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BACKGROUND: West Nile virus (WNV) is the leading cause of mosquito-borne disease in humans in the United States. Since the introduction of the
disease in 1999, incidence levels have stabilized in many regions, allowing for analysis of climate conditions that shape the spatial structure of disease
incidence.
OBJECTIVES: Our goal was to identify the seasonal climate variables that influence the spatial extent and magnitude of WNV incidence in humans.
METHODS: We developed a predictive model of contemporary mean annual WNV incidence using U.S. county-level case reports from 2005 to 2019
and seasonally averaged climate variables. We used a random forest model that had an out-of-sample model performance of R2 = 0:61.

RESULTS: Our model accurately captured the V-shaped area of higher WNV incidence that extends from states on the Canadian border south through
the middle of the Great Plains. It also captured a region of moderate WNV incidence in the southern Mississippi Valley. The highest levels of WNV
incidence were in regions with dry and cold winters and wet and mild summers. The random forest model classified counties with average winter pre-
cipitation levels <23:3 mm=month as having incidence levels over 11 times greater than those of counties that are wetter. Among the climate predic-
tors, winter precipitation, fall precipitation, and winter temperature were the three most important predictive variables.
DISCUSSION:We consider which aspects of the WNV transmission cycle climate conditions may benefit the most and argued that dry and cold winters
are climate conditions optimal for the mosquito species key to amplifying WNV transmission. Our statistical model may be useful in projecting shifts
in WNV risk in response to climate change. https://doi.org/10.1289/EHP10986

Introduction
West Nile virus (WNV; Flaviviridae: flavivirus) is the leading
cause of mosquito-borne disease in humans in the United
States.1 WNV is primarily transmitted between birds—the viral
reservoir—and mosquitos—the viral vector. Humans are dead-
end hosts that can contract WNV when bitten by an infected
mosquito; ∼ 20% of humans who are infected by WNV are
symptomatic, with a small percent of cases developing into neu-
roinvasive disease.2 WNV was first introduced to the United
States in New York in 1999, and by 2005 it was found through-
out the contiguous United States.3,4 From 2005 to 2019, the an-
nual number of cases ranged between 712 and 5,674 cases per
year.3 Although both the number and spatial distribution of
WNV cases has varied considerably, over the past 5 y the total
number of cases in the contiguous United States has stabilized
to ∼ 2,000 cases per year. Many of the cases occur in counties
with large population centers in the western United States.
However, WNV incidence, or the number of cases normalized
by population, has been particularly high in the northern Great
Plains region.5,6 Because each step of the WNV transmission
cycle is sensitive to environmental conditions, climate may be
influencing the spatial pattern of WNV incidence.

One important climate control on the WNV transmission cycle
may be precipitation. Precipitation regulates the distributions and
permanence of landscape water bodies that bring mosquitos and
birds into contact. The Culex genus of mosquitos, some of which
frequently take bloodmeals from humans, is thought to be themost
important transmitter of WNV.7–9 WNV and Culex mosquitos are
often found in temperate climate zones, whereas areas with higher
moisture availability inmaritime tropical climates favormore trop-
ical mosquito species that are not as effective at transmitting
WNV.10–12 In temperate regions, one species of mosquitoes that
may be an exceptionally important transmitter of WNV is Culex
tarsalis.9Cx. tarsalis thrives in areas with irrigation,13,14 which are
prevalent in the agricultural regions throughout the Great Plains
(i.e., flatlands west of the Mississippi River and east of the Rocky
Mountains), where levels of WNV incidence are relatively high.
Cx. tarsalis is known to change its seasonal preference from feed-
ing primarily on birds in the spring to a more generic feeder in
summer and fall.9 This cycle would first increase the presence of
WNV among birds early in the year and then later, as the mosqui-
toes switch hosts, increase the likelihood of transmission to
humans. An increase in the likelihood of transmission from birds
to humans via mosquitoes may be further amplified in areas where
mosquitos, birds, and humans are all co-located around limited
water sources, such as sewage drains or artificial standing water in
highly urbanized areas or irrigated rural areas.

In addition to precipitation, temperature may be another impor-
tant climate control on the spatial structure of WNV incidence.
Mosquitos have physiological temperature limits that allow them
to successfully overwinter and to survive the summer heat.15 For
example, Culex quinquefasciatus survives well at temperatures
around 20°C–30°C, but survival drops drastically below 15°C and
above 34°C.15 Cx. quinquefasciatus generally lives in regions with
mean annual summer temperatures between 24°C and 28°C, and
Culex pipiens lives in regions between 16°C and 24°C.16,17

Moreover, temperatures determine when mosquitos emerge in
spring, their time to adult maturation, reproduction rate, efficacy for
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transmittingWNV, and adult longevity, although these relationships
differ among mosquito species.16,17 If temperatures become too
warm, especially in the hot summermonths, mosquitomortalitymay
greatly increase.16 Hot weather during summer months, when mos-
quitos are generally more active, also may cause humans to limit the
time they spend outdoors, thus limiting their exposure to mosqui-
tos.18 For these reasons, both seasonal temperature thresholds and
temperature optimums may be important for structuring the spatial
pattern ofWNV incidence.

Seasonal temperatures also affect when birds migrate into a
region, when they breed, and their geographical distribution.19,20

Specific bird species are thought to be important amplifiers ofWNV
transmission, especially the American robin (Turdus migratorius,
hereafter “robins”).7,21–23 TheAmerican crow (Corvus brachyrhyn-
chos, hereafter “crows”)may also play an important role in overwin-
tering the virus as it passes from crow to crowwithin roosts.24,25

So far, studies examining the effects of climate on the spatial pat-
tern of WNV in the United States have been mostly limited to the
regional-level or finer and not explored across the contiguousUnited
States as a whole.26–29 Our goal was to develop a predictive model
of WNV incidence in the United States and explore which seasonal
climate conditions constrain the spatial extent of WNV incidence
across the United States. Specifically, we aimed to determine which
contemporary climate conditions support the highest levels ofWNV
incidence. First, we used county-level mean annualWNV incidence
data to examine the statistical relationships between incidence and
seasonal averages of surface air temperature and precipitation.
Then, recognizing that the relationships between climate conditions
and WNV incidence are highly nonnormal and have multimodal
peaks, we employed a random forest model to capture the complex-
ity of the system. In our “Discussion” section below,we hypothesize
the biological mechanisms within the WNV transmission cycle that
could be related to these climate conditions to ensure our predictive
model has a sound biological basis. Our model may provide ameans
to project WNV incidence in response to climate change, because
warming temperatures and changes in precipitation may shift the
regionsmost affected by this disease.

Methods

WNVData
We obtained human case counts ofWNV at the county level by year
for the contiguous United States from 1999 to 2019 from the United
States Centers for Disease Control and Prevention (U.S. CDC). We
converted case counts to WNV incidence (cases per 100,000 popu-
lation) using annual county-level population estimates from the
U.S. Census Bureau.30,31 Between 1999 and 2005,WNVwas spread-
ing westward across the United States from its introduction point on
the East Coast. Thus, we limited our analyses of the contemporary
spatial pattern of WNV cases and mean incidence during the period
2005–2019. During that time, there were no known changes in case
reporting practices that would have added significant bias into case
numbers. In total, our WNV data set included 35,081 disease cases,
including both neuroinvasive and non-neuroinvasive cases. We per-
formed our analysis at the county level, which is the finest spatial re-
solution available from the U.S. CDC for de-identified, aggregated
case data; the contiguous United States contains 3,108 counties. No
human subjects or institutional review board/ethics review was
required for this study because no personal identifiable information
was released in conjunctionwith the human case counts ofWNV.

Climate Data
We used monthly surface air temperature and precipitation from
the Precipitation elevation Regressions on Independent Slopes

Model (PRISM), available as 4-km gridded products.32,33 To com-
pare climate with our county-level WNV incidence data, we spa-
tially averaged the native gridded climate data to the county level
using county shapefiles from the 2018 TIGER/Line Shapefiles
product by the U.S. Census Bureau.34 We calculated 3-month
mean seasonal climate variables from monthly observations during
the period December 2004–November 2019 for direct comparison
with our WNV data set, starting with winter data prior to the
summer WNV season. The different seasons we used for averag-
ing the climate information were winter [December, January, and
February (DJF)], spring [March, April, and May (MAM)], summer
[June, July, and August (JJA)], and fall [September, October, and
November (SON)].

Random Forest Model
We used a mean random forest (RF) model [R package
“randomForest” (version 4.6-14; https://cran.microsoft.com/
snapshot/2020-04-20/web/packages/randomForest/index.html)]35
to explore which seasonal climate conditions are important in struc-
turing the spatial pattern ofWNV incidence in the United States. RF
models have been used in a variety of geoscience applications with
general accuracy.36–38 Though RF models are primarily considered
predictive models, they do offer insight on variable importance.39
The technique of creating an additional summary tree to look inside
the so-called “black box” of the RF has also been previously imple-
mented for geoscience.40 We chose to use a RF approach to balance
the ability to create a predictive model of complex data without los-
ing model interpretability. We created our mean RF model by run-
ning 500 iterations of the RF, each time on a different, randomly
selected set of training data. We used 80% of the counties for train-
ing the model and the remaining 20% for testing. Each iteration of
the model generated 1,000 separate regression trees. We randomly
selected three predictor variables as candidates at each split in the
RF (parameter known as mtry, where mtry =

ffiffiffi

p
p

and p is the number
of predictor variables).41 To avoid overfitting, we used a minimum
node size of 5, so that each terminal node (i.e., leaves) in our regres-
sion trees described at leastfive counties.Weused amaximumnum-
ber of nodes of 20, so that we did not lose interpretability of our
model results. RFmodels are relatively insensitive to tuning param-
eters, and the defaults performwell onmost data sets.41–43

RFmodels do not inherently account for spatial autocorrelation.
To determine whether we needed to incorporate spatial information
into our model, we first tested the WNV case data for spatial auto-
correlation using Moran’s I test. We created a binary, spatial adja-
cency matrix using the county shapefile in QGIS (version 3.10;
QGISDevelopment Team)where counties were defined as adjacent
if they had touching geopolitical boundaries. With a Moran’s I
observed value = 0:6901, expected value= − 0:0003, at p<0:001,
we rejected the null hypothesis that there is no spatial autocorrela-
tion present in the mean WNV incidence data. To account for this
spatial autocorrelation, we applied eigenvector spatial filtering
(ESF) to our RF.44,45We computed the eigenvalue spatial decompo-
sition of the spatial adjacency matrix, creating the same number of
eigenvectors as counties (n=3,108). Adding these eigenvectors as
predictors into the RF acts as control variables to identify and isolate
stochastic spatial dependencies among the counties, so the model
can proceed as if the observations are independent.44 Because there
is currently no set standard for the number of eigenvectors to
include, we chose to include the first three as predictor variables in
the RF. This choice was made based on exploring the number of
eigenvectors, and therefore additional variables, in the RF and the
observed diminishing increase inmodel performance.

We estimated the spread in our RF predictions by calculating
the standard deviation (SD) across the 500 iterations. We also
averaged the variable importance and node purities across the
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iterations. We measured the importance of each climate variable in
the model by calculating the decrease in modeled mean-square
error from randomly permuting each predictor variable. We aver-
aged the out-of-sample county-level estimations of WNV incidence
from the 500 iterations to create our mean RF and for reporting our
final estimation of county-level mean annual WNV incidence.

To understand important splitting points for each of the sea-
sonal climate predictors, we ran an additional regression tree
using the out-of-sample predicted county-level WNV incidence
from our mean RF as input training data [R package “rpart”
(version 4.1-15; https://cran.r-project.org/web/packages/rpart/rpart.
pdf)].46 This created a summary tree similar in performance to the
mean RF [R2 = 0:58, root-mean-square error ðRMSEÞ=3:5 cases
per 100,000 population per year]. This tree allowed us to explore
important climate thresholds that structure areas of higher and
lower WNV incidence.

Our analyses were performed in R (version 3.6.1; R
Development Core Team). We created our figures and maps in
Python (version 3.7.6), using package “Basemap” (version 1.2.0)
and package “matplotlib” (version 3.1.3). We edited our figures
for layout in Adobe Illustrator 2022.

Results

The Mean Spatial Pattern and Magnitude of WNV in the
United States
Despite interannual variability in the location and number of
WNV cases (Figure 1A), the maps of mean annual WNV cases
(Figure 1B) and mean annual WNV incidence (Figure 1C)
showed distinct spatial patterns. Many counties had low levels of
WNV incidence, and very few had high levels: 1,008 counties
(33%) have never had a case of WNV; 1,749 counties (56%) have
mean annual incidence averaged from 2005 to 2019 fewer than
5 cases per 100,000 population per year; 224 counties (7%) have
mean annual incidence from 5 to <15 cases per 100,000 popula-
tion per year; and 127 counties (4%) have mean annual incidence
of at least 15 cases per 100,000 population per year (Figure 1D).
The highest numbers ofmean annualWNVcases occurred in coun-
ties with large cities. The 10 counties with the highest mean annual
number of cases from 2005 to 2019 included the cities of Los
Angeles (Los Angeles County, California), Phoenix (Maricopa
County, Arizona), Chicago (Cook County, Illinois), Dallas (Dallas
County, Texas), Anaheim/Santa Ana/Irvine (Orange County,
California), Houston (Harris County, Texas), Fort Worth (Tarrant
County, Texas), Bakersfield (Kern County, California), Riverside
(Riverside County, California), and Fort Collins (Larimer County,
Colorado); together, this set accounted for 21% (492 cases) of the
mean annual number of cases during this period. Half of the mean
annual number of WNV cases (1,172 cases) can be attributed to
just 70 of the 3,108 counties in the United States. Apart from
Chicago, Illinois, and Detroit, Michigan, it was more challenging
to identify large population centers by the number of WNV cases
across the eastern half of the United States.

Normalizing by population, the WNV incidence map revealed
a distinct V-shaped pattern of elevated incidence throughout the
Great Plains of the United States (Figure 1C). The high-incidence
region spanned several northern states on the Canadian border
(Montana, North Dakota, and westernMinnesota) and narrowed
to the south through Wyoming, South Dakota, Nebraska, east-
ern Colorado, western Kansas, western Oklahoma, and north-
western Texas. There was also a hot spot of elevated WNV
incidence in southern Idaho and along the Oregon–Idaho border
on the southern Columbia Plateau. WNV incidence was low in the
eastern United States, except for a pocket of moderate incidence
throughout Louisiana and Mississippi in the southern Mississippi

River Valley. In subsequent analyses, our goal was to identify the
climate drivers that help explain the V-shaped zone of elevated inci-
dence and,more generally, the full spatial pattern of incidence.

Statistical Relationships between Seasonal Climate and
WNV Incidence
By comparing county-level mean annual WNV incidence with
seasonal precipitation and temperature variables, we found that

Figure 1. Total number of cases and mean spatial pattern of WNV in the
United States during the period 2005–2019, including (A) a time series of
WNV cases for the contiguous United States derived from data compiled by
the U.S. Centers for Disease Control and Prevention for the sum of neuroin-
vasive and non-neuroinvasive cases; (B) a county-level map of the number
of mean annual WNV cases averaged from 2005–2019; (C) a county-level
map of mean annual incidence (cases per 100,000 population per year)
derived from the case data shown in panel (B) and annual, county-level U.S.
Census population estimates; and (D) the frequency distribution of mean an-
nual incidence across the 3,108 counties in the United States. See Excel
Table S1, S2, and S3 for corresponding numerical data. Graphs and maps
were created in Python (version 3.7.6), using package “Basemap” (version
1.2.0), and “matplotlib” (version 3.1.3). We edited our figures for layout in
Adobe Illustrator 2022. Note: WNV, West Nile virus.
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areas with dry and cold winters supported higher levels of inci-
dence (Figures 2 and 3). From visual inspection, an important
threshold occurred for winter (DJF) precipitation at a level of
about 25 mm=month (Figure 2A). A total of 560 counties had
precipitation levels below this threshold; this set of counties had
a mean annual incidence of 8.8 cases per 100,000 population per
year (SD=9:5). In contrast, the 2,548 counties above this thresh-
old had a mean annual incidence of 0.7 cases per 100,000 popula-
tion per year (SD=2:1). This factor of 13 difference in incidence
for these two sets was highly significant when evaluated using a
one-tailed independent t-test ½tð3,106Þ=3:4, p=0:0003]. Low
precipitation during other seasonal periods was also associated
with higher incidence but with less-defined breakpoints.

Similarly, counties that had mean winter temperatures below
0°C (n=1,298) had higher levels of WNV incidence [∼ 4:0 cases
per 100,000 population per year (Figure 3A)]. In contrast, counties
with winter temperature above 0°C had lower incidence (0.9 cases
per 100,000 population per year). Cooler temperatures during
other seasons also favored higher levels of WNV incidence
(Figure 3B and D). WNV incidence was relatively low in counties
with summer temperatures above 24°C (Figure 3C). The strong
nonlinearities and apparent threshold-type relationships between
seasonal temperature and precipitation and WNV incidence pro-
vided motivation for the use of a RF model (Figures 2 and 3).

To further explore the relationship between seasonal climate
drivers and mean annual WNV incidence, we calculated the
county-level univariate linear correlation between each seasonal
climate driver and mean annual WNV incidence (Table 1).
Among all seasonal climate drivers, fall precipitation had the
strongest negative correlation with WNV incidence (r= − 0:43),
so counties with lower fall precipitation had higher WNV inci-
dence. There was also a relatively strong negative correlation

between precipitation and WNV incidence in winter (r= − 0:37)
and spring (r= − 0:35). Among the seasonal temperature varia-
bles, winter temperature had the strongest negative correlation
with WNV incidence (r= − 0:29), but with a magnitude that was
lower than the fall, winter, and spring precipitation variables. The
levels of variance explained by these single variables provided a
baseline for evaluating the success of our more complex RF
model.

When building and interpreting our model of the spatial pattern
of WNV incidence, it was also important to consider the collinear-
ity among the different climate drivers. The spatial structure of
temperature was highly correlated among all the different seasons
(Figure 4; 0.80–0.99), whereas seasonal precipitation exhibited
relatively higher levels of correlation among fall, winter, and
spring seasons (0.76–0.83) but not between summer and other sea-
sons (0.23–0.53). Across temperature and precipitation variables,

Figure 2. Incidence and histograms of the county number of WNV cases as
a function of precipitation. Four seasonal intervals are shown: (A) winter
(DJF), (B) spring (MAM), (C) summer (JJA), and (D) fall (SON). In each
histogram, the number of counties was aggregated in 10-mm=month precipi-
tation bins. Mean annual incidence and mean monthly precipitation variables
during the period 2005–2019 were used to create the plots. See Excel Table
S3 for corresponding numerical data. Surface air temperature and precipita-
tion data are from the Precipitation elevation Regressions on Independent
Slopes Model (PRISM). West Nile virus case data is provided by the U.S.
Centers for Disease Control and Prevention. Note: DJF, December, January,
February; JJA, June, July, August; MAM, March, April, May; SON,
September, October, November; WNV, West Nile virus.

Figure 3. Incidence and histograms of county number as a function of air
temperature. Four seasonal intervals are shown: (A) winter (DJF), (B) spring
(MAM), (C) summer (JJA), and (D) fall (SON). In each histogram, the num-
ber of counties was aggregated in 2°C temperature bins. Mean annual inci-
dence and mean surface air temperature during the period 2005–2019 were
used to create these plots. See Excel Table S3 for corresponding numerical
data. Surface air temperature and precipitation data are from the Precipitation
elevation Regressions on Independent Slopes Model (PRISM). WNV case
data is provided by the U.S. Centers for Disease Control and Prevention.
Note: DJF, December, January, February; JJA, June, July, August; MAM,
March, April, May; SON, September, October, November; WNV, West Nile
virus.

Table 1. The county-level univariate Pearson correlation coefficient (r),
associated p-values, and coefficient of determination (R2) between each
county-level seasonal climate variable and WNV incidence in the United
States from 2005 to 2019.

Explanatory variables

Precipitation Temperature

Season Pearson r p-Value R2 Pearson r p-Value R2

DJF −0:37 5:43× 10−100 0.13 −0:29 4:00× 10−62 0.09
MAM −0:35 5:52× 10−92 0.12 −0:25 4:18× 10−44 0.06
JJA −0:23 8:17× 10−40 0.05 −0:14 6:69× 10−15 0.02
SON −0:43 5:53× 10−140 0.19 −0:27 5:50× 10−52 0.07

Note: Surface air temperature and precipitation data are from the Precipitation elevation
Regressions on Independent Slopes Model (PRISM). DJF, December, January, February;
JJA, June, July, August; MAM, March, April, May; SON, September, October, November;
WNV,WestNile virus.
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correlations were considerably lower (0.17–0.48), with the largest
positive correlation occurring between precipitation and tempera-
ture duringwinter. The greater degree of independence among pre-
cipitation and temperature variables suggested that more complex
models may be able to capture the spatial structure of disease inci-
dence by combining information from both variables.

RFModel of WNV Incidence
Our RF model successfully captured the V-shaped area of
increased WNV incidence throughout the Great Plains (Figure
5A). The R2 performance between predicted and observed inci-
dence of our RF model averaged across the 500 iterations was 0.70
(0.65–0.74) for our in-sample training data and 0.61 (0.43–0.74)
for our out-of-sample testing data. Relative to the 2005–2019mean
county incidence value of 2.2 cases per 100,000 population per
year, the RMSE for our in-sample training data was 3.0 cases per
100,000 population per year (2.7–3.2). For our out-of-sample test-
ing data, the RMSE was 3.4 cases per 100,000 population per year
(2.5–4.3).

The model produced a smoothed pattern of WNV incidence
levels between counties even though there was county-level het-
erogeneity in the observed mean annual incidence data (Figure
1C). The highest levels of SD between the 500 iterations were in
the regions with the highest levels of incidence, whereas counties
with low incidence had correspondingly low SDs (Figures 1C,
5B, 6A). Overall, our RF model had a slight high-incidence bias
throughout the western United States, yet still underestimated the
incidence in counties with the highest levels, including those in
the central Great Plains (Colorado, Kansas, Montana, Nebraska,
North Dakota, South Dakota, Texas), Columbia Plateau (Idaho,
Nevada, Oregon), and Mississippi Valley (Arkansas, Louisiana,
Mississippi; Figure 5C). The model underestimated incidence for
any county above a mean annual incidence of 20 cases per
100,000 population per year (Figure 6B).

The measure of variable importance indicated winter precipi-
tation, fall precipitation, and winter temperature were the top
three most important seasonal climate drivers to determine the
county-level WNV incidence (Table 2). Additionally, our sum-
mary tree identified summer temperature and precipitation as
another important conditional split to determine levels of inci-
dence (Figure 7). Two splits on the second eigenvector were also

included in the summary tree, both of which mediated latitudinal
splits in the county-level incidence. Counties that had dry and
cold winters and wetter and warm summers were assigned the
highest level of WNV incidence. On average, counties with win-
ter precipitation levels <23:3 mm=month had incidences nearly
11 times greater than counties that were wetter.

Our summary tree was comprised of one long and one short
branch (Figure 7). The initial conditional split for winter precipi-
tation produced a similar V-shaped area throughout the Great
Plains for mean annual WNV incidence. Along the short branch,
the conditional pattern of fall precipitation was an important fac-
tor for limiting WNV incidence levels in the eastern United
States. Along the long branch, temperature and eigenvector con-
ditional breaks were staggered latitudinally in comparison with
the precipitation breaks.

Discussion

The Relationships between Climate and WNV Incidence
Climate conditions are likely structuring both the mean spatial
extent of WNV incidence and the interannual variability in the
number and location of disease cases. Our study was the first to

Figure 4. A spatial correlation matrix between the eight seasonal climate
variables across all counties in the contiguous United States. The matrix dis-
plays the Pearson correlation coefficients between each pair of predictor var-
iables. Each predictor variable consisted of a vector with 3,108 elements,
with each element representing the mean climate condition for a single
county. Surface air temperature and precipitation data are from the
Precipitation elevation Regressions on Independent Slopes Model (PRISM).
Note: DJF, December, January, February; JJA, June, July, August; MAM,
March, April, May; SON, September, October, November.

A

B

C

Figure 5. A map of (A) modeled mean annual WNV incidence predicted
by the RF model where each county is the average of the 500 iterations of
out-of-sample testing data, (B) the standard deviation across those 500 iter-
ations, and (C) the absolute error from observed WNV incidence levels
(2005–2019). All are in units of cases per 100,000 population per year. See
Table S3 for corresponding numerical data. Analyses were performed in R
(version 3.6.1; R Development Core Team), maps were created in Python
(version 3.7.6), using package “Basemap” (version 1.2.0) and “matplotlib”
(version 3.1.3). We edited our figures for layout in Adobe Illustrator 2022.
Note: RF, random forest; WNV, West Nile virus.
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our knowledge to use climate conditions to constrain the mean
geospatial pattern and levels of WNV incidence across the con-
tiguous United States as a whole, in comparison with previous
studies that focused on a subregion or the interannual relation-
ships between climate and WNV at subregional levels.26–29 Our

model suggested that although most all seasonal climate drivers
may contribute information on the spatial pattern of WNV inci-
dence in the United States, precipitation levels in winter and fall
and temperatures in winter may be the most important. We found
evidence for this importance in the variables that contributed the
most to the RF model. From the summary tree, we found dry and
cold winters constrained the V-shaped pattern of higher WNV
incidence throughout the Great Plains. Within that region, areas
with cold winters and warm summer temperatures were assigned
the highest levels of WNV incidence.

Our model produced a more smoothed map of WNV inci-
dence in comparison with observations. This smoothed estimate
may be a better proxy of WNV risk, because nonclimate factors
may also contribute to the county-level heterogeneity in inci-
dence. For example, the availability of county-level health care
services and variability in the accuracy of diagnoses and report-
ing could affect reported incidence rates.

Our model may provide a means to predict the future spatial
extent of WNV risk in response to climate change. However, sub-
regional patterns of WNV incidence are likely structured by a se-
ries of environmental variables, including vegetation type,47–50
land use,51,52 and hydrology.53 Dry agricultural areas supported by
irrigation may be a key component to bringing birds, mosquitoes,
and humans into close proximity, increasing the speed and likeli-
hood ofWNV transmission. Our model was limited to only incor-
porating seasonal temperature and precipitation, though an
important next step in future work is to incorporate additional in-
formation on land cover, land use, and water resources and
irrigation.

The Spatial Pattern of WNV Incidence in Relation to
Mosquitoes
Climate conditions may be influencing the spatial pattern of
WNV incidence by controlling the habitat range of important
mosquito vector species. Although many species can carry
WNV, some species are more easily infected, better at amplifying
the virus, and more successful at transmitting the disease to a
host than others.9,54–57 As of 2019, WNV had been found
throughout the United States in 65 different mosquito species.58
Cx. tarsalis is likely one of the most important mosquito species
for WNV transmission within the northern Great Plains, because
it is an effective vector and primarily breeds in rural habi-
tats.9,29,59 It is possible for this species to acquire WNV through
vertical transmission (parent to offspring) and carry the virus
through diapause into the following year.60

A spatial analysis of the 2003 WNV levels in the northern
Great Plains found that climatically averaged temperature and pre-
cipitation best described the spatial pattern of disease.29 This study
by Wimberly et al. hypothesized these climate conditions may be
capturing the geographical range of Cx. tarsalis.29 Wimberly et al.
found average monthly precipitation between May and July at
∼ 67 mm=month was optimal for WNV amplification and trans-
mission in the northern Great Plains.29 In our study across the con-
tiguous United States, we found a similar optimal result, in which
counties with higher levels of WNV incidence also occur in areas
that have ∼ 50-80 mm=month of rainfall in the spring and summer
months (Figure 2B,C). East of the northern Great Plains, precipita-
tion increases, and Aedes vexans and Cx. pipiens may assume the
role of the most important vector.29,61 This possibly supports the
success ofCx. tarsalis as a vector forWNV under drier conditions.
Wimberly et al. also found a positive linear relationship between
WNV incidence and summer temperatures when analyzing mean
temperatures between 17.1°C and 28.8°C29; this finding may
describe the effects of temperature on the amplification of mosqui-
tos as WNV vectors by potentially influencing the mosquito

A

B

Figure 6. RF model performance plots showing county-level values for (A)
observed WNV incidence vs. the standard deviation among the 500 model
iterations and (B) observed WNV incidence vs. the modeled WNV incidence
(2005–2019). Each dot represents one of the 3,108 counties in the contigu-
ous United States. A 1-to-1 line was added as a guide to (B). See Table S3
for corresponding numerical data. Note: RF, random forest; WNV, West
Nile virus.

Table 2. Variable importance measured by the percentage increase in MSE
if that variable were to be excluded from the analysis and total decrease in
node impurity measured by the residual sum of squares. We show results for
the climate variables in winter (DJF), spring (MAM), summer (JJA), and fall
(SON), as well as the three eigenvectors included to account for spatial auto-
correlation (E1, E2, E3).

Explanatory variable
Percentage increase

in MSE
Decrease in node

impurity

DJF precipitation 12.9 14,956
MAM precipitation 2.0 2,065
JJA precipitation 1.8 2,087
SON precipitation 9.1 7,344

DJF temperature 4.2 4,340
MAM temperature 0.7 716
JJA temperature 1.7 1,851
SON temperature 0.9 963

E1 3.9 4,661
E2 6.2 5,200
E3 4.3 4,843

Note: Surface air temperature and precipitation data are from the Precipitation elevation
Regressions on Independent Slopes Model (PRISM). DJF, December, January,
February; JJA, June, July, August; MAM, March, April, May; MSE, mean-square error;
SON, September, October, November.
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Figure 7. The summary regression tree showing county-level conditional climate splits, created from the mean RF predictions. Precipitation (P) has units of
millimeters/month and air temperature (T) has units of °C. Eigenvectors are denoted by E, where 1, 2, or 3 is the corresponding column number in the
eigenvector matrix. The seasons are partitioned into winter (DJF), spring (MAM), summer (JJA), and fall (SON). WNV incidence (WNV Inc) is in units of
cases per 100,000 population per year. The number of counties that fall into each division is denoted by n. Terminal nodes are in bold font. Note: Maps
were created in Python (version 3.7.6), using package “Basemap” (version 1.2.0) and “matplotlib” (version 3.1.3). We edited our figures for layout in
Adobe Illustrator 2022. DJF, December, January, February; JJA, June, July, August; MAM, March, April, May; RF, random forest; SON, September,
October, November; WNV, West Nile virus.
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incubation rate.62 In contrast, our analysis across the contiguous
United States examined a broader range of summer temperatures
between 10.5°C and 33.2°C and found there was an optimal
summer temperature for increased WNV incidence around 21°C
(Figure 3C). Similar to the findings from Wimberly et al.,29
summer temperatures above or below 19.5°C were identified as a
conditional split in our summary tree, where higher summer tem-
peratures were assigned higher values ofWNV incidence.

The important seasonal climate drivers of the spatial struc-
ture of WNV incidence are likely describing the ecological
niche of key mosquito species driving the transmission of
WNV. Recently updated habitat suitability maps for Culex mos-
quitoes highlight the Great Plains of the United States as highly
suitable for both Cx. salinarius and Cx. tarsalis.11 The suitabil-
ity maps for these two species were largely structured by the
cultivated and managed vegetation land cover variable, which
further suggests that agricultural areas may be a key ecosystem
for WNV transmission. The absence or reduced population
sizes of these key mosquito species in other regions of the
United States due to unsuitable habitats or competition among
other mosquito species may explain the lower levels of WNV
incidence, especially in the eastern United States, where there
is greater human population density and the presence of
important bird species. Future work examining the connection
between the geographical distributions (and population den-
sity) of important mosquito species and WNV incidence in the
United States could help evaluate whether mosquitoes are
indeed the connection between climate conditions and WNV
incidence.

The Spatial Pattern of WNV Incidence in Relation to Birds
Birds play an important role in the transmission of WNV by acting
as viral host reservoirs. For this reason, the presence of birds is
known to modulate the rate of WNV transmission.63–65 One of the
most important bird species forWNV transmission, considered the
key host reservoir, are robins.65 Even in ecosystems where robins
are not abundant, they can account for most mosquito feedings.65
Unlike other species, robin population levels are not affected by
WNV,66 but removing robins from a community does decrease
WNV transmission.65 Robins are ubiquitously present throughout
the contiguous United States and are present year-round in the
Great Plains.67 There is a relatively high abundance of robins in the
Great Plains in comparison with other parts of the United States
during the nonbreeding season (DJF), prebreeding migration
(FMAM), and postbreeding migration (SOND),68 which could
help WNV persistence in this region. The large number of robins
that migrate through this area may play a role in the WNV trans-
mission cycle because there are more potential viral hosts.
However, robins do not seem to be the key determinant of the spa-
tial pattern of elevated WNV incidence because they are also pres-
ent outside of the areas of highestWNV incidence.

Crows are another bird of particular interest in the WNV
transmission cycle. Although crow population levels have suf-
fered from WNV,69,70 crows may be relatively unimportant for
the amplification of WNV65 because they make up a very small
percent of mosquito feedings.21 However, crows are still a highly
competent host for WNV,71 and new findings suggest they may
play an important role in overwintering the virus.25 Crows live in
large winter roosts and may allow WNV to persist throughout
winter by continually spreading the disease from bird to bird.24,25
Crows are also present year-round in the Great Plains,68 so the
presence of WNV in the crow populations may accelerate bird-
to-mosquito transmission in spring when mosquitos emerge.25
However, crows also do not seem to be the key determinant of
the spatial pattern of WNV because they are found throughout

much of the eastern United States, too, where there are lower lev-
els of WNV incidence.

The Spatial Pattern of WNV Incidence in Relation to
Humans
To study the relative levels of WNV in the United States, we
chose to create our model based on disease incidence rather than
case counts. Because the highest levels of WNV incidence occur
in generally less-populated areas throughout the northern Great
Plains but not across all less-populated regions in the western
United States, the abundance of humans does not appear to be an
important factor in structuring the spatial extent of WNV.

Because the ratio of mosquitoes to humans may be important
for WNV transmission, previous studies have incorporated popu-
lation density as a predictor of incidence. However, these studies
found mixed results where both suburbs and rural areas were
associated with higher and lower levels of incidence.49,50,52,72

Higher levels of human immunity in a population can reduce the
number of WNV cases,73 which may be an important factor
when predicting the interannual levels of WNV cases. However,
human immunity likely does not structure the long-term spatial
extent of the disease. Estimated population seroprevalence in the
United States is low (<14%), so most of the population is still
susceptible to WNV.6,73,74

Socioeconomic status and population demographics may also
influence the structure of WNV incidence.4,47,75,76 At the county
level, differences in health care may cause some of the heteroge-
neity in case counts, especially if people need to travel to popula-
tion centers to seek medical services. In addition, we hypothesize
that differences in efficacy of county-level case reporting contrib-
ute to some of the relatively sharp differences in incidence in the
northern Great Plains (Figure 2C). If so, this measurement uncer-
tainty is likely one important factor that limits the model per-
formance for both training and out-of-sample metrics (Table 2).

Human behavior and the amount of time spent outdoors are
also affected by weather and climate conditions.77 People may
choose to remain indoors during the hot and humid summer
months, causing less human exposure to infected mosquitos.18

However, cooler temperatures in the evenings and nights may
draw people outside, which coincides with the timing of when
Culex mosquitos preferentially blood-feed.78,79

Agricultural Areas Inadvertently Supporting Higher Levels
of WNV Incidence
The climate conditions within the Great Plains, paired with
favorable soils, make it a primary area for agriculture.80 We
suggest irrigated agricultural areas might be a key element that
concentrates mosquitoes, birds, and humans around limited
water sources in dry regions and inadvertently amplifies the
transmission and higher incidence levels of WNV. People in the
Great Plains are more likely to be outdoors for their occupa-
tions. The nectar and sugars from crops may provide food to
male and nonbreeding female mosquitoes, whereas irrigated
croplands may provide water resources necessary for mosquito
breeding habitat.

Early estimates from 2004–2006 examining the number of
human and veterinary WNV cases across the United States and
levels of irrigation found a statistically significant positive associ-
ation between the two.81 It has also been noted that county-level
WNV incidence in the northern Great Plains is positively corre-
lated with the amount of irrigated cropland.29 Irrigated croplands
were identified as an important risk factor for WNV in areas of
higher incidence levels in Colorado82 and throughout regions
with WNV outbreaks in Europe.83
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Climate Controls on the Spatial Distribution of WNV vs.
Interannual Variability
Like our findings regarding the spatial structure of WNV inci-
dence in the United States, previous work examining the interan-
nual variability in WNV cases also found temperature and
precipitation to be important drivers of WNV. However, the rela-
tionships between climate variables and WNV incidence are fun-
damentally different between our spatial and their temporal
analyses. From year to year, warmer winters and springs led to an
increase in WNV cases throughout the United States.84–86 These
warmer temperatures may allow more mosquitos to overwinter
and begin an earlier breeding season in spring. The large number
of WNV cases in 2012 in the southern Great Plains followed an
anomalously warm spring but mild summer, possibly allowing
the mosquito breeding season to both begin early and sustain
itself throughout summer by not reaching the physiological tem-
perature limit of the mosquitoes.84 Although our model suggested
that regions with colder winter temperatures support higher mean
levels of WNV incidence, areas that have anomalously warmer
winters within this climate space may lead to years with above-
average levels of WNV cases.

The role of precipitation on interannual WNV levels varies spa-
tially.53,61,86–88 Generally, lower levels of precipitation cause places
that are already dry (e.g., westernUnited States) to have lower levels
ofWNV incidence and cause places that are typicallywet (e.g., east-
ern United States) to have higher WNV incidence.84,87,89 Drought
conditions have also been linked to increases in WNV.53,90 Our RF
model indicated areas with dry and cold winters and mild-to-warm
summers supported higher levels ofWNV incidence.

We hypothesize climate plays different roles in structuring the
mean spatial pattern of WNV incidence in the United States versus
the interannual variability in the number of disease cases. Spatially,
climate conditions likely structure the range of the important vector
species for WNV. Mosquitoes able to flourish in cold and dry win-
ters are also efficient transmitters of WNV, increasing regional levels
of WNV incidence. However, interannual variability in climate may
influence several facets of the mosquito lifecycle and local resources
available to the existing mosquito populations. These differences
may explain why some climate conditions have opposing relation-
ships to levels of WNV incidence spatially versus temporally.

Model Limitations and Future Research
Although our RF model could explain up to 61% of the variance in
the spatial structure of WNV incidence using only seasonal tem-
perature and precipitation, additional predictive variables may
improve the model. Irrigated agricultural areas may be a key factor
in bringing humans, birds, and mosquitoes around limited water
supplies. Though climate conditions generally structure where
areas of agriculture are, future models should consider incorporat-
ing agricultural variables and other information about land use.
Ourmodel did not incorporate any information regarding the domi-
nant regional mosquito vector species, which could enhance model
performance if different vector species have orthogonal responses
to climate drivers. Ourmodel also did not include any specificmea-
sure of bird abundance, species diversity, or the presence of a spe-
cies. In future work, our RFmodel may be useful for predicting the
response of WNV incidence to climate change, because shifts in
precipitation and increasing temperatures may cause mosquitos to
change their geographical range.
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