustering.

2. Phase clustering are perform on the phase tree level by level. Since the comparison was

never happened globally, similar phases that nest in different level of the hierarchical

structure were considered different.

3. Frequent pattern mining was used to identify a group of continuously invoked methods

on each level of the phase trees. We found this step may be redundant and can break

the correct hierarchical structure of the phase trees. We believe that an effective

phase clustering technique will enable us to detect any patterns that found by frequent

pattern mining since the majority of the method is similar. Moreover, SPAM may find

patterns that consist of phase trees that are derived from different predecessors; this

will break the correct hierarchy of the phase trees.

10

This thesis mainly introduces the improvement and changes over the previous work to tackle

the drawbacks above while maintaining its advantages. We used the previous experimental

procedures for reference and optimized each step accordingly. We change the data pre-

processing method and choose a new technique to detect phases instead of using Jaccard

Distance and Frequent pattern mining. Another improvement is by creating a new visualiza-

tion for the abstracted program, which will present phases in all layers to users. The detailed

explanation of the new approach will be discussed in the following chapters.

2.2 Blinky Instrumenter

Blinky [1] is a customizable instrumenter and execution tracer for software systems that

compiles to Java Bytecode and targets the Java Virtual Machine for execution. Users can

write their own Blinky profilers for their own needs.

Blinky has the capability to log the execution of any source- or byte-code instruction being

executed during a software run. It can also log auxiliary execution events for the entry, exit,

and completion of method invocations, method declarations, and compile-time source- and

byte-code instructions [1]. The information in the output log files of Blinky could be various

based on the Blinky profiler each user used. A blank file will be generated by default so

users must write their own Blinky profilers for their own needs.

2.3 Flame Graph

The flame graph [7] is a new visualization solution for presenting a large volume of software

profilers’ output. The flame graph could provide users with a clear and easy-to-understand

visualization to shorten their burden to comprehend and study foreign software.

11

Figure 2.4: An example of the flame graph visualization, from [8]

Figure 2.4 shows us the actual visualization of a CPU profile. We can clearly see the phases

as well as the time spent in each function in one execution. Performance engineers can look

at this graph and identify which are the functions that may need to be optimized.

The idea of the flame graph is simple and intuitive. The creator of the flame graph Brend

Gregg has indicated that the primary use of the flame graph is to visualize CPU profiles.

The output of CPU profilers often contains stack traces with the percentage of time that

was used in each trace event. The flame graph uses that information to visualize the stack

traces that gives users a clear overview of all the CPU events. For example, for the simple

Java program below:

public class Example {

void a() {

b();

c();

}

void b() {

12

d();

}

void c() {}

void d() {}

public static void main(String[] args) {

Example e = new Example();

e.a();

}

}

The new instance of Example invoke a() function first. a() invokes function b() and c(),

and function b() invokes function d(). If we assume function a() to be the root function

and each function takes various time to execute, the output of this program after profiling

and the flame graph generated will be something like Figure 2.5:

Begin Profiling
1: Name: a, Depth: 0, Time: 1000ms;
2: Name: b, Depth: 1, Time: 400ms;
3: Name: d, Depth: 2, Time: 250ms;
4: Name: c, Depth: 1, Time: 200ms;
End Profiling

Figure 2.5: Event trace and the generated flame graph

In the original flame graph, the y-axis stands for the stack depth and the x-axis is the

alphabetical stack sort to maximize merging. Inspired by flame graphs, Google has integrated

a tool called flame charts inside the Chrome DevTools. The events in the x-axis of flame

charts show the actual time each event starts and ends rather than an alphabetical sort.

Since the order of events is an important aspect of the execution phase, we adopted the idea

of flame charts and implement our own visualization.

13

2.4 D3.js Library

We choose to implement the visualization in JavaScript due to its rich library support and its

ability to be demonstrates on any platform. Among the related open-source visual libraries,

D3 is currently one of the most popular libraries. Although an open-sourced flame graph

project based on Perl already exists on the web, it does not give users much room for

customization. Therefore, this project takes this open source project as a reference and

chooses to use D3.js to realize visualization.

D3 stands for Data-Driven Documents [6]. It allows you to bind arbitrary data to the Doc-

ument Object Model (DOM) and then apply data-driven transformations to the Document

for visual presentation using CSS, HTML, and SVG. The D3 project began in 2011 and grew

out of the Protovi project of Stanford University’s Visualization Research Group in 2009.

D3 can provide a more expressive line framework and provides better visual representation

taking into account Web standards. D3 uses SVG to give XML a graphics format used to

describe two-dimensional vector graphics. SVG is a resolution-independent graphics format

supported by major browser vendors. The D3 version used in this project is 6.0, which was

released in August 2020.

14

Chapter 3

Phase Detection

In this chapter, we elaborate on the new approach for addressing the problem we discussed

earlier. We first write a customized Blinky profiler to obtain programs’ event traces. Then

preprocess the event traces to transform text-based information to the tree data structure.

Finally, we discuss how we calculate the tree-edit-distance for each pair of execution trees to

determine if they are similar.

3.1 Data Collecting

Blinky can monitor many types of execution events. It requires us to inject a profiler file

to produce the event traces we need. A profiler file tells Blinky which events should be

monitored and which should be ignored, and what to do with these events.

We write a customized Blinky profiler to collect the raw data for our project. For our

purpose, we instrumented the method-enter and the method-exit events. The reason why

we added the method-exit event to our previous work is because we believe the length of

time the methods runs is a factor to affect phase similarity.

15

Figure 3.1 shows the Blinky output for the simple Java program below. Blinky first runs

a static analysis to detect all the methods in classes before dynamically documenting the

program’s execution. It assigns a method ID and an event ID for each method and event

(enter and exit event) respectively. Each event also contains a method ID to indicate to

which method this event is referring. The static analysis also tells us the method name, the

class name, and the package name.

The traces that start with “$$$” are the dynamic events of one execution recorded by Blinky.

Just as the figure shows, the program starts with the main method (Event 14), and then

the constructor function (<init>()) is invoked (Event 1). Events are ordered in the actual

sequence in which the program is run. We also configured Blinky to let it capture the call

depth, the timestamp and the current thread ID for our future analysis.

package test;

class Demo{

void One() {

Two();

Three();

}

void Two() {}

void Three() {}

public static void main(String[] args) {

Demo demo = new Demo();

demo.One();

}

}

16

$$method$$ <init>()V test/Demo ID=1
$enter$ 1 1
$return$ 2 1

$$method$$ One()V test/Demo ID=2
$enter$ 3 2
$return$ 7 2

$$method$$ Two()V test/Demo ID=3
$enter$ 8 3
$return$ 10 3

$$method$$ Three()V test/Demo ID=4
$enter$ 11 4
$return$ 13 4

$$method$$ main([Ljava/lang/String;)V test/Demo ID=5
$enter$ 14 5
$return$ 18 5
Instrumented Class = test/Demo

true
Starting tracing
$$$ $enter$ EventId=14 CallDepth=1 Timestamp=29085 Thread=1
$$$ $enter$ EventId=1 CallDepth=2 Timestamp=1533439 Thread=1
$$$ $exit$ EventId=2 CallDepth=2 Timestamp=1617215 Thread=1
$$$ $enter$ EventId=3 CallDepth=2 Timestamp=1706525 Thread=1
$$$ $enter$ EventId=8 CallDepth=3 Timestamp=1797765 Thread=1
$$$ $exit$ EventId=10 CallDepth=3 Timestamp=1911502 Thread=1
$$$ $enter$ EventId=11 CallDepth=3 Timestamp=2006953 Thread=1
$$$ $exit$ EventId=13 CallDepth=3 Timestamp=2098716 Thread=1
$$$ $exit$ EventId=7 CallDepth=2 Timestamp=2174432 Thread=1
$$$ $exit$ EventId=18 CallDepth=1 Timestamp=2255811 Thread=1
endProfiling

Figure 3.1: Event traces

17

3.2 Event-Trace Preprocessing

Once we acquire the event traces, we need to parse them into tree data structures to compare.

We will explain how we write a program to help us to convert event traces into trees. The

input of the program should be a complete output file of Blinky.

We create a new class called “FunctionNode”. The instances of this class represent method

invocations in an execution. The FunctionNode contains all the information we need for

comparing the similarity including the method name, the class name, the children list, the

start timestamp, the end timestamp, and the callDepth. We should notice that one method

could have multiple FunctionNode instances if it being called more than once. The code for

the FunctionNode class is shown below. The groupId property is related to phase clustering

and will be explained in the next section.

public class FunctionNode {

public String name;

public String className;

public int groupId = 0;

public List<FunctionNode> children = new ArrayList<>();

public long startTime;

public long endTime = -1;

public int depth;

}

We also create a layerMap to store all the dynamic event traces. The key of the map is the

call depth, the value of the map is a ArrayList that stores all methods called (FunctionNode)

at that depth in order.

The program reads the input file line by line and processes the traces depending on their

18

types:

1. For lines that start with “$$method$$”, we create a mapping between method ID and

method name.

2. For lines that start wieh “$<event name>$”, we create a mapping between event ID

and method ID.

3. A new FunctionNode instance will be created for each enter-event start with “$$$”.

We first find its corresponding method name based on its event ID, and combined it

with other information in the event trace to create the FunctionNode instance. The

new instance created will be added to the layerMap based on its call depth.

4. For exit-events starts with “$$$”, we change the end timestamp of its corresponding

node. We then need to add this node as the child to its parent node (the last node of

the layer below).

For the event traces in Figure 3.1, the layerMap generated is shown in Figure 3.2. This

diagram shows the basic structure of the layerMap, with the rounded rectangle on the right

representing the ArrayList and the rectangles inside the rounded rectangle representing the

instances of FunctionNode.

3.2.1 Overhanging Method

Under normal circumstances, all nodes in the layerMap should have a direct parent node.

The method overhang is the situation where a node in the upper layer does not have a direct

parent, like Node A in Figure 3.3.

The method overhang happens when instrumenting the overloaded constructor functions and

when instrumenting the rewritten system methods in a class that extends the system class.

19

Figure 3.2: The layerMap after processing the event traces.

This cannot be prevented due to the Blinky configuration and the internal working sequence

of the JVM, so we manually added their missing ancestors for all the overhanging nodes, as

shown in Figure 3.4. All the added ancestors shares the same timestamp as the overhanging

node.

Figure 3.3: The overhanging node Figure 3.4: Added ancestors

3.3 Tree Edit Distance

In the last step, we get a layerMap that contains FunctionNodes. Each node has a ArrayList

called children which contains all other nodes it invokes. We can consider each node as a

tree structured data. We perform the phase clustering process by determining the similar

20

trees in the layerMap. Since the comparison is between real trees, our approach uses the

tree edit distance to calculate the tree similarity. Although we use an open-sourced library

developed by Database Research Group [25] for this project, it is also essential to understand

the idea of the tree edit distance algorithm for designing the comparison workflow and future

improvement. In this section, we introduce the basic concept of the algorithm and the reason

why we use it as our phase clustering method.

3.3.1 Definition

The tree edit distance is defined as the shortest sequence of elementary operations which

transforms one tree into another. The elementary operations we consider are:

1. Deletion: Delete a node and connect its children to its parent.

2. Insertion: Insert a node between a parent node and all its consecutive children.

3. Replacement: Change the name of one node to another.

The idea of tree edit distance comes from the similar operations we perform when comparing

two string (string edit distance). For example, to transfrom the word “fun” into the word

“soon”, we need to perform one insertion and two replacements. If we assume that each

operation cost 1, then a minimum edit distance between these two words is 3. The tree edit

distance can be considered the generalization of the string edit distance.

3.3.2 Zhang-Shasha Algorithm

Zhang-Shasha [42] is one of the first algorithms for solving the tree edit distance. Just

like most algorithms to calculate string edit distance, this algorithm also uses the dynamic

21

programming paradigm. Since the APTED algorithm [28, 29] that we used in the open-

sourced library is an improvement on the Zhang-Shasha, we briefly introduce the idea of

Zhang-Shasha.

Equation 3.1 is the general equation of calculating the tree edit distance. We can calculate

the edit distance once we specify the cost of each base operation. The tree distance is the

minimal cost among the three subproblems.

td(,) = min

td(,) + Cost(delete)

td(,) + Cost(add)

td(,) + Cost(replace)

(3.1)

For example, The dynamic planning table for transforming tree T1 into tree T2 is shown

in Figure 3.5. Cell (m, n) is the minimum distance to transform the tree that rooted at m

on the left to the tree that rooted at n on the right. After the computation, the bottom

right cell stores the distance between T1 and T2. The red path is the most efficient path

to transform two trees. In this example, one replacement and one deletion are needed to

change tree T1 to tree T2. If we assume the cost of both two operations are 1, the tree edit

distance of these two trees is 2.

Figure 3.5: Distance table

22

3.4 Duplicate Event Detection

In the worst case, to check the similarity between trees globally, each tree in the layerMap

has to be compared with all other trees. Since this process runs in O(n2), we can notice

that a CPU cannot handle all the event traces in an acceptable time if the number of events

exceeds a certain amount.

In project experiments, we found that even if the number of traces exceeds a million, the

number of different methods invoked will not exceed 10,000. Repeated and identical function

calls contribute most of the size of the trace file. To find similar phases globally, the first step

after data preprocessing is to detect the duplicate events and exclude them in the following

comparison steps.

To identify duplicate events, we create a map with method name as the key and a list of

FunctionNodes as the value. We traverse the entire Map, keeping only the FunctionNode that

are different from each other in each list. Since recurrent behaviors are common in program

execution, the number of total events to be compared globally will reduce immensely after

this step.

3.5 Phase Clustering

After the preprocessing, we convert the event traces to a layerMap, which is easier for

programmers to analyze and check information. The goal of phase clustering is to find the

collection of elements in the layerMap that have similar functionality and group them. By

performing phase clustering, we can significantly reduce the trivial information in each layer

and facilitate the comprehension process.

The previous work was just to compare nodes layer by layer, which meant that similar trees

23

could never be found at different call depths. To globally detect similar nodes, each node

must be compared to all other nodes. In the last section, we mentioned that the phase

detection process is based on the tree edit distance algorithm. However, the time complexity

of the algorithm is too high to compare all possible node combinations. The classical Zhang-

Shasha runs in O(n4) time and the APTED algorithm that we used runs O(n3) time [27].

Although the improved algorithm significantly reduces the time complexity of calculating the

tree edit distance, it is still not practicable to compute the distance of all node pairs when

we have millions of event traces. Thus, strategies that help to reduce the total comparison

times are needed. In Figure 3.6, preliminary screening reduces the total comparison times,

trimmed node comparison speeds up the tree edit distance calculations, and phase labeling

groups similar phases together for the later visualization. Steps enclosed with a rectangle

reduce the total processing time of phase clustering.

Figure 3.6: Phase clustering workflow

3.5.1 Preliminary Screening

The screening workflow that reduces unnecessary comparisons consists of three steps: check

inclusion relation, check minimum number, and check minimum size difference, as shown in

Figure 3.6. The main purpose of these steps is to sift out tree pairs that are unlikely to be

24

similar or not logically correct to be compared.

Check Inclusion Relation

To detect similar trees globally, one tree has to be compared with all other trees in the

layerMap. However, intuitively, one tree should not be compared to its ancestor. We write

code to detect whether the two trees to be compared have an inclusion relationship, and if

the answer is true, the comparison is aborted. We will not compute the tree edit distance

for the tree A and tree B in Figure 3.7.

Figure 3.7: Inclusion relation

Check Minimum Number

Trees that contain few nodes are not worth comparing because most of them are located in

the farthest layer. The reasons for ignoring those nodes include: (1) the number of them

is so large that they will increase the computational time, and (2) trees with small size do

not represent siginificant “phase” execution. We set a parameter to determine the minimum

number of nodes in a tree that will proceed to be compared. For example, if we set the

parameter value to 5, the tree in Figure 3.8 will be ignored.

25

Figure 3.8: Tree with four nodes

Check Minimum Size Difference

Since the tree edit distance is calculated between two trees. We can firstly consider factors

that affect the calculation results. In this step, we consider the size difference between the

two trees. The size difference is the absolute value of the number of nodes in the first tree

minus the number of nodes in the other. From the definition of the tree edit distance, we can

recognize that the size difference between trees is the minimum possible value of their edit

distance. Just like Figure 3.9, we can sift out tree pairs with high size differences to avoid

unnecessary calculation.

Figure 3.9: Trees with high size difference

26

We used the event traces of JsonConverter project to test the workflow. For the 13752 nodes

in the layerMap, the total comparison number reduce from 1.9× 108 to 229213.

3.5.2 Trimmed Node Comparison

Tree edit distance calculates the exact minimum number for one tree transforming to another.

However, the algorithm run in O(n3), and the time for calculating distance for trees with

hundreds of thousands of nodes will be too long. After analyzing the key factors that affect

the calculation results, we design a technique to trim the nodes for each comparison.

Firstly, most of the time is wasted acquiring the exact edit distance. We chose to intercept

the lower layers of the tree to represent the whole tree for two reasons: (1) nodes in the lower

layer have a greater weight in describing the method behavior; (2) nodes in the upper layer

contribute most to the increase in edit distance. For example in Figure 3.10, trees C and D

will be compared instead of A and B. In the course of our research, we also found that the

functions with longer running time were better at summarizing the tasks performed in the

current phase of the program. When creating the trimmed nodes, we also chose to ignore

nodes with too short running time.

By applying these techniques, the tree sizes will always be under a constant, so that the time

complexity on the total time cost of clustering is controlled to the minimum.

3.5.3 Phase Labeling

If the edit distance is under the threshold, a similar phase is detected. We label the phase

by assigning them a unique groupId if they do not belong to any group. If two similar trees

27

Figure 3.10: Trimmed node comparison

already have different groupId (which means the tree is similar to another tree that was

analyzed before), we use the idea of Union Find and change their IDs to the smaller one.

3.6 Conclusion

In this chapter, we purposed a new approach for handling event traces for software dynamic

analysis. It consists of a series of steps including event trace prepossessing, phase clustering,

and phase labeling. We utilized the APTED algorithm to determine the similar trees in the

layerMap and designed a workflow to reduce the time cost of phase clustering. In the next

chapter, we introduce how we create the flame graph visualization based on the generated

layerMap.

28

Chapter 4

Phase Visualization

The phase clustering step can transform the large event traces into phases and group similar

phases together. It turns complex and trivial instrumenters’ output into a data structure

that contains hundreds or thousands of execution phases. However, it is still inefficient for

source code maintainers to comprehend the functional behaviors in this execution just by

examining the texted output data structure. We need a more intuitive technique to help

present all information to users more directly and intuitively.

Visualization is considered to be an approach to convey large amounts of information to

humans. We add phase information in the trace events and visualize the events based on

the flame graph. The visualization assists in software comprehension that is required for

certain software maintenance tasks. We introduce the functions and the implementation of

the visualization in the following sections.

29

4.1 Design Choice

Research in software visualization has found out that the effectiveness of visualization is

difficult to assess. The fact of lacking characterization criteria in this field makes it hard

to evaluate the visualization [12]. One possible way to evaluate information visualization

is a visual inspection by experts [16]. However, most of the evaluation happened after the

visualization was built and is not much help for designing a visualization for a new propose.

To maximize the possibility of designing a software visualization that is useful in industry

contexts, we chose to create the visualization base on the flame graph. The flame graph is

a new visualization solution for presenting a large volume of profilers’ output. This visual-

ization technique has been proven to be effective on several industrial platforms including

Netflix, Google, AWS and JetBrains [7]. Although the flame graph is primarily used for per-

formance analysis, we explore the use of flame diagrams to present the phases for software

comprehension.

4.2 Visualization Introduction

The goal of our visualization is to present the information of event traces as well as the

similar phases to the users. The events in the x-axis of the original flame graph are ordered

alphabetically. In each layer, all methods with the same method name are treated as the

same and the flame graph will group them as one method with a longer execution time.

While this solution is appropriate in performance analysis, it is not suitable when presenting

phases because we want to maintain the chronological order of method calls. We modify the

original flame graph to provide the timestamp information and let users know what method

or phase is being executed in each time frame.

30

After the modification, the visualization can provide the information we obtained in the

earlier steps. The y-axis represents the call depth. The method in the bottom layer is

the entry point of this execution. The x-axis represents the time. The scale of the X-axis

is determined by the total running time. Each rectangle in the visualization represents a

method call. The length of the rectangle gives a direct representation of the running time

relative to the entry method. Users can hover over the visual interface to browse through

all the detected phases. Similar phases can exist in different call depths and are shown in

red (Figure 4.1).

Figure 4.1: Screenshot of the flame graph implementation

4.2.1 Interactions

Users can retrieve information of event traces by interacting with the visualization. After

selecting the execution from the “Choose Project” button, users can explore the visualization

by zooming, dragging, hovering, and resetting.

31

Click or Scroll to zoom

Different tasks require source code maintainers to focus on different levels of details of exe-

cution. The default behavior of our implementation can give programmers the method call

situation below the first 30 levels of call depth. We set the number 30 bases on the height of

each box and the normal size of modern personal computers. Layers over 30 will be hidden

by default at the top of the visualization frame and displayed by interacting with the system.

To assist users to analyze all phases or methods with different running times, we add two

ways to enable zooming on the timeline (Figure 4.2).

Users can zoom in or zoom out by scrolling their mouse. Doing so will proportionally scale

up or down the entire visualization. One possible scenario of this function is to minimize

the visual image so that the whole outline can be displayed on a screen. The outline can tell

us the basic information about this execution, such as the major phases and the maximum

depth of the call.

Other way to zoom is by clicking the method rectangle. This feature can help users to

horizontally zoom in on events of interest. When a box is clicked, the flame graph is scaled

horizontally. This reveals more detail, and the submethod box of the method being clicked

will also scale up.

Figure 4.2: Zooming in and zooming out

32

Drag to Move

The visualization supports using the mouse to drag the visual image to achieve displacement.

Users can drag the visual image to check for hidden boxes.

Mouse-over for Information

On mouse-over of boxes, an informational tooltip displaying the class name, method name

and the groupId will show up. The tooltip we designed can display the whole method name

and its package path fully. Apart from that, if the mouse is over a phase detected earlier,

all similar phase will light up simultaneously. Users can deepen their understanding of the

program based on where each phase responds in the visualization (Figure 4.3).

Figure 4.3: Displayed the toolbox when the mouse is over the box

33

Reset the Image

Zooming visualizations often suffer from the problem of the user “getting lost” — being

zoomed too far into an empty area, or being too far zoomed out to the point where the

visualization is no longer visible. As such, to make it easier for the user to reposition the

view, we added a Reset button to the visualization that, when pressed, returns the position

and scale of the view to its default value.

4.2.2 Multithread Visualization

In the multithreaded program, the timestamps of methods from different threads are going to

overlap, which means there will be multiple events at a certain point if we visualize methods

from different threads in a single view. Thus, we separate methods from different threads

and implement a feature to switch between threads. In our phase clustering step, we also

calculate and compare events from different threads separately. Methods take turns running

in multithreading, the time difference between entry and exit of a method does not represent

its true running time. So for programs relying heavily on multithreading, the length of each

event box will be inaccurate, which is one of the drawbacks of our implementation.

4.3 Flame Graph Implementation

The visualization was built by multiple web technologies including TypeScript, React, and

D3.js. We use TypeScript to implement because it is more reliable and easier to refactor.

We combine D3.js with React to create the web page. D3.js enables us to manipulate SVG

based on the data. React gives us the ability to record the status of each operation and

change the web contents accordingly.

34

4.3.1 Generate Input File

The layerMap obtained by clustering contains arrays of program call events at each call

depth. Each call event contains basic information such as the time name, class name, phase

ID, and timestamp. Since the parsing of JSON data is supported by D3.js, we choose to use

tools to convert the layerMap data structure into JSON and make it the input file of the

visualization.

4.3.2 Create Flame Graph

Once an execution was selected, the JSON input file will be added to the current React

state. D3 will create event boxes recursively until all method events were created. We use

the linear scale provided by D3 to determine the length of each box, which is proportional

to its running time. All the interactive features were also attached during the flame graph

creation.

4.3.3 Phase Prestore

The visualization lights up all similar phases once the mouse is over the root of the phase.

To provide hierarchical phase information, children of the detect phase root do not have

the same groupId. Thus, retrieving the same phase ID throughout the visualization and

lights up all of its sub boxes simultaneously is time-consuming. To tackle this problem, we

create a map with phase id as its key and the boxes array as its value. We store the correct

information in it at the beginning of the visualization creation.

35

Chapter 5

Results

In the previous chapters, we introduced the main work of this project. We first design

the workflow of similar phases while the program is running and then describe how to

design a visual implementation that represents the information of these phases based on

flame diagrams. To verify the effectiveness of these efforts, we present case studies on three

different Java projects in this chapter. We first run our project in three Java projects and

made a quantitative analysis of the running results of each software in this project. Then, we

analyzed the indicators such as running time, number of similar stages, and characteristics

of similar stages. Finally, we provided a qualitative analysis of the visualization in one of the

applications and showed how visualization helps users understand the runtime information

more quickly.

5.1 Experimental Design and Introduction

We selected three open-source Java projects for this case study. The three projects are Jack-

son, IText, and FindBugs. Jackson is a Java JSON library that provides multiple approaches

36

to working with JSON including parsing JSON to Java objects and vice versa. iText is also

an open-source library for creating and manipulating PDF files in Java. FindBugs is a Java

application for static analysis to look for bugs and possible vulnerabilities.

Java libraries and applications have so many features that it is almost impossible to analyze

every possible execution flow. In dynamic analysis, we often keep only a trace of the pro-

gram’s execution in a simple task. Thus, we selected only a part of the functions of each

project for analysis.

For the first two projects, we choose to write an executable file that showed the basic func-

tionality of both toolkits. For Jackson, we first create a JSON file, then call the methods

in Jackson to read the JSON file and store the read structure in an object when the read

is complete. Finally, we call Jackson’s API again to turn the object we just assigned into a

new JSON file. For IText, we call its API to create a new PDF file with a line of text into

our local machine. For the FindBugs, we instrument its function of opening an XML file

and displaying the analysis results.

In order to quantitatively analyze the validity and implementation efficiency of the detection

in the phase, we run the three generated trace files in our project respectively. To obtain the

result data, we counted the total number of methods, the total number of comparisons, the

number of events, and other indicators in each project, and compared the changes of each

indicator under different thresholds.

5.2 Experimental Results

For each experimental project, we calculated the results under different similarity thresholds

through experiments, and the specific experimental results are shown in Table 5.1 to Table

5.6. The instrumenter’s output for FindBugs has 16 threads. Since we choose to process

37

event traces of different threads separately, we present the thread with the most event number

in the result tables.

The first column of Table 5.1 represents the size of the output obtained after instrumentation

for the projects; The second column is the number of events in the output file; The third

column shows the number of different methods invoked during this execution. For Table 5.2

to Table 5.4, each row in the table represents a Java project, and each column shows project

experimental results. Column 1 to 4 are the specific results of the experiment, where Phases

represents the number of events detected into Phase, which means that each event has a

non-null groupID. We should note that in the Phases, Events can have the same groupID.

Group represents the number of different phases in this execution. Phases I and Groups I

are the results when only compare the event with same root name, whereas Phases II and

Groups II are the results when the comparison of events with different name added. Table

5.5 is the total time of parsing the event traces and detecting the similar phases.

By examining the results in Table 5.5, we can verify the effectiveness of our approach of

reducing the processing time in Chapter 3. The processing time of the three projects is 3

seconds, 31 seconds, and 15 seconds respectively. We can see that even with the number of

events in the hundreds of thousands, our approach can complete text parsing and similar

phases lookup in a relatively short time. After all the steps before calculating the tree edit

distance, the time complicity of finding similarity globally has dropped from O(n5) to O(mn),

where m is the number of the different methods being called in this execution.

From Table 5.3, we can see how our approach performs under different projects. When

the similarity threshold is set to 0.7, the average proportion of events detected as phases

across the three projects was 87%, 94%, and 98%, which indicates that the program runs

consistently across projects. The events that are not phases are likely to be the methods

that are called only once in this execution.

38

We define the similarity threshold as
tree edit distance

number of nodes in the smaller tree
. The

data in Table 5.2 to Table 5.4 are the experimental results with thresholds set to be 0.6 to

0.8, respectively. We found that when the threshold increased, the data under the Phases

increased correspondingly, and the data in the Groups column decreased correspondingly.

This result indicates that more events are classified as similar phases with the decrease of

the threshold value, which verifies the correctness of stage abstraction in this method to a

certain extent.

The “I”, “II” in Table 5.2 to Table 5.4 is the results under two different circumstances. “I”

columns are the results when the phase detector only compare events with same method

names, and “II” are the result when comparing events with events with different names.

The results show that only a small number of new stages were found in “II”. Most of the

similarities come from the events with the same name, which is under our expectations.

Table 5.6 is the list of some of the method names verified to be similar in “II” in iText at the

threshold of 0.7. The first column represents their groupID, the second and the third column

are the root names of the trees. By comparing the method names of the left and right

columns of Table 5.6, we can further demonstrate that our approach successfully detects

similar phases of program execution.

Projects Size Events Methods

Jackson 2.9 mb 13752 4899

IText 27.3 mb 188765 2980

FindBugs 31.6 mb 230814 4981

Table 5.1: Basic information of the three projects

39

Projects Phases I Groups I Phases II Groups II

Jackson 11985 629 12365 659

IText 177942 408 178053 424

FindBugs 226751 1289 226850 1321

Table 5.2: Results when similar threshold = 0.6

Projects Phases I Groups I Phases II Groups II

Jackson 11942 638 12003 662

IText 177918 423 177983 438

FindBugs 226739 1312 226836 1345

Table 5.3: Results when similar threshold = 0.7

Projects Phases I Groups I Phases II Groups II

Jackson 11907 645 11982 667

IText 177904 424 177952 433

FindBugs 226721 1327 226823 1360

Table 5.4: Results when similar threshold = 0.8

Projects Time I Time II

Jackson 1076 ms 3539 ms

IText 20113 ms 39933 ms

FindBugs 12968 ms 17923 ms

Table 5.5: Results when comparing events with different root name

40

Group ID Methods with same ID

109 applyDestination applyLinkAnnotation

109 applyDestination applyAction

109 applyAction getBorders

126 retrieveMinHeight retrieveMaxHeight

128 restoreState endText

137 endElementOpacityApplying endRotationIfApplied

144 writeFloat writeDouble

146 writeXrefTableAndTrailer writeToBody

150 isOverflowProperty getPropertyAsTransparentColor

Table 5.6: Different methods with same group ID

5.3 Visualization Analysis on Jackson

In this section, we perform a qualitative analysis on the visualization ouput image of Jackson

to check if the functional pattern could be clearly present. The execution consists of two

main parts, which are parsing a JSON file to a object and converting the object back to a

JSON file. The image generated by our implementation is in Figure 5.1

By hovering the mouse over the two longest boxes on the second floor (Figure 5.2), we can

see that the two main jobs of this program are to read values and write values, which is

corresponding to the source code.

41

Figure 5.1: Screenshot of the execution

Figure 5.2: Two main phases

We can use the interaction to explore the subphases in the deeper call depth.For example,

we can hover over our mouse on the readValue box to see the subphases. The two longest

box above the readValue box are method findRootDeserializer and deserialize. From the

root name, we can be informed that the program first needs to create or find a object called

Deserializer and deserialize the input. We can keep doing these operations combined with

other interactive features to explore the whole execution.

The highlighted phases can tell more information of the execution. For example, inside the

deserialize method, there are two similar phases that have quite different running times and

42

shapes (Figure 5.3). Since they are similar, we know that they are basically doing the same

thing. Since they are similar, we know they are basically doing the same thing. This kind

of information cannot be obtained without the phase detection and it reduces the burden of

program understanding.

Figure 5.3: Similar Phases with different shape and running time

43

Chapter 6

Discussion

In the previous chapters, we discussed how our project to process massive data using phases

detection. We also introduced our flame graph implementation for presenting multi-level

phase abstraction. In this chapter, we mainly discuss the improvements of the project on

the basis of our previous work in several aspects. In the last section, we list some limitations

this project has.

6.1 Processing Time

The newly designed workflow has reduced the time of phase detecting substantially. Unlike

the previous work, we did not perform frequent pattern mining in each call depth. We choose

to use the tree edit distance algorithm to determine the similar phases. Also, the algorithm

works in O(n3), and the trimming technique we used has limited the number of nodes in

comparison to a constant level. By comparing nodes with the same names and deleting

duplicate nodes, our approach is able to process files with millions of event traces in a short

time.

44

6.2 Phase Detection Mechanism

We considered the limitations our previous work has and improved the phase-detection mech-

anism to support finding more phases globally. In our previous study, phase clustering and

frequent pattern mining were performed layer by layer, which means nodes and events in

different call depths can never be linked and analyzed together. In our approach, similar

phases can be detected from different call depths. Revealing similar phases at any point

of execution provides more information on the programs’ functionalities gives users more

correct phase detection results.

6.3 Visualization’s Comprehensibility

This visualization, based on the flame map, provides more information about the execution

than our previous project. As shown in Figure 6.1, the visualization of the early project only

holds the phases in one hierarchy. Users need to click the one box to see its subphases. It is

hard to check phases in the deeper layer as well as the relationship between them. The flame

graph provides users with a clear execution structure and shows all execution events from the

bottom to the top layers. In our implementation, users can combine flame map thumbnails

with interactive features to focus on the parts of their interest more quickly. Moreover, in

the previous implementation, the length of each box does not represent the running time,

but the number of sub-phases within it. That design does not follow the user’s intuition and

may has negative impact for their comprehendsion. We use the timestamp to accurately

describe the running time of each phase in the visualization.

45

Figure 6.1

6.4 Limitations of the Model

Although our new approach has improved our previous model and addressed some problems

its has, there are still some limitations that may affect the results and performance.

6.4.1 Phase Labeling

In the phase labeling step, we assigned each phase a groupId, however, this number is only

useful for the program to recognize and highlight similar phases. The effect of program

comprehension depends on how well the source code developer named its methods. In Table

5.6, we can notice that similar phases have names that could reflect their basic functionality.

If the methods are poorly named, users may not understand the relationship between phases.

6.4.2 Data Capacity of Web Application

Although we reduce the number of the event to be compared in our phase detection workflow,

the number that after phase clustering is not reduced. This means that the JSON file our

program produced has all the events that exist earlier. Due to the data capacity of the web

browser, the visualization will get choppy after the number reached its limit. For larger trace

files, techniques of enabling web browsers to render larger amounts of data are needed.

46

6.4.3 Inapplicable Circumstances

We employ tree edit distance on this project because it describes the similarity between trees.

While this solution is working with most of the cases, there are some extreme cases where the

distance does not represent the phase similarity correctly. For example in Figure 6.2, since

function A called function B, C and D multiple times, they should be considered similar to

the second tree. However, our solution will not consider them similar due to their large tree

edit distance.

Figure 6.2: Limitation of tree edit distance in phase clustering

47

Chapter 7

Related Work

Dynamic analysis is an approach to analyze the data gathered from a running program,

which can provide users with the information of programs’ run time behavior and help

them to better comprehend the software. The picture of dynamic analysis can range from

function-level to high-level architectural views [34, 37, 39]. Trace analysis and visualization

are typically used for lower-level analysis. This kind of analysis can often give the user more

information about how the program is running but is limited by the scalability issues. In

this chapter, we summarize other work that is related to this project.

7.1 Trace Compaction and Abstraction

The massive size of the event traces is one of the challenges that hinder the comprehension

process. To address these scalability issues, many approaches for trace compaction and

abstraction have been proposed.

Pattern summarization is the main approach for reducing the size of the traces. Watanabe

et al. [40] proposed to find phase in object-oriented programs based on the objects’ creation

48

and destruction. Zaidman et al. [41] separate the event trace into event clusters by using

a heuristic approach. Other trace compaction techniques are offered by Reiss and Renieris

[33] and Hamou-Lhadj et al. [20, 19, 21]. They grouped the events that appear repeatedly

to reduce the total number of events.

Another approch to reduce the size of event traces is by using metric-based filters. This

approach filtered out events based on the metric we set. Hamou-Lhadj ed al. [18] proposed

a way to filter out low-level components and keep the high-level components, resulting in a

much smaller execution trace. The work of Cornelissen ed al. [11] also indicates that limiting

the number of stacks depth can be an effective way to address the problem.

7.2 Execution Trace Visualization

Visualization techniques are a popular approach for conveying program information for soft-

ware comprehension. Multiple visualizations have been developed for dynamic analysis to

provide different types of properties of the software system.

Many visualization tools organize events by time and call depths [14, 23, 31]. This kind of

visualization is suitable for forming the mapping between source code and execution trace.

To reveal more runtime behavior, Cornelissen et al. [10] and Palepu et al. [26] implement

visualizations that shows the repeated patterns. The patterns and phases that were present

were detected in the earlier process. The studies indicate that phases and sub-phases are

nested in the event traces hierarchy.

David Lo and Shahar Maoz [24] also layered the execution trace to find different levels

of granularity and present them to the user as a real-time sequence chart. Different from

Palepu’s work, their hierarchical structure is derived from the package structure and the

real-time sequence chart.

49

Other visualization tools focus on providing high-level functionality of the program. They

the phases and behaviors are shown in these visualizations are usually independent and have

no hierarchical nature. For example, Alimadadi et al. [2] mapped the low-level behavior to a

higher-level behavioral model by examining the runtime behavior of web applications. Wim

De Pauw and Steve Heisig [13] visualized the high level of abstraction that distilled from

system behavior.

50

Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this paper, we proposed a new approach for creating hierarchical phase abstraction of an

execution trace and created a visualization to present the phase information based on the

flame graph.

The workflow of our approach contains several steps. The new approach first converts event

traces to a layerMap data structure. Then we perform a duplicate event detection to reduce

the number of the total events. In phase clustering, we utilize the tree edit distance for

determining the similarity between trees. We also designed a series of steps to reduce the

phase detecting time while maintaining the accuracy. We consider two trees as one similar

phase if the distance is under the threshold value.

We also introduced a visualization that helps developers to receive clearer information about

the event traces and the phases we detect earlier. It has several interactive features that

enable uses to explore the event traces in different hierarchical levels. The flame graph also

51

shows the outline of the execution and the running time of each function call to users directly.

The quantitative analysis of three Java projects verifies that this project can detect similar

phases in event traces successfully. It also verifies the reasonableness of the steps in Figure

3.6 to shorten the processing time. The results indicate that while most of the phases are

coming from the method of the same name, there are still a small number of events with

different root names were grouped into one phase.

The case study of visualization on Jackson demonstrates the visualization’s ability to reveal

the system’s run time behaviors and its ability to provide execution information at multiple

levels of granularity to users.

Finally, we discussed the improvements and optimization of this project over our previous

one in terms of running time, phase detection algorithm, and visualization implementation.

8.2 Future Work

8.2.1 Flame Graph Implementation

Changing the implementation of the flame diagram might be a possible solution to the

problem we mentioned in the 6.4.2. Events with short running time can be ignored in the

first rendering to make the browser more responsive. For larger JSON files, we might need

a server that returns a portion of the data you are interested in, which means events that

place outside our interest will not be on the HTML page.

The presentation of phases could also be improved in the future. The current visualization

requires that the user “mouse over” the flame graph to find groups. Future work could use

color to show all groups without needing to mouse over.

52

Furthermore, more interactive features could be added to the web project. For example, one

possible direction is to add correspondence between visual elements and source code to let

users read source code directly on the webpage.

8.2.2 Phase Detection Across Multiple Executions

The prior work also identified similar phases across multiple executions. The current project

can only analyze traces from one executions. Our goal in the future is to update the project

to support the identification of common subtrees that occur in multiple executions.

8.2.3 Multi-threaded Handling

At this moment, our approach works best for single-threaded applications. This project

only provides a preliminary solution for handling multi-threaded programs. We consider

each thread as a standalone output and perform phase clustering within the thread. The

visualization also visualizes events of different threads separately. This may be a viable

solution at this stage, but the vision is to achieve similar phase detection across threads.

The visualization could also be updated to shows similar phases across threads on one page.

8.2.4 Process Automation

In the future, we hope to add new code to make the wiring of the steps in this approach more

automated. At present, the three steps of this project: (1) obtaining trace file; (2) phase

detection; and (3) using JSON file to generate visualization are grid-independent. The user

needs to manually import each file into the appropriate location and run the program to

proceed to the next step. We want to implement an automated system that allows analysis

53

and visualization of programs with minimal effort.

8.2.5 User Study

Finally, we will design a user study in the future to further verify that our phase detection

workflow and visualization implementation can help developers more effectively familiarize

themselves with the dynamic behaviors of the source code.

54

Bibliography

[1] spideruci/blinky-core. https://github.com/spideruci/blinky-core/wiki.

[2] S. Alimadadi, S. Sequeira, A. Mesbah, and K. Pattabiraman. Understanding javascript
event-based interactions. In Proceedings of the 36th International Conference on Soft-
ware Engineering, pages 367–377, 2014.

[3] J. Ayres, J. Flannick, J. Gehrke, and T. Yiu. Sequential pattern mining using a bitmap
representation. In Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 429–435, 2002.

[4] T. Ball. The concept of dynamic analysis. In Software Engineering—ESEC/FSE’99,
pages 216–234. Springer, 1999.

[5] O. Benomar, H. Sahraoui, and P. Poulin. Detecting program execution phases using
heuristic search. In International Symposium on Search Based Software Engineering,
pages 16–30. Springer, 2014.

[6] M. Bostock, V. Ogievetsky, and J. Heer. D3 data-driven documents. IEEE transactions
on visualization and computer graphics, 17(12):2301–2309, 2011.

[7] Brendan Gregg. Flame graphs. http://www.brendangregg.com/flamegraphs.html,
2012.

[8] Brendan Gregg. Java in flames. https://netflixtechblog.com/

java-in-flames-e763b3d32166, 2015.

[9] A. BUTLER and K. YOSHIMOTO. Large scale semantic representation with flame
graphs. 2015.

[10] B. Cornelissen, D. Holten, A. Zaidman, L. Moonen, J. J. Van Wijk, and A. Van Deursen.
Understanding execution traces using massive sequence and circular bundle views. In
15th IEEE International Conference on Program Comprehension (ICPC’07), pages 49–
58. IEEE, 2007.

[11] B. Cornelissen, A. Van Deursen, L. Moonen, and A. Zaidman. Visualizing testsuites to
aid in software understanding. In 11th European Conference on Software Maintenance
and Reengineering (CSMR’07), pages 213–222. IEEE, 2007.

55

https://github.com/spideruci/blinky-core/wiki
http://www.brendangregg.com/flamegraphs.html
https://netflixtechblog.com/java-in-flames-e763b3d32166
https://netflixtechblog.com/java-in-flames-e763b3d32166

[12] B. Cornelissen, A. Zaidman, A. Van Deursen, L. Moonen, and R. Koschke. A systematic
survey of program comprehension through dynamic analysis. IEEE Transactions on
Software Engineering, 35(5):684–702, 2009.

[13] W. De Pauw and S. Heisig. Zinsight: A visual and analytic environment for explor-
ing large event traces. In Proceedings of the 5th international symposium on Software
visualization, pages 143–152, 2010.

[14] W. De Pauw, E. Jensen, N. Mitchell, G. Sevitsky, J. Vlissides, and J. Yang. Visualizing
the execution of java programs. In Software Visualization, pages 151–162. Springer,
2002.

[15] Y. Feng, K. Dreef, J. A. Jones, and A. van Deursen. Hierarchical abstraction of execution
traces for program comprehension. In Proceedings of the 26th Conference on Program
Comprehension, pages 86–96, 2018.

[16] C. M. D. S. Freitas, P. R. G. Luzzardi, R. A. Cava, M. Winckler, M. S. Pimenta, and
L. P. Nedel. On evaluating information visualization techniques. In Proceedings of the
Working Conference on Advanced Visual Interfaces, AVI ’02, page 373–374, New York,
NY, USA, 2002. Association for Computing Machinery.

[17] B. Gregg. The flame graph. Communications of the ACM, 59(6):48–57, 2016.

[18] A. Hamou-Lhadj, E. Braun, D. Amyot, and T. Lethbridge. Recovering behavioral design
models from execution traces. In Ninth European Conference on Software Maintenance
and Reengineering, pages 112–121. IEEE, 2005.

[19] A. Hamou-Lhadj and T. Lethbridge. Summarizing the content of large traces to facilitate
the understanding of the behaviour of a software system. In 14th IEEE International
Conference on Program Comprehension (ICPC’06), pages 181–190. IEEE, 2006.

[20] A. Hamou-Lhadj and T. C. Lethbridge. A survey of trace exploration tools and tech-
niques. In Proceedings of the 2004 conference of the Centre for Advanced Studies on
Collaborative research, pages 42–55, 2004.

[21] A. Hamou-Lhadj, T. C. Lethbridge, and L. Fu. Challenges and requirements for an
effective trace exploration tool. In Proceedings. 12th IEEE International Workshop on
Program Comprehension, 2004., pages 70–78. IEEE, 2004.

[22] Z. M. Jiang, A. E. Hassan, G. Hamann, and P. Flora. An automated approach for
abstracting execution logs to execution events. Journal of Software Maintenance and
Evolution: Research and Practice, 20(4):249–267, 2008.

[23] A. Kuhn and O. Greevy. Exploiting the analogy between traces and signal processing.
In 2006 22nd IEEE International Conference on Software Maintenance, pages 320–329.
IEEE, 2006.

56

[24] D. Lo and S. Maoz. Mining hierarchical scenario-based specifications. In 2009
IEEE/ACM International Conference on Automated Software Engineering, pages 359–
370. IEEE, 2009.

[25] Mateusz Pawlik and Nikolaus Augsten. Tree edit distance. http://

tree-edit-distance.dbresearch.uni-salzburg.at, 2018.

[26] V. K. Palepu and J. A. Jones. Revealing runtime features and constituent behaviors
within software. In 2015 IEEE 3rd Working Conference on Software Visualization
(VISSOFT), pages 86–95. IEEE, 2015.

[27] M. Pawlik and N. Augsten. Rted: a robust algorithm for the tree edit distance. arXiv
preprint arXiv:1201.0230, 2011.

[28] M. Pawlik and N. Augsten. Efficient computation of the tree edit distance. ACM
Transactions on Database Systems (TODS), 40(1):1–40, 2015.

[29] M. Pawlik and N. Augsten. Tree edit distance: Robust and memory-efficient. Informa-
tion Systems, 56:157–173, 2016.

[30] H. Pirzadeh, A. Agarwal, and A. Hamou-Lhadj. An approach for detecting execution
phases of a system for the purpose of program comprehension. In 2010 Eighth ACIS
International Conference on Software Engineering Research, Management and Applica-
tions, pages 207–214, 2010.

[31] S. P. Reiss. Jive: visualizing java in action demonstration description. In 25th Interna-
tional Conference on Software Engineering, 2003. Proceedings., pages 820–821. IEEE,
2003.

[32] S. P. Reiss. Dynamic detection and visualization of software phases. In Proceedings of
the third international workshop on Dynamic analysis, pages 1–6, 2005.

[33] S. P. Reiss and M. Renieris. Encoding program executions. In Proceedings of the 23rd
International Conference on Software Engineering. ICSE 2001, pages 221–230. IEEE,
2001.

[34] T. Richner and S. Ducasse. Recovering high-level views of object-oriented applica-
tions from static and dynamic information. In Proceedings IEEE International Con-
ference on Software Maintenance-1999 (ICSM’99).’Software Maintenance for Business
Change’(Cat. No. 99CB36360), pages 13–22. IEEE, 1999.

[35] S. Rugaber. Program comprehension. Encyclopedia of Computer Science and Technol-
ogy, 35(20):341–368, 1995.

[36] W. S. Sarle. Algorithms for clustering data, 1990.

[37] B. Schmerl, J. Aldrich, D. Garlan, R. Kazman, and H. Yan. Discovering architectures
from running systems. IEEE Transactions on Software Engineering, 32(7):454–466,
2006.

57

http://tree-edit-distance.dbresearch.uni-salzburg.at
http://tree-edit-distance.dbresearch.uni-salzburg.at

[38] J. Trümper, J. Bohnet, and J. Döllner. Understanding complex multithreaded software
systems by using trace visualization. In Proceedings of the 5th international symposium
on Software visualization, pages 133–142, 2010.

[39] R. J. Walker, G. C. Murphy, B. Freeman-Benson, D. Wright, D. Swanson, and J. Isaak.
Visualizing dynamic software system information through high-level models. ACM SIG-
PLAN Notices, 33(10):271–283, 1998.

[40] Y. Watanabe, T. Ishio, and K. Inoue. Feature-level phase detection for execution trace
using object cache. In Proceedings of the 2008 international workshop on dynamic
analysis: held in conjunction with the ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA 2008), pages 8–14, 2008.

[41] A. Zaidman and S. Demeyer. Managing trace data volume through a heuristical clus-
tering process based on event execution frequency. In Eighth European Conference on
Software Maintenance and Reengineering, 2004. CSMR 2004. Proceedings., pages 329–
338. IEEE, 2004.

[42] K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between trees
and related problems. SIAM journal on computing, 18(6):1245–1262, 1989.

58

	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	ABSTRACT OF THE Thesis
	Introduction
	Previous Work
	Motivations
	To Process Massive Data Using Phase Detection
	To Create Multi-level Phase Abstraction
	To Present Phases Using Flame Graph
	To Improve Our Previous Study

	Thesis Structure

	Background
	Previous Work
	Data Preprocessing
	Model Building
	Drawbacks

	Blinky Instrumenter
	Flame Graph
	D3.js Library

	Phase Detection
	Data Collecting
	Event-Trace Preprocessing
	Overhanging Method

	Tree Edit Distance
	Definition
	Zhang-Shasha Algorithm

	Duplicate Event Detection
	Phase Clustering
	Preliminary Screening
	Trimmed Node Comparison
	Phase Labeling

	Conclusion

	Phase Visualization
	Design Choice
	Visualization Introduction
	Interactions
	Multithread Visualization

	Flame Graph Implementation
	Generate Input File
	Create Flame Graph
	Phase Prestore

	Results
	Experimental Design and Introduction
	Experimental Results
	Visualization Analysis on Jackson

	Discussion
	Processing Time
	Phase Detection Mechanism
	Visualization's Comprehensibility
	Limitations of the Model
	Phase Labeling
	Data Capacity of Web Application
	Inapplicable Circumstances

	Related Work
	Trace Compaction and Abstraction
	Execution Trace Visualization

	Conclusion and Future Work
	Conclusion
	Future Work
	Flame Graph Implementation
	Phase Detection Across Multiple Executions
	Multi-threaded Handling
	Process Automation
	User Study

	Bibliography

