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Introduction
Real-time 3-dimensional (3-D) imaging of  tissue development and regeneration remains an optical 

challenge. Conventional optical microscopes are limited by low tissue penetration and small working dis-
tance, which are prohibitive to long-term live imaging that requires rapid data acquisition to minimize 
photobleaching and phototoxicity to the specimens (1–3). In addition, samples must be mechanically sec-
tioned, thereby distorting intrinsic tissue integrity and subsequently resulting in undersampling after 3-D 
reconstruction (4). While PET (5, 6), μCT (7, 8), MRI (9, 10), and bioluminescence imaging (11, 12) are 
capable of  capturing 3-D images from live samples, the spatial resolution of  these techniques is inadequate 
to capture organ morphogenesis in small-animal models (13–17). For these reasons, the advent of  light-
sheet fluorescence microscopy (LSFM) (18–22) has revolutionized multiscale imaging, allowing visualiza-
tion of  samples ranging from live zebrafish embryos (~ 0.4 × 0.5 × 0.6 mm3) to adult mouse hearts (~8 × 8 
× 10 mm3) with high-spatiotemporal resolution and minimal photobleaching and phototoxicity.

Unlike confocal and wide-field microscopy, LSFM has the capacity to localize 4-D (3-D spatial + 1-D 
time or spectra) cellular phenomena with multiple fluorescence channels (23–28). The theoretical principle 
of  light-sheet imaging was first reported in 1903 (29); however, the experimental application of  LSFM was 
not possible until the introduction of  fast-rate charge-coupled devices/complementary metal–oxide–semi-
conductor (CCD/CMOS) camera for high-speed data acquisition in 2004 (23). Initially, LSFM was devel-
oped to image small-model organisms, such as Caenorhabditis elegans (30, 31), zebrafish embryos (32, 33), 
and Drosophila (34, 35). Subsequently, LSFM imaging of  the entire 3-D mouse hippocampus (36–39) and 
cochlea (40–43) has been made possible with advancements in optical clearance techniques (Figure 1A).

The unique operation of  LSFM resides in the orthogonal optical pathway. The illumination and detec-

The ability to image tissue morphogenesis in real-time and in 3-dimensions (3-D) remains an 
optical challenge. The advent of light-sheet fluorescence microscopy (LSFM) has advanced 
developmental biology and tissue regeneration research. In this review, we introduce a LSFM 
system in which the illumination lens reshapes a thin light-sheet to rapidly scan across a sample 
of interest while the detection lens orthogonally collects the imaging data. This multiscale strategy 
provides deep-tissue penetration, high-spatiotemporal resolution, and minimal photobleaching 
and phototoxicity, allowing in vivo visualization of a variety of tissues and processes, ranging from 
developing hearts in live zebrafish embryos to ex vivo interrogation of the microarchitecture of 
optically cleared neonatal hearts. Here, we highlight multiple applications of LSFM and discuss 
several studies that have allowed better characterization of developmental and pathological 
processes in multiple models and tissues. These findings demonstrate the capacity of multiscale 
light-sheet imaging to uncover cardiovascular developmental and regenerative phenomena.
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tion pathways are linearly aligned in the inverted or upright microscope, whereas the illumination pathway is 
perpendicular to the detection pathway in the LSFM system. The sample is illuminated at the focal plane of  a 
thin light-sheet of  the detection lens (Figure 1, B and C). The emitted fluorescence is perpendicularly collected 
by the detecting objective lens connected to a fast-rate CCD/CMOS camera. The sample is placed at the 
intersection of  the illumination and the detection axes. In addition to imaging transparent zebrafish embryos, 
LSFM offers the ability to visualize opaque specimens, including mouse organ systems, following the optical 
clearing techniques to render these specimens translucent with matching refractive indices (44, 45).

A continuous-wave laser is typically used as the illumination source for LSFM. The detection module 
is composed of  a set of  filters and a scientific CMOS for rapid multichannel acquisition. This module is 
perpendicularly installed to the illumination plane (Figure 1, D and E). The lateral resolution (d) of  LSFM 
is determined by the numerical aperture (NA) of  the objective lens and the wavelength of  excitation light 
(λ), defined as d is proportional to λ/NA. For data acquisition, each image is acquired within tens of  mil-
liseconds of  exposure time. Some of  the raw data are further processed to remove stationary noise (46–48). 
In addition to the static light-sheet generated by a cylindrical lens (49–51), the digitally scanned light-sheet 
microscopy introduced rapid scanning with a Gaussian laser beam (32), further implementing with the 
two-photon excitation for deep and fast live imaging of  Drosophila melanogaster embryos (34).

Recently, improvements in both hardware and software components have enhanced the LSFM-acquired 
images. First, additional structural illumination or pivoting the light-sheet allows rejection of  out-of-focus 
background and shadows in dense tissues (52, 53). Second, computational processing methods have allowed 
for fusion of  multiview images of  the same sample (54, 55). Finally, four-lens systems have been developed to 
minimize rotation and registration efforts (35, 56, 57). Detailed advantages and applications among different 
light-sheet techniques are listed in Table 1. Distinct from the conventional fluorescence microscopy, LSFM 
has the capacity to achieve (a) deep penetration into light-scattering tissues; (b) selective optical sectioning of  
the tissue; (c) minimal photobleaching and phototoxicity; and (d) rapid and multiview acquisition.

In previous work, our group demonstrated the capacity of  light-sheet imaging to uncover both mechan-
ical and structural cardiac phenotypes at the cellular level without stitching image columns or pivoting the 
illumination beams (18–22, 28, 58, 59). In this review, we summarize the use of  LSFM to (a) track a recent-
ly discovered subpopulation of  neural crest–derived cells as they incorporate into the developing heart 
tube via specific labeling of  cell lineages using the fluorescent reporters in zebrafish embryos, (b) capture 
the dynamics of  atrioventricular (AV) valve leaflets throughout the cardiac cycle, (c) integrate dual-sided 
illumination into the LSFM system to allow for large-scale imaging of  3-D vascular calcification in an adult 
mouse model, (d) reveal the 3-D developmental lung mesenchyme in a young mouse model, and (e) image 
the ocular architecture and its retinal vasculature. Overall, the multiscale LSFM system has been shown 
to be useful in unraveling cardiovascular development and regeneration in models ranging from zebrafish 
embryos to adult mouse cardiovascular tissues that otherwise have been considered optically challenging 
for existing imaging modalities.

Time-lapse imaging of neural crest cell incorporation into the developing 
heart tube
Genetic lineage-tracing studies have previously shown that cardiac neural crest cells integrate into the 
developing heart tube and differentiate into cardiomyocytes (60–63). The transgenic NC:NfsB-mCherry 
zebrafish line (Tg[-5sox10:GAL4,UAS:Cre]la2326Tg; Tg[UAS-E1b:NTR-mCherry]c264Tg; Tg[myl7:NLS-EGFP]chb2Tg) 
was used for time-lapse imaging to understand the temporal dynamics of  how this subpopulation of  
neural crest–derived cells integrates into the heart tube (Figure 2A). The transgenic Tg(NC:NfsB-mCherry) 
embryos express nuclear eGFP in cardiomyocytes (green) and mCherry in cells derived from the neural 
crest lineage (red) (Figure 2B). A series of  time-lapse images taken from 26 hours after fertilization (hpf) 
to 30 hpf  revealed the spatial and temporal migration of  this subpopulation to the heart tube (Figures 2, 
C–G). Neural crest–derived cells were observed contacting the dorsal surface of  the heart tube at 26–27 
hpf  (Figure 2, C and D). By 29 hpf, these neural crest–derived cells integrated into the heart tube and 
expressed nuclear eGFP (yellow cells in Figure 2, F and G). Thus, LSFM revealed the 4-D distribution of  
this subpopulation of  neural crest–derived cells, providing an imaging platform for further investigation 
into the lineage-specific differentiation of  these cells into cardiomyocytes (yellow in the right panel) and 
the future septal and valve mesenchyme.
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Dual-channel imaging for 3-D valve leaflet dynamics
Hemodynamic forces are known to govern AV valve formation (64); however, rigorous in vivo visualiza-
tion of  AV leaflets remains an imaging challenge (65, 66). Using the transgenic Tg(fli1:GFP;cmlc2:mCherry) 
zebrafish line at 5 days after fertilization (dpf), we applied dual-channel imaging to capture the excursion 
of  valve leaflets (green) in relation to the endocardium (green) and myocardium (red) (Figure 2H). At a 
rate of  100 frames per second (fps), dual-channel LSFM colocalized AV valve leaflet closure (Figure 2I) 
and opening (Figure 2J) with ventricular myocardial contraction and relaxation, respectively. These results 
demonstrate that LSFM imaging allows for time-dependent structure and function determination, which 
will be useful for studies of  mechanosignal transduction of  valvulogenesis (67).

In addition to the aforementioned applications of  LSFM to examine developmental processes in 
zebrafish embryos, our group has used LSFM imaging to study vascular injury and regeneration in trans-
genic Tg(fli1:GFP; gata1:DsRed) and Tg(fli1:GFP; cmlc2:mCherry) zebrafish lines, which allowed us to track 
blood cells in the vasculature in response to tail amputation at 3 dpf  (68). In the Tg(fli1:GFP;gata1:DsRed) 
line, GFP expression is driven by fli1 promoter in the vasculature throughout embryogenesis and the gata1 
promoter drives the expression of  DsRed in blood cells. These animals allowed us to simultaneously track 
the vascular loop connection between the dorsal aorta and the dorsal longitudinal anastomotic vessel at 3 
dpf  and blood cell trafficking to the injured site. This method may allow studies of  nonlinear shear rates in 

Figure 1. Fundamental concept of the light-sheet imaging strategy. (A) Crucial procedures of multiscale imaging are indicated from embryonic zebrafish 
and rodent models. (B) The sample holder is oriented by a five-axis mounting stage for scanning the biological specimen. The laser light-sheet is excited 
from the illumination lenses (IL I and IL II) in a 2-D plane, which is orthogonal to the detection lens (DL). (C and D) A schematic and a photo illustrate the 
conversion of laser light to a sheet that can transversely illuminate a thin layer of the sample. (E) This photo depicts an array of laser beams aligned for 
multichannel fluorescent detection. (Reproduced with permission from ref. 68.)
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a low-flow Reynolds number system (Re = 100–1,000). Genetic manipulation and use of  ADAM10, which 
inhibits proteolytic cleavage of  the Notch extracellular domain, also enabled us to elucidate a mechanism 
by which Notch-mediated vascular regeneration connects the loop between dorsal longitudinal anastomot-
ic vessel and dorsal aorta. Thus, LSFM provides an entry point for the discovery of  novel microcirculation 
phenomenon with clinical significance for injury and repair.

In summary, light-sheet imaging allows for analysis of  the entire 3-D dynamic process of  neural crest cell 
migration to the heart tube and differentiation to cardiomyocytes. Conventional optical microscopes are lim-
ited by the insufficient frame rate to 2-D planar images. In studies of  cardiomyopathy mechanisms, LSFM has 
been used to associate neural crest cell–derived cardiomyocytes with trabeculation and cardiac contractility 
(69–75), with minimal photobleaching and phototoxicity during time-lapse imaging. In addition, this method 
has been used to quantify the velocity of  circulating blood cells (76) in a transgenic zebrafish model of  tail 
injury, allowing for correlation of  microcirculatory shear rates with vascular regeneration and providing clini-
cal relevance to the use of  selective-plane illumination (77). Due to the cyclical rhythm of myocardial contrac-
tion and relaxation, LSFM has marked potential to deliver 4-D reconstruction of  dynamic AV valve leaflet 
movements and, after applying spatial registration between images captured at different time points (20), can 
provide further insights into the mechanosignal transduction of  valvulogenesis.

Analysis of doxorubicin chemotherapy–induced cardiac injury and repair
The regenerating myocardium electrically couples with uninjured myocardium (78) and represents an evo-
lutionarily conserved model of  cardiomyopathy (79) in adult zebrafish. However, the small size of  the 
two-chambered zebrafish heart limits precise morphologic assessment of  regenerating heart tissue. Utiliza-
tion of  chemical clearing to achieve tissue transparency and laser light transmission, along with light-sheet 
imaging coupled with automated image segmentation based on histogram analysis, led to rapid and robust 
3-D cardiac reconstruction, thereby unraveling the architecture of  doxorubicin chemotherapy–induced car-
diac injury and regeneration in adult zebrafish (Figure 2K) (58). Precise 3-D reconstruction further enabled 

Table 1. Overview of different light-sheet techniques

Technique Unique features Advantages Applications References
Light-sheet techniques
OPFOS/HROPFOS Single-sided light-sheet 

illumination
Optical sectioning Fluorescent samples (40–43)

TLSM Sample immersed in the 
aquatic medium 

Improved signal-to-
background ratio

Aquatic microbes (134)

SPIM/mSPIM/DSLM Pivoting light-sheet; 
digitally scanned virtual 

light-sheet

Low photobleaching and 
deep penetration

Live imaging of 
developmental embryos

(18, 20, 23, 25, 32, 52)

UM/TSLIM Dual-sided light-sheet 
illumination

Large murine or rodent 
models

Optically cleared 
samples

(21, 37–39, 50)

OCPI/soSPIM Light-sheet illumination 
coupled to detection lens

Fast acquisition; super 
resolution

From cell aggregates to 
embryos

(135, 136)

HILO/OPM/SCAPE Oblique light-sheet 
illumination and detection

Single lens for both 
illumination and 

detection

From single-cell to 
behaving organisms

(137–139)

MuVi-SPIM/SiMView/diSPIM/
IsoView

Multiview reconstruction Improved axial 
resolution and superior 

sample coverage

From live embryos to 
opaque specimen

(26, 30, 35, 54–57, 140–142)

LLSM/meSPIM/ALSM Nondiffracting beam and 
structural illumination

Uniform light-sheet 
thickness with an 
invariant profile

From single-cell to live 
embryos

(31, 116, 143–145)

Only the most representative citations are given. OPFOS, orthogonal-plane fluorescence optical sectioning; HROPFOS, high resolution OPFOS; TLSM, 
thin light-sheet microscopy; SPIM, selective-plane illumination microscopy; mSPIM, multidirectional SPIM; UM, ultramicroscopy; TSLIM, thin-sheet laser 
illuminating microscopy; OCPI, objective-coupled planar illumination; soSPIM, single objective SPIM; HILO, highly inclined and laminated optical sheet; 
OPM, oblique plane microscopy; SCAPE, swept confocally aligned planar excitation; SiMView, simultaneous multiview; IsoView, isotropic multiview; MuVi-
SPIM, multiview SPIM; diSPIM, dual-view inverted SPIM; LLSM, lattice light-sheet microscopy; meSPIM, microenvironmental SPIM; ALSM, Airy-beam 
light-sheet microscopy.
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quantitation of  cardiac volumes at days 3, 30, and 60 after chemotherapy treatment (Figure 2L). Compared 
with control fish, doxorubicin-treatment fish had an acute decrease in myocardial and endocardial volumes 
at day 3, demonstrating global cardiac injury. Ventricular remodeling was notable at day 30, and by day 
60, the injured heart had completely regenerated and normal architecture was restored. The results dem-
onstrate the suitability of  LSFM combined with automated segmentation as a high-throughput method 
to monitor 3-D cardiac ultrastructural changes in adult zebrafish, with translational implications for drug 
discovery and modifiers of  chemotherapy-induced cardiomyopathy.

Three-dimensional tracking of cardiac regeneration in neonatal and adult 
mouse hearts
The 3-D distribution of  cardiac progenitor cells during both cardiac morphogenesis and regeneration 
remains poorly understood (80, 81). Two reporter systems were utilized along with LSFM imaging to 
identify cardiac progenitor lineages. A rainbow multicolor reporter system (82) was used to retrospectively 
identify the source of  new cardiomyocytes in a mouse heart at P1 (Figure 3A) (83). In the αMHCCre R26VT2/

GK mouse model, Cre-mediated recombination of  paired loxP sites resulted in expression of  all four fluores-
cent proteins (cerulean, GFP, mOrange, and mCherry). Another fetal mouse model, Mesp1Cre/+ mice crossed 
with the Rosa26tdT/+ reporter mice, allowed evaluation of  the contribution of  tdT+ cells (yellow; hot) in an 
intact fetal mouse heart (Figure 3B). Embryos from timed mating of  Mesp1Cre/+ Rosa26tdT/+ transgenic mice 
were isolated at E16.5, when the four-chambered heart had formed. Three-dimensional LSFM imaging 
showed the majority of  the tdT-labeled cardiac cells arose from a Mesp1-expressing cell origin and allowed 
tracing of  their 3-D distribution, proliferation, and tissue formation. Thus, light-sheet imaging allows for 
the elucidation of  the organ-specific differentiation of  stem cells in cardiac development and regeneration.

In addition, the relative ratio of  ventricular volume to wall thickness provides insight into the regenera-
tive capacity of  cardiomyocyte proliferation at neonatal stages. A WT postnatal heart at P7 was imaged 
entirely by autofluorescence (Figure 3C) (21, 84). The 3-D reconstruction of  the heart highlighted the ven-
tricular cavity in yellow and rendered the myocardium by blue by a user-defined intensity threshold. Three-
dimensional, in toto imaging enables measurement of  the thicknesses of  the right ventricular wall (~300 
μm), the septum (~650 μm), the left ventricular wall (~950 μm), and even ventricular volume in the intact 
mouse heart. Further, localization of  ion channel distribution of  in an adult heart is challenging to discern 
using conventional methods. With the use of  LSFM, we revealed the spatial distribution of  renal outer 
medullary potassium (ROMK) channels (green) after gene modulation and/or therapy in the intact heart 
(Figure 3D) (21, 85). An adult mouse heart of  7.5 months of  age was imaged after tail vein injection of  an 
adeno-associated virus vector 9 (AAV9) that employed a cardiac-specific troponin T promoter (cTnT) to 
drive cardiomyocyte gene expression of  a customized construct in which the ROMK channel was fused at 
its C-terminus to one GFP molecule (AAV9-ROMK-GFP). Finally, this adult mouse heart was imaged in 
its entirety in 3-D to assess the cardiac-specific expression of  an exogenous kidney potassium ion-channel 
that otherwise is not normally expressed in the heart.

3-D calcific vasculopathy in the ApoE–/– mouse model of atherosclerosis
Calcific vasculopathy is associated with increased mortality and morbidity, especially in patients with renal dis-
ease (86, 87). In addition to localizing the distribution of aortic calcium mineral, LSFM revealed the formation 
of calcification with high spatial resolution (8 μm × 8 μm × 5 μm) in a 15-month-old ApoE–/– female mouse that 

Figure 2. In vivo visualization of the developing hearts from the live zebrafish embryos and high-resolution imaging of chemotherapy-induced cardiac 
injury and regeneration. (A–G) Light-sheet imaging of neural crest incorporation into the developing zebrafish heart tube (transgenic zebrafish line, 
Tg(-5sox10:GAL4,UAS:Cre)la2326Tg; Tg(UAS-E1b:NTR-mCherry)c264Tg; Tg(myl7:NLS-EGFP)chb2Tg). (A) Bright-field microscopic image of a zebrafish embryo 24 
hpf. (B) The transgenic Tg(NC:NfsB-mCherry) zebrafish embryos express nuclear eGFP in the cardiomyocytes (green) and mCherry (red) in cells derived 
from the neural crest lineage at 36 hpf. (C–G) Colocalization of eGFP and mCherry from 26–30 hpf indicates the presence of cardiomyocytes of neural crest 
origin (yellow, arrows). (H–J) Dual-channel LSFM to capture the dynamic movement of atrioventricular (AV) valve leaflets from the transgenic Tg(fli1:GFP; 
cmlc2:mCherry) zebrafish embryos. An illustration of the AV valve leaflets in relation to the myocardium (cmlc:mCherry) and the endocardium (fli1:GFP) 
(H). AV valve leaflet closure (I) and opening (J) were captured at 100 fps. Myocardium (red) and endocardium (green) were concurrently acquired by the 
dual-channel imaging system. (K and L) Cardiac architecture following doxorubicin treatment and 3-D rendering of the adult zebrafish heart. A cross-
section through the atrium, ventricle, and bulbus arteriosus demonstrates the two leaflets of the AV valve (red) and of the ventriculo-bulbar (VB) valve 
(orange) (K). Throughout the duration of the study, control hearts exhibited a preserved architecture in comparison with doxorubicin-treated groups at 
days 3, 30, and 60 (L). (Reproduced with permission from ref. 58). Scale bars: 50 μm (A–G); 10 μm (insets of C–G on the right side); 200 μm (I–L).
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had been injected with a fluorescent bisphosphonate probe (5-FAM-ZOL; Biovinc) that binds calcium (Figure 
3E) (88) and renders areas where this mineral is present fluorescent after injection. Three-dimensional recon-
struction shows that calcification (yellow) is evident in the aortic arch (Figure 3F). Both the 3-D orthogonal 
slices (Figure 3G) and 2-D raw data (Figure 3H) unraveled the spatial location of aortic calcium mineral (brown 
in Figure 3G and white in Figure 3H), and the aortic valve cusps were visible in the insets (Figure 3, G and H). 
Thus, LSFM provides large-scale scanning of an adult mouse model of vascular calcification with translational 
implications for optimally controlling calcium and phosphate homeostasis in patients with chronic kidney dis-
ease (89) and for evaluating the efficacy of potential therapeutic agents.

Visualization of developing pulmonary mesenchyme for lung 
morphogenesis
In addition to the cardiovascular system, we have demonstrated that LSFM can be applied to investigate the 
developing pulmonary mesenchyme as a source of specification for lung development and function (Figure 3I) 
(90). An 8-week-old reporter mouse was generated by crossing the lung mesenchyme–specific Tbx4 lung enhanc-
er–driven Tet-On inducible Cre transgenic mouse (91) with a loxP-mTomato-STOP-loxP-mGFP (mTmG) fluo-
rescent protein reporter mouse line (92). In this mouse, Cre-positive cells are green as a result of Cre-mediated 
floxed mTomato deletion, while Cre-negative cells are red as a result of mTomato expression (Figure 3J). The 
lung and trachea were harvested, perfused with 4% paraformaldehyde (PFA), and subjected to the simplified 
CLARITY protocol for tissue clearing (21, 85) after the mice were euthanized. Using light-sheet imaging, we 
demonstrated that doxycycline induction in the triple transgenic (Tbx4-rtTA TetO-Cre mT-mG) mouse line 
from E6.5–E18.5 resulted in mGFP expression only in lung mesenchymal cells, including airway and vascular 
smooth muscle cells, as well as a variety of fibroblasts, vascular endothelial cells, and pericytes. Using specific 
filtering thresholds, we were able to highlight an elevated GFP signal in airway smooth muscle cells; presum-
ably, this intensity was due to the compacted nature of these cells as compared with low-intensity GFP from 
the scattered fibroblasts and pericytes (Figure 3K). The 2-D merged data (Figure 3L) and 3-D orthogonal slices 
(Figure 3M) also allowed for tracing the developing mesenchyme with high spatial resolution at 2 μm × 2 μm × 
1 μm. Furthermore, light-sheet imaging revealed the cross-section of C-shaped rings (yellow) of hyaline cartilage 
(Figure 3N) from a 3-D trachea (Figure 3O). While previous studies of lung development have focused on the 
lung epithelium, light-sheet imaging enables investigators to further investigate the lung mesenchyme as a critical 
source of inductive cues for a host of complex cell lineages during lung development and function.

Label-free imaging of an intact mouse ocular system
Ocular disorders are often early signs of  cardiovascular disease (93, 94). While the existing imaging modali-
ties — including fundus photography (95), confocal scanning laser ophthalmoscopy (96), and optical coher-
ence tomography (97) — provide valuable 3-D ocular imaging, LSFM offers an advantage by enabling 
imaging of  the entire globe with a single scan. This capacity for one-time scanning is achieved without 
the need to switch objective lenses when changing focus from anterior to posterior ocular structures due to 
the presence of  the crystalline lens of  the eye. An intact albino mouse was chosen for imaging because the 

Figure 3. Three-dimensional interrogation of cardiovascular development and regeneration in neonatal and adult mouse models. (A and B) Cardiac 
progenitor lineage tracking in neonatal mouse hearts. Cre expression leads to cerulean, GFP, mOrange, and mCherry expression (A). Spatial distribution of 
tdT+ cells (hot) in a neonatal heart from a Mesp1Cre/+ mouse crossed with the Rosa26tdT/+ reporter line (B). (C) The reconstructed heart reveals the small ven-
tricular cavity (yellow) in a thick wall at P7. (D) Detection of GFP-tagged renal outer medullary potassium (ROMK) channel (green) in a 7.5-month-old adult 
mouse heart. (E–H) Calcific vasculopathy in a mouse atherosclerosis model. Illustration of cardiac anatomy delineating the areas imaged, including the 
heart base and aortic arch (E). Three-dimensional reconstruction shows calcium mineral (yellow) in a 15-month-old female apolipoprotein-deficient mouse 
(F). A 3-D orthogonal slice (G) and 2-D raw data (H) show distribution of aortic calcium mineral (brown and white, respectively). (I–O) Three-dimensional 
localization of developing mesenchyme from an 8-week-old reporter mouse lung. Cre expression (mGFP, green) was detected in lung mesenchymal cells, 
including airway, vascular smooth muscle cells, a variety of fibroblasts, vascular endothelial cells, and pericytes. Cre-negative cells expressed mTomato 
(red) (I–K). Two-dimensional (L) and 3-D (M) raw data of airway smooth muscle cells with high GFP. Tracheal architecture is visualized by the C-shaped 
rings (yellow) of hyaline cartilage (N and O). (P–Z) Label-free imaging of an intact albino mouse eye and fluorescence imaging of an rd10 eye using light-
sheet microscopy. Illustration of a mouse eye includes the lens, cornea, sclera, choroid, retina, iris, and optic nerve (P). Light-sheet microscopy captured 
the 3-D orthogonal slice of the entire eyeball without changing the objective lens (Q). Three-dimensional vascular network in the posterior ocular system 
(R). Two-dimensional (S) and 3-D (T) structure of the cornea and ciliary body. Three-dimensional reconstruction of multilayer images reveals the retina, 
choroid, and sclera (U). The rd10 mouse is a model of autosomal recessive retinitis (V–X). Bipolar and ganglion cells express GFP (blue), while amacrine 
cells and vasculature are labeled with Alexa 594 (red) (V). Maximum intensity projection (MIP) images are presented in single-channel neurons expressing 
GFP (W) and single channel of vasculature labeled with Alexa 594 (X). Retina prior to (Y) and after (Z) simplified CLARITY are presented. Scale bars: 500 
μm (A–D, Q, S–V); 1 mm (F–O); 200 μm (R, W and X). (Reproduced with permission from refs. 21, 83, 88.)
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relative lack of  melanin pigment rendered the ocular architecture intact and translucent, allowing for visu-
alization of  the cornea, conjunctiva, iris, sclera, choroid, retina, optic nerve, blood vessels, and lens without 
fluorescence staining (Figure 3, P–U). Endogenous autofluorescence served as the imaging contrast. LSFM 
has also been used to image an isolated retina from a mouse model of  retinal degeneration (rd10) (Figure 3, 
V–Z). In this model, the bipolar and ganglion cells in the retina expressed GFP (blue), while the amacrine 
cells and vasculature were labeled with Alexa 594 (red) (Figure 3V). The LSFM captured the neurons (Fig-
ure 3W) and vasculature (Figure 3X) in the rd10 model with a spatial resolution of  2 μm × 2 μm × 3 μm. In 
addition, we compared retinas with and without optical clearing (Figure 3, Y and Z). Light-sheet imaging 
was applied to image the zebrafish eye during development (98) and to quantify rodent retina development 
(99), further demonstrating the capability of  LSFM for large-scale imaging of  intact ocular systems.

Thus, in rodent models, LSFM enables the detailed analysis of  developmental and vascular biology. In 
terms of  cell lineage determinations, LSFM provides a powerful method to concurrently trace the 3-D distri-
bution of  cardiomyocytes that differentiate from numerous progenitors in an intact heart by taking advantage 
of  the multichannel and large-scale capacities of  the light-sheet imaging system. LSFM-generated images 
of  organ-specific stem cell differentiation allow a more detailed understanding of  cardiac development and 
regeneration. Furthermore, in comparison with CT or conventional optical microscopes (100–102), LSFM 
provides specific fluorescence from mineralized tissue and superb spatial resolution for large-scale scanning 
of  vascular calcification in the ApoE–/– mouse model of  atherosclerosis, shedding light on translational opti-
mization for regulating calcium and phosphate homeostasis in patients with chronic kidney disease (89). In 
addition, the demonstration of  the role of  developing pulmonary mesenchyme in mouse lung morphogenesis 
and the visualization of  the entire mouse ocular system from the anterior to the posterior structures provide 
advances in optical imaging with great value to multiscale vascular biology and developmental cardiology.

The future of LSFM
Live imaging has transformed biomedical sciences by enabling visualization and analysis of  dynamic cel-
lular processes as they occur in their native context (103, 104). The advent of  LSFM has led to widespread 
exploration of  in vivo biological processes beyond the coverslip (3, 105). Currently, 4-D live imaging has 
made it possible to visualize biophysical and biochemical interactions in the freely moving embryos or 
rodents (106–109). The digital micromirror device–based light-field technique further enhances temporal 
resolution of  LSFM for real-time volumetric imaging (110).

Among these optical methods, adaptive optics transforms conventional LSFM to compensate for opti-
cal aberrations and scattering by controlling the wavefronts (111–113). Furthermore, integration of  self-
reconstructing beams with LSFM generates a long and uniform light-sheet (114, 115), resulting in single 
cell imaging with two-photon Bessel beams (116). Further development of  an optical lattice enables ultra-
thin light-sheet imaging from cellular to embryonic specimens (31). Meanwhile, another advance of  LSFM 
is the ability to control light-sheet thickness by two electrically tunable lenses, adapting the position of  light-
sheet and light exposure independently throughout organisms within milliseconds (117).

Table 2. Overview of light-sheet techniques in comparison with other imaging modalities

Other imaging modalities
MRI/CT/US/PET/SPECT Versatile imaging modality 

with high image contrast
Anatomical, physiological, and 

molecular imaging
Clinical and preclinical practice (146–151)

PAT Optical illumination and 
ultrasonic detection

Absorption contrast and deep 
penetration

Vasculature, hemodynamics, 
oxygen metabolism.

(152, 153)

Confocal Spatial pinhole for optical 
sectioning

Elimination of out-of-focus 
fluorescence

Fluorescence imaging of cells and 
tissues

(154, 155)

MPM Nonlinear optical imaging Deep penetration and 3-D imaging From single-cell to behaving 
organisms

(156, 157)

STED/PALM/STORM Far-field subdiffraction limit 
imaging

Single molecular localization of live 
ultrastructure

Molecular dynamics (158, 159)

MRI, magnetic resonance image; CT, X-ray computed tomography; SPECT, single photon emission computed tomography; US, ultrasound; PAT, 
photoacoustic tomography; MPM, multi-photon microscopy; STED, stimulated emission depletion; PALM, photoactivated localization microscopy; STORM, 
stochastic optical reconstruction microscopy.
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Parallel advances in pixel superresolution (118–120), deep learning (121–124), virtual reality (125–
128), optogenetics (129), and laser ablation (130) further provide complementary opportunities to elucidate 
cardiovascular architecture and function. A subvoxel LSFM is technically implemented for high-resolution, 
high-throughput volumetric imaging of  cardiovascular development in a large field of  view (22). This itera-
tive resolution recovery method is transformative to improve inadequate focusing capability. For postimage 
processing, the development of  a novel convolutional or recurrent neural network for automatic segmenta-
tion would likely bypass manual segmentation of  large data sets. The study of  interactive virtual reality 
demonstrates an efficient and robust framework for creating a user-directed microenvironment that can be 
used to uncover developmental cardiac mechanics and physiology with high spatiotemporal resolution.

Conclusion
In this review, we have summarized studies that have shown the capacity of  LSFM for multiscale imaging 
to elucidate cardiopulmonary development, regeneration, and disease. Furthermore, we have shown that 
LSFM can provide detailed analysis of  cardiovascular phenomena, ranging from embryonic heart develop-
ment to calcific atherosclerotic disease in adult mice, and can be applied to samples, ranging from tissue 
clearing ex vivo to 4-D imaging in vivo. This framework builds on the high axial and temporal resolution 
for long-term, 3-D and 4-D visualization of  in vivo cellular events, tissue morphogenesis, and organogen-
esis, with minimal photobleaching or phototoxicity. This strategy brings advanced imaging to studies of  
tissue injury, regeneration, and pathology, with multiscale applications to fundamental studies of  cardio-
vascular development and translational work in cardiac anomalies and disease.

As compared with other optical imaging modalities, the unique feature of  LSFM is the capacity to 
rapidly image the entire cardiovascular specimen within 30 seconds for zebrafish and 60 seconds for intact 
mouse hearts without the requiring image-column stitching. This methodology bypasses the need to move 
the tissue volume or light-sheet along the propagation of  the illumination, thereby allowing for multiscale 
imaging for a wide range of  specimens, from embryos to adults. This methodology further expands the 
field of  view from hundreds of  micrometers to tens of  millimeters to cover the entire adult mouse heart 
with the spatiotemporal resolution needed to localize the progenitor cell fates. In addition to reducing the 
complexity of  pre- and postprocessing of  cardiac images, the optimized imaging strategy simplifies image 
acquisition and enhances the imaging system to provide dual-channel in vivo imaging at over 100 fps. The 
comparative advantages and applications among different imaging modalities are listed in Table 2.

The limitations of  LSFM for studying cardiovascular development and regeneration are the false-pos-
itive signals that result from the presence of  pigment or residual hemoglobin in the ventricle. Numerous 
wavelengths of  excitation and fluorophores with narrow emission spectra are required for distinguishing 
overlapping spectra artifacts from fluorescently labeled tissues. Other limitations that degrade image quality 
include photon absorption, scattering, and out-of-focus light, prone to the presence of  stripes or shadow 
artifacts. Thus, optimization of  optical clearing techniques (131–133) is critical to minimize the reduction 
or loss in fluorescence following prolonged optical clearing required for rodent models. Overall, we believe 
that LSFM will be transformative, as this multifunctional framework has potential to combine with new 
advances in optical imaging to provide great value for fundamental and translational research.
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